Properties

Label 700.4.a.d.1.1
Level $700$
Weight $4$
Character 700.1
Self dual yes
Analytic conductor $41.301$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [700,4,Mod(1,700)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("700.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(700, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 700.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,-5,0,0,0,-7,0,-2,0,-65] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.3013370040\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 140)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 700.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.00000 q^{3} -7.00000 q^{7} -2.00000 q^{9} -65.0000 q^{11} +13.0000 q^{13} -113.000 q^{17} +16.0000 q^{19} +35.0000 q^{21} +186.000 q^{23} +145.000 q^{27} -57.0000 q^{29} -258.000 q^{31} +325.000 q^{33} -134.000 q^{37} -65.0000 q^{39} -414.000 q^{41} -284.000 q^{43} +419.000 q^{47} +49.0000 q^{49} +565.000 q^{51} -130.000 q^{53} -80.0000 q^{57} +334.000 q^{59} -56.0000 q^{61} +14.0000 q^{63} +534.000 q^{67} -930.000 q^{69} +952.000 q^{71} +502.000 q^{73} +455.000 q^{77} -371.000 q^{79} -671.000 q^{81} +1220.00 q^{83} +285.000 q^{87} +880.000 q^{89} -91.0000 q^{91} +1290.00 q^{93} -241.000 q^{97} +130.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −5.00000 −0.962250 −0.481125 0.876652i \(-0.659772\pi\)
−0.481125 + 0.876652i \(0.659772\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 0 0
\(9\) −2.00000 −0.0740741
\(10\) 0 0
\(11\) −65.0000 −1.78166 −0.890829 0.454339i \(-0.849876\pi\)
−0.890829 + 0.454339i \(0.849876\pi\)
\(12\) 0 0
\(13\) 13.0000 0.277350 0.138675 0.990338i \(-0.455716\pi\)
0.138675 + 0.990338i \(0.455716\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −113.000 −1.61215 −0.806074 0.591814i \(-0.798412\pi\)
−0.806074 + 0.591814i \(0.798412\pi\)
\(18\) 0 0
\(19\) 16.0000 0.193192 0.0965961 0.995324i \(-0.469204\pi\)
0.0965961 + 0.995324i \(0.469204\pi\)
\(20\) 0 0
\(21\) 35.0000 0.363696
\(22\) 0 0
\(23\) 186.000 1.68625 0.843124 0.537720i \(-0.180714\pi\)
0.843124 + 0.537720i \(0.180714\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 145.000 1.03353
\(28\) 0 0
\(29\) −57.0000 −0.364987 −0.182494 0.983207i \(-0.558417\pi\)
−0.182494 + 0.983207i \(0.558417\pi\)
\(30\) 0 0
\(31\) −258.000 −1.49478 −0.747390 0.664386i \(-0.768693\pi\)
−0.747390 + 0.664386i \(0.768693\pi\)
\(32\) 0 0
\(33\) 325.000 1.71440
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −134.000 −0.595391 −0.297695 0.954661i \(-0.596218\pi\)
−0.297695 + 0.954661i \(0.596218\pi\)
\(38\) 0 0
\(39\) −65.0000 −0.266880
\(40\) 0 0
\(41\) −414.000 −1.57697 −0.788487 0.615051i \(-0.789135\pi\)
−0.788487 + 0.615051i \(0.789135\pi\)
\(42\) 0 0
\(43\) −284.000 −1.00720 −0.503600 0.863937i \(-0.667991\pi\)
−0.503600 + 0.863937i \(0.667991\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 419.000 1.30037 0.650185 0.759776i \(-0.274691\pi\)
0.650185 + 0.759776i \(0.274691\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 565.000 1.55129
\(52\) 0 0
\(53\) −130.000 −0.336922 −0.168461 0.985708i \(-0.553880\pi\)
−0.168461 + 0.985708i \(0.553880\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −80.0000 −0.185899
\(58\) 0 0
\(59\) 334.000 0.737002 0.368501 0.929627i \(-0.379871\pi\)
0.368501 + 0.929627i \(0.379871\pi\)
\(60\) 0 0
\(61\) −56.0000 −0.117542 −0.0587710 0.998271i \(-0.518718\pi\)
−0.0587710 + 0.998271i \(0.518718\pi\)
\(62\) 0 0
\(63\) 14.0000 0.0279974
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 534.000 0.973709 0.486854 0.873483i \(-0.338144\pi\)
0.486854 + 0.873483i \(0.338144\pi\)
\(68\) 0 0
\(69\) −930.000 −1.62259
\(70\) 0 0
\(71\) 952.000 1.59129 0.795645 0.605763i \(-0.207132\pi\)
0.795645 + 0.605763i \(0.207132\pi\)
\(72\) 0 0
\(73\) 502.000 0.804858 0.402429 0.915451i \(-0.368166\pi\)
0.402429 + 0.915451i \(0.368166\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 455.000 0.673403
\(78\) 0 0
\(79\) −371.000 −0.528364 −0.264182 0.964473i \(-0.585102\pi\)
−0.264182 + 0.964473i \(0.585102\pi\)
\(80\) 0 0
\(81\) −671.000 −0.920439
\(82\) 0 0
\(83\) 1220.00 1.61340 0.806701 0.590960i \(-0.201251\pi\)
0.806701 + 0.590960i \(0.201251\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 285.000 0.351209
\(88\) 0 0
\(89\) 880.000 1.04809 0.524044 0.851691i \(-0.324423\pi\)
0.524044 + 0.851691i \(0.324423\pi\)
\(90\) 0 0
\(91\) −91.0000 −0.104828
\(92\) 0 0
\(93\) 1290.00 1.43835
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −241.000 −0.252266 −0.126133 0.992013i \(-0.540257\pi\)
−0.126133 + 0.992013i \(0.540257\pi\)
\(98\) 0 0
\(99\) 130.000 0.131975
\(100\) 0 0
\(101\) −148.000 −0.145807 −0.0729037 0.997339i \(-0.523227\pi\)
−0.0729037 + 0.997339i \(0.523227\pi\)
\(102\) 0 0
\(103\) −501.000 −0.479272 −0.239636 0.970863i \(-0.577028\pi\)
−0.239636 + 0.970863i \(0.577028\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 744.000 0.672198 0.336099 0.941827i \(-0.390892\pi\)
0.336099 + 0.941827i \(0.390892\pi\)
\(108\) 0 0
\(109\) 441.000 0.387524 0.193762 0.981049i \(-0.437931\pi\)
0.193762 + 0.981049i \(0.437931\pi\)
\(110\) 0 0
\(111\) 670.000 0.572915
\(112\) 0 0
\(113\) 2118.00 1.76323 0.881614 0.471972i \(-0.156458\pi\)
0.881614 + 0.471972i \(0.156458\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −26.0000 −0.0205445
\(118\) 0 0
\(119\) 791.000 0.609335
\(120\) 0 0
\(121\) 2894.00 2.17431
\(122\) 0 0
\(123\) 2070.00 1.51744
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −1794.00 −1.25348 −0.626739 0.779229i \(-0.715611\pi\)
−0.626739 + 0.779229i \(0.715611\pi\)
\(128\) 0 0
\(129\) 1420.00 0.969179
\(130\) 0 0
\(131\) −494.000 −0.329473 −0.164737 0.986338i \(-0.552677\pi\)
−0.164737 + 0.986338i \(0.552677\pi\)
\(132\) 0 0
\(133\) −112.000 −0.0730198
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −964.000 −0.601168 −0.300584 0.953755i \(-0.597182\pi\)
−0.300584 + 0.953755i \(0.597182\pi\)
\(138\) 0 0
\(139\) 466.000 0.284357 0.142178 0.989841i \(-0.454589\pi\)
0.142178 + 0.989841i \(0.454589\pi\)
\(140\) 0 0
\(141\) −2095.00 −1.25128
\(142\) 0 0
\(143\) −845.000 −0.494143
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −245.000 −0.137464
\(148\) 0 0
\(149\) −3246.00 −1.78472 −0.892358 0.451328i \(-0.850950\pi\)
−0.892358 + 0.451328i \(0.850950\pi\)
\(150\) 0 0
\(151\) −643.000 −0.346534 −0.173267 0.984875i \(-0.555432\pi\)
−0.173267 + 0.984875i \(0.555432\pi\)
\(152\) 0 0
\(153\) 226.000 0.119418
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 1654.00 0.840787 0.420394 0.907342i \(-0.361892\pi\)
0.420394 + 0.907342i \(0.361892\pi\)
\(158\) 0 0
\(159\) 650.000 0.324203
\(160\) 0 0
\(161\) −1302.00 −0.637341
\(162\) 0 0
\(163\) 1062.00 0.510321 0.255160 0.966899i \(-0.417872\pi\)
0.255160 + 0.966899i \(0.417872\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2027.00 0.939245 0.469623 0.882867i \(-0.344390\pi\)
0.469623 + 0.882867i \(0.344390\pi\)
\(168\) 0 0
\(169\) −2028.00 −0.923077
\(170\) 0 0
\(171\) −32.0000 −0.0143105
\(172\) 0 0
\(173\) 1579.00 0.693926 0.346963 0.937879i \(-0.387213\pi\)
0.346963 + 0.937879i \(0.387213\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −1670.00 −0.709180
\(178\) 0 0
\(179\) 2788.00 1.16416 0.582081 0.813131i \(-0.302239\pi\)
0.582081 + 0.813131i \(0.302239\pi\)
\(180\) 0 0
\(181\) 2614.00 1.07346 0.536732 0.843753i \(-0.319659\pi\)
0.536732 + 0.843753i \(0.319659\pi\)
\(182\) 0 0
\(183\) 280.000 0.113105
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 7345.00 2.87230
\(188\) 0 0
\(189\) −1015.00 −0.390637
\(190\) 0 0
\(191\) −805.000 −0.304962 −0.152481 0.988306i \(-0.548726\pi\)
−0.152481 + 0.988306i \(0.548726\pi\)
\(192\) 0 0
\(193\) −3552.00 −1.32476 −0.662380 0.749168i \(-0.730453\pi\)
−0.662380 + 0.749168i \(0.730453\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −3462.00 −1.25207 −0.626034 0.779796i \(-0.715323\pi\)
−0.626034 + 0.779796i \(0.715323\pi\)
\(198\) 0 0
\(199\) −86.0000 −0.0306351 −0.0153175 0.999883i \(-0.504876\pi\)
−0.0153175 + 0.999883i \(0.504876\pi\)
\(200\) 0 0
\(201\) −2670.00 −0.936952
\(202\) 0 0
\(203\) 399.000 0.137952
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −372.000 −0.124907
\(208\) 0 0
\(209\) −1040.00 −0.344202
\(210\) 0 0
\(211\) −311.000 −0.101470 −0.0507349 0.998712i \(-0.516156\pi\)
−0.0507349 + 0.998712i \(0.516156\pi\)
\(212\) 0 0
\(213\) −4760.00 −1.53122
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 1806.00 0.564974
\(218\) 0 0
\(219\) −2510.00 −0.774475
\(220\) 0 0
\(221\) −1469.00 −0.447130
\(222\) 0 0
\(223\) 1339.00 0.402090 0.201045 0.979582i \(-0.435566\pi\)
0.201045 + 0.979582i \(0.435566\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −3685.00 −1.07745 −0.538727 0.842480i \(-0.681095\pi\)
−0.538727 + 0.842480i \(0.681095\pi\)
\(228\) 0 0
\(229\) −466.000 −0.134472 −0.0672361 0.997737i \(-0.521418\pi\)
−0.0672361 + 0.997737i \(0.521418\pi\)
\(230\) 0 0
\(231\) −2275.00 −0.647983
\(232\) 0 0
\(233\) 144.000 0.0404882 0.0202441 0.999795i \(-0.493556\pi\)
0.0202441 + 0.999795i \(0.493556\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 1855.00 0.508419
\(238\) 0 0
\(239\) −1255.00 −0.339662 −0.169831 0.985473i \(-0.554322\pi\)
−0.169831 + 0.985473i \(0.554322\pi\)
\(240\) 0 0
\(241\) 3782.00 1.01087 0.505436 0.862864i \(-0.331332\pi\)
0.505436 + 0.862864i \(0.331332\pi\)
\(242\) 0 0
\(243\) −560.000 −0.147835
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 208.000 0.0535819
\(248\) 0 0
\(249\) −6100.00 −1.55250
\(250\) 0 0
\(251\) 1146.00 0.288187 0.144093 0.989564i \(-0.453973\pi\)
0.144093 + 0.989564i \(0.453973\pi\)
\(252\) 0 0
\(253\) −12090.0 −3.00432
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −3946.00 −0.957762 −0.478881 0.877880i \(-0.658957\pi\)
−0.478881 + 0.877880i \(0.658957\pi\)
\(258\) 0 0
\(259\) 938.000 0.225037
\(260\) 0 0
\(261\) 114.000 0.0270361
\(262\) 0 0
\(263\) −2952.00 −0.692122 −0.346061 0.938212i \(-0.612481\pi\)
−0.346061 + 0.938212i \(0.612481\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −4400.00 −1.00852
\(268\) 0 0
\(269\) 8210.00 1.86086 0.930432 0.366464i \(-0.119432\pi\)
0.930432 + 0.366464i \(0.119432\pi\)
\(270\) 0 0
\(271\) −1960.00 −0.439341 −0.219671 0.975574i \(-0.570498\pi\)
−0.219671 + 0.975574i \(0.570498\pi\)
\(272\) 0 0
\(273\) 455.000 0.100871
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −2422.00 −0.525357 −0.262678 0.964883i \(-0.584606\pi\)
−0.262678 + 0.964883i \(0.584606\pi\)
\(278\) 0 0
\(279\) 516.000 0.110724
\(280\) 0 0
\(281\) −5249.00 −1.11434 −0.557169 0.830399i \(-0.688113\pi\)
−0.557169 + 0.830399i \(0.688113\pi\)
\(282\) 0 0
\(283\) 6209.00 1.30419 0.652097 0.758136i \(-0.273890\pi\)
0.652097 + 0.758136i \(0.273890\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2898.00 0.596040
\(288\) 0 0
\(289\) 7856.00 1.59902
\(290\) 0 0
\(291\) 1205.00 0.242743
\(292\) 0 0
\(293\) 2659.00 0.530172 0.265086 0.964225i \(-0.414600\pi\)
0.265086 + 0.964225i \(0.414600\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −9425.00 −1.84139
\(298\) 0 0
\(299\) 2418.00 0.467681
\(300\) 0 0
\(301\) 1988.00 0.380686
\(302\) 0 0
\(303\) 740.000 0.140303
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −163.000 −0.0303026 −0.0151513 0.999885i \(-0.504823\pi\)
−0.0151513 + 0.999885i \(0.504823\pi\)
\(308\) 0 0
\(309\) 2505.00 0.461180
\(310\) 0 0
\(311\) 4516.00 0.823405 0.411702 0.911318i \(-0.364934\pi\)
0.411702 + 0.911318i \(0.364934\pi\)
\(312\) 0 0
\(313\) −763.000 −0.137787 −0.0688935 0.997624i \(-0.521947\pi\)
−0.0688935 + 0.997624i \(0.521947\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 7868.00 1.39404 0.697020 0.717051i \(-0.254509\pi\)
0.697020 + 0.717051i \(0.254509\pi\)
\(318\) 0 0
\(319\) 3705.00 0.650283
\(320\) 0 0
\(321\) −3720.00 −0.646823
\(322\) 0 0
\(323\) −1808.00 −0.311455
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −2205.00 −0.372895
\(328\) 0 0
\(329\) −2933.00 −0.491494
\(330\) 0 0
\(331\) 3204.00 0.532048 0.266024 0.963966i \(-0.414290\pi\)
0.266024 + 0.963966i \(0.414290\pi\)
\(332\) 0 0
\(333\) 268.000 0.0441030
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −7874.00 −1.27277 −0.636386 0.771371i \(-0.719571\pi\)
−0.636386 + 0.771371i \(0.719571\pi\)
\(338\) 0 0
\(339\) −10590.0 −1.69667
\(340\) 0 0
\(341\) 16770.0 2.66319
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2522.00 0.390167 0.195084 0.980787i \(-0.437502\pi\)
0.195084 + 0.980787i \(0.437502\pi\)
\(348\) 0 0
\(349\) −4404.00 −0.675475 −0.337737 0.941240i \(-0.609662\pi\)
−0.337737 + 0.941240i \(0.609662\pi\)
\(350\) 0 0
\(351\) 1885.00 0.286649
\(352\) 0 0
\(353\) −7629.00 −1.15029 −0.575143 0.818053i \(-0.695053\pi\)
−0.575143 + 0.818053i \(0.695053\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −3955.00 −0.586333
\(358\) 0 0
\(359\) 6020.00 0.885024 0.442512 0.896763i \(-0.354087\pi\)
0.442512 + 0.896763i \(0.354087\pi\)
\(360\) 0 0
\(361\) −6603.00 −0.962677
\(362\) 0 0
\(363\) −14470.0 −2.09223
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 1331.00 0.189312 0.0946562 0.995510i \(-0.469825\pi\)
0.0946562 + 0.995510i \(0.469825\pi\)
\(368\) 0 0
\(369\) 828.000 0.116813
\(370\) 0 0
\(371\) 910.000 0.127345
\(372\) 0 0
\(373\) −8616.00 −1.19603 −0.598016 0.801485i \(-0.704044\pi\)
−0.598016 + 0.801485i \(0.704044\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −741.000 −0.101229
\(378\) 0 0
\(379\) −5572.00 −0.755183 −0.377592 0.925972i \(-0.623248\pi\)
−0.377592 + 0.925972i \(0.623248\pi\)
\(380\) 0 0
\(381\) 8970.00 1.20616
\(382\) 0 0
\(383\) −2352.00 −0.313790 −0.156895 0.987615i \(-0.550148\pi\)
−0.156895 + 0.987615i \(0.550148\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 568.000 0.0746074
\(388\) 0 0
\(389\) −6831.00 −0.890348 −0.445174 0.895444i \(-0.646858\pi\)
−0.445174 + 0.895444i \(0.646858\pi\)
\(390\) 0 0
\(391\) −21018.0 −2.71848
\(392\) 0 0
\(393\) 2470.00 0.317036
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 3499.00 0.442342 0.221171 0.975235i \(-0.429012\pi\)
0.221171 + 0.975235i \(0.429012\pi\)
\(398\) 0 0
\(399\) 560.000 0.0702633
\(400\) 0 0
\(401\) 6813.00 0.848441 0.424221 0.905559i \(-0.360548\pi\)
0.424221 + 0.905559i \(0.360548\pi\)
\(402\) 0 0
\(403\) −3354.00 −0.414577
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 8710.00 1.06078
\(408\) 0 0
\(409\) 8020.00 0.969593 0.484796 0.874627i \(-0.338894\pi\)
0.484796 + 0.874627i \(0.338894\pi\)
\(410\) 0 0
\(411\) 4820.00 0.578475
\(412\) 0 0
\(413\) −2338.00 −0.278560
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −2330.00 −0.273623
\(418\) 0 0
\(419\) 8538.00 0.995486 0.497743 0.867325i \(-0.334162\pi\)
0.497743 + 0.867325i \(0.334162\pi\)
\(420\) 0 0
\(421\) −5735.00 −0.663912 −0.331956 0.943295i \(-0.607708\pi\)
−0.331956 + 0.943295i \(0.607708\pi\)
\(422\) 0 0
\(423\) −838.000 −0.0963238
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 392.000 0.0444267
\(428\) 0 0
\(429\) 4225.00 0.475489
\(430\) 0 0
\(431\) −6945.00 −0.776169 −0.388085 0.921624i \(-0.626863\pi\)
−0.388085 + 0.921624i \(0.626863\pi\)
\(432\) 0 0
\(433\) −6374.00 −0.707425 −0.353712 0.935354i \(-0.615081\pi\)
−0.353712 + 0.935354i \(0.615081\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2976.00 0.325770
\(438\) 0 0
\(439\) −13758.0 −1.49575 −0.747874 0.663841i \(-0.768925\pi\)
−0.747874 + 0.663841i \(0.768925\pi\)
\(440\) 0 0
\(441\) −98.0000 −0.0105820
\(442\) 0 0
\(443\) −10812.0 −1.15958 −0.579790 0.814766i \(-0.696865\pi\)
−0.579790 + 0.814766i \(0.696865\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 16230.0 1.71734
\(448\) 0 0
\(449\) 10203.0 1.07240 0.536202 0.844090i \(-0.319859\pi\)
0.536202 + 0.844090i \(0.319859\pi\)
\(450\) 0 0
\(451\) 26910.0 2.80963
\(452\) 0 0
\(453\) 3215.00 0.333452
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −14198.0 −1.45329 −0.726646 0.687012i \(-0.758922\pi\)
−0.726646 + 0.687012i \(0.758922\pi\)
\(458\) 0 0
\(459\) −16385.0 −1.66620
\(460\) 0 0
\(461\) −15876.0 −1.60395 −0.801973 0.597360i \(-0.796216\pi\)
−0.801973 + 0.597360i \(0.796216\pi\)
\(462\) 0 0
\(463\) 16524.0 1.65861 0.829304 0.558798i \(-0.188737\pi\)
0.829304 + 0.558798i \(0.188737\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 7193.00 0.712746 0.356373 0.934344i \(-0.384013\pi\)
0.356373 + 0.934344i \(0.384013\pi\)
\(468\) 0 0
\(469\) −3738.00 −0.368027
\(470\) 0 0
\(471\) −8270.00 −0.809048
\(472\) 0 0
\(473\) 18460.0 1.79449
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 260.000 0.0249572
\(478\) 0 0
\(479\) −7810.00 −0.744985 −0.372493 0.928035i \(-0.621497\pi\)
−0.372493 + 0.928035i \(0.621497\pi\)
\(480\) 0 0
\(481\) −1742.00 −0.165132
\(482\) 0 0
\(483\) 6510.00 0.613282
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −11514.0 −1.07135 −0.535677 0.844423i \(-0.679943\pi\)
−0.535677 + 0.844423i \(0.679943\pi\)
\(488\) 0 0
\(489\) −5310.00 −0.491056
\(490\) 0 0
\(491\) −6435.00 −0.591461 −0.295731 0.955271i \(-0.595563\pi\)
−0.295731 + 0.955271i \(0.595563\pi\)
\(492\) 0 0
\(493\) 6441.00 0.588414
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −6664.00 −0.601451
\(498\) 0 0
\(499\) 18023.0 1.61687 0.808437 0.588582i \(-0.200314\pi\)
0.808437 + 0.588582i \(0.200314\pi\)
\(500\) 0 0
\(501\) −10135.0 −0.903789
\(502\) 0 0
\(503\) 19809.0 1.75594 0.877972 0.478712i \(-0.158896\pi\)
0.877972 + 0.478712i \(0.158896\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 10140.0 0.888231
\(508\) 0 0
\(509\) −598.000 −0.0520744 −0.0260372 0.999661i \(-0.508289\pi\)
−0.0260372 + 0.999661i \(0.508289\pi\)
\(510\) 0 0
\(511\) −3514.00 −0.304208
\(512\) 0 0
\(513\) 2320.00 0.199670
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −27235.0 −2.31682
\(518\) 0 0
\(519\) −7895.00 −0.667730
\(520\) 0 0
\(521\) 11124.0 0.935415 0.467708 0.883883i \(-0.345080\pi\)
0.467708 + 0.883883i \(0.345080\pi\)
\(522\) 0 0
\(523\) 3876.00 0.324064 0.162032 0.986785i \(-0.448195\pi\)
0.162032 + 0.986785i \(0.448195\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 29154.0 2.40981
\(528\) 0 0
\(529\) 22429.0 1.84343
\(530\) 0 0
\(531\) −668.000 −0.0545927
\(532\) 0 0
\(533\) −5382.00 −0.437374
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −13940.0 −1.12021
\(538\) 0 0
\(539\) −3185.00 −0.254523
\(540\) 0 0
\(541\) −5321.00 −0.422861 −0.211430 0.977393i \(-0.567812\pi\)
−0.211430 + 0.977393i \(0.567812\pi\)
\(542\) 0 0
\(543\) −13070.0 −1.03294
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 496.000 0.0387704 0.0193852 0.999812i \(-0.493829\pi\)
0.0193852 + 0.999812i \(0.493829\pi\)
\(548\) 0 0
\(549\) 112.000 0.00870682
\(550\) 0 0
\(551\) −912.000 −0.0705127
\(552\) 0 0
\(553\) 2597.00 0.199703
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 2292.00 0.174354 0.0871770 0.996193i \(-0.472215\pi\)
0.0871770 + 0.996193i \(0.472215\pi\)
\(558\) 0 0
\(559\) −3692.00 −0.279347
\(560\) 0 0
\(561\) −36725.0 −2.76387
\(562\) 0 0
\(563\) 14568.0 1.09053 0.545265 0.838264i \(-0.316429\pi\)
0.545265 + 0.838264i \(0.316429\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 4697.00 0.347893
\(568\) 0 0
\(569\) 498.000 0.0366911 0.0183456 0.999832i \(-0.494160\pi\)
0.0183456 + 0.999832i \(0.494160\pi\)
\(570\) 0 0
\(571\) −2300.00 −0.168567 −0.0842837 0.996442i \(-0.526860\pi\)
−0.0842837 + 0.996442i \(0.526860\pi\)
\(572\) 0 0
\(573\) 4025.00 0.293450
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −13347.0 −0.962986 −0.481493 0.876450i \(-0.659905\pi\)
−0.481493 + 0.876450i \(0.659905\pi\)
\(578\) 0 0
\(579\) 17760.0 1.27475
\(580\) 0 0
\(581\) −8540.00 −0.609809
\(582\) 0 0
\(583\) 8450.00 0.600280
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 15764.0 1.10843 0.554216 0.832373i \(-0.313018\pi\)
0.554216 + 0.832373i \(0.313018\pi\)
\(588\) 0 0
\(589\) −4128.00 −0.288780
\(590\) 0 0
\(591\) 17310.0 1.20480
\(592\) 0 0
\(593\) 4913.00 0.340224 0.170112 0.985425i \(-0.445587\pi\)
0.170112 + 0.985425i \(0.445587\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 430.000 0.0294786
\(598\) 0 0
\(599\) −26089.0 −1.77958 −0.889789 0.456371i \(-0.849149\pi\)
−0.889789 + 0.456371i \(0.849149\pi\)
\(600\) 0 0
\(601\) 28440.0 1.93027 0.965135 0.261754i \(-0.0843009\pi\)
0.965135 + 0.261754i \(0.0843009\pi\)
\(602\) 0 0
\(603\) −1068.00 −0.0721266
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −22235.0 −1.48681 −0.743403 0.668844i \(-0.766789\pi\)
−0.743403 + 0.668844i \(0.766789\pi\)
\(608\) 0 0
\(609\) −1995.00 −0.132745
\(610\) 0 0
\(611\) 5447.00 0.360658
\(612\) 0 0
\(613\) 16612.0 1.09454 0.547269 0.836956i \(-0.315667\pi\)
0.547269 + 0.836956i \(0.315667\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 29814.0 1.94533 0.972663 0.232220i \(-0.0745990\pi\)
0.972663 + 0.232220i \(0.0745990\pi\)
\(618\) 0 0
\(619\) 24606.0 1.59774 0.798868 0.601506i \(-0.205433\pi\)
0.798868 + 0.601506i \(0.205433\pi\)
\(620\) 0 0
\(621\) 26970.0 1.74278
\(622\) 0 0
\(623\) −6160.00 −0.396140
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 5200.00 0.331209
\(628\) 0 0
\(629\) 15142.0 0.959859
\(630\) 0 0
\(631\) −12501.0 −0.788680 −0.394340 0.918965i \(-0.629027\pi\)
−0.394340 + 0.918965i \(0.629027\pi\)
\(632\) 0 0
\(633\) 1555.00 0.0976393
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 637.000 0.0396214
\(638\) 0 0
\(639\) −1904.00 −0.117873
\(640\) 0 0
\(641\) 10998.0 0.677683 0.338842 0.940843i \(-0.389965\pi\)
0.338842 + 0.940843i \(0.389965\pi\)
\(642\) 0 0
\(643\) 23147.0 1.41964 0.709820 0.704383i \(-0.248776\pi\)
0.709820 + 0.704383i \(0.248776\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 18632.0 1.13215 0.566074 0.824355i \(-0.308462\pi\)
0.566074 + 0.824355i \(0.308462\pi\)
\(648\) 0 0
\(649\) −21710.0 −1.31308
\(650\) 0 0
\(651\) −9030.00 −0.543646
\(652\) 0 0
\(653\) 31292.0 1.87527 0.937634 0.347623i \(-0.113011\pi\)
0.937634 + 0.347623i \(0.113011\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −1004.00 −0.0596191
\(658\) 0 0
\(659\) −24909.0 −1.47241 −0.736204 0.676760i \(-0.763384\pi\)
−0.736204 + 0.676760i \(0.763384\pi\)
\(660\) 0 0
\(661\) 18844.0 1.10885 0.554423 0.832235i \(-0.312939\pi\)
0.554423 + 0.832235i \(0.312939\pi\)
\(662\) 0 0
\(663\) 7345.00 0.430251
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −10602.0 −0.615459
\(668\) 0 0
\(669\) −6695.00 −0.386911
\(670\) 0 0
\(671\) 3640.00 0.209420
\(672\) 0 0
\(673\) −14184.0 −0.812412 −0.406206 0.913782i \(-0.633148\pi\)
−0.406206 + 0.913782i \(0.633148\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 15177.0 0.861595 0.430797 0.902449i \(-0.358232\pi\)
0.430797 + 0.902449i \(0.358232\pi\)
\(678\) 0 0
\(679\) 1687.00 0.0953477
\(680\) 0 0
\(681\) 18425.0 1.03678
\(682\) 0 0
\(683\) 2624.00 0.147005 0.0735026 0.997295i \(-0.476582\pi\)
0.0735026 + 0.997295i \(0.476582\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 2330.00 0.129396
\(688\) 0 0
\(689\) −1690.00 −0.0934454
\(690\) 0 0
\(691\) −25112.0 −1.38250 −0.691249 0.722617i \(-0.742939\pi\)
−0.691249 + 0.722617i \(0.742939\pi\)
\(692\) 0 0
\(693\) −910.000 −0.0498817
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 46782.0 2.54232
\(698\) 0 0
\(699\) −720.000 −0.0389598
\(700\) 0 0
\(701\) 927.000 0.0499462 0.0249731 0.999688i \(-0.492050\pi\)
0.0249731 + 0.999688i \(0.492050\pi\)
\(702\) 0 0
\(703\) −2144.00 −0.115025
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1036.00 0.0551100
\(708\) 0 0
\(709\) −15209.0 −0.805622 −0.402811 0.915283i \(-0.631967\pi\)
−0.402811 + 0.915283i \(0.631967\pi\)
\(710\) 0 0
\(711\) 742.000 0.0391381
\(712\) 0 0
\(713\) −47988.0 −2.52057
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 6275.00 0.326840
\(718\) 0 0
\(719\) 22018.0 1.14205 0.571024 0.820933i \(-0.306546\pi\)
0.571024 + 0.820933i \(0.306546\pi\)
\(720\) 0 0
\(721\) 3507.00 0.181148
\(722\) 0 0
\(723\) −18910.0 −0.972712
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −16324.0 −0.832770 −0.416385 0.909188i \(-0.636703\pi\)
−0.416385 + 0.909188i \(0.636703\pi\)
\(728\) 0 0
\(729\) 20917.0 1.06269
\(730\) 0 0
\(731\) 32092.0 1.62376
\(732\) 0 0
\(733\) 5805.00 0.292514 0.146257 0.989247i \(-0.453277\pi\)
0.146257 + 0.989247i \(0.453277\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −34710.0 −1.73482
\(738\) 0 0
\(739\) 37703.0 1.87676 0.938381 0.345602i \(-0.112325\pi\)
0.938381 + 0.345602i \(0.112325\pi\)
\(740\) 0 0
\(741\) −1040.00 −0.0515592
\(742\) 0 0
\(743\) 36542.0 1.80430 0.902151 0.431421i \(-0.141988\pi\)
0.902151 + 0.431421i \(0.141988\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −2440.00 −0.119511
\(748\) 0 0
\(749\) −5208.00 −0.254067
\(750\) 0 0
\(751\) 24505.0 1.19068 0.595340 0.803474i \(-0.297018\pi\)
0.595340 + 0.803474i \(0.297018\pi\)
\(752\) 0 0
\(753\) −5730.00 −0.277308
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 21568.0 1.03554 0.517769 0.855520i \(-0.326763\pi\)
0.517769 + 0.855520i \(0.326763\pi\)
\(758\) 0 0
\(759\) 60450.0 2.89090
\(760\) 0 0
\(761\) −9150.00 −0.435857 −0.217929 0.975965i \(-0.569930\pi\)
−0.217929 + 0.975965i \(0.569930\pi\)
\(762\) 0 0
\(763\) −3087.00 −0.146470
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 4342.00 0.204407
\(768\) 0 0
\(769\) −34848.0 −1.63414 −0.817068 0.576541i \(-0.804402\pi\)
−0.817068 + 0.576541i \(0.804402\pi\)
\(770\) 0 0
\(771\) 19730.0 0.921606
\(772\) 0 0
\(773\) 12617.0 0.587066 0.293533 0.955949i \(-0.405169\pi\)
0.293533 + 0.955949i \(0.405169\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −4690.00 −0.216542
\(778\) 0 0
\(779\) −6624.00 −0.304659
\(780\) 0 0
\(781\) −61880.0 −2.83514
\(782\) 0 0
\(783\) −8265.00 −0.377225
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −6949.00 −0.314746 −0.157373 0.987539i \(-0.550302\pi\)
−0.157373 + 0.987539i \(0.550302\pi\)
\(788\) 0 0
\(789\) 14760.0 0.665995
\(790\) 0 0
\(791\) −14826.0 −0.666437
\(792\) 0 0
\(793\) −728.000 −0.0326003
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −3081.00 −0.136932 −0.0684659 0.997653i \(-0.521810\pi\)
−0.0684659 + 0.997653i \(0.521810\pi\)
\(798\) 0 0
\(799\) −47347.0 −2.09639
\(800\) 0 0
\(801\) −1760.00 −0.0776361
\(802\) 0 0
\(803\) −32630.0 −1.43398
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −41050.0 −1.79062
\(808\) 0 0
\(809\) −23739.0 −1.03167 −0.515834 0.856689i \(-0.672518\pi\)
−0.515834 + 0.856689i \(0.672518\pi\)
\(810\) 0 0
\(811\) −24226.0 −1.04894 −0.524470 0.851429i \(-0.675736\pi\)
−0.524470 + 0.851429i \(0.675736\pi\)
\(812\) 0 0
\(813\) 9800.00 0.422756
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −4544.00 −0.194583
\(818\) 0 0
\(819\) 182.000 0.00776507
\(820\) 0 0
\(821\) 25269.0 1.07417 0.537085 0.843528i \(-0.319525\pi\)
0.537085 + 0.843528i \(0.319525\pi\)
\(822\) 0 0
\(823\) −12602.0 −0.533752 −0.266876 0.963731i \(-0.585991\pi\)
−0.266876 + 0.963731i \(0.585991\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 23274.0 0.978617 0.489309 0.872111i \(-0.337249\pi\)
0.489309 + 0.872111i \(0.337249\pi\)
\(828\) 0 0
\(829\) −17062.0 −0.714822 −0.357411 0.933947i \(-0.616341\pi\)
−0.357411 + 0.933947i \(0.616341\pi\)
\(830\) 0 0
\(831\) 12110.0 0.505525
\(832\) 0 0
\(833\) −5537.00 −0.230307
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −37410.0 −1.54490
\(838\) 0 0
\(839\) −5134.00 −0.211258 −0.105629 0.994406i \(-0.533686\pi\)
−0.105629 + 0.994406i \(0.533686\pi\)
\(840\) 0 0
\(841\) −21140.0 −0.866784
\(842\) 0 0
\(843\) 26245.0 1.07227
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −20258.0 −0.821810
\(848\) 0 0
\(849\) −31045.0 −1.25496
\(850\) 0 0
\(851\) −24924.0 −1.00398
\(852\) 0 0
\(853\) 25202.0 1.01161 0.505803 0.862649i \(-0.331196\pi\)
0.505803 + 0.862649i \(0.331196\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 34234.0 1.36454 0.682270 0.731100i \(-0.260993\pi\)
0.682270 + 0.731100i \(0.260993\pi\)
\(858\) 0 0
\(859\) 14904.0 0.591988 0.295994 0.955190i \(-0.404349\pi\)
0.295994 + 0.955190i \(0.404349\pi\)
\(860\) 0 0
\(861\) −14490.0 −0.573540
\(862\) 0 0
\(863\) 18054.0 0.712127 0.356063 0.934462i \(-0.384119\pi\)
0.356063 + 0.934462i \(0.384119\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −39280.0 −1.53866
\(868\) 0 0
\(869\) 24115.0 0.941364
\(870\) 0 0
\(871\) 6942.00 0.270058
\(872\) 0 0
\(873\) 482.000 0.0186864
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 31440.0 1.21055 0.605276 0.796016i \(-0.293063\pi\)
0.605276 + 0.796016i \(0.293063\pi\)
\(878\) 0 0
\(879\) −13295.0 −0.510158
\(880\) 0 0
\(881\) −37248.0 −1.42442 −0.712212 0.701965i \(-0.752306\pi\)
−0.712212 + 0.701965i \(0.752306\pi\)
\(882\) 0 0
\(883\) 47324.0 1.80360 0.901800 0.432153i \(-0.142246\pi\)
0.901800 + 0.432153i \(0.142246\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −612.000 −0.0231668 −0.0115834 0.999933i \(-0.503687\pi\)
−0.0115834 + 0.999933i \(0.503687\pi\)
\(888\) 0 0
\(889\) 12558.0 0.473770
\(890\) 0 0
\(891\) 43615.0 1.63991
\(892\) 0 0
\(893\) 6704.00 0.251222
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −12090.0 −0.450026
\(898\) 0 0
\(899\) 14706.0 0.545576
\(900\) 0 0
\(901\) 14690.0 0.543169
\(902\) 0 0
\(903\) −9940.00 −0.366315
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −13666.0 −0.500300 −0.250150 0.968207i \(-0.580480\pi\)
−0.250150 + 0.968207i \(0.580480\pi\)
\(908\) 0 0
\(909\) 296.000 0.0108006
\(910\) 0 0
\(911\) −45468.0 −1.65359 −0.826796 0.562502i \(-0.809839\pi\)
−0.826796 + 0.562502i \(0.809839\pi\)
\(912\) 0 0
\(913\) −79300.0 −2.87453
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 3458.00 0.124529
\(918\) 0 0
\(919\) 38789.0 1.39231 0.696154 0.717892i \(-0.254893\pi\)
0.696154 + 0.717892i \(0.254893\pi\)
\(920\) 0 0
\(921\) 815.000 0.0291587
\(922\) 0 0
\(923\) 12376.0 0.441345
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 1002.00 0.0355016
\(928\) 0 0
\(929\) 10830.0 0.382477 0.191238 0.981544i \(-0.438750\pi\)
0.191238 + 0.981544i \(0.438750\pi\)
\(930\) 0 0
\(931\) 784.000 0.0275989
\(932\) 0 0
\(933\) −22580.0 −0.792322
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 707.000 0.0246496 0.0123248 0.999924i \(-0.496077\pi\)
0.0123248 + 0.999924i \(0.496077\pi\)
\(938\) 0 0
\(939\) 3815.00 0.132586
\(940\) 0 0
\(941\) −25152.0 −0.871341 −0.435670 0.900106i \(-0.643489\pi\)
−0.435670 + 0.900106i \(0.643489\pi\)
\(942\) 0 0
\(943\) −77004.0 −2.65917
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 3582.00 0.122914 0.0614569 0.998110i \(-0.480425\pi\)
0.0614569 + 0.998110i \(0.480425\pi\)
\(948\) 0 0
\(949\) 6526.00 0.223228
\(950\) 0 0
\(951\) −39340.0 −1.34142
\(952\) 0 0
\(953\) −19530.0 −0.663839 −0.331920 0.943308i \(-0.607696\pi\)
−0.331920 + 0.943308i \(0.607696\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −18525.0 −0.625735
\(958\) 0 0
\(959\) 6748.00 0.227220
\(960\) 0 0
\(961\) 36773.0 1.23437
\(962\) 0 0
\(963\) −1488.00 −0.0497925
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −8952.00 −0.297701 −0.148851 0.988860i \(-0.547557\pi\)
−0.148851 + 0.988860i \(0.547557\pi\)
\(968\) 0 0
\(969\) 9040.00 0.299697
\(970\) 0 0
\(971\) 930.000 0.0307365 0.0153682 0.999882i \(-0.495108\pi\)
0.0153682 + 0.999882i \(0.495108\pi\)
\(972\) 0 0
\(973\) −3262.00 −0.107477
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 7068.00 0.231449 0.115724 0.993281i \(-0.463081\pi\)
0.115724 + 0.993281i \(0.463081\pi\)
\(978\) 0 0
\(979\) −57200.0 −1.86733
\(980\) 0 0
\(981\) −882.000 −0.0287055
\(982\) 0 0
\(983\) −18315.0 −0.594260 −0.297130 0.954837i \(-0.596030\pi\)
−0.297130 + 0.954837i \(0.596030\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 14665.0 0.472940
\(988\) 0 0
\(989\) −52824.0 −1.69839
\(990\) 0 0
\(991\) −41736.0 −1.33783 −0.668914 0.743340i \(-0.733241\pi\)
−0.668914 + 0.743340i \(0.733241\pi\)
\(992\) 0 0
\(993\) −16020.0 −0.511963
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −2161.00 −0.0686455 −0.0343227 0.999411i \(-0.510927\pi\)
−0.0343227 + 0.999411i \(0.510927\pi\)
\(998\) 0 0
\(999\) −19430.0 −0.615353
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.4.a.d.1.1 1
5.2 odd 4 140.4.e.a.29.2 yes 2
5.3 odd 4 140.4.e.a.29.1 2
5.4 even 2 700.4.a.l.1.1 1
15.2 even 4 1260.4.k.c.1009.2 2
15.8 even 4 1260.4.k.c.1009.1 2
20.3 even 4 560.4.g.a.449.2 2
20.7 even 4 560.4.g.a.449.1 2
35.13 even 4 980.4.e.c.589.2 2
35.27 even 4 980.4.e.c.589.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.4.e.a.29.1 2 5.3 odd 4
140.4.e.a.29.2 yes 2 5.2 odd 4
560.4.g.a.449.1 2 20.7 even 4
560.4.g.a.449.2 2 20.3 even 4
700.4.a.d.1.1 1 1.1 even 1 trivial
700.4.a.l.1.1 1 5.4 even 2
980.4.e.c.589.1 2 35.27 even 4
980.4.e.c.589.2 2 35.13 even 4
1260.4.k.c.1009.1 2 15.8 even 4
1260.4.k.c.1009.2 2 15.2 even 4