Properties

Label 980.4.e.c.589.2
Level $980$
Weight $4$
Character 980.589
Analytic conductor $57.822$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [980,4,Mod(589,980)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("980.589"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(980, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 980.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,20,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.8218718056\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 589.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 980.589
Dual form 980.4.e.c.589.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.00000i q^{3} +(10.0000 - 5.00000i) q^{5} +2.00000 q^{9} -65.0000 q^{11} -13.0000i q^{13} +(25.0000 + 50.0000i) q^{15} -113.000i q^{17} +16.0000 q^{19} +186.000i q^{23} +(75.0000 - 100.000i) q^{25} +145.000i q^{27} +57.0000 q^{29} +258.000 q^{31} -325.000i q^{33} +134.000i q^{37} +65.0000 q^{39} +414.000 q^{41} -284.000i q^{43} +(20.0000 - 10.0000i) q^{45} +419.000i q^{47} +565.000 q^{51} -130.000i q^{53} +(-650.000 + 325.000i) q^{55} +80.0000i q^{57} +334.000 q^{59} +56.0000 q^{61} +(-65.0000 - 130.000i) q^{65} -534.000i q^{67} -930.000 q^{69} +952.000 q^{71} -502.000i q^{73} +(500.000 + 375.000i) q^{75} +371.000 q^{79} -671.000 q^{81} -1220.00i q^{83} +(-565.000 - 1130.00i) q^{85} +285.000i q^{87} +880.000 q^{89} +1290.00i q^{93} +(160.000 - 80.0000i) q^{95} -241.000i q^{97} -130.000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 20 q^{5} + 4 q^{9} - 130 q^{11} + 50 q^{15} + 32 q^{19} + 150 q^{25} + 114 q^{29} + 516 q^{31} + 130 q^{39} + 828 q^{41} + 40 q^{45} + 1130 q^{51} - 1300 q^{55} + 668 q^{59} + 112 q^{61} - 130 q^{65}+ \cdots - 260 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 5.00000i 0.962250i 0.876652 + 0.481125i \(0.159772\pi\)
−0.876652 + 0.481125i \(0.840228\pi\)
\(4\) 0 0
\(5\) 10.0000 5.00000i 0.894427 0.447214i
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 2.00000 0.0740741
\(10\) 0 0
\(11\) −65.0000 −1.78166 −0.890829 0.454339i \(-0.849876\pi\)
−0.890829 + 0.454339i \(0.849876\pi\)
\(12\) 0 0
\(13\) 13.0000i 0.277350i −0.990338 0.138675i \(-0.955716\pi\)
0.990338 0.138675i \(-0.0442844\pi\)
\(14\) 0 0
\(15\) 25.0000 + 50.0000i 0.430331 + 0.860663i
\(16\) 0 0
\(17\) 113.000i 1.61215i −0.591814 0.806074i \(-0.701588\pi\)
0.591814 0.806074i \(-0.298412\pi\)
\(18\) 0 0
\(19\) 16.0000 0.193192 0.0965961 0.995324i \(-0.469204\pi\)
0.0965961 + 0.995324i \(0.469204\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 186.000i 1.68625i 0.537720 + 0.843124i \(0.319286\pi\)
−0.537720 + 0.843124i \(0.680714\pi\)
\(24\) 0 0
\(25\) 75.0000 100.000i 0.600000 0.800000i
\(26\) 0 0
\(27\) 145.000i 1.03353i
\(28\) 0 0
\(29\) 57.0000 0.364987 0.182494 0.983207i \(-0.441583\pi\)
0.182494 + 0.983207i \(0.441583\pi\)
\(30\) 0 0
\(31\) 258.000 1.49478 0.747390 0.664386i \(-0.231307\pi\)
0.747390 + 0.664386i \(0.231307\pi\)
\(32\) 0 0
\(33\) 325.000i 1.71440i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 134.000i 0.595391i 0.954661 + 0.297695i \(0.0962180\pi\)
−0.954661 + 0.297695i \(0.903782\pi\)
\(38\) 0 0
\(39\) 65.0000 0.266880
\(40\) 0 0
\(41\) 414.000 1.57697 0.788487 0.615051i \(-0.210865\pi\)
0.788487 + 0.615051i \(0.210865\pi\)
\(42\) 0 0
\(43\) 284.000i 1.00720i −0.863937 0.503600i \(-0.832009\pi\)
0.863937 0.503600i \(-0.167991\pi\)
\(44\) 0 0
\(45\) 20.0000 10.0000i 0.0662539 0.0331269i
\(46\) 0 0
\(47\) 419.000i 1.30037i 0.759776 + 0.650185i \(0.225309\pi\)
−0.759776 + 0.650185i \(0.774691\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 565.000 1.55129
\(52\) 0 0
\(53\) 130.000i 0.336922i −0.985708 0.168461i \(-0.946120\pi\)
0.985708 0.168461i \(-0.0538797\pi\)
\(54\) 0 0
\(55\) −650.000 + 325.000i −1.59356 + 0.796782i
\(56\) 0 0
\(57\) 80.0000i 0.185899i
\(58\) 0 0
\(59\) 334.000 0.737002 0.368501 0.929627i \(-0.379871\pi\)
0.368501 + 0.929627i \(0.379871\pi\)
\(60\) 0 0
\(61\) 56.0000 0.117542 0.0587710 0.998271i \(-0.481282\pi\)
0.0587710 + 0.998271i \(0.481282\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −65.0000 130.000i −0.124035 0.248069i
\(66\) 0 0
\(67\) 534.000i 0.973709i −0.873483 0.486854i \(-0.838144\pi\)
0.873483 0.486854i \(-0.161856\pi\)
\(68\) 0 0
\(69\) −930.000 −1.62259
\(70\) 0 0
\(71\) 952.000 1.59129 0.795645 0.605763i \(-0.207132\pi\)
0.795645 + 0.605763i \(0.207132\pi\)
\(72\) 0 0
\(73\) 502.000i 0.804858i −0.915451 0.402429i \(-0.868166\pi\)
0.915451 0.402429i \(-0.131834\pi\)
\(74\) 0 0
\(75\) 500.000 + 375.000i 0.769800 + 0.577350i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 371.000 0.528364 0.264182 0.964473i \(-0.414898\pi\)
0.264182 + 0.964473i \(0.414898\pi\)
\(80\) 0 0
\(81\) −671.000 −0.920439
\(82\) 0 0
\(83\) 1220.00i 1.61340i −0.590960 0.806701i \(-0.701251\pi\)
0.590960 0.806701i \(-0.298749\pi\)
\(84\) 0 0
\(85\) −565.000 1130.00i −0.720975 1.44195i
\(86\) 0 0
\(87\) 285.000i 0.351209i
\(88\) 0 0
\(89\) 880.000 1.04809 0.524044 0.851691i \(-0.324423\pi\)
0.524044 + 0.851691i \(0.324423\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 1290.00i 1.43835i
\(94\) 0 0
\(95\) 160.000 80.0000i 0.172796 0.0863982i
\(96\) 0 0
\(97\) 241.000i 0.252266i −0.992013 0.126133i \(-0.959743\pi\)
0.992013 0.126133i \(-0.0402567\pi\)
\(98\) 0 0
\(99\) −130.000 −0.131975
\(100\) 0 0
\(101\) 148.000 0.145807 0.0729037 0.997339i \(-0.476773\pi\)
0.0729037 + 0.997339i \(0.476773\pi\)
\(102\) 0 0
\(103\) 501.000i 0.479272i 0.970863 + 0.239636i \(0.0770281\pi\)
−0.970863 + 0.239636i \(0.922972\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 744.000i 0.672198i −0.941827 0.336099i \(-0.890892\pi\)
0.941827 0.336099i \(-0.109108\pi\)
\(108\) 0 0
\(109\) −441.000 −0.387524 −0.193762 0.981049i \(-0.562069\pi\)
−0.193762 + 0.981049i \(0.562069\pi\)
\(110\) 0 0
\(111\) −670.000 −0.572915
\(112\) 0 0
\(113\) 2118.00i 1.76323i 0.471972 + 0.881614i \(0.343542\pi\)
−0.471972 + 0.881614i \(0.656458\pi\)
\(114\) 0 0
\(115\) 930.000 + 1860.00i 0.754113 + 1.50823i
\(116\) 0 0
\(117\) 26.0000i 0.0205445i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 2894.00 2.17431
\(122\) 0 0
\(123\) 2070.00i 1.51744i
\(124\) 0 0
\(125\) 250.000 1375.00i 0.178885 0.983870i
\(126\) 0 0
\(127\) 1794.00i 1.25348i 0.779229 + 0.626739i \(0.215611\pi\)
−0.779229 + 0.626739i \(0.784389\pi\)
\(128\) 0 0
\(129\) 1420.00 0.969179
\(130\) 0 0
\(131\) 494.000 0.329473 0.164737 0.986338i \(-0.447323\pi\)
0.164737 + 0.986338i \(0.447323\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 725.000 + 1450.00i 0.462208 + 0.924416i
\(136\) 0 0
\(137\) 964.000i 0.601168i 0.953755 + 0.300584i \(0.0971816\pi\)
−0.953755 + 0.300584i \(0.902818\pi\)
\(138\) 0 0
\(139\) 466.000 0.284357 0.142178 0.989841i \(-0.454589\pi\)
0.142178 + 0.989841i \(0.454589\pi\)
\(140\) 0 0
\(141\) −2095.00 −1.25128
\(142\) 0 0
\(143\) 845.000i 0.494143i
\(144\) 0 0
\(145\) 570.000 285.000i 0.326455 0.163227i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3246.00 1.78472 0.892358 0.451328i \(-0.149050\pi\)
0.892358 + 0.451328i \(0.149050\pi\)
\(150\) 0 0
\(151\) −643.000 −0.346534 −0.173267 0.984875i \(-0.555432\pi\)
−0.173267 + 0.984875i \(0.555432\pi\)
\(152\) 0 0
\(153\) 226.000i 0.119418i
\(154\) 0 0
\(155\) 2580.00 1290.00i 1.33697 0.668486i
\(156\) 0 0
\(157\) 1654.00i 0.840787i 0.907342 + 0.420394i \(0.138108\pi\)
−0.907342 + 0.420394i \(0.861892\pi\)
\(158\) 0 0
\(159\) 650.000 0.324203
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 1062.00i 0.510321i 0.966899 + 0.255160i \(0.0821282\pi\)
−0.966899 + 0.255160i \(0.917872\pi\)
\(164\) 0 0
\(165\) −1625.00 3250.00i −0.766704 1.53341i
\(166\) 0 0
\(167\) 2027.00i 0.939245i 0.882867 + 0.469623i \(0.155610\pi\)
−0.882867 + 0.469623i \(0.844390\pi\)
\(168\) 0 0
\(169\) 2028.00 0.923077
\(170\) 0 0
\(171\) 32.0000 0.0143105
\(172\) 0 0
\(173\) 1579.00i 0.693926i −0.937879 0.346963i \(-0.887213\pi\)
0.937879 0.346963i \(-0.112787\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 1670.00i 0.709180i
\(178\) 0 0
\(179\) −2788.00 −1.16416 −0.582081 0.813131i \(-0.697761\pi\)
−0.582081 + 0.813131i \(0.697761\pi\)
\(180\) 0 0
\(181\) −2614.00 −1.07346 −0.536732 0.843753i \(-0.680341\pi\)
−0.536732 + 0.843753i \(0.680341\pi\)
\(182\) 0 0
\(183\) 280.000i 0.113105i
\(184\) 0 0
\(185\) 670.000 + 1340.00i 0.266267 + 0.532534i
\(186\) 0 0
\(187\) 7345.00i 2.87230i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −805.000 −0.304962 −0.152481 0.988306i \(-0.548726\pi\)
−0.152481 + 0.988306i \(0.548726\pi\)
\(192\) 0 0
\(193\) 3552.00i 1.32476i −0.749168 0.662380i \(-0.769547\pi\)
0.749168 0.662380i \(-0.230453\pi\)
\(194\) 0 0
\(195\) 650.000 325.000i 0.238705 0.119352i
\(196\) 0 0
\(197\) 3462.00i 1.25207i 0.779796 + 0.626034i \(0.215323\pi\)
−0.779796 + 0.626034i \(0.784677\pi\)
\(198\) 0 0
\(199\) −86.0000 −0.0306351 −0.0153175 0.999883i \(-0.504876\pi\)
−0.0153175 + 0.999883i \(0.504876\pi\)
\(200\) 0 0
\(201\) 2670.00 0.936952
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 4140.00 2070.00i 1.41049 0.705244i
\(206\) 0 0
\(207\) 372.000i 0.124907i
\(208\) 0 0
\(209\) −1040.00 −0.344202
\(210\) 0 0
\(211\) −311.000 −0.101470 −0.0507349 0.998712i \(-0.516156\pi\)
−0.0507349 + 0.998712i \(0.516156\pi\)
\(212\) 0 0
\(213\) 4760.00i 1.53122i
\(214\) 0 0
\(215\) −1420.00 2840.00i −0.450433 0.900867i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 2510.00 0.774475
\(220\) 0 0
\(221\) −1469.00 −0.447130
\(222\) 0 0
\(223\) 1339.00i 0.402090i −0.979582 0.201045i \(-0.935566\pi\)
0.979582 0.201045i \(-0.0644337\pi\)
\(224\) 0 0
\(225\) 150.000 200.000i 0.0444444 0.0592593i
\(226\) 0 0
\(227\) 3685.00i 1.07745i −0.842480 0.538727i \(-0.818905\pi\)
0.842480 0.538727i \(-0.181095\pi\)
\(228\) 0 0
\(229\) −466.000 −0.134472 −0.0672361 0.997737i \(-0.521418\pi\)
−0.0672361 + 0.997737i \(0.521418\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 144.000i 0.0404882i 0.999795 + 0.0202441i \(0.00644434\pi\)
−0.999795 + 0.0202441i \(0.993556\pi\)
\(234\) 0 0
\(235\) 2095.00 + 4190.00i 0.581544 + 1.16309i
\(236\) 0 0
\(237\) 1855.00i 0.508419i
\(238\) 0 0
\(239\) 1255.00 0.339662 0.169831 0.985473i \(-0.445678\pi\)
0.169831 + 0.985473i \(0.445678\pi\)
\(240\) 0 0
\(241\) −3782.00 −1.01087 −0.505436 0.862864i \(-0.668668\pi\)
−0.505436 + 0.862864i \(0.668668\pi\)
\(242\) 0 0
\(243\) 560.000i 0.147835i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 208.000i 0.0535819i
\(248\) 0 0
\(249\) 6100.00 1.55250
\(250\) 0 0
\(251\) −1146.00 −0.288187 −0.144093 0.989564i \(-0.546027\pi\)
−0.144093 + 0.989564i \(0.546027\pi\)
\(252\) 0 0
\(253\) 12090.0i 3.00432i
\(254\) 0 0
\(255\) 5650.00 2825.00i 1.38752 0.693758i
\(256\) 0 0
\(257\) 3946.00i 0.957762i −0.877880 0.478881i \(-0.841043\pi\)
0.877880 0.478881i \(-0.158957\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 114.000 0.0270361
\(262\) 0 0
\(263\) 2952.00i 0.692122i −0.938212 0.346061i \(-0.887519\pi\)
0.938212 0.346061i \(-0.112481\pi\)
\(264\) 0 0
\(265\) −650.000 1300.00i −0.150676 0.301352i
\(266\) 0 0
\(267\) 4400.00i 1.00852i
\(268\) 0 0
\(269\) 8210.00 1.86086 0.930432 0.366464i \(-0.119432\pi\)
0.930432 + 0.366464i \(0.119432\pi\)
\(270\) 0 0
\(271\) 1960.00 0.439341 0.219671 0.975574i \(-0.429502\pi\)
0.219671 + 0.975574i \(0.429502\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −4875.00 + 6500.00i −1.06899 + 1.42533i
\(276\) 0 0
\(277\) 2422.00i 0.525357i 0.964883 + 0.262678i \(0.0846059\pi\)
−0.964883 + 0.262678i \(0.915394\pi\)
\(278\) 0 0
\(279\) 516.000 0.110724
\(280\) 0 0
\(281\) −5249.00 −1.11434 −0.557169 0.830399i \(-0.688113\pi\)
−0.557169 + 0.830399i \(0.688113\pi\)
\(282\) 0 0
\(283\) 6209.00i 1.30419i −0.758136 0.652097i \(-0.773890\pi\)
0.758136 0.652097i \(-0.226110\pi\)
\(284\) 0 0
\(285\) 400.000 + 800.000i 0.0831367 + 0.166273i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −7856.00 −1.59902
\(290\) 0 0
\(291\) 1205.00 0.242743
\(292\) 0 0
\(293\) 2659.00i 0.530172i −0.964225 0.265086i \(-0.914600\pi\)
0.964225 0.265086i \(-0.0854004\pi\)
\(294\) 0 0
\(295\) 3340.00 1670.00i 0.659194 0.329597i
\(296\) 0 0
\(297\) 9425.00i 1.84139i
\(298\) 0 0
\(299\) 2418.00 0.467681
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 740.000i 0.140303i
\(304\) 0 0
\(305\) 560.000 280.000i 0.105133 0.0525664i
\(306\) 0 0
\(307\) 163.000i 0.0303026i −0.999885 0.0151513i \(-0.995177\pi\)
0.999885 0.0151513i \(-0.00482299\pi\)
\(308\) 0 0
\(309\) −2505.00 −0.461180
\(310\) 0 0
\(311\) −4516.00 −0.823405 −0.411702 0.911318i \(-0.635066\pi\)
−0.411702 + 0.911318i \(0.635066\pi\)
\(312\) 0 0
\(313\) 763.000i 0.137787i 0.997624 + 0.0688935i \(0.0219469\pi\)
−0.997624 + 0.0688935i \(0.978053\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 7868.00i 1.39404i −0.717051 0.697020i \(-0.754509\pi\)
0.717051 0.697020i \(-0.245491\pi\)
\(318\) 0 0
\(319\) −3705.00 −0.650283
\(320\) 0 0
\(321\) 3720.00 0.646823
\(322\) 0 0
\(323\) 1808.00i 0.311455i
\(324\) 0 0
\(325\) −1300.00 975.000i −0.221880 0.166410i
\(326\) 0 0
\(327\) 2205.00i 0.372895i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 3204.00 0.532048 0.266024 0.963966i \(-0.414290\pi\)
0.266024 + 0.963966i \(0.414290\pi\)
\(332\) 0 0
\(333\) 268.000i 0.0441030i
\(334\) 0 0
\(335\) −2670.00 5340.00i −0.435456 0.870912i
\(336\) 0 0
\(337\) 7874.00i 1.27277i 0.771371 + 0.636386i \(0.219571\pi\)
−0.771371 + 0.636386i \(0.780429\pi\)
\(338\) 0 0
\(339\) −10590.0 −1.69667
\(340\) 0 0
\(341\) −16770.0 −2.66319
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −9300.00 + 4650.00i −1.45129 + 0.725645i
\(346\) 0 0
\(347\) 2522.00i 0.390167i −0.980787 0.195084i \(-0.937502\pi\)
0.980787 0.195084i \(-0.0624978\pi\)
\(348\) 0 0
\(349\) −4404.00 −0.675475 −0.337737 0.941240i \(-0.609662\pi\)
−0.337737 + 0.941240i \(0.609662\pi\)
\(350\) 0 0
\(351\) 1885.00 0.286649
\(352\) 0 0
\(353\) 7629.00i 1.15029i 0.818053 + 0.575143i \(0.195053\pi\)
−0.818053 + 0.575143i \(0.804947\pi\)
\(354\) 0 0
\(355\) 9520.00 4760.00i 1.42329 0.711647i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −6020.00 −0.885024 −0.442512 0.896763i \(-0.645913\pi\)
−0.442512 + 0.896763i \(0.645913\pi\)
\(360\) 0 0
\(361\) −6603.00 −0.962677
\(362\) 0 0
\(363\) 14470.0i 2.09223i
\(364\) 0 0
\(365\) −2510.00 5020.00i −0.359944 0.719887i
\(366\) 0 0
\(367\) 1331.00i 0.189312i 0.995510 + 0.0946562i \(0.0301752\pi\)
−0.995510 + 0.0946562i \(0.969825\pi\)
\(368\) 0 0
\(369\) 828.000 0.116813
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 8616.00i 1.19603i −0.801485 0.598016i \(-0.795956\pi\)
0.801485 0.598016i \(-0.204044\pi\)
\(374\) 0 0
\(375\) 6875.00 + 1250.00i 0.946729 + 0.172133i
\(376\) 0 0
\(377\) 741.000i 0.101229i
\(378\) 0 0
\(379\) 5572.00 0.755183 0.377592 0.925972i \(-0.376752\pi\)
0.377592 + 0.925972i \(0.376752\pi\)
\(380\) 0 0
\(381\) −8970.00 −1.20616
\(382\) 0 0
\(383\) 2352.00i 0.313790i 0.987615 + 0.156895i \(0.0501484\pi\)
−0.987615 + 0.156895i \(0.949852\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 568.000i 0.0746074i
\(388\) 0 0
\(389\) 6831.00 0.890348 0.445174 0.895444i \(-0.353142\pi\)
0.445174 + 0.895444i \(0.353142\pi\)
\(390\) 0 0
\(391\) 21018.0 2.71848
\(392\) 0 0
\(393\) 2470.00i 0.317036i
\(394\) 0 0
\(395\) 3710.00 1855.00i 0.472583 0.236292i
\(396\) 0 0
\(397\) 3499.00i 0.442342i 0.975235 + 0.221171i \(0.0709879\pi\)
−0.975235 + 0.221171i \(0.929012\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 6813.00 0.848441 0.424221 0.905559i \(-0.360548\pi\)
0.424221 + 0.905559i \(0.360548\pi\)
\(402\) 0 0
\(403\) 3354.00i 0.414577i
\(404\) 0 0
\(405\) −6710.00 + 3355.00i −0.823266 + 0.411633i
\(406\) 0 0
\(407\) 8710.00i 1.06078i
\(408\) 0 0
\(409\) 8020.00 0.969593 0.484796 0.874627i \(-0.338894\pi\)
0.484796 + 0.874627i \(0.338894\pi\)
\(410\) 0 0
\(411\) −4820.00 −0.578475
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −6100.00 12200.0i −0.721535 1.44307i
\(416\) 0 0
\(417\) 2330.00i 0.273623i
\(418\) 0 0
\(419\) 8538.00 0.995486 0.497743 0.867325i \(-0.334162\pi\)
0.497743 + 0.867325i \(0.334162\pi\)
\(420\) 0 0
\(421\) −5735.00 −0.663912 −0.331956 0.943295i \(-0.607708\pi\)
−0.331956 + 0.943295i \(0.607708\pi\)
\(422\) 0 0
\(423\) 838.000i 0.0963238i
\(424\) 0 0
\(425\) −11300.0 8475.00i −1.28972 0.967289i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −4225.00 −0.475489
\(430\) 0 0
\(431\) −6945.00 −0.776169 −0.388085 0.921624i \(-0.626863\pi\)
−0.388085 + 0.921624i \(0.626863\pi\)
\(432\) 0 0
\(433\) 6374.00i 0.707425i 0.935354 + 0.353712i \(0.115081\pi\)
−0.935354 + 0.353712i \(0.884919\pi\)
\(434\) 0 0
\(435\) 1425.00 + 2850.00i 0.157066 + 0.314131i
\(436\) 0 0
\(437\) 2976.00i 0.325770i
\(438\) 0 0
\(439\) −13758.0 −1.49575 −0.747874 0.663841i \(-0.768925\pi\)
−0.747874 + 0.663841i \(0.768925\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 10812.0i 1.15958i −0.814766 0.579790i \(-0.803135\pi\)
0.814766 0.579790i \(-0.196865\pi\)
\(444\) 0 0
\(445\) 8800.00 4400.00i 0.937438 0.468719i
\(446\) 0 0
\(447\) 16230.0i 1.71734i
\(448\) 0 0
\(449\) −10203.0 −1.07240 −0.536202 0.844090i \(-0.680141\pi\)
−0.536202 + 0.844090i \(0.680141\pi\)
\(450\) 0 0
\(451\) −26910.0 −2.80963
\(452\) 0 0
\(453\) 3215.00i 0.333452i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 14198.0i 1.45329i 0.687012 + 0.726646i \(0.258922\pi\)
−0.687012 + 0.726646i \(0.741078\pi\)
\(458\) 0 0
\(459\) 16385.0 1.66620
\(460\) 0 0
\(461\) 15876.0 1.60395 0.801973 0.597360i \(-0.203784\pi\)
0.801973 + 0.597360i \(0.203784\pi\)
\(462\) 0 0
\(463\) 16524.0i 1.65861i 0.558798 + 0.829304i \(0.311263\pi\)
−0.558798 + 0.829304i \(0.688737\pi\)
\(464\) 0 0
\(465\) 6450.00 + 12900.0i 0.643251 + 1.28650i
\(466\) 0 0
\(467\) 7193.00i 0.712746i 0.934344 + 0.356373i \(0.115987\pi\)
−0.934344 + 0.356373i \(0.884013\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −8270.00 −0.809048
\(472\) 0 0
\(473\) 18460.0i 1.79449i
\(474\) 0 0
\(475\) 1200.00 1600.00i 0.115915 0.154554i
\(476\) 0 0
\(477\) 260.000i 0.0249572i
\(478\) 0 0
\(479\) −7810.00 −0.744985 −0.372493 0.928035i \(-0.621497\pi\)
−0.372493 + 0.928035i \(0.621497\pi\)
\(480\) 0 0
\(481\) 1742.00 0.165132
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1205.00 2410.00i −0.112817 0.225634i
\(486\) 0 0
\(487\) 11514.0i 1.07135i 0.844423 + 0.535677i \(0.179943\pi\)
−0.844423 + 0.535677i \(0.820057\pi\)
\(488\) 0 0
\(489\) −5310.00 −0.491056
\(490\) 0 0
\(491\) −6435.00 −0.591461 −0.295731 0.955271i \(-0.595563\pi\)
−0.295731 + 0.955271i \(0.595563\pi\)
\(492\) 0 0
\(493\) 6441.00i 0.588414i
\(494\) 0 0
\(495\) −1300.00 + 650.000i −0.118042 + 0.0590209i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −18023.0 −1.61687 −0.808437 0.588582i \(-0.799686\pi\)
−0.808437 + 0.588582i \(0.799686\pi\)
\(500\) 0 0
\(501\) −10135.0 −0.903789
\(502\) 0 0
\(503\) 19809.0i 1.75594i −0.478712 0.877972i \(-0.658896\pi\)
0.478712 0.877972i \(-0.341104\pi\)
\(504\) 0 0
\(505\) 1480.00 740.000i 0.130414 0.0652071i
\(506\) 0 0
\(507\) 10140.0i 0.888231i
\(508\) 0 0
\(509\) −598.000 −0.0520744 −0.0260372 0.999661i \(-0.508289\pi\)
−0.0260372 + 0.999661i \(0.508289\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 2320.00i 0.199670i
\(514\) 0 0
\(515\) 2505.00 + 5010.00i 0.214337 + 0.428674i
\(516\) 0 0
\(517\) 27235.0i 2.31682i
\(518\) 0 0
\(519\) 7895.00 0.667730
\(520\) 0 0
\(521\) −11124.0 −0.935415 −0.467708 0.883883i \(-0.654920\pi\)
−0.467708 + 0.883883i \(0.654920\pi\)
\(522\) 0 0
\(523\) 3876.00i 0.324064i −0.986785 0.162032i \(-0.948195\pi\)
0.986785 0.162032i \(-0.0518048\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 29154.0i 2.40981i
\(528\) 0 0
\(529\) −22429.0 −1.84343
\(530\) 0 0
\(531\) 668.000 0.0545927
\(532\) 0 0
\(533\) 5382.00i 0.437374i
\(534\) 0 0
\(535\) −3720.00 7440.00i −0.300616 0.601232i
\(536\) 0 0
\(537\) 13940.0i 1.12021i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −5321.00 −0.422861 −0.211430 0.977393i \(-0.567812\pi\)
−0.211430 + 0.977393i \(0.567812\pi\)
\(542\) 0 0
\(543\) 13070.0i 1.03294i
\(544\) 0 0
\(545\) −4410.00 + 2205.00i −0.346612 + 0.173306i
\(546\) 0 0
\(547\) 496.000i 0.0387704i −0.999812 0.0193852i \(-0.993829\pi\)
0.999812 0.0193852i \(-0.00617089\pi\)
\(548\) 0 0
\(549\) 112.000 0.00870682
\(550\) 0 0
\(551\) 912.000 0.0705127
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −6700.00 + 3350.00i −0.512431 + 0.256215i
\(556\) 0 0
\(557\) 2292.00i 0.174354i −0.996193 0.0871770i \(-0.972215\pi\)
0.996193 0.0871770i \(-0.0277846\pi\)
\(558\) 0 0
\(559\) −3692.00 −0.279347
\(560\) 0 0
\(561\) −36725.0 −2.76387
\(562\) 0 0
\(563\) 14568.0i 1.09053i −0.838264 0.545265i \(-0.816429\pi\)
0.838264 0.545265i \(-0.183571\pi\)
\(564\) 0 0
\(565\) 10590.0 + 21180.0i 0.788539 + 1.57708i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −498.000 −0.0366911 −0.0183456 0.999832i \(-0.505840\pi\)
−0.0183456 + 0.999832i \(0.505840\pi\)
\(570\) 0 0
\(571\) −2300.00 −0.168567 −0.0842837 0.996442i \(-0.526860\pi\)
−0.0842837 + 0.996442i \(0.526860\pi\)
\(572\) 0 0
\(573\) 4025.00i 0.293450i
\(574\) 0 0
\(575\) 18600.0 + 13950.0i 1.34900 + 1.01175i
\(576\) 0 0
\(577\) 13347.0i 0.962986i −0.876450 0.481493i \(-0.840095\pi\)
0.876450 0.481493i \(-0.159905\pi\)
\(578\) 0 0
\(579\) 17760.0 1.27475
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 8450.00i 0.600280i
\(584\) 0 0
\(585\) −130.000 260.000i −0.00918776 0.0183755i
\(586\) 0 0
\(587\) 15764.0i 1.10843i 0.832373 + 0.554216i \(0.186982\pi\)
−0.832373 + 0.554216i \(0.813018\pi\)
\(588\) 0 0
\(589\) 4128.00 0.288780
\(590\) 0 0
\(591\) −17310.0 −1.20480
\(592\) 0 0
\(593\) 4913.00i 0.340224i −0.985425 0.170112i \(-0.945587\pi\)
0.985425 0.170112i \(-0.0544129\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 430.000i 0.0294786i
\(598\) 0 0
\(599\) 26089.0 1.77958 0.889789 0.456371i \(-0.150851\pi\)
0.889789 + 0.456371i \(0.150851\pi\)
\(600\) 0 0
\(601\) −28440.0 −1.93027 −0.965135 0.261754i \(-0.915699\pi\)
−0.965135 + 0.261754i \(0.915699\pi\)
\(602\) 0 0
\(603\) 1068.00i 0.0721266i
\(604\) 0 0
\(605\) 28940.0 14470.0i 1.94476 0.972379i
\(606\) 0 0
\(607\) 22235.0i 1.48681i −0.668844 0.743403i \(-0.733211\pi\)
0.668844 0.743403i \(-0.266789\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 5447.00 0.360658
\(612\) 0 0
\(613\) 16612.0i 1.09454i 0.836956 + 0.547269i \(0.184333\pi\)
−0.836956 + 0.547269i \(0.815667\pi\)
\(614\) 0 0
\(615\) 10350.0 + 20700.0i 0.678622 + 1.35724i
\(616\) 0 0
\(617\) 29814.0i 1.94533i −0.232220 0.972663i \(-0.574599\pi\)
0.232220 0.972663i \(-0.425401\pi\)
\(618\) 0 0
\(619\) 24606.0 1.59774 0.798868 0.601506i \(-0.205433\pi\)
0.798868 + 0.601506i \(0.205433\pi\)
\(620\) 0 0
\(621\) −26970.0 −1.74278
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −4375.00 15000.0i −0.280000 0.960000i
\(626\) 0 0
\(627\) 5200.00i 0.331209i
\(628\) 0 0
\(629\) 15142.0 0.959859
\(630\) 0 0
\(631\) −12501.0 −0.788680 −0.394340 0.918965i \(-0.629027\pi\)
−0.394340 + 0.918965i \(0.629027\pi\)
\(632\) 0 0
\(633\) 1555.00i 0.0976393i
\(634\) 0 0
\(635\) 8970.00 + 17940.0i 0.560573 + 1.12115i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 1904.00 0.117873
\(640\) 0 0
\(641\) 10998.0 0.677683 0.338842 0.940843i \(-0.389965\pi\)
0.338842 + 0.940843i \(0.389965\pi\)
\(642\) 0 0
\(643\) 23147.0i 1.41964i −0.704383 0.709820i \(-0.748776\pi\)
0.704383 0.709820i \(-0.251224\pi\)
\(644\) 0 0
\(645\) 14200.0 7100.00i 0.866860 0.433430i
\(646\) 0 0
\(647\) 18632.0i 1.13215i 0.824355 + 0.566074i \(0.191538\pi\)
−0.824355 + 0.566074i \(0.808462\pi\)
\(648\) 0 0
\(649\) −21710.0 −1.31308
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 31292.0i 1.87527i 0.347623 + 0.937634i \(0.386989\pi\)
−0.347623 + 0.937634i \(0.613011\pi\)
\(654\) 0 0
\(655\) 4940.00 2470.00i 0.294690 0.147345i
\(656\) 0 0
\(657\) 1004.00i 0.0596191i
\(658\) 0 0
\(659\) 24909.0 1.47241 0.736204 0.676760i \(-0.236616\pi\)
0.736204 + 0.676760i \(0.236616\pi\)
\(660\) 0 0
\(661\) −18844.0 −1.10885 −0.554423 0.832235i \(-0.687061\pi\)
−0.554423 + 0.832235i \(0.687061\pi\)
\(662\) 0 0
\(663\) 7345.00i 0.430251i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 10602.0i 0.615459i
\(668\) 0 0
\(669\) 6695.00 0.386911
\(670\) 0 0
\(671\) −3640.00 −0.209420
\(672\) 0 0
\(673\) 14184.0i 0.812412i −0.913782 0.406206i \(-0.866852\pi\)
0.913782 0.406206i \(-0.133148\pi\)
\(674\) 0 0
\(675\) 14500.0 + 10875.0i 0.826823 + 0.620117i
\(676\) 0 0
\(677\) 15177.0i 0.861595i 0.902449 + 0.430797i \(0.141768\pi\)
−0.902449 + 0.430797i \(0.858232\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 18425.0 1.03678
\(682\) 0 0
\(683\) 2624.00i 0.147005i 0.997295 + 0.0735026i \(0.0234177\pi\)
−0.997295 + 0.0735026i \(0.976582\pi\)
\(684\) 0 0
\(685\) 4820.00 + 9640.00i 0.268851 + 0.537701i
\(686\) 0 0
\(687\) 2330.00i 0.129396i
\(688\) 0 0
\(689\) −1690.00 −0.0934454
\(690\) 0 0
\(691\) 25112.0 1.38250 0.691249 0.722617i \(-0.257061\pi\)
0.691249 + 0.722617i \(0.257061\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 4660.00 2330.00i 0.254337 0.127168i
\(696\) 0 0
\(697\) 46782.0i 2.54232i
\(698\) 0 0
\(699\) −720.000 −0.0389598
\(700\) 0 0
\(701\) 927.000 0.0499462 0.0249731 0.999688i \(-0.492050\pi\)
0.0249731 + 0.999688i \(0.492050\pi\)
\(702\) 0 0
\(703\) 2144.00i 0.115025i
\(704\) 0 0
\(705\) −20950.0 + 10475.0i −1.11918 + 0.559591i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 15209.0 0.805622 0.402811 0.915283i \(-0.368033\pi\)
0.402811 + 0.915283i \(0.368033\pi\)
\(710\) 0 0
\(711\) 742.000 0.0391381
\(712\) 0 0
\(713\) 47988.0i 2.52057i
\(714\) 0 0
\(715\) 4225.00 + 8450.00i 0.220987 + 0.441975i
\(716\) 0 0
\(717\) 6275.00i 0.326840i
\(718\) 0 0
\(719\) 22018.0 1.14205 0.571024 0.820933i \(-0.306546\pi\)
0.571024 + 0.820933i \(0.306546\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 18910.0i 0.972712i
\(724\) 0 0
\(725\) 4275.00 5700.00i 0.218992 0.291990i
\(726\) 0 0
\(727\) 16324.0i 0.832770i −0.909188 0.416385i \(-0.863297\pi\)
0.909188 0.416385i \(-0.136703\pi\)
\(728\) 0 0
\(729\) −20917.0 −1.06269
\(730\) 0 0
\(731\) −32092.0 −1.62376
\(732\) 0 0
\(733\) 5805.00i 0.292514i −0.989247 0.146257i \(-0.953277\pi\)
0.989247 0.146257i \(-0.0467226\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 34710.0i 1.73482i
\(738\) 0 0
\(739\) −37703.0 −1.87676 −0.938381 0.345602i \(-0.887675\pi\)
−0.938381 + 0.345602i \(0.887675\pi\)
\(740\) 0 0
\(741\) 1040.00 0.0515592
\(742\) 0 0
\(743\) 36542.0i 1.80430i 0.431421 + 0.902151i \(0.358012\pi\)
−0.431421 + 0.902151i \(0.641988\pi\)
\(744\) 0 0
\(745\) 32460.0 16230.0i 1.59630 0.798149i
\(746\) 0 0
\(747\) 2440.00i 0.119511i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 24505.0 1.19068 0.595340 0.803474i \(-0.297018\pi\)
0.595340 + 0.803474i \(0.297018\pi\)
\(752\) 0 0
\(753\) 5730.00i 0.277308i
\(754\) 0 0
\(755\) −6430.00 + 3215.00i −0.309949 + 0.154975i
\(756\) 0 0
\(757\) 21568.0i 1.03554i −0.855520 0.517769i \(-0.826763\pi\)
0.855520 0.517769i \(-0.173237\pi\)
\(758\) 0 0
\(759\) 60450.0 2.89090
\(760\) 0 0
\(761\) 9150.00 0.435857 0.217929 0.975965i \(-0.430070\pi\)
0.217929 + 0.975965i \(0.430070\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −1130.00 2260.00i −0.0534055 0.106811i
\(766\) 0 0
\(767\) 4342.00i 0.204407i
\(768\) 0 0
\(769\) −34848.0 −1.63414 −0.817068 0.576541i \(-0.804402\pi\)
−0.817068 + 0.576541i \(0.804402\pi\)
\(770\) 0 0
\(771\) 19730.0 0.921606
\(772\) 0 0
\(773\) 12617.0i 0.587066i −0.955949 0.293533i \(-0.905169\pi\)
0.955949 0.293533i \(-0.0948310\pi\)
\(774\) 0 0
\(775\) 19350.0 25800.0i 0.896868 1.19582i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 6624.00 0.304659
\(780\) 0 0
\(781\) −61880.0 −2.83514
\(782\) 0 0
\(783\) 8265.00i 0.377225i
\(784\) 0 0
\(785\) 8270.00 + 16540.0i 0.376011 + 0.752023i
\(786\) 0 0
\(787\) 6949.00i 0.314746i −0.987539 0.157373i \(-0.949698\pi\)
0.987539 0.157373i \(-0.0503025\pi\)
\(788\) 0 0
\(789\) 14760.0 0.665995
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 728.000i 0.0326003i
\(794\) 0 0
\(795\) 6500.00 3250.00i 0.289976 0.144988i
\(796\) 0 0
\(797\) 3081.00i 0.136932i −0.997653 0.0684659i \(-0.978190\pi\)
0.997653 0.0684659i \(-0.0218104\pi\)
\(798\) 0 0
\(799\) 47347.0 2.09639
\(800\) 0 0
\(801\) 1760.00 0.0776361
\(802\) 0 0
\(803\) 32630.0i 1.43398i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 41050.0i 1.79062i
\(808\) 0 0
\(809\) 23739.0 1.03167 0.515834 0.856689i \(-0.327482\pi\)
0.515834 + 0.856689i \(0.327482\pi\)
\(810\) 0 0
\(811\) 24226.0 1.04894 0.524470 0.851429i \(-0.324264\pi\)
0.524470 + 0.851429i \(0.324264\pi\)
\(812\) 0 0
\(813\) 9800.00i 0.422756i
\(814\) 0 0
\(815\) 5310.00 + 10620.0i 0.228222 + 0.456445i
\(816\) 0 0
\(817\) 4544.00i 0.194583i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 25269.0 1.07417 0.537085 0.843528i \(-0.319525\pi\)
0.537085 + 0.843528i \(0.319525\pi\)
\(822\) 0 0
\(823\) 12602.0i 0.533752i −0.963731 0.266876i \(-0.914009\pi\)
0.963731 0.266876i \(-0.0859915\pi\)
\(824\) 0 0
\(825\) −32500.0 24375.0i −1.37152 1.02864i
\(826\) 0 0
\(827\) 23274.0i 0.978617i −0.872111 0.489309i \(-0.837249\pi\)
0.872111 0.489309i \(-0.162751\pi\)
\(828\) 0 0
\(829\) −17062.0 −0.714822 −0.357411 0.933947i \(-0.616341\pi\)
−0.357411 + 0.933947i \(0.616341\pi\)
\(830\) 0 0
\(831\) −12110.0 −0.505525
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 10135.0 + 20270.0i 0.420043 + 0.840087i
\(836\) 0 0
\(837\) 37410.0i 1.54490i
\(838\) 0 0
\(839\) −5134.00 −0.211258 −0.105629 0.994406i \(-0.533686\pi\)
−0.105629 + 0.994406i \(0.533686\pi\)
\(840\) 0 0
\(841\) −21140.0 −0.866784
\(842\) 0 0
\(843\) 26245.0i 1.07227i
\(844\) 0 0
\(845\) 20280.0 10140.0i 0.825625 0.412813i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 31045.0 1.25496
\(850\) 0 0
\(851\) −24924.0 −1.00398
\(852\) 0 0
\(853\) 25202.0i 1.01161i −0.862649 0.505803i \(-0.831196\pi\)
0.862649 0.505803i \(-0.168804\pi\)
\(854\) 0 0
\(855\) 320.000 160.000i 0.0127997 0.00639986i
\(856\) 0 0
\(857\) 34234.0i 1.36454i 0.731100 + 0.682270i \(0.239007\pi\)
−0.731100 + 0.682270i \(0.760993\pi\)
\(858\) 0 0
\(859\) 14904.0 0.591988 0.295994 0.955190i \(-0.404349\pi\)
0.295994 + 0.955190i \(0.404349\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 18054.0i 0.712127i 0.934462 + 0.356063i \(0.115881\pi\)
−0.934462 + 0.356063i \(0.884119\pi\)
\(864\) 0 0
\(865\) −7895.00 15790.0i −0.310333 0.620666i
\(866\) 0 0
\(867\) 39280.0i 1.53866i
\(868\) 0 0
\(869\) −24115.0 −0.941364
\(870\) 0 0
\(871\) −6942.00 −0.270058
\(872\) 0 0
\(873\) 482.000i 0.0186864i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 31440.0i 1.21055i −0.796016 0.605276i \(-0.793063\pi\)
0.796016 0.605276i \(-0.206937\pi\)
\(878\) 0 0
\(879\) 13295.0 0.510158
\(880\) 0 0
\(881\) 37248.0 1.42442 0.712212 0.701965i \(-0.247694\pi\)
0.712212 + 0.701965i \(0.247694\pi\)
\(882\) 0 0
\(883\) 47324.0i 1.80360i 0.432153 + 0.901800i \(0.357754\pi\)
−0.432153 + 0.901800i \(0.642246\pi\)
\(884\) 0 0
\(885\) 8350.00 + 16700.0i 0.317155 + 0.634310i
\(886\) 0 0
\(887\) 612.000i 0.0231668i −0.999933 0.0115834i \(-0.996313\pi\)
0.999933 0.0115834i \(-0.00368719\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 43615.0 1.63991
\(892\) 0 0
\(893\) 6704.00i 0.251222i
\(894\) 0 0
\(895\) −27880.0 + 13940.0i −1.04126 + 0.520629i
\(896\) 0 0
\(897\) 12090.0i 0.450026i
\(898\) 0 0
\(899\) 14706.0 0.545576
\(900\) 0 0
\(901\) −14690.0 −0.543169
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −26140.0 + 13070.0i −0.960136 + 0.480068i
\(906\) 0 0
\(907\) 13666.0i 0.500300i 0.968207 + 0.250150i \(0.0804799\pi\)
−0.968207 + 0.250150i \(0.919520\pi\)
\(908\) 0 0
\(909\) 296.000 0.0108006
\(910\) 0 0
\(911\) −45468.0 −1.65359 −0.826796 0.562502i \(-0.809839\pi\)
−0.826796 + 0.562502i \(0.809839\pi\)
\(912\) 0 0
\(913\) 79300.0i 2.87453i
\(914\) 0 0
\(915\) 1400.00 + 2800.00i 0.0505820 + 0.101164i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −38789.0 −1.39231 −0.696154 0.717892i \(-0.745107\pi\)
−0.696154 + 0.717892i \(0.745107\pi\)
\(920\) 0 0
\(921\) 815.000 0.0291587
\(922\) 0 0
\(923\) 12376.0i 0.441345i
\(924\) 0 0
\(925\) 13400.0 + 10050.0i 0.476313 + 0.357235i
\(926\) 0 0
\(927\) 1002.00i 0.0355016i
\(928\) 0 0
\(929\) 10830.0 0.382477 0.191238 0.981544i \(-0.438750\pi\)
0.191238 + 0.981544i \(0.438750\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 22580.0i 0.792322i
\(934\) 0 0
\(935\) 36725.0 + 73450.0i 1.28453 + 2.56906i
\(936\) 0 0
\(937\) 707.000i 0.0246496i 0.999924 + 0.0123248i \(0.00392321\pi\)
−0.999924 + 0.0123248i \(0.996077\pi\)
\(938\) 0 0
\(939\) −3815.00 −0.132586
\(940\) 0 0
\(941\) 25152.0 0.871341 0.435670 0.900106i \(-0.356511\pi\)
0.435670 + 0.900106i \(0.356511\pi\)
\(942\) 0 0
\(943\) 77004.0i 2.65917i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 3582.00i 0.122914i −0.998110 0.0614569i \(-0.980425\pi\)
0.998110 0.0614569i \(-0.0195747\pi\)
\(948\) 0 0
\(949\) −6526.00 −0.223228
\(950\) 0 0
\(951\) 39340.0 1.34142
\(952\) 0 0
\(953\) 19530.0i 0.663839i −0.943308 0.331920i \(-0.892304\pi\)
0.943308 0.331920i \(-0.107696\pi\)
\(954\) 0 0
\(955\) −8050.00 + 4025.00i −0.272766 + 0.136383i
\(956\) 0 0
\(957\) 18525.0i 0.625735i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 36773.0 1.23437
\(962\) 0 0
\(963\) 1488.00i 0.0497925i
\(964\) 0 0
\(965\) −17760.0 35520.0i −0.592450 1.18490i
\(966\) 0 0
\(967\) 8952.00i 0.297701i 0.988860 + 0.148851i \(0.0475573\pi\)
−0.988860 + 0.148851i \(0.952443\pi\)
\(968\) 0 0
\(969\) 9040.00 0.299697
\(970\) 0 0
\(971\) −930.000 −0.0307365 −0.0153682 0.999882i \(-0.504892\pi\)
−0.0153682 + 0.999882i \(0.504892\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 4875.00 6500.00i 0.160128 0.213504i
\(976\) 0 0
\(977\) 7068.00i 0.231449i −0.993281 0.115724i \(-0.963081\pi\)
0.993281 0.115724i \(-0.0369189\pi\)
\(978\) 0 0
\(979\) −57200.0 −1.86733
\(980\) 0 0
\(981\) −882.000 −0.0287055
\(982\) 0 0
\(983\) 18315.0i 0.594260i 0.954837 + 0.297130i \(0.0960295\pi\)
−0.954837 + 0.297130i \(0.903970\pi\)
\(984\) 0 0
\(985\) 17310.0 + 34620.0i 0.559942 + 1.11988i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 52824.0 1.69839
\(990\) 0 0
\(991\) −41736.0 −1.33783 −0.668914 0.743340i \(-0.733241\pi\)
−0.668914 + 0.743340i \(0.733241\pi\)
\(992\) 0 0
\(993\) 16020.0i 0.511963i
\(994\) 0 0
\(995\) −860.000 + 430.000i −0.0274008 + 0.0137004i
\(996\) 0 0
\(997\) 2161.00i 0.0686455i −0.999411 0.0343227i \(-0.989073\pi\)
0.999411 0.0343227i \(-0.0109274\pi\)
\(998\) 0 0
\(999\) −19430.0 −0.615353
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 980.4.e.c.589.2 2
5.4 even 2 inner 980.4.e.c.589.1 2
7.6 odd 2 140.4.e.a.29.1 2
21.20 even 2 1260.4.k.c.1009.1 2
28.27 even 2 560.4.g.a.449.2 2
35.13 even 4 700.4.a.l.1.1 1
35.27 even 4 700.4.a.d.1.1 1
35.34 odd 2 140.4.e.a.29.2 yes 2
105.104 even 2 1260.4.k.c.1009.2 2
140.139 even 2 560.4.g.a.449.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.4.e.a.29.1 2 7.6 odd 2
140.4.e.a.29.2 yes 2 35.34 odd 2
560.4.g.a.449.1 2 140.139 even 2
560.4.g.a.449.2 2 28.27 even 2
700.4.a.d.1.1 1 35.27 even 4
700.4.a.l.1.1 1 35.13 even 4
980.4.e.c.589.1 2 5.4 even 2 inner
980.4.e.c.589.2 2 1.1 even 1 trivial
1260.4.k.c.1009.1 2 21.20 even 2
1260.4.k.c.1009.2 2 105.104 even 2