Properties

Label 980.3
Level 980
Weight 3
Dimension 28674
Nonzero newspaces 24
Sturm bound 169344
Trace bound 5

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 24 \)
Sturm bound: \(169344\)
Trace bound: \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(980))\).

Total New Old
Modular forms 57648 29254 28394
Cusp forms 55248 28674 26574
Eisenstein series 2400 580 1820

Trace form

\( 28674 q - 32 q^{2} + 14 q^{3} - 34 q^{4} - 94 q^{5} - 118 q^{6} - 8 q^{7} - 122 q^{8} - 212 q^{9} - 93 q^{10} - 88 q^{11} - 50 q^{12} - 82 q^{13} - 12 q^{14} + 110 q^{15} + 102 q^{16} + 122 q^{17} + 400 q^{18}+ \cdots - 192 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(980))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
980.3.b \(\chi_{980}(491, \cdot)\) n/a 164 1
980.3.d \(\chi_{980}(881, \cdot)\) 980.3.d.a 12 1
980.3.d.b 16
980.3.f \(\chi_{980}(99, \cdot)\) n/a 236 1
980.3.h \(\chi_{980}(489, \cdot)\) 980.3.h.a 16 1
980.3.h.b 24
980.3.j \(\chi_{980}(587, \cdot)\) n/a 464 2
980.3.l \(\chi_{980}(197, \cdot)\) 980.3.l.a 2 2
980.3.l.b 4
980.3.l.c 8
980.3.l.d 12
980.3.l.e 16
980.3.l.f 16
980.3.l.g 24
980.3.n \(\chi_{980}(129, \cdot)\) 980.3.n.a 4 2
980.3.n.b 4
980.3.n.c 8
980.3.n.d 16
980.3.n.e 48
980.3.p \(\chi_{980}(79, \cdot)\) n/a 464 2
980.3.r \(\chi_{980}(521, \cdot)\) 980.3.r.a 8 2
980.3.r.b 12
980.3.r.c 32
980.3.t \(\chi_{980}(471, \cdot)\) n/a 320 2
980.3.w \(\chi_{980}(177, \cdot)\) n/a 160 4
980.3.y \(\chi_{980}(227, \cdot)\) n/a 928 4
980.3.z \(\chi_{980}(69, \cdot)\) n/a 336 6
980.3.ba \(\chi_{980}(239, \cdot)\) n/a 1992 6
980.3.bc \(\chi_{980}(41, \cdot)\) n/a 216 6
980.3.be \(\chi_{980}(71, \cdot)\) n/a 1344 6
980.3.bh \(\chi_{980}(57, \cdot)\) n/a 672 12
980.3.bj \(\chi_{980}(27, \cdot)\) n/a 3984 12
980.3.bm \(\chi_{980}(11, \cdot)\) n/a 2688 12
980.3.bo \(\chi_{980}(61, \cdot)\) n/a 456 12
980.3.bq \(\chi_{980}(39, \cdot)\) n/a 3984 12
980.3.br \(\chi_{980}(89, \cdot)\) n/a 672 12
980.3.bt \(\chi_{980}(3, \cdot)\) n/a 7968 24
980.3.bv \(\chi_{980}(37, \cdot)\) n/a 1344 24

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(980))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(980)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 18}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 9}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(35))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(49))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(70))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(98))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(140))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(196))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(245))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(490))\)\(^{\oplus 2}\)