Properties

Label 980.3.l.c.393.2
Level $980$
Weight $3$
Character 980.393
Analytic conductor $26.703$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [980,3,Mod(197,980)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("980.197"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(980, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 980.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,8,0,-20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.7030659073\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.1218533392384.32
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 78x^{4} + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 393.2
Root \(2.09065 + 2.09065i\) of defining polynomial
Character \(\chi\) \(=\) 980.393
Dual form 980.3.l.c.197.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.21982 + 1.21982i) q^{3} +(-4.10078 - 2.86071i) q^{5} -6.02406i q^{9} +5.08021 q^{11} +(-14.6059 - 14.6059i) q^{13} +(-1.51267 - 8.49178i) q^{15} +(-16.7461 + 16.7461i) q^{17} +31.6925i q^{19} +(4.92296 + 4.92296i) q^{23} +(8.63273 + 23.4622i) q^{25} +(18.3267 - 18.3267i) q^{27} +21.9203i q^{29} +32.5294 q^{31} +(6.19696 + 6.19696i) q^{33} +(-45.7885 + 45.7885i) q^{37} -35.6331i q^{39} +36.3364 q^{41} +(23.2691 + 23.2691i) q^{43} +(-17.2331 + 24.7033i) q^{45} +(17.4139 - 17.4139i) q^{47} -40.8546 q^{51} +(-23.6722 - 23.6722i) q^{53} +(-20.8328 - 14.5330i) q^{55} +(-38.6593 + 38.6593i) q^{57} +104.467i q^{59} -57.0140 q^{61} +(18.1123 + 101.678i) q^{65} +(12.2596 - 12.2596i) q^{67} +12.0103i q^{69} -88.5489 q^{71} +(-39.7353 - 39.7353i) q^{73} +(-18.0894 + 39.1502i) q^{75} +134.383i q^{79} -9.50581 q^{81} +(27.7461 + 27.7461i) q^{83} +(116.578 - 20.7664i) q^{85} +(-26.7389 + 26.7389i) q^{87} +116.214i q^{89} +(39.6801 + 39.6801i) q^{93} +(90.6629 - 129.964i) q^{95} +(56.9445 - 56.9445i) q^{97} -30.6035i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{3} - 20 q^{5} + 32 q^{11} + 16 q^{13} + 56 q^{15} + 16 q^{17} - 24 q^{23} + 32 q^{25} + 8 q^{27} + 32 q^{31} + 80 q^{33} - 208 q^{37} - 48 q^{43} + 92 q^{45} - 176 q^{47} - 176 q^{51} + 96 q^{53}+ \cdots + 400 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.21982 + 1.21982i 0.406608 + 0.406608i 0.880554 0.473946i \(-0.157171\pi\)
−0.473946 + 0.880554i \(0.657171\pi\)
\(4\) 0 0
\(5\) −4.10078 2.86071i −0.820155 0.572141i
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 6.02406i 0.669340i
\(10\) 0 0
\(11\) 5.08021 0.461837 0.230919 0.972973i \(-0.425827\pi\)
0.230919 + 0.972973i \(0.425827\pi\)
\(12\) 0 0
\(13\) −14.6059 14.6059i −1.12353 1.12353i −0.991207 0.132320i \(-0.957757\pi\)
−0.132320 0.991207i \(-0.542243\pi\)
\(14\) 0 0
\(15\) −1.51267 8.49178i −0.100845 0.566119i
\(16\) 0 0
\(17\) −16.7461 + 16.7461i −0.985065 + 0.985065i −0.999890 0.0148249i \(-0.995281\pi\)
0.0148249 + 0.999890i \(0.495281\pi\)
\(18\) 0 0
\(19\) 31.6925i 1.66803i 0.551745 + 0.834013i \(0.313962\pi\)
−0.551745 + 0.834013i \(0.686038\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.92296 + 4.92296i 0.214042 + 0.214042i 0.805982 0.591940i \(-0.201638\pi\)
−0.591940 + 0.805982i \(0.701638\pi\)
\(24\) 0 0
\(25\) 8.63273 + 23.4622i 0.345309 + 0.938489i
\(26\) 0 0
\(27\) 18.3267 18.3267i 0.678767 0.678767i
\(28\) 0 0
\(29\) 21.9203i 0.755872i 0.925832 + 0.377936i \(0.123366\pi\)
−0.925832 + 0.377936i \(0.876634\pi\)
\(30\) 0 0
\(31\) 32.5294 1.04933 0.524667 0.851307i \(-0.324190\pi\)
0.524667 + 0.851307i \(0.324190\pi\)
\(32\) 0 0
\(33\) 6.19696 + 6.19696i 0.187787 + 0.187787i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −45.7885 + 45.7885i −1.23753 + 1.23753i −0.276518 + 0.961009i \(0.589181\pi\)
−0.961009 + 0.276518i \(0.910819\pi\)
\(38\) 0 0
\(39\) 35.6331i 0.913670i
\(40\) 0 0
\(41\) 36.3364 0.886253 0.443126 0.896459i \(-0.353869\pi\)
0.443126 + 0.896459i \(0.353869\pi\)
\(42\) 0 0
\(43\) 23.2691 + 23.2691i 0.541143 + 0.541143i 0.923864 0.382721i \(-0.125013\pi\)
−0.382721 + 0.923864i \(0.625013\pi\)
\(44\) 0 0
\(45\) −17.2331 + 24.7033i −0.382957 + 0.548963i
\(46\) 0 0
\(47\) 17.4139 17.4139i 0.370509 0.370509i −0.497154 0.867662i \(-0.665622\pi\)
0.867662 + 0.497154i \(0.165622\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −40.8546 −0.801071
\(52\) 0 0
\(53\) −23.6722 23.6722i −0.446646 0.446646i 0.447592 0.894238i \(-0.352282\pi\)
−0.894238 + 0.447592i \(0.852282\pi\)
\(54\) 0 0
\(55\) −20.8328 14.5330i −0.378778 0.264236i
\(56\) 0 0
\(57\) −38.6593 + 38.6593i −0.678233 + 0.678233i
\(58\) 0 0
\(59\) 104.467i 1.77063i 0.464991 + 0.885315i \(0.346058\pi\)
−0.464991 + 0.885315i \(0.653942\pi\)
\(60\) 0 0
\(61\) −57.0140 −0.934656 −0.467328 0.884084i \(-0.654783\pi\)
−0.467328 + 0.884084i \(0.654783\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 18.1123 + 101.678i 0.278651 + 1.56428i
\(66\) 0 0
\(67\) 12.2596 12.2596i 0.182979 0.182979i −0.609673 0.792653i \(-0.708699\pi\)
0.792653 + 0.609673i \(0.208699\pi\)
\(68\) 0 0
\(69\) 12.0103i 0.174062i
\(70\) 0 0
\(71\) −88.5489 −1.24717 −0.623584 0.781757i \(-0.714324\pi\)
−0.623584 + 0.781757i \(0.714324\pi\)
\(72\) 0 0
\(73\) −39.7353 39.7353i −0.544319 0.544319i 0.380473 0.924792i \(-0.375761\pi\)
−0.924792 + 0.380473i \(0.875761\pi\)
\(74\) 0 0
\(75\) −18.0894 + 39.1502i −0.241192 + 0.522003i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 134.383i 1.70104i 0.525939 + 0.850522i \(0.323714\pi\)
−0.525939 + 0.850522i \(0.676286\pi\)
\(80\) 0 0
\(81\) −9.50581 −0.117356
\(82\) 0 0
\(83\) 27.7461 + 27.7461i 0.334290 + 0.334290i 0.854213 0.519923i \(-0.174039\pi\)
−0.519923 + 0.854213i \(0.674039\pi\)
\(84\) 0 0
\(85\) 116.578 20.7664i 1.37150 0.244310i
\(86\) 0 0
\(87\) −26.7389 + 26.7389i −0.307344 + 0.307344i
\(88\) 0 0
\(89\) 116.214i 1.30577i 0.757457 + 0.652885i \(0.226442\pi\)
−0.757457 + 0.652885i \(0.773558\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 39.6801 + 39.6801i 0.426668 + 0.426668i
\(94\) 0 0
\(95\) 90.6629 129.964i 0.954346 1.36804i
\(96\) 0 0
\(97\) 56.9445 56.9445i 0.587056 0.587056i −0.349777 0.936833i \(-0.613743\pi\)
0.936833 + 0.349777i \(0.113743\pi\)
\(98\) 0 0
\(99\) 30.6035i 0.309126i
\(100\) 0 0
\(101\) −55.5034 −0.549538 −0.274769 0.961510i \(-0.588601\pi\)
−0.274769 + 0.961510i \(0.588601\pi\)
\(102\) 0 0
\(103\) −27.8918 27.8918i −0.270794 0.270794i 0.558626 0.829420i \(-0.311329\pi\)
−0.829420 + 0.558626i \(0.811329\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −19.7040 + 19.7040i −0.184150 + 0.184150i −0.793161 0.609012i \(-0.791566\pi\)
0.609012 + 0.793161i \(0.291566\pi\)
\(108\) 0 0
\(109\) 27.9789i 0.256687i −0.991730 0.128343i \(-0.959034\pi\)
0.991730 0.128343i \(-0.0409660\pi\)
\(110\) 0 0
\(111\) −111.708 −1.00638
\(112\) 0 0
\(113\) −20.1003 20.1003i −0.177879 0.177879i 0.612552 0.790431i \(-0.290143\pi\)
−0.790431 + 0.612552i \(0.790143\pi\)
\(114\) 0 0
\(115\) −6.10482 34.2711i −0.0530854 0.298010i
\(116\) 0 0
\(117\) −87.9865 + 87.9865i −0.752022 + 0.752022i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −95.1915 −0.786706
\(122\) 0 0
\(123\) 44.3240 + 44.3240i 0.360357 + 0.360357i
\(124\) 0 0
\(125\) 31.7176 120.909i 0.253741 0.967272i
\(126\) 0 0
\(127\) −24.8723 + 24.8723i −0.195845 + 0.195845i −0.798216 0.602371i \(-0.794223\pi\)
0.602371 + 0.798216i \(0.294223\pi\)
\(128\) 0 0
\(129\) 56.7685i 0.440066i
\(130\) 0 0
\(131\) 40.7823 0.311315 0.155658 0.987811i \(-0.450250\pi\)
0.155658 + 0.987811i \(0.450250\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −127.581 + 22.7264i −0.945045 + 0.168344i
\(136\) 0 0
\(137\) −11.1477 + 11.1477i −0.0813703 + 0.0813703i −0.746620 0.665250i \(-0.768325\pi\)
0.665250 + 0.746620i \(0.268325\pi\)
\(138\) 0 0
\(139\) 155.615i 1.11953i −0.828650 0.559767i \(-0.810891\pi\)
0.828650 0.559767i \(-0.189109\pi\)
\(140\) 0 0
\(141\) 42.4838 0.301303
\(142\) 0 0
\(143\) −74.2008 74.2008i −0.518887 0.518887i
\(144\) 0 0
\(145\) 62.7075 89.8902i 0.432465 0.619932i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 139.674i 0.937411i −0.883355 0.468705i \(-0.844721\pi\)
0.883355 0.468705i \(-0.155279\pi\)
\(150\) 0 0
\(151\) −136.288 −0.902572 −0.451286 0.892379i \(-0.649035\pi\)
−0.451286 + 0.892379i \(0.649035\pi\)
\(152\) 0 0
\(153\) 100.880 + 100.880i 0.659343 + 0.659343i
\(154\) 0 0
\(155\) −133.396 93.0569i −0.860617 0.600367i
\(156\) 0 0
\(157\) −119.702 + 119.702i −0.762433 + 0.762433i −0.976762 0.214329i \(-0.931244\pi\)
0.214329 + 0.976762i \(0.431244\pi\)
\(158\) 0 0
\(159\) 57.7519i 0.363220i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 137.477 + 137.477i 0.843418 + 0.843418i 0.989302 0.145884i \(-0.0466025\pi\)
−0.145884 + 0.989302i \(0.546603\pi\)
\(164\) 0 0
\(165\) −7.68467 43.1400i −0.0465738 0.261455i
\(166\) 0 0
\(167\) 97.0825 97.0825i 0.581332 0.581332i −0.353937 0.935269i \(-0.615157\pi\)
0.935269 + 0.353937i \(0.115157\pi\)
\(168\) 0 0
\(169\) 257.662i 1.52463i
\(170\) 0 0
\(171\) 190.917 1.11648
\(172\) 0 0
\(173\) 130.770 + 130.770i 0.755897 + 0.755897i 0.975573 0.219676i \(-0.0705000\pi\)
−0.219676 + 0.975573i \(0.570500\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −127.432 + 127.432i −0.719953 + 0.719953i
\(178\) 0 0
\(179\) 293.263i 1.63834i 0.573552 + 0.819169i \(0.305565\pi\)
−0.573552 + 0.819169i \(0.694435\pi\)
\(180\) 0 0
\(181\) −59.6174 −0.329378 −0.164689 0.986346i \(-0.552662\pi\)
−0.164689 + 0.986346i \(0.552662\pi\)
\(182\) 0 0
\(183\) −69.5470 69.5470i −0.380038 0.380038i
\(184\) 0 0
\(185\) 318.756 56.7810i 1.72300 0.306924i
\(186\) 0 0
\(187\) −85.0737 + 85.0737i −0.454940 + 0.454940i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 217.142 1.13687 0.568435 0.822728i \(-0.307549\pi\)
0.568435 + 0.822728i \(0.307549\pi\)
\(192\) 0 0
\(193\) −129.689 129.689i −0.671965 0.671965i 0.286204 0.958169i \(-0.407606\pi\)
−0.958169 + 0.286204i \(0.907606\pi\)
\(194\) 0 0
\(195\) −101.936 + 146.124i −0.522748 + 0.749352i
\(196\) 0 0
\(197\) 164.544 164.544i 0.835248 0.835248i −0.152982 0.988229i \(-0.548887\pi\)
0.988229 + 0.152982i \(0.0488875\pi\)
\(198\) 0 0
\(199\) 27.5216i 0.138300i 0.997606 + 0.0691498i \(0.0220286\pi\)
−0.997606 + 0.0691498i \(0.977971\pi\)
\(200\) 0 0
\(201\) 29.9092 0.148802
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −149.007 103.948i −0.726865 0.507062i
\(206\) 0 0
\(207\) 29.6562 29.6562i 0.143267 0.143267i
\(208\) 0 0
\(209\) 161.004i 0.770356i
\(210\) 0 0
\(211\) −107.167 −0.507903 −0.253951 0.967217i \(-0.581730\pi\)
−0.253951 + 0.967217i \(0.581730\pi\)
\(212\) 0 0
\(213\) −108.014 108.014i −0.507108 0.507108i
\(214\) 0 0
\(215\) −28.8554 161.988i −0.134211 0.753431i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 96.9402i 0.442649i
\(220\) 0 0
\(221\) 489.182 2.21350
\(222\) 0 0
\(223\) −12.6151 12.6151i −0.0565701 0.0565701i 0.678256 0.734826i \(-0.262736\pi\)
−0.734826 + 0.678256i \(0.762736\pi\)
\(224\) 0 0
\(225\) 141.338 52.0041i 0.628168 0.231129i
\(226\) 0 0
\(227\) −170.439 + 170.439i −0.750834 + 0.750834i −0.974635 0.223801i \(-0.928153\pi\)
0.223801 + 0.974635i \(0.428153\pi\)
\(228\) 0 0
\(229\) 3.22979i 0.0141039i −0.999975 0.00705195i \(-0.997755\pi\)
0.999975 0.00705195i \(-0.00224473\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −135.391 135.391i −0.581077 0.581077i 0.354122 0.935199i \(-0.384780\pi\)
−0.935199 + 0.354122i \(0.884780\pi\)
\(234\) 0 0
\(235\) −121.227 + 21.5945i −0.515858 + 0.0918914i
\(236\) 0 0
\(237\) −163.923 + 163.923i −0.691658 + 0.691658i
\(238\) 0 0
\(239\) 380.792i 1.59327i 0.604460 + 0.796636i \(0.293389\pi\)
−0.604460 + 0.796636i \(0.706611\pi\)
\(240\) 0 0
\(241\) −10.8181 −0.0448883 −0.0224441 0.999748i \(-0.507145\pi\)
−0.0224441 + 0.999748i \(0.507145\pi\)
\(242\) 0 0
\(243\) −176.536 176.536i −0.726485 0.726485i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 462.896 462.896i 1.87407 1.87407i
\(248\) 0 0
\(249\) 67.6906i 0.271850i
\(250\) 0 0
\(251\) −25.0435 −0.0997747 −0.0498874 0.998755i \(-0.515886\pi\)
−0.0498874 + 0.998755i \(0.515886\pi\)
\(252\) 0 0
\(253\) 25.0097 + 25.0097i 0.0988525 + 0.0988525i
\(254\) 0 0
\(255\) 167.536 + 116.873i 0.657002 + 0.458325i
\(256\) 0 0
\(257\) 178.978 178.978i 0.696412 0.696412i −0.267223 0.963635i \(-0.586106\pi\)
0.963635 + 0.267223i \(0.0861059\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 132.049 0.505935
\(262\) 0 0
\(263\) −278.905 278.905i −1.06047 1.06047i −0.998050 0.0624240i \(-0.980117\pi\)
−0.0624240 0.998050i \(-0.519883\pi\)
\(264\) 0 0
\(265\) 29.3553 + 164.794i 0.110775 + 0.621864i
\(266\) 0 0
\(267\) −141.760 + 141.760i −0.530937 + 0.530937i
\(268\) 0 0
\(269\) 19.1253i 0.0710976i −0.999368 0.0355488i \(-0.988682\pi\)
0.999368 0.0355488i \(-0.0113179\pi\)
\(270\) 0 0
\(271\) −208.660 −0.769964 −0.384982 0.922924i \(-0.625792\pi\)
−0.384982 + 0.922924i \(0.625792\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 43.8561 + 119.193i 0.159477 + 0.433429i
\(276\) 0 0
\(277\) −278.584 + 278.584i −1.00572 + 1.00572i −0.00573597 + 0.999984i \(0.501826\pi\)
−0.999984 + 0.00573597i \(0.998174\pi\)
\(278\) 0 0
\(279\) 195.959i 0.702362i
\(280\) 0 0
\(281\) 537.591 1.91314 0.956568 0.291509i \(-0.0941574\pi\)
0.956568 + 0.291509i \(0.0941574\pi\)
\(282\) 0 0
\(283\) −283.002 283.002i −1.00001 1.00001i −1.00000 6.62573e-6i \(-0.999998\pi\)
−6.62573e−6 1.00000i \(-0.500002\pi\)
\(284\) 0 0
\(285\) 269.126 47.9402i 0.944301 0.168211i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 271.864i 0.940707i
\(290\) 0 0
\(291\) 138.924 0.477404
\(292\) 0 0
\(293\) 233.614 + 233.614i 0.797319 + 0.797319i 0.982672 0.185353i \(-0.0593430\pi\)
−0.185353 + 0.982672i \(0.559343\pi\)
\(294\) 0 0
\(295\) 298.850 428.397i 1.01305 1.45219i
\(296\) 0 0
\(297\) 93.1035 93.1035i 0.313480 0.313480i
\(298\) 0 0
\(299\) 143.808i 0.480964i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −67.7044 67.7044i −0.223447 0.223447i
\(304\) 0 0
\(305\) 233.802 + 163.100i 0.766563 + 0.534755i
\(306\) 0 0
\(307\) −265.195 + 265.195i −0.863827 + 0.863827i −0.991780 0.127954i \(-0.959159\pi\)
0.127954 + 0.991780i \(0.459159\pi\)
\(308\) 0 0
\(309\) 68.0461i 0.220214i
\(310\) 0 0
\(311\) 510.439 1.64128 0.820642 0.571442i \(-0.193616\pi\)
0.820642 + 0.571442i \(0.193616\pi\)
\(312\) 0 0
\(313\) 117.747 + 117.747i 0.376188 + 0.376188i 0.869725 0.493537i \(-0.164296\pi\)
−0.493537 + 0.869725i \(0.664296\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 310.879 310.879i 0.980689 0.980689i −0.0191277 0.999817i \(-0.506089\pi\)
0.999817 + 0.0191277i \(0.00608892\pi\)
\(318\) 0 0
\(319\) 111.360i 0.349090i
\(320\) 0 0
\(321\) −48.0708 −0.149753
\(322\) 0 0
\(323\) −530.726 530.726i −1.64311 1.64311i
\(324\) 0 0
\(325\) 216.597 468.774i 0.666453 1.44238i
\(326\) 0 0
\(327\) 34.1293 34.1293i 0.104371 0.104371i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −350.310 −1.05834 −0.529169 0.848516i \(-0.677496\pi\)
−0.529169 + 0.848516i \(0.677496\pi\)
\(332\) 0 0
\(333\) 275.833 + 275.833i 0.828326 + 0.828326i
\(334\) 0 0
\(335\) −85.3451 + 15.2028i −0.254762 + 0.0453815i
\(336\) 0 0
\(337\) −97.4127 + 97.4127i −0.289058 + 0.289058i −0.836708 0.547650i \(-0.815523\pi\)
0.547650 + 0.836708i \(0.315523\pi\)
\(338\) 0 0
\(339\) 49.0377i 0.144654i
\(340\) 0 0
\(341\) 165.256 0.484622
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 34.3579 49.2515i 0.0995882 0.142758i
\(346\) 0 0
\(347\) −232.771 + 232.771i −0.670810 + 0.670810i −0.957903 0.287093i \(-0.907311\pi\)
0.287093 + 0.957903i \(0.407311\pi\)
\(348\) 0 0
\(349\) 318.627i 0.912971i −0.889731 0.456485i \(-0.849108\pi\)
0.889731 0.456485i \(-0.150892\pi\)
\(350\) 0 0
\(351\) −535.354 −1.52523
\(352\) 0 0
\(353\) −489.810 489.810i −1.38756 1.38756i −0.830407 0.557157i \(-0.811892\pi\)
−0.557157 0.830407i \(-0.688108\pi\)
\(354\) 0 0
\(355\) 363.119 + 253.312i 1.02287 + 0.713555i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 388.155i 1.08121i −0.841276 0.540606i \(-0.818195\pi\)
0.841276 0.540606i \(-0.181805\pi\)
\(360\) 0 0
\(361\) −643.414 −1.78231
\(362\) 0 0
\(363\) −116.117 116.117i −0.319881 0.319881i
\(364\) 0 0
\(365\) 49.2746 + 276.617i 0.134999 + 0.757854i
\(366\) 0 0
\(367\) 63.7979 63.7979i 0.173836 0.173836i −0.614826 0.788663i \(-0.710774\pi\)
0.788663 + 0.614826i \(0.210774\pi\)
\(368\) 0 0
\(369\) 218.892i 0.593204i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −10.1310 10.1310i −0.0271608 0.0271608i 0.693396 0.720557i \(-0.256114\pi\)
−0.720557 + 0.693396i \(0.756114\pi\)
\(374\) 0 0
\(375\) 186.178 108.798i 0.496474 0.290128i
\(376\) 0 0
\(377\) 320.165 320.165i 0.849243 0.849243i
\(378\) 0 0
\(379\) 630.917i 1.66469i −0.554259 0.832344i \(-0.686998\pi\)
0.554259 0.832344i \(-0.313002\pi\)
\(380\) 0 0
\(381\) −60.6796 −0.159264
\(382\) 0 0
\(383\) −452.761 452.761i −1.18214 1.18214i −0.979188 0.202954i \(-0.934946\pi\)
−0.202954 0.979188i \(-0.565054\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 140.175 140.175i 0.362208 0.362208i
\(388\) 0 0
\(389\) 123.424i 0.317284i 0.987336 + 0.158642i \(0.0507116\pi\)
−0.987336 + 0.158642i \(0.949288\pi\)
\(390\) 0 0
\(391\) −164.881 −0.421690
\(392\) 0 0
\(393\) 49.7472 + 49.7472i 0.126583 + 0.126583i
\(394\) 0 0
\(395\) 384.429 551.073i 0.973237 1.39512i
\(396\) 0 0
\(397\) 218.938 218.938i 0.551481 0.551481i −0.375387 0.926868i \(-0.622490\pi\)
0.926868 + 0.375387i \(0.122490\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 192.905 0.481059 0.240530 0.970642i \(-0.422679\pi\)
0.240530 + 0.970642i \(0.422679\pi\)
\(402\) 0 0
\(403\) −475.119 475.119i −1.17896 1.17896i
\(404\) 0 0
\(405\) 38.9812 + 27.1933i 0.0962499 + 0.0671440i
\(406\) 0 0
\(407\) −232.615 + 232.615i −0.571536 + 0.571536i
\(408\) 0 0
\(409\) 558.827i 1.36632i 0.730267 + 0.683162i \(0.239396\pi\)
−0.730267 + 0.683162i \(0.760604\pi\)
\(410\) 0 0
\(411\) −27.1965 −0.0661716
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −34.4071 193.154i −0.0829086 0.465430i
\(416\) 0 0
\(417\) 189.823 189.823i 0.455211 0.455211i
\(418\) 0 0
\(419\) 705.379i 1.68348i 0.539881 + 0.841741i \(0.318469\pi\)
−0.539881 + 0.841741i \(0.681531\pi\)
\(420\) 0 0
\(421\) 626.873 1.48901 0.744505 0.667617i \(-0.232686\pi\)
0.744505 + 0.667617i \(0.232686\pi\)
\(422\) 0 0
\(423\) −104.902 104.902i −0.247996 0.247996i
\(424\) 0 0
\(425\) −537.466 248.336i −1.26462 0.584321i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 181.024i 0.421967i
\(430\) 0 0
\(431\) 72.0558 0.167183 0.0835914 0.996500i \(-0.473361\pi\)
0.0835914 + 0.996500i \(0.473361\pi\)
\(432\) 0 0
\(433\) 256.051 + 256.051i 0.591341 + 0.591341i 0.937994 0.346653i \(-0.112682\pi\)
−0.346653 + 0.937994i \(0.612682\pi\)
\(434\) 0 0
\(435\) 186.142 33.1581i 0.427913 0.0762256i
\(436\) 0 0
\(437\) −156.021 + 156.021i −0.357027 + 0.357027i
\(438\) 0 0
\(439\) 281.392i 0.640984i 0.947251 + 0.320492i \(0.103848\pi\)
−0.947251 + 0.320492i \(0.896152\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 585.310 + 585.310i 1.32124 + 1.32124i 0.912773 + 0.408468i \(0.133937\pi\)
0.408468 + 0.912773i \(0.366063\pi\)
\(444\) 0 0
\(445\) 332.453 476.566i 0.747085 1.07093i
\(446\) 0 0
\(447\) 170.378 170.378i 0.381159 0.381159i
\(448\) 0 0
\(449\) 99.5968i 0.221819i 0.993831 + 0.110910i \(0.0353764\pi\)
−0.993831 + 0.110910i \(0.964624\pi\)
\(450\) 0 0
\(451\) 184.596 0.409305
\(452\) 0 0
\(453\) −166.248 166.248i −0.366993 0.366993i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −4.95652 + 4.95652i −0.0108458 + 0.0108458i −0.712509 0.701663i \(-0.752441\pi\)
0.701663 + 0.712509i \(0.252441\pi\)
\(458\) 0 0
\(459\) 613.802i 1.33726i
\(460\) 0 0
\(461\) −205.805 −0.446432 −0.223216 0.974769i \(-0.571656\pi\)
−0.223216 + 0.974769i \(0.571656\pi\)
\(462\) 0 0
\(463\) −95.3578 95.3578i −0.205956 0.205956i 0.596590 0.802546i \(-0.296522\pi\)
−0.802546 + 0.596590i \(0.796522\pi\)
\(464\) 0 0
\(465\) −49.2062 276.232i −0.105820 0.594048i
\(466\) 0 0
\(467\) −241.992 + 241.992i −0.518184 + 0.518184i −0.917022 0.398838i \(-0.869414\pi\)
0.398838 + 0.917022i \(0.369414\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −292.031 −0.620023
\(472\) 0 0
\(473\) 118.212 + 118.212i 0.249920 + 0.249920i
\(474\) 0 0
\(475\) −743.576 + 273.593i −1.56542 + 0.575985i
\(476\) 0 0
\(477\) −142.603 + 142.603i −0.298958 + 0.298958i
\(478\) 0 0
\(479\) 676.492i 1.41230i 0.708062 + 0.706150i \(0.249570\pi\)
−0.708062 + 0.706150i \(0.750430\pi\)
\(480\) 0 0
\(481\) 1337.56 2.78079
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −396.418 + 70.6152i −0.817356 + 0.145598i
\(486\) 0 0
\(487\) 221.449 221.449i 0.454720 0.454720i −0.442197 0.896918i \(-0.645801\pi\)
0.896918 + 0.442197i \(0.145801\pi\)
\(488\) 0 0
\(489\) 335.396i 0.685881i
\(490\) 0 0
\(491\) 753.534 1.53469 0.767346 0.641233i \(-0.221577\pi\)
0.767346 + 0.641233i \(0.221577\pi\)
\(492\) 0 0
\(493\) −367.080 367.080i −0.744583 0.744583i
\(494\) 0 0
\(495\) −87.5475 + 125.498i −0.176864 + 0.253531i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 152.060i 0.304729i −0.988324 0.152364i \(-0.951311\pi\)
0.988324 0.152364i \(-0.0486887\pi\)
\(500\) 0 0
\(501\) 236.847 0.472749
\(502\) 0 0
\(503\) −52.9338 52.9338i −0.105236 0.105236i 0.652528 0.757764i \(-0.273708\pi\)
−0.757764 + 0.652528i \(0.773708\pi\)
\(504\) 0 0
\(505\) 227.607 + 158.779i 0.450707 + 0.314413i
\(506\) 0 0
\(507\) −314.302 + 314.302i −0.619926 + 0.619926i
\(508\) 0 0
\(509\) 601.859i 1.18244i 0.806512 + 0.591218i \(0.201353\pi\)
−0.806512 + 0.591218i \(0.798647\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 580.819 + 580.819i 1.13220 + 1.13220i
\(514\) 0 0
\(515\) 34.5878 + 194.168i 0.0671607 + 0.377025i
\(516\) 0 0
\(517\) 88.4663 88.4663i 0.171115 0.171115i
\(518\) 0 0
\(519\) 319.033i 0.614707i
\(520\) 0 0
\(521\) −164.616 −0.315962 −0.157981 0.987442i \(-0.550498\pi\)
−0.157981 + 0.987442i \(0.550498\pi\)
\(522\) 0 0
\(523\) −232.695 232.695i −0.444923 0.444923i 0.448740 0.893663i \(-0.351873\pi\)
−0.893663 + 0.448740i \(0.851873\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −544.740 + 544.740i −1.03366 + 1.03366i
\(528\) 0 0
\(529\) 480.529i 0.908372i
\(530\) 0 0
\(531\) 629.317 1.18515
\(532\) 0 0
\(533\) −530.724 530.724i −0.995729 0.995729i
\(534\) 0 0
\(535\) 137.169 24.4344i 0.256391 0.0456717i
\(536\) 0 0
\(537\) −357.729 + 357.729i −0.666162 + 0.666162i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −476.597 −0.880956 −0.440478 0.897763i \(-0.645191\pi\)
−0.440478 + 0.897763i \(0.645191\pi\)
\(542\) 0 0
\(543\) −72.7227 72.7227i −0.133928 0.133928i
\(544\) 0 0
\(545\) −80.0393 + 114.735i −0.146861 + 0.210523i
\(546\) 0 0
\(547\) −348.383 + 348.383i −0.636897 + 0.636897i −0.949789 0.312892i \(-0.898702\pi\)
0.312892 + 0.949789i \(0.398702\pi\)
\(548\) 0 0
\(549\) 343.456i 0.625602i
\(550\) 0 0
\(551\) −694.709 −1.26081
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 458.089 + 319.563i 0.825385 + 0.575789i
\(556\) 0 0
\(557\) −675.728 + 675.728i −1.21316 + 1.21316i −0.243173 + 0.969983i \(0.578188\pi\)
−0.969983 + 0.243173i \(0.921812\pi\)
\(558\) 0 0
\(559\) 679.731i 1.21598i
\(560\) 0 0
\(561\) −207.550 −0.369964
\(562\) 0 0
\(563\) 517.108 + 517.108i 0.918486 + 0.918486i 0.996919 0.0784334i \(-0.0249918\pi\)
−0.0784334 + 0.996919i \(0.524992\pi\)
\(564\) 0 0
\(565\) 24.9258 + 139.928i 0.0441165 + 0.247660i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 43.5644i 0.0765631i −0.999267 0.0382816i \(-0.987812\pi\)
0.999267 0.0382816i \(-0.0121884\pi\)
\(570\) 0 0
\(571\) −120.877 −0.211694 −0.105847 0.994382i \(-0.533755\pi\)
−0.105847 + 0.994382i \(0.533755\pi\)
\(572\) 0 0
\(573\) 264.875 + 264.875i 0.462261 + 0.462261i
\(574\) 0 0
\(575\) −73.0050 + 158.002i −0.126965 + 0.274787i
\(576\) 0 0
\(577\) −509.383 + 509.383i −0.882812 + 0.882812i −0.993820 0.111008i \(-0.964592\pi\)
0.111008 + 0.993820i \(0.464592\pi\)
\(578\) 0 0
\(579\) 316.396i 0.546452i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −120.260 120.260i −0.206278 0.206278i
\(584\) 0 0
\(585\) 612.517 109.110i 1.04704 0.186512i
\(586\) 0 0
\(587\) 456.597 456.597i 0.777848 0.777848i −0.201617 0.979465i \(-0.564619\pi\)
0.979465 + 0.201617i \(0.0646195\pi\)
\(588\) 0 0
\(589\) 1030.94i 1.75032i
\(590\) 0 0
\(591\) 401.429 0.679237
\(592\) 0 0
\(593\) 76.0087 + 76.0087i 0.128177 + 0.128177i 0.768285 0.640108i \(-0.221110\pi\)
−0.640108 + 0.768285i \(0.721110\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −33.5715 + 33.5715i −0.0562337 + 0.0562337i
\(598\) 0 0
\(599\) 401.296i 0.669944i −0.942228 0.334972i \(-0.891273\pi\)
0.942228 0.334972i \(-0.108727\pi\)
\(600\) 0 0
\(601\) 199.864 0.332552 0.166276 0.986079i \(-0.446826\pi\)
0.166276 + 0.986079i \(0.446826\pi\)
\(602\) 0 0
\(603\) −73.8527 73.8527i −0.122475 0.122475i
\(604\) 0 0
\(605\) 390.359 + 272.315i 0.645221 + 0.450107i
\(606\) 0 0
\(607\) 202.502 202.502i 0.333612 0.333612i −0.520344 0.853956i \(-0.674196\pi\)
0.853956 + 0.520344i \(0.174196\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −508.690 −0.832553
\(612\) 0 0
\(613\) −693.477 693.477i −1.13128 1.13128i −0.989964 0.141320i \(-0.954865\pi\)
−0.141320 0.989964i \(-0.545135\pi\)
\(614\) 0 0
\(615\) −54.9649 308.560i −0.0893738 0.501724i
\(616\) 0 0
\(617\) −90.4270 + 90.4270i −0.146559 + 0.146559i −0.776579 0.630020i \(-0.783047\pi\)
0.630020 + 0.776579i \(0.283047\pi\)
\(618\) 0 0
\(619\) 650.515i 1.05091i 0.850820 + 0.525457i \(0.176105\pi\)
−0.850820 + 0.525457i \(0.823895\pi\)
\(620\) 0 0
\(621\) 180.443 0.290569
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −475.952 + 405.086i −0.761523 + 0.648138i
\(626\) 0 0
\(627\) −196.397 + 196.397i −0.313233 + 0.313233i
\(628\) 0 0
\(629\) 1533.56i 2.43809i
\(630\) 0 0
\(631\) −51.8964 −0.0822448 −0.0411224 0.999154i \(-0.513093\pi\)
−0.0411224 + 0.999154i \(0.513093\pi\)
\(632\) 0 0
\(633\) −130.725 130.725i −0.206517 0.206517i
\(634\) 0 0
\(635\) 173.148 30.8434i 0.272674 0.0485723i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 533.424i 0.834779i
\(640\) 0 0
\(641\) 1182.56 1.84487 0.922436 0.386151i \(-0.126196\pi\)
0.922436 + 0.386151i \(0.126196\pi\)
\(642\) 0 0
\(643\) −634.733 634.733i −0.987143 0.987143i 0.0127759 0.999918i \(-0.495933\pi\)
−0.999918 + 0.0127759i \(0.995933\pi\)
\(644\) 0 0
\(645\) 162.398 232.795i 0.251780 0.360922i
\(646\) 0 0
\(647\) 390.821 390.821i 0.604052 0.604052i −0.337333 0.941385i \(-0.609525\pi\)
0.941385 + 0.337333i \(0.109525\pi\)
\(648\) 0 0
\(649\) 530.715i 0.817743i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −259.786 259.786i −0.397835 0.397835i 0.479634 0.877469i \(-0.340769\pi\)
−0.877469 + 0.479634i \(0.840769\pi\)
\(654\) 0 0
\(655\) −167.239 116.666i −0.255327 0.178116i
\(656\) 0 0
\(657\) −239.368 + 239.368i −0.364335 + 0.364335i
\(658\) 0 0
\(659\) 587.969i 0.892213i −0.894980 0.446107i \(-0.852810\pi\)
0.894980 0.446107i \(-0.147190\pi\)
\(660\) 0 0
\(661\) −24.6995 −0.0373668 −0.0186834 0.999825i \(-0.505947\pi\)
−0.0186834 + 0.999825i \(0.505947\pi\)
\(662\) 0 0
\(663\) 596.716 + 596.716i 0.900025 + 0.900025i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −107.913 + 107.913i −0.161788 + 0.161788i
\(668\) 0 0
\(669\) 30.7765i 0.0460037i
\(670\) 0 0
\(671\) −289.643 −0.431659
\(672\) 0 0
\(673\) 38.4321 + 38.4321i 0.0571056 + 0.0571056i 0.735083 0.677977i \(-0.237143\pi\)
−0.677977 + 0.735083i \(0.737143\pi\)
\(674\) 0 0
\(675\) 588.195 + 271.776i 0.871400 + 0.402631i
\(676\) 0 0
\(677\) −791.550 + 791.550i −1.16920 + 1.16920i −0.186805 + 0.982397i \(0.559813\pi\)
−0.982397 + 0.186805i \(0.940187\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −415.812 −0.610590
\(682\) 0 0
\(683\) 297.386 + 297.386i 0.435411 + 0.435411i 0.890464 0.455053i \(-0.150380\pi\)
−0.455053 + 0.890464i \(0.650380\pi\)
\(684\) 0 0
\(685\) 77.6047 13.8240i 0.113292 0.0201810i
\(686\) 0 0
\(687\) 3.93978 3.93978i 0.00573476 0.00573476i
\(688\) 0 0
\(689\) 691.507i 1.00364i
\(690\) 0 0
\(691\) −132.747 −0.192109 −0.0960544 0.995376i \(-0.530622\pi\)
−0.0960544 + 0.995376i \(0.530622\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −445.169 + 638.143i −0.640531 + 0.918191i
\(696\) 0 0
\(697\) −608.493 + 608.493i −0.873017 + 0.873017i
\(698\) 0 0
\(699\) 330.306i 0.472541i
\(700\) 0 0
\(701\) −600.972 −0.857307 −0.428654 0.903469i \(-0.641012\pi\)
−0.428654 + 0.903469i \(0.641012\pi\)
\(702\) 0 0
\(703\) −1451.15 1451.15i −2.06423 2.06423i
\(704\) 0 0
\(705\) −174.217 121.534i −0.247116 0.172388i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 908.125i 1.28085i 0.768019 + 0.640427i \(0.221243\pi\)
−0.768019 + 0.640427i \(0.778757\pi\)
\(710\) 0 0
\(711\) 809.528 1.13858
\(712\) 0 0
\(713\) 160.141 + 160.141i 0.224602 + 0.224602i
\(714\) 0 0
\(715\) 92.0143 + 516.547i 0.128691 + 0.722444i
\(716\) 0 0
\(717\) −464.499 + 464.499i −0.647837 + 0.647837i
\(718\) 0 0
\(719\) 543.447i 0.755837i 0.925839 + 0.377919i \(0.123360\pi\)
−0.925839 + 0.377919i \(0.876640\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −13.1962 13.1962i −0.0182519 0.0182519i
\(724\) 0 0
\(725\) −514.299 + 189.232i −0.709378 + 0.261010i
\(726\) 0 0
\(727\) −29.3887 + 29.3887i −0.0404246 + 0.0404246i −0.727030 0.686606i \(-0.759100\pi\)
0.686606 + 0.727030i \(0.259100\pi\)
\(728\) 0 0
\(729\) 345.133i 0.473433i
\(730\) 0 0
\(731\) −779.335 −1.06612
\(732\) 0 0
\(733\) 131.090 + 131.090i 0.178841 + 0.178841i 0.790850 0.612010i \(-0.209639\pi\)
−0.612010 + 0.790850i \(0.709639\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 62.2814 62.2814i 0.0845067 0.0845067i
\(738\) 0 0
\(739\) 383.346i 0.518736i 0.965779 + 0.259368i \(0.0835142\pi\)
−0.965779 + 0.259368i \(0.916486\pi\)
\(740\) 0 0
\(741\) 1129.30 1.52403
\(742\) 0 0
\(743\) −13.2772 13.2772i −0.0178697 0.0178697i 0.698116 0.715985i \(-0.254022\pi\)
−0.715985 + 0.698116i \(0.754022\pi\)
\(744\) 0 0
\(745\) −399.567 + 572.773i −0.536331 + 0.768822i
\(746\) 0 0
\(747\) 167.144 167.144i 0.223753 0.223753i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 1026.15 1.36638 0.683191 0.730240i \(-0.260592\pi\)
0.683191 + 0.730240i \(0.260592\pi\)
\(752\) 0 0
\(753\) −30.5486 30.5486i −0.0405692 0.0405692i
\(754\) 0 0
\(755\) 558.888 + 389.881i 0.740249 + 0.516398i
\(756\) 0 0
\(757\) 386.485 386.485i 0.510548 0.510548i −0.404146 0.914694i \(-0.632431\pi\)
0.914694 + 0.404146i \(0.132431\pi\)
\(758\) 0 0
\(759\) 61.0148i 0.0803884i
\(760\) 0 0
\(761\) −732.604 −0.962686 −0.481343 0.876532i \(-0.659851\pi\)
−0.481343 + 0.876532i \(0.659851\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −125.098 702.271i −0.163527 0.918001i
\(766\) 0 0
\(767\) 1525.83 1525.83i 1.98935 1.98935i
\(768\) 0 0
\(769\) 158.129i 0.205630i −0.994701 0.102815i \(-0.967215\pi\)
0.994701 0.102815i \(-0.0327849\pi\)
\(770\) 0 0
\(771\) 436.643 0.566334
\(772\) 0 0
\(773\) 417.689 + 417.689i 0.540348 + 0.540348i 0.923631 0.383283i \(-0.125207\pi\)
−0.383283 + 0.923631i \(0.625207\pi\)
\(774\) 0 0
\(775\) 280.817 + 763.211i 0.362345 + 0.984789i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1151.59i 1.47829i
\(780\) 0 0
\(781\) −449.847 −0.575988
\(782\) 0 0
\(783\) 401.727 + 401.727i 0.513061 + 0.513061i
\(784\) 0 0
\(785\) 833.303 148.439i 1.06153 0.189094i
\(786\) 0 0
\(787\) −1002.23 + 1002.23i −1.27348 + 1.27348i −0.329230 + 0.944250i \(0.606789\pi\)
−0.944250 + 0.329230i \(0.893211\pi\)
\(788\) 0 0
\(789\) 680.429i 0.862394i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 832.738 + 832.738i 1.05011 + 1.05011i
\(794\) 0 0
\(795\) −165.211 + 236.828i −0.207813 + 0.297897i
\(796\) 0 0
\(797\) −434.483 + 434.483i −0.545148 + 0.545148i −0.925034 0.379885i \(-0.875963\pi\)
0.379885 + 0.925034i \(0.375963\pi\)
\(798\) 0 0
\(799\) 583.230i 0.729950i
\(800\) 0 0
\(801\) 700.078 0.874004
\(802\) 0 0
\(803\) −201.864 201.864i −0.251387 0.251387i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 23.3294 23.3294i 0.0289089 0.0289089i
\(808\) 0 0
\(809\) 756.499i 0.935104i −0.883966 0.467552i \(-0.845136\pi\)
0.883966 0.467552i \(-0.154864\pi\)
\(810\) 0 0
\(811\) −1254.32 −1.54663 −0.773315 0.634022i \(-0.781403\pi\)
−0.773315 + 0.634022i \(0.781403\pi\)
\(812\) 0 0
\(813\) −254.529 254.529i −0.313074 0.313074i
\(814\) 0 0
\(815\) −170.481 957.045i −0.209180 1.17429i
\(816\) 0 0
\(817\) −737.457 + 737.457i −0.902640 + 0.902640i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 116.895 0.142381 0.0711906 0.997463i \(-0.477320\pi\)
0.0711906 + 0.997463i \(0.477320\pi\)
\(822\) 0 0
\(823\) −883.464 883.464i −1.07347 1.07347i −0.997078 0.0763897i \(-0.975661\pi\)
−0.0763897 0.997078i \(-0.524339\pi\)
\(824\) 0 0
\(825\) −91.8978 + 198.891i −0.111391 + 0.241080i
\(826\) 0 0
\(827\) −667.120 + 667.120i −0.806675 + 0.806675i −0.984129 0.177454i \(-0.943214\pi\)
0.177454 + 0.984129i \(0.443214\pi\)
\(828\) 0 0
\(829\) 1418.50i 1.71110i −0.517720 0.855550i \(-0.673219\pi\)
0.517720 0.855550i \(-0.326781\pi\)
\(830\) 0 0
\(831\) −679.648 −0.817867
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −675.838 + 120.389i −0.809387 + 0.144179i
\(836\) 0 0
\(837\) 596.156 596.156i 0.712254 0.712254i
\(838\) 0 0
\(839\) 1080.06i 1.28731i 0.765315 + 0.643656i \(0.222583\pi\)
−0.765315 + 0.643656i \(0.777417\pi\)
\(840\) 0 0
\(841\) 360.501 0.428657
\(842\) 0 0
\(843\) 655.767 + 655.767i 0.777896 + 0.777896i
\(844\) 0 0
\(845\) 737.095 1056.61i 0.872302 1.25043i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 690.425i 0.813221i
\(850\) 0 0
\(851\) −450.830 −0.529765
\(852\) 0 0
\(853\) −718.095 718.095i −0.841846 0.841846i 0.147253 0.989099i \(-0.452957\pi\)
−0.989099 + 0.147253i \(0.952957\pi\)
\(854\) 0 0
\(855\) −782.910 546.158i −0.915684 0.638782i
\(856\) 0 0
\(857\) 580.587 580.587i 0.677464 0.677464i −0.281962 0.959426i \(-0.590985\pi\)
0.959426 + 0.281962i \(0.0909851\pi\)
\(858\) 0 0
\(859\) 863.738i 1.00552i −0.864427 0.502758i \(-0.832319\pi\)
0.864427 0.502758i \(-0.167681\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −240.532 240.532i −0.278716 0.278716i 0.553880 0.832596i \(-0.313146\pi\)
−0.832596 + 0.553880i \(0.813146\pi\)
\(864\) 0 0
\(865\) −162.164 910.354i −0.187473 1.05243i
\(866\) 0 0
\(867\) 331.627 331.627i 0.382499 0.382499i
\(868\) 0 0
\(869\) 682.691i 0.785606i
\(870\) 0 0
\(871\) −358.124 −0.411165
\(872\) 0 0
\(873\) −343.037 343.037i −0.392940 0.392940i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −1233.55 + 1233.55i −1.40655 + 1.40655i −0.629772 + 0.776780i \(0.716852\pi\)
−0.776780 + 0.629772i \(0.783148\pi\)
\(878\) 0 0
\(879\) 569.937i 0.648392i
\(880\) 0 0
\(881\) −556.908 −0.632132 −0.316066 0.948737i \(-0.602362\pi\)
−0.316066 + 0.948737i \(0.602362\pi\)
\(882\) 0 0
\(883\) 137.269 + 137.269i 0.155458 + 0.155458i 0.780551 0.625093i \(-0.214939\pi\)
−0.625093 + 0.780551i \(0.714939\pi\)
\(884\) 0 0
\(885\) 887.113 158.024i 1.00239 0.178559i
\(886\) 0 0
\(887\) 324.611 324.611i 0.365965 0.365965i −0.500038 0.866003i \(-0.666681\pi\)
0.866003 + 0.500038i \(0.166681\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −48.2915 −0.0541992
\(892\) 0 0
\(893\) 551.890 + 551.890i 0.618018 + 0.618018i
\(894\) 0 0
\(895\) 838.938 1202.60i 0.937361 1.34369i
\(896\) 0 0
\(897\) 175.421 175.421i 0.195564 0.195564i
\(898\) 0 0
\(899\) 713.053i 0.793163i
\(900\) 0 0
\(901\) 792.836 0.879951
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 244.478 + 170.548i 0.270141 + 0.188451i
\(906\) 0 0
\(907\) −376.844 + 376.844i −0.415484 + 0.415484i −0.883644 0.468160i \(-0.844917\pi\)
0.468160 + 0.883644i \(0.344917\pi\)
\(908\) 0 0
\(909\) 334.356i 0.367828i
\(910\) 0 0
\(911\) 72.2584 0.0793177 0.0396588 0.999213i \(-0.487373\pi\)
0.0396588 + 0.999213i \(0.487373\pi\)
\(912\) 0 0
\(913\) 140.956 + 140.956i 0.154387 + 0.154387i
\(914\) 0 0
\(915\) 86.2433 + 484.150i 0.0942550 + 0.529126i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 323.949i 0.352502i −0.984345 0.176251i \(-0.943603\pi\)
0.984345 0.176251i \(-0.0563970\pi\)
\(920\) 0 0
\(921\) −646.982 −0.702478
\(922\) 0 0
\(923\) 1293.33 + 1293.33i 1.40123 + 1.40123i
\(924\) 0 0
\(925\) −1469.58 679.020i −1.58873 0.734076i
\(926\) 0 0
\(927\) −168.022 + 168.022i −0.181253 + 0.181253i
\(928\) 0 0
\(929\) 711.664i 0.766054i −0.923737 0.383027i \(-0.874882\pi\)
0.923737 0.383027i \(-0.125118\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 622.646 + 622.646i 0.667359 + 0.667359i
\(934\) 0 0
\(935\) 592.239 105.497i 0.633411 0.112832i
\(936\) 0 0
\(937\) −313.108 + 313.108i −0.334160 + 0.334160i −0.854164 0.520004i \(-0.825930\pi\)
0.520004 + 0.854164i \(0.325930\pi\)
\(938\) 0 0
\(939\) 287.261i 0.305922i
\(940\) 0 0
\(941\) −60.1873 −0.0639610 −0.0319805 0.999488i \(-0.510181\pi\)
−0.0319805 + 0.999488i \(0.510181\pi\)
\(942\) 0 0
\(943\) 178.883 + 178.883i 0.189695 + 0.189695i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1255.69 1255.69i 1.32596 1.32596i 0.417107 0.908858i \(-0.363044\pi\)
0.908858 0.417107i \(-0.136956\pi\)
\(948\) 0 0
\(949\) 1160.74i 1.22312i
\(950\) 0 0
\(951\) 758.434 0.797512
\(952\) 0 0
\(953\) −118.550 118.550i −0.124396 0.124396i 0.642168 0.766564i \(-0.278035\pi\)
−0.766564 + 0.642168i \(0.778035\pi\)
\(954\) 0 0
\(955\) −890.452 621.180i −0.932411 0.650450i
\(956\) 0 0
\(957\) −135.839 + 135.839i −0.141943 + 0.141943i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 97.1602 0.101103
\(962\) 0 0
\(963\) 118.698 + 118.698i 0.123259 + 0.123259i
\(964\) 0 0
\(965\) 160.824 + 902.829i 0.166657 + 0.935574i
\(966\) 0 0
\(967\) 194.361 194.361i 0.200994 0.200994i −0.599432 0.800426i \(-0.704607\pi\)
0.800426 + 0.599432i \(0.204607\pi\)
\(968\) 0 0
\(969\) 1294.78i 1.33621i
\(970\) 0 0
\(971\) 849.517 0.874888 0.437444 0.899246i \(-0.355884\pi\)
0.437444 + 0.899246i \(0.355884\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 836.033 307.611i 0.857469 0.315499i
\(976\) 0 0
\(977\) −609.749 + 609.749i −0.624104 + 0.624104i −0.946578 0.322474i \(-0.895485\pi\)
0.322474 + 0.946578i \(0.395485\pi\)
\(978\) 0 0
\(979\) 590.389i 0.603054i
\(980\) 0 0
\(981\) −168.546 −0.171811
\(982\) 0 0
\(983\) 404.149 + 404.149i 0.411138 + 0.411138i 0.882135 0.470997i \(-0.156106\pi\)
−0.470997 + 0.882135i \(0.656106\pi\)
\(984\) 0 0
\(985\) −1145.47 + 204.046i −1.16291 + 0.207153i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 229.106i 0.231654i
\(990\) 0 0
\(991\) −1539.16 −1.55314 −0.776570 0.630030i \(-0.783042\pi\)
−0.776570 + 0.630030i \(0.783042\pi\)
\(992\) 0 0
\(993\) −427.317 427.317i −0.430329 0.430329i
\(994\) 0 0
\(995\) 78.7312 112.860i 0.0791268 0.113427i
\(996\) 0 0
\(997\) 461.996 461.996i 0.463386 0.463386i −0.436378 0.899764i \(-0.643739\pi\)
0.899764 + 0.436378i \(0.143739\pi\)
\(998\) 0 0
\(999\) 1678.30i 1.67998i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 980.3.l.c.393.2 8
5.2 odd 4 inner 980.3.l.c.197.2 8
7.6 odd 2 140.3.l.b.113.3 yes 8
21.20 even 2 1260.3.y.b.253.2 8
28.27 even 2 560.3.bh.d.113.2 8
35.13 even 4 700.3.l.c.57.2 8
35.27 even 4 140.3.l.b.57.3 8
35.34 odd 2 700.3.l.c.393.2 8
105.62 odd 4 1260.3.y.b.757.2 8
140.27 odd 4 560.3.bh.d.337.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.3.l.b.57.3 8 35.27 even 4
140.3.l.b.113.3 yes 8 7.6 odd 2
560.3.bh.d.113.2 8 28.27 even 2
560.3.bh.d.337.2 8 140.27 odd 4
700.3.l.c.57.2 8 35.13 even 4
700.3.l.c.393.2 8 35.34 odd 2
980.3.l.c.197.2 8 5.2 odd 4 inner
980.3.l.c.393.2 8 1.1 even 1 trivial
1260.3.y.b.253.2 8 21.20 even 2
1260.3.y.b.757.2 8 105.62 odd 4