Properties

Label 980.2.x.m.67.9
Level $980$
Weight $2$
Character 980.67
Analytic conductor $7.825$
Analytic rank $0$
Dimension $72$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [980,2,Mod(67,980)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("980.67"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(980, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 3, 8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.x (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72,2,0,0,8,16,0,-4,0,-2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(18\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 67.9
Character \(\chi\) \(=\) 980.67
Dual form 980.2.x.m.863.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.212826 - 1.39811i) q^{2} +(0.807254 - 0.216303i) q^{3} +(-1.90941 + 0.595107i) q^{4} +(0.780454 + 2.09545i) q^{5} +(-0.474220 - 1.08259i) q^{6} +(1.23840 + 2.54291i) q^{8} +(-1.99320 + 1.15078i) q^{9} +(2.76356 - 1.53712i) q^{10} +(-4.21811 - 2.43533i) q^{11} +(-1.41266 + 0.893414i) q^{12} +(-0.247904 + 0.247904i) q^{13} +(1.08328 + 1.52274i) q^{15} +(3.29169 - 2.27261i) q^{16} +(-5.83537 + 1.56358i) q^{17} +(2.03311 + 2.54180i) q^{18} +(-1.48858 - 2.57830i) q^{19} +(-2.73722 - 3.53661i) q^{20} +(-2.50713 + 6.41567i) q^{22} +(1.70618 - 6.36754i) q^{23} +(1.54974 + 1.78490i) q^{24} +(-3.78178 + 3.27080i) q^{25} +(0.399357 + 0.293836i) q^{26} +(-3.13296 + 3.13296i) q^{27} -4.67111i q^{29} +(1.89841 - 1.83862i) q^{30} +(-5.75848 - 3.32466i) q^{31} +(-3.87791 - 4.11847i) q^{32} +(-3.93186 - 1.05354i) q^{33} +(3.42797 + 7.82570i) q^{34} +(3.12101 - 3.38347i) q^{36} +(-0.641729 + 2.39496i) q^{37} +(-3.28794 + 2.62993i) q^{38} +(-0.146499 + 0.253744i) q^{39} +(-4.36201 + 4.57961i) q^{40} +1.15345 q^{41} +(-3.23212 - 3.23212i) q^{43} +(9.50338 + 2.13981i) q^{44} +(-3.96699 - 3.27852i) q^{45} +(-9.26562 - 1.03024i) q^{46} +(-4.74443 - 1.27127i) q^{47} +(2.16566 - 2.54658i) q^{48} +(5.37779 + 4.59123i) q^{50} +(-4.37242 + 2.52442i) q^{51} +(0.325821 - 0.620880i) q^{52} +(0.0828048 + 0.309032i) q^{53} +(5.04699 + 3.71344i) q^{54} +(1.81106 - 10.7395i) q^{55} +(-1.75936 - 1.75936i) q^{57} +(-6.53071 + 0.994133i) q^{58} +(0.423416 - 0.733378i) q^{59} +(-2.97461 - 2.26288i) q^{60} +(5.04573 + 8.73945i) q^{61} +(-3.42268 + 8.75855i) q^{62} +(-4.93275 + 6.29825i) q^{64} +(-0.712947 - 0.325992i) q^{65} +(-0.636158 + 5.72138i) q^{66} +(0.721946 + 2.69434i) q^{67} +(10.2116 - 6.45819i) q^{68} -5.50928i q^{69} +6.49911i q^{71} +(-5.39469 - 3.64341i) q^{72} +(0.321006 + 1.19801i) q^{73} +(3.48499 + 0.387495i) q^{74} +(-2.34538 + 3.45838i) q^{75} +(4.37668 + 4.03717i) q^{76} +(0.385940 + 0.150818i) q^{78} +(4.44724 + 7.70284i) q^{79} +(7.33114 + 5.12390i) q^{80} +(1.60090 - 2.77285i) q^{81} +(-0.245484 - 1.61264i) q^{82} +(10.8443 + 10.8443i) q^{83} +(-7.83063 - 11.0074i) q^{85} +(-3.83097 + 5.20673i) q^{86} +(-1.01038 - 3.77077i) q^{87} +(0.969119 - 13.7422i) q^{88} +(-8.26789 + 4.77347i) q^{89} +(-3.73945 + 6.24404i) q^{90} +(0.531576 + 13.1736i) q^{92} +(-5.36769 - 1.43827i) q^{93} +(-0.767630 + 6.90379i) q^{94} +(4.24092 - 5.13149i) q^{95} +(-4.02130 - 2.48585i) q^{96} +(2.35897 + 2.35897i) q^{97} +11.2101 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 2 q^{2} + 8 q^{5} + 16 q^{6} - 4 q^{8} - 2 q^{10} - 10 q^{12} - 28 q^{16} - 4 q^{17} - 20 q^{18} + 56 q^{20} - 16 q^{22} - 16 q^{25} + 4 q^{26} - 32 q^{30} - 38 q^{32} + 64 q^{33} + 16 q^{36} - 4 q^{37}+ \cdots + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.212826 1.39811i −0.150491 0.988611i
\(3\) 0.807254 0.216303i 0.466069 0.124883i −0.0181397 0.999835i \(-0.505774\pi\)
0.484208 + 0.874953i \(0.339108\pi\)
\(4\) −1.90941 + 0.595107i −0.954705 + 0.297554i
\(5\) 0.780454 + 2.09545i 0.349030 + 0.937112i
\(6\) −0.474220 1.08259i −0.193599 0.441967i
\(7\) 0 0
\(8\) 1.23840 + 2.54291i 0.437839 + 0.899053i
\(9\) −1.99320 + 1.15078i −0.664401 + 0.383592i
\(10\) 2.76356 1.53712i 0.873914 0.486081i
\(11\) −4.21811 2.43533i −1.27181 0.734279i −0.296480 0.955039i \(-0.595813\pi\)
−0.975328 + 0.220760i \(0.929146\pi\)
\(12\) −1.41266 + 0.893414i −0.407799 + 0.257907i
\(13\) −0.247904 + 0.247904i −0.0687562 + 0.0687562i −0.740649 0.671892i \(-0.765482\pi\)
0.671892 + 0.740649i \(0.265482\pi\)
\(14\) 0 0
\(15\) 1.08328 + 1.52274i 0.279701 + 0.393171i
\(16\) 3.29169 2.27261i 0.822924 0.568152i
\(17\) −5.83537 + 1.56358i −1.41528 + 0.379224i −0.883808 0.467849i \(-0.845029\pi\)
−0.531476 + 0.847073i \(0.678362\pi\)
\(18\) 2.03311 + 2.54180i 0.479210 + 0.599108i
\(19\) −1.48858 2.57830i −0.341505 0.591503i 0.643208 0.765692i \(-0.277603\pi\)
−0.984712 + 0.174188i \(0.944270\pi\)
\(20\) −2.73722 3.53661i −0.612061 0.790810i
\(21\) 0 0
\(22\) −2.50713 + 6.41567i −0.534521 + 1.36783i
\(23\) 1.70618 6.36754i 0.355762 1.32772i −0.523760 0.851866i \(-0.675471\pi\)
0.879522 0.475858i \(-0.157862\pi\)
\(24\) 1.54974 + 1.78490i 0.316339 + 0.364342i
\(25\) −3.78178 + 3.27080i −0.756357 + 0.654159i
\(26\) 0.399357 + 0.293836i 0.0783204 + 0.0576260i
\(27\) −3.13296 + 3.13296i −0.602938 + 0.602938i
\(28\) 0 0
\(29\) 4.67111i 0.867403i −0.901057 0.433701i \(-0.857207\pi\)
0.901057 0.433701i \(-0.142793\pi\)
\(30\) 1.89841 1.83862i 0.346601 0.335684i
\(31\) −5.75848 3.32466i −1.03425 0.597127i −0.116053 0.993243i \(-0.537024\pi\)
−0.918200 + 0.396116i \(0.870358\pi\)
\(32\) −3.87791 4.11847i −0.685524 0.728050i
\(33\) −3.93186 1.05354i −0.684448 0.183397i
\(34\) 3.42797 + 7.82570i 0.587892 + 1.34210i
\(35\) 0 0
\(36\) 3.12101 3.38347i 0.520168 0.563912i
\(37\) −0.641729 + 2.39496i −0.105500 + 0.393730i −0.998401 0.0565217i \(-0.981999\pi\)
0.892902 + 0.450251i \(0.148666\pi\)
\(38\) −3.28794 + 2.62993i −0.533374 + 0.426631i
\(39\) −0.146499 + 0.253744i −0.0234587 + 0.0406316i
\(40\) −4.36201 + 4.57961i −0.689695 + 0.724100i
\(41\) 1.15345 0.180138 0.0900692 0.995936i \(-0.471291\pi\)
0.0900692 + 0.995936i \(0.471291\pi\)
\(42\) 0 0
\(43\) −3.23212 3.23212i −0.492894 0.492894i 0.416323 0.909217i \(-0.363318\pi\)
−0.909217 + 0.416323i \(0.863318\pi\)
\(44\) 9.50338 + 2.13981i 1.43269 + 0.322589i
\(45\) −3.96699 3.27852i −0.591364 0.488733i
\(46\) −9.26562 1.03024i −1.36614 0.151901i
\(47\) −4.74443 1.27127i −0.692047 0.185433i −0.104381 0.994537i \(-0.533286\pi\)
−0.587666 + 0.809104i \(0.699953\pi\)
\(48\) 2.16566 2.54658i 0.312587 0.367567i
\(49\) 0 0
\(50\) 5.37779 + 4.59123i 0.760534 + 0.649298i
\(51\) −4.37242 + 2.52442i −0.612261 + 0.353489i
\(52\) 0.325821 0.620880i 0.0451833 0.0861006i
\(53\) 0.0828048 + 0.309032i 0.0113741 + 0.0424488i 0.971380 0.237532i \(-0.0763385\pi\)
−0.960006 + 0.279981i \(0.909672\pi\)
\(54\) 5.04699 + 3.71344i 0.686808 + 0.505335i
\(55\) 1.81106 10.7395i 0.244203 1.44811i
\(56\) 0 0
\(57\) −1.75936 1.75936i −0.233033 0.233033i
\(58\) −6.53071 + 0.994133i −0.857524 + 0.130536i
\(59\) 0.423416 0.733378i 0.0551240 0.0954776i −0.837147 0.546979i \(-0.815778\pi\)
0.892271 + 0.451501i \(0.149111\pi\)
\(60\) −2.97461 2.26288i −0.384021 0.292136i
\(61\) 5.04573 + 8.73945i 0.646039 + 1.11897i 0.984060 + 0.177834i \(0.0569090\pi\)
−0.338021 + 0.941138i \(0.609758\pi\)
\(62\) −3.42268 + 8.75855i −0.434681 + 1.11234i
\(63\) 0 0
\(64\) −4.93275 + 6.29825i −0.616594 + 0.787281i
\(65\) −0.712947 0.325992i −0.0884302 0.0404343i
\(66\) −0.636158 + 5.72138i −0.0783057 + 0.704253i
\(67\) 0.721946 + 2.69434i 0.0881998 + 0.329166i 0.995901 0.0904513i \(-0.0288309\pi\)
−0.907701 + 0.419617i \(0.862164\pi\)
\(68\) 10.2116 6.45819i 1.23834 0.783170i
\(69\) 5.50928i 0.663239i
\(70\) 0 0
\(71\) 6.49911i 0.771303i 0.922645 + 0.385651i \(0.126023\pi\)
−0.922645 + 0.385651i \(0.873977\pi\)
\(72\) −5.39469 3.64341i −0.635771 0.429380i
\(73\) 0.321006 + 1.19801i 0.0375710 + 0.140217i 0.982164 0.188028i \(-0.0602096\pi\)
−0.944593 + 0.328245i \(0.893543\pi\)
\(74\) 3.48499 + 0.387495i 0.405122 + 0.0450454i
\(75\) −2.34538 + 3.45838i −0.270821 + 0.399339i
\(76\) 4.37668 + 4.03717i 0.502040 + 0.463095i
\(77\) 0 0
\(78\) 0.385940 + 0.150818i 0.0436991 + 0.0170768i
\(79\) 4.44724 + 7.70284i 0.500353 + 0.866637i 1.00000 0.000408067i \(0.000129892\pi\)
−0.499647 + 0.866229i \(0.666537\pi\)
\(80\) 7.33114 + 5.12390i 0.819646 + 0.572870i
\(81\) 1.60090 2.77285i 0.177878 0.308094i
\(82\) −0.245484 1.61264i −0.0271091 0.178087i
\(83\) 10.8443 + 10.8443i 1.19032 + 1.19032i 0.976977 + 0.213343i \(0.0684351\pi\)
0.213343 + 0.976977i \(0.431565\pi\)
\(84\) 0 0
\(85\) −7.83063 11.0074i −0.849351 1.19392i
\(86\) −3.83097 + 5.20673i −0.413104 + 0.561456i
\(87\) −1.01038 3.77077i −0.108324 0.404269i
\(88\) 0.969119 13.7422i 0.103308 1.46492i
\(89\) −8.26789 + 4.77347i −0.876395 + 0.505987i −0.869468 0.493989i \(-0.835538\pi\)
−0.00692697 + 0.999976i \(0.502205\pi\)
\(90\) −3.73945 + 6.24404i −0.394172 + 0.658179i
\(91\) 0 0
\(92\) 0.531576 + 13.1736i 0.0554207 + 1.37344i
\(93\) −5.36769 1.43827i −0.556604 0.149142i
\(94\) −0.767630 + 6.90379i −0.0791750 + 0.712071i
\(95\) 4.24092 5.13149i 0.435110 0.526480i
\(96\) −4.02130 2.48585i −0.410422 0.253711i
\(97\) 2.35897 + 2.35897i 0.239518 + 0.239518i 0.816650 0.577133i \(-0.195828\pi\)
−0.577133 + 0.816650i \(0.695828\pi\)
\(98\) 0 0
\(99\) 11.2101 1.12665
\(100\) 5.27450 8.49586i 0.527450 0.849586i
\(101\) 0.729492 1.26352i 0.0725872 0.125725i −0.827447 0.561543i \(-0.810208\pi\)
0.900034 + 0.435819i \(0.143541\pi\)
\(102\) 4.45997 + 5.57585i 0.441603 + 0.552091i
\(103\) 0.142820 0.533010i 0.0140724 0.0525190i −0.958533 0.284983i \(-0.908012\pi\)
0.972605 + 0.232464i \(0.0746787\pi\)
\(104\) −0.937400 0.323394i −0.0919197 0.0317113i
\(105\) 0 0
\(106\) 0.414437 0.181540i 0.0402536 0.0176327i
\(107\) −4.80344 1.28708i −0.464366 0.124426i 0.0190477 0.999819i \(-0.493937\pi\)
−0.483414 + 0.875392i \(0.660603\pi\)
\(108\) 4.11766 7.84655i 0.396222 0.755035i
\(109\) 9.70303 + 5.60205i 0.929382 + 0.536579i 0.886616 0.462506i \(-0.153050\pi\)
0.0427659 + 0.999085i \(0.486383\pi\)
\(110\) −15.4004 0.246411i −1.46837 0.0234943i
\(111\) 2.07215i 0.196680i
\(112\) 0 0
\(113\) 5.88750 5.88750i 0.553850 0.553850i −0.373700 0.927550i \(-0.621911\pi\)
0.927550 + 0.373700i \(0.121911\pi\)
\(114\) −2.08534 + 2.83421i −0.195310 + 0.265448i
\(115\) 14.6744 1.39437i 1.36840 0.130026i
\(116\) 2.77981 + 8.91906i 0.258099 + 0.828114i
\(117\) 0.208841 0.779405i 0.0193074 0.0720561i
\(118\) −1.11545 0.435899i −0.102686 0.0401278i
\(119\) 0 0
\(120\) −2.53067 + 4.64043i −0.231017 + 0.423611i
\(121\) 6.36163 + 11.0187i 0.578330 + 1.00170i
\(122\) 11.1448 8.91445i 1.00901 0.807076i
\(123\) 0.931126 0.249494i 0.0839568 0.0224962i
\(124\) 12.9738 + 2.92123i 1.16508 + 0.262334i
\(125\) −9.80528 5.37182i −0.877011 0.480470i
\(126\) 0 0
\(127\) 5.47059 5.47059i 0.485436 0.485436i −0.421426 0.906863i \(-0.638470\pi\)
0.906863 + 0.421426i \(0.138470\pi\)
\(128\) 9.85545 + 5.55609i 0.871107 + 0.491093i
\(129\) −3.30826 1.91002i −0.291276 0.168168i
\(130\) −0.304038 + 1.06616i −0.0266659 + 0.0935081i
\(131\) −4.93009 + 2.84639i −0.430744 + 0.248690i −0.699663 0.714473i \(-0.746667\pi\)
0.268920 + 0.963163i \(0.413333\pi\)
\(132\) 8.13450 0.328240i 0.708017 0.0285696i
\(133\) 0 0
\(134\) 3.61333 1.58278i 0.312144 0.136732i
\(135\) −9.01008 4.11982i −0.775464 0.354577i
\(136\) −11.2025 12.9025i −0.960610 1.10638i
\(137\) −0.479505 + 0.128483i −0.0409668 + 0.0109770i −0.279244 0.960220i \(-0.590084\pi\)
0.238277 + 0.971197i \(0.423417\pi\)
\(138\) −7.70256 + 1.17252i −0.655685 + 0.0998112i
\(139\) −6.37368 −0.540608 −0.270304 0.962775i \(-0.587124\pi\)
−0.270304 + 0.962775i \(0.587124\pi\)
\(140\) 0 0
\(141\) −4.10494 −0.345699
\(142\) 9.08646 1.38318i 0.762519 0.116074i
\(143\) 1.64941 0.441959i 0.137931 0.0369585i
\(144\) −3.94575 + 8.31777i −0.328813 + 0.693148i
\(145\) 9.78805 3.64558i 0.812853 0.302749i
\(146\) 1.60663 0.703770i 0.132966 0.0582444i
\(147\) 0 0
\(148\) −0.199937 4.95487i −0.0164347 0.407288i
\(149\) −5.05558 + 2.91884i −0.414169 + 0.239121i −0.692579 0.721342i \(-0.743526\pi\)
0.278410 + 0.960462i \(0.410192\pi\)
\(150\) 5.33434 + 2.54306i 0.435547 + 0.207640i
\(151\) 3.20930 + 1.85289i 0.261169 + 0.150786i 0.624868 0.780731i \(-0.285153\pi\)
−0.363699 + 0.931517i \(0.618486\pi\)
\(152\) 4.71293 6.97829i 0.382269 0.566014i
\(153\) 9.83174 9.83174i 0.794849 0.794849i
\(154\) 0 0
\(155\) 2.47242 14.6613i 0.198589 1.17763i
\(156\) 0.128722 0.571684i 0.0103060 0.0457714i
\(157\) −10.6646 + 2.85757i −0.851127 + 0.228059i −0.657909 0.753097i \(-0.728559\pi\)
−0.193218 + 0.981156i \(0.561892\pi\)
\(158\) 9.82292 7.85708i 0.781469 0.625076i
\(159\) 0.133689 + 0.231556i 0.0106022 + 0.0183636i
\(160\) 5.60351 11.3402i 0.442996 0.896523i
\(161\) 0 0
\(162\) −4.21745 1.64810i −0.331354 0.129487i
\(163\) 0.187432 0.699506i 0.0146808 0.0547896i −0.958197 0.286110i \(-0.907638\pi\)
0.972878 + 0.231320i \(0.0743045\pi\)
\(164\) −2.20241 + 0.686425i −0.171979 + 0.0536008i
\(165\) −0.861001 9.06123i −0.0670288 0.705416i
\(166\) 12.8536 17.4695i 0.997632 1.35590i
\(167\) −2.79303 + 2.79303i −0.216131 + 0.216131i −0.806866 0.590735i \(-0.798838\pi\)
0.590735 + 0.806866i \(0.298838\pi\)
\(168\) 0 0
\(169\) 12.8771i 0.990545i
\(170\) −13.7230 + 13.2907i −1.05250 + 1.01935i
\(171\) 5.93410 + 3.42606i 0.453792 + 0.261997i
\(172\) 8.09490 + 4.24798i 0.617230 + 0.323906i
\(173\) −21.8113 5.84433i −1.65828 0.444336i −0.696369 0.717684i \(-0.745202\pi\)
−0.961915 + 0.273348i \(0.911869\pi\)
\(174\) −5.05691 + 2.21513i −0.383363 + 0.167929i
\(175\) 0 0
\(176\) −19.4193 + 1.56975i −1.46378 + 0.118325i
\(177\) 0.183172 0.683609i 0.0137681 0.0513832i
\(178\) 8.43345 + 10.5435i 0.632114 + 0.790268i
\(179\) −4.66406 + 8.07838i −0.348608 + 0.603807i −0.986002 0.166731i \(-0.946679\pi\)
0.637394 + 0.770538i \(0.280012\pi\)
\(180\) 9.52569 + 3.89926i 0.710003 + 0.290633i
\(181\) −13.7888 −1.02492 −0.512458 0.858712i \(-0.671265\pi\)
−0.512458 + 0.858712i \(0.671265\pi\)
\(182\) 0 0
\(183\) 5.96356 + 5.96356i 0.440839 + 0.440839i
\(184\) 18.3050 3.54688i 1.34946 0.261480i
\(185\) −5.51936 + 0.524451i −0.405791 + 0.0385584i
\(186\) −0.868471 + 7.81071i −0.0636794 + 0.572709i
\(187\) 28.4220 + 7.61566i 2.07843 + 0.556913i
\(188\) 9.81561 0.396076i 0.715877 0.0288868i
\(189\) 0 0
\(190\) −8.07696 4.83715i −0.585964 0.350924i
\(191\) −0.149824 + 0.0865011i −0.0108409 + 0.00625900i −0.505411 0.862879i \(-0.668659\pi\)
0.494570 + 0.869138i \(0.335326\pi\)
\(192\) −2.61965 + 6.15126i −0.189057 + 0.443929i
\(193\) −2.43607 9.09154i −0.175352 0.654423i −0.996491 0.0836952i \(-0.973328\pi\)
0.821139 0.570728i \(-0.193339\pi\)
\(194\) 2.79605 3.80015i 0.200745 0.272835i
\(195\) −0.646043 0.108946i −0.0462641 0.00780176i
\(196\) 0 0
\(197\) −10.6666 10.6666i −0.759966 0.759966i 0.216350 0.976316i \(-0.430585\pi\)
−0.976316 + 0.216350i \(0.930585\pi\)
\(198\) −2.38579 15.6729i −0.169551 1.11382i
\(199\) −8.58014 + 14.8612i −0.608230 + 1.05349i 0.383302 + 0.923623i \(0.374787\pi\)
−0.991532 + 0.129862i \(0.958547\pi\)
\(200\) −13.0007 5.56618i −0.919287 0.393589i
\(201\) 1.16559 + 2.01886i 0.0822143 + 0.142399i
\(202\) −1.92179 0.750999i −0.135217 0.0528401i
\(203\) 0 0
\(204\) 6.84644 7.42220i 0.479347 0.519658i
\(205\) 0.900213 + 2.41699i 0.0628736 + 0.168810i
\(206\) −0.775601 0.0862388i −0.0540387 0.00600854i
\(207\) 3.92686 + 14.6552i 0.272935 + 1.01861i
\(208\) −0.252636 + 1.37941i −0.0175172 + 0.0956451i
\(209\) 14.5008i 1.00304i
\(210\) 0 0
\(211\) 2.47386i 0.170307i −0.996368 0.0851536i \(-0.972862\pi\)
0.996368 0.0851536i \(-0.0271381\pi\)
\(212\) −0.342015 0.540791i −0.0234897 0.0371416i
\(213\) 1.40578 + 5.24644i 0.0963224 + 0.359480i
\(214\) −0.777176 + 6.98965i −0.0531267 + 0.477802i
\(215\) 4.25021 9.29525i 0.289862 0.633931i
\(216\) −11.8467 4.08698i −0.806064 0.278084i
\(217\) 0 0
\(218\) 5.76721 14.7581i 0.390605 0.999548i
\(219\) 0.518268 + 0.897666i 0.0350213 + 0.0606587i
\(220\) 2.93309 + 21.5838i 0.197749 + 1.45518i
\(221\) 1.05899 1.83423i 0.0712356 0.123384i
\(222\) 2.89709 0.441008i 0.194440 0.0295985i
\(223\) −7.05641 7.05641i −0.472532 0.472532i 0.430201 0.902733i \(-0.358443\pi\)
−0.902733 + 0.430201i \(0.858443\pi\)
\(224\) 0 0
\(225\) 3.77391 10.8714i 0.251594 0.724757i
\(226\) −9.48437 6.97835i −0.630891 0.464193i
\(227\) −5.27268 19.6779i −0.349960 1.30607i −0.886710 0.462327i \(-0.847015\pi\)
0.536750 0.843742i \(-0.319652\pi\)
\(228\) 4.40635 + 2.31233i 0.291818 + 0.153138i
\(229\) 8.26790 4.77347i 0.546358 0.315440i −0.201294 0.979531i \(-0.564515\pi\)
0.747652 + 0.664091i \(0.231181\pi\)
\(230\) −5.07257 20.2197i −0.334476 1.33325i
\(231\) 0 0
\(232\) 11.8782 5.78468i 0.779841 0.379783i
\(233\) −19.7757 5.29887i −1.29555 0.347141i −0.455782 0.890091i \(-0.650640\pi\)
−0.839765 + 0.542951i \(0.817307\pi\)
\(234\) −1.13414 0.126105i −0.0741410 0.00824372i
\(235\) −1.03894 10.9339i −0.0677730 0.713247i
\(236\) −0.372036 + 1.65230i −0.0242175 + 0.107555i
\(237\) 5.25620 + 5.25620i 0.341427 + 0.341427i
\(238\) 0 0
\(239\) −25.5833 −1.65484 −0.827422 0.561581i \(-0.810193\pi\)
−0.827422 + 0.561581i \(0.810193\pi\)
\(240\) 7.02641 + 2.55054i 0.453553 + 0.164637i
\(241\) 8.01250 13.8781i 0.516131 0.893965i −0.483694 0.875237i \(-0.660705\pi\)
0.999825 0.0187274i \(-0.00596147\pi\)
\(242\) 14.0514 11.2393i 0.903256 0.722490i
\(243\) 4.13279 15.4238i 0.265119 0.989436i
\(244\) −14.8353 13.6845i −0.949731 0.876057i
\(245\) 0 0
\(246\) −0.546988 1.24872i −0.0348747 0.0796152i
\(247\) 1.00820 + 0.270146i 0.0641501 + 0.0171890i
\(248\) 1.32302 18.7605i 0.0840120 1.19129i
\(249\) 11.0998 + 6.40847i 0.703421 + 0.406120i
\(250\) −5.42356 + 14.8521i −0.343016 + 0.939330i
\(251\) 28.9444i 1.82696i −0.406889 0.913478i \(-0.633386\pi\)
0.406889 0.913478i \(-0.366614\pi\)
\(252\) 0 0
\(253\) −22.7039 + 22.7039i −1.42738 + 1.42738i
\(254\) −8.81276 6.48419i −0.552962 0.406854i
\(255\) −8.70225 7.19197i −0.544956 0.450379i
\(256\) 5.67051 14.9615i 0.354407 0.935091i
\(257\) 5.33306 19.9032i 0.332667 1.24153i −0.573709 0.819059i \(-0.694496\pi\)
0.906376 0.422471i \(-0.138837\pi\)
\(258\) −1.96634 + 5.03181i −0.122419 + 0.313267i
\(259\) 0 0
\(260\) 1.55531 + 0.198172i 0.0964561 + 0.0122901i
\(261\) 5.37540 + 9.31047i 0.332729 + 0.576303i
\(262\) 5.02881 + 6.28701i 0.310681 + 0.388413i
\(263\) 12.2013 3.26932i 0.752362 0.201595i 0.137796 0.990461i \(-0.455998\pi\)
0.614566 + 0.788866i \(0.289331\pi\)
\(264\) −2.19015 11.3030i −0.134794 0.695654i
\(265\) −0.582934 + 0.414698i −0.0358093 + 0.0254747i
\(266\) 0 0
\(267\) −5.64178 + 5.64178i −0.345271 + 0.345271i
\(268\) −2.98191 4.71497i −0.182149 0.288012i
\(269\) 9.69903 + 5.59974i 0.591360 + 0.341422i 0.765635 0.643275i \(-0.222425\pi\)
−0.174275 + 0.984697i \(0.555758\pi\)
\(270\) −3.84237 + 13.4739i −0.233839 + 0.819993i
\(271\) −20.6434 + 11.9184i −1.25399 + 0.723994i −0.971900 0.235392i \(-0.924362\pi\)
−0.282094 + 0.959387i \(0.591029\pi\)
\(272\) −15.6548 + 18.4083i −0.949214 + 1.11617i
\(273\) 0 0
\(274\) 0.281684 + 0.643054i 0.0170171 + 0.0388483i
\(275\) 23.9174 4.58670i 1.44228 0.276588i
\(276\) 3.27861 + 10.5195i 0.197349 + 0.633197i
\(277\) 5.30858 1.42243i 0.318962 0.0854656i −0.0957860 0.995402i \(-0.530536\pi\)
0.414748 + 0.909936i \(0.363870\pi\)
\(278\) 1.35648 + 8.91109i 0.0813565 + 0.534452i
\(279\) 15.3038 0.916212
\(280\) 0 0
\(281\) 29.7858 1.77687 0.888436 0.459001i \(-0.151793\pi\)
0.888436 + 0.459001i \(0.151793\pi\)
\(282\) 0.873639 + 5.73916i 0.0520244 + 0.341762i
\(283\) −20.9364 + 5.60990i −1.24454 + 0.333474i −0.820225 0.572041i \(-0.806152\pi\)
−0.424316 + 0.905514i \(0.639485\pi\)
\(284\) −3.86767 12.4095i −0.229504 0.736367i
\(285\) 2.31355 5.05975i 0.137043 0.299713i
\(286\) −0.968945 2.21200i −0.0572949 0.130798i
\(287\) 0 0
\(288\) 12.4689 + 3.74635i 0.734737 + 0.220756i
\(289\) 16.8843 9.74814i 0.993193 0.573420i
\(290\) −7.18007 12.9089i −0.421628 0.758035i
\(291\) 2.41455 + 1.39404i 0.141543 + 0.0817200i
\(292\) −1.32588 2.09646i −0.0775912 0.122686i
\(293\) 2.85175 2.85175i 0.166601 0.166601i −0.618883 0.785484i \(-0.712414\pi\)
0.785484 + 0.618883i \(0.212414\pi\)
\(294\) 0 0
\(295\) 1.86721 + 0.314877i 0.108713 + 0.0183329i
\(296\) −6.88488 + 1.33406i −0.400176 + 0.0775405i
\(297\) 20.8449 5.58539i 1.20955 0.324097i
\(298\) 5.15681 + 6.44704i 0.298726 + 0.373467i
\(299\) 1.15557 + 2.00151i 0.0668284 + 0.115750i
\(300\) 2.42018 7.99921i 0.139729 0.461835i
\(301\) 0 0
\(302\) 1.90752 4.88129i 0.109765 0.280887i
\(303\) 0.315583 1.17777i 0.0181298 0.0676612i
\(304\) −10.7594 5.10402i −0.617096 0.292736i
\(305\) −14.3751 + 17.3938i −0.823116 + 0.995965i
\(306\) −15.8383 11.6534i −0.905414 0.666179i
\(307\) 3.58241 3.58241i 0.204459 0.204459i −0.597448 0.801907i \(-0.703819\pi\)
0.801907 + 0.597448i \(0.203819\pi\)
\(308\) 0 0
\(309\) 0.461167i 0.0262349i
\(310\) −21.0243 0.336395i −1.19410 0.0191059i
\(311\) 21.3073 + 12.3018i 1.20822 + 0.697569i 0.962371 0.271738i \(-0.0875984\pi\)
0.245854 + 0.969307i \(0.420932\pi\)
\(312\) −0.826672 0.0582982i −0.0468011 0.00330049i
\(313\) −6.49513 1.74036i −0.367126 0.0983712i 0.0705393 0.997509i \(-0.477528\pi\)
−0.437666 + 0.899138i \(0.644195\pi\)
\(314\) 6.26489 + 14.3021i 0.353548 + 0.807113i
\(315\) 0 0
\(316\) −13.0756 12.0613i −0.735561 0.678501i
\(317\) 3.57664 13.3482i 0.200884 0.749709i −0.789781 0.613389i \(-0.789806\pi\)
0.990665 0.136320i \(-0.0435275\pi\)
\(318\) 0.295288 0.236193i 0.0165589 0.0132450i
\(319\) −11.3757 + 19.7032i −0.636915 + 1.10317i
\(320\) −17.0474 5.42082i −0.952980 0.303033i
\(321\) −4.15600 −0.231965
\(322\) 0 0
\(323\) 12.7178 + 12.7178i 0.707638 + 0.707638i
\(324\) −1.40664 + 6.24721i −0.0781467 + 0.347067i
\(325\) 0.126676 1.74836i 0.00702671 0.0969818i
\(326\) −1.01788 0.113177i −0.0563749 0.00626831i
\(327\) 9.04456 + 2.42348i 0.500165 + 0.134019i
\(328\) 1.42843 + 2.93311i 0.0788716 + 0.161954i
\(329\) 0 0
\(330\) −12.4853 + 3.13224i −0.687295 + 0.172424i
\(331\) −1.62048 + 0.935587i −0.0890699 + 0.0514245i −0.543873 0.839167i \(-0.683043\pi\)
0.454804 + 0.890592i \(0.349709\pi\)
\(332\) −27.1598 14.2527i −1.49059 0.782221i
\(333\) −1.47697 5.51214i −0.0809376 0.302063i
\(334\) 4.49939 + 3.31053i 0.246196 + 0.181144i
\(335\) −5.08240 + 3.61561i −0.277681 + 0.197542i
\(336\) 0 0
\(337\) 15.5089 + 15.5089i 0.844825 + 0.844825i 0.989482 0.144657i \(-0.0462078\pi\)
−0.144657 + 0.989482i \(0.546208\pi\)
\(338\) 18.0036 2.74058i 0.979264 0.149068i
\(339\) 3.47923 6.02620i 0.188966 0.327298i
\(340\) 21.5025 + 16.3576i 1.16613 + 0.887113i
\(341\) 16.1933 + 28.0476i 0.876915 + 1.51886i
\(342\) 3.52706 9.02567i 0.190722 0.488052i
\(343\) 0 0
\(344\) 4.21633 12.2216i 0.227330 0.658946i
\(345\) 11.5444 4.29973i 0.621529 0.231490i
\(346\) −3.52898 + 31.7384i −0.189719 + 1.70627i
\(347\) −2.72992 10.1882i −0.146550 0.546931i −0.999682 0.0252358i \(-0.991966\pi\)
0.853132 0.521696i \(-0.174700\pi\)
\(348\) 4.17323 + 6.59867i 0.223709 + 0.353726i
\(349\) 7.92462i 0.424195i 0.977249 + 0.212098i \(0.0680295\pi\)
−0.977249 + 0.212098i \(0.931971\pi\)
\(350\) 0 0
\(351\) 1.55335i 0.0829115i
\(352\) 6.32761 + 26.8161i 0.337263 + 1.42931i
\(353\) 2.32090 + 8.66171i 0.123529 + 0.461016i 0.999783 0.0208332i \(-0.00663188\pi\)
−0.876254 + 0.481849i \(0.839965\pi\)
\(354\) −0.994742 0.110605i −0.0528700 0.00587859i
\(355\) −13.6185 + 5.07226i −0.722797 + 0.269207i
\(356\) 12.9461 14.0348i 0.686141 0.743843i
\(357\) 0 0
\(358\) 12.2871 + 4.80156i 0.649392 + 0.253771i
\(359\) −11.6112 20.1111i −0.612814 1.06143i −0.990764 0.135599i \(-0.956704\pi\)
0.377950 0.925826i \(-0.376629\pi\)
\(360\) 3.42427 14.1478i 0.180475 0.745655i
\(361\) 5.06824 8.77844i 0.266749 0.462023i
\(362\) 2.93462 + 19.2783i 0.154240 + 1.01324i
\(363\) 7.51883 + 7.51883i 0.394636 + 0.394636i
\(364\) 0 0
\(365\) −2.25984 + 1.60764i −0.118285 + 0.0841480i
\(366\) 7.06850 9.60689i 0.369476 0.502160i
\(367\) 8.07404 + 30.1327i 0.421462 + 1.57292i 0.771530 + 0.636192i \(0.219492\pi\)
−0.350069 + 0.936724i \(0.613842\pi\)
\(368\) −8.85470 24.8375i −0.461583 1.29474i
\(369\) −2.29906 + 1.32736i −0.119684 + 0.0690997i
\(370\) 1.90790 + 7.60504i 0.0991871 + 0.395367i
\(371\) 0 0
\(372\) 11.1051 0.448107i 0.575770 0.0232333i
\(373\) 17.9985 + 4.82267i 0.931925 + 0.249709i 0.692675 0.721250i \(-0.256432\pi\)
0.239250 + 0.970958i \(0.423099\pi\)
\(374\) 4.59857 41.3579i 0.237786 2.13857i
\(375\) −9.07730 2.21551i −0.468750 0.114408i
\(376\) −2.64277 13.6390i −0.136291 0.703377i
\(377\) 1.15799 + 1.15799i 0.0596393 + 0.0596393i
\(378\) 0 0
\(379\) −18.6149 −0.956182 −0.478091 0.878310i \(-0.658671\pi\)
−0.478091 + 0.878310i \(0.658671\pi\)
\(380\) −5.04387 + 12.3219i −0.258745 + 0.632102i
\(381\) 3.23285 5.59946i 0.165624 0.286869i
\(382\) 0.152824 + 0.191061i 0.00781918 + 0.00977553i
\(383\) 8.07570 30.1389i 0.412649 1.54003i −0.376849 0.926275i \(-0.622992\pi\)
0.789498 0.613753i \(-0.210341\pi\)
\(384\) 9.15766 + 2.35341i 0.467325 + 0.120097i
\(385\) 0 0
\(386\) −12.1925 + 5.34080i −0.620581 + 0.271840i
\(387\) 10.1617 + 2.72282i 0.516549 + 0.138409i
\(388\) −5.90809 3.10041i −0.299938 0.157399i
\(389\) −3.21806 1.85795i −0.163162 0.0942017i 0.416196 0.909275i \(-0.363363\pi\)
−0.579358 + 0.815073i \(0.696697\pi\)
\(390\) −0.0148230 + 0.926424i −0.000750594 + 0.0469113i
\(391\) 39.8247i 2.01402i
\(392\) 0 0
\(393\) −3.36415 + 3.36415i −0.169699 + 0.169699i
\(394\) −12.6430 + 17.1832i −0.636944 + 0.865679i
\(395\) −12.6700 + 15.3307i −0.637498 + 0.771369i
\(396\) −21.4046 + 6.67119i −1.07562 + 0.335240i
\(397\) 1.15071 4.29450i 0.0577524 0.215535i −0.931019 0.364971i \(-0.881079\pi\)
0.988771 + 0.149436i \(0.0477457\pi\)
\(398\) 22.6037 + 8.83310i 1.13302 + 0.442763i
\(399\) 0 0
\(400\) −5.01524 + 19.3610i −0.250762 + 0.968049i
\(401\) −17.5463 30.3911i −0.876220 1.51766i −0.855457 0.517873i \(-0.826724\pi\)
−0.0207625 0.999784i \(-0.506609\pi\)
\(402\) 2.57451 2.05928i 0.128405 0.102708i
\(403\) 2.25175 0.603354i 0.112168 0.0300552i
\(404\) −0.640971 + 2.84670i −0.0318895 + 0.141629i
\(405\) 7.05978 + 1.19053i 0.350803 + 0.0591578i
\(406\) 0 0
\(407\) 8.53940 8.53940i 0.423282 0.423282i
\(408\) −11.8341 7.99242i −0.585877 0.395684i
\(409\) 31.9026 + 18.4190i 1.57748 + 0.910759i 0.995210 + 0.0977650i \(0.0311693\pi\)
0.582272 + 0.812994i \(0.302164\pi\)
\(410\) 3.18762 1.77299i 0.157425 0.0875618i
\(411\) −0.359291 + 0.207437i −0.0177225 + 0.0102321i
\(412\) 0.0444969 + 1.10273i 0.00219220 + 0.0543275i
\(413\) 0 0
\(414\) 19.6538 8.60918i 0.965934 0.423118i
\(415\) −14.2602 + 31.1872i −0.700006 + 1.53092i
\(416\) 1.98234 + 0.0596373i 0.0971920 + 0.00292396i
\(417\) −5.14518 + 1.37865i −0.251961 + 0.0675126i
\(418\) 20.2736 3.08614i 0.991615 0.150948i
\(419\) −31.8030 −1.55368 −0.776840 0.629699i \(-0.783178\pi\)
−0.776840 + 0.629699i \(0.783178\pi\)
\(420\) 0 0
\(421\) 13.1193 0.639396 0.319698 0.947519i \(-0.396418\pi\)
0.319698 + 0.947519i \(0.396418\pi\)
\(422\) −3.45872 + 0.526501i −0.168368 + 0.0256296i
\(423\) 10.9196 2.92589i 0.530928 0.142262i
\(424\) −0.683294 + 0.593269i −0.0331837 + 0.0288117i
\(425\) 16.9539 24.9994i 0.822387 1.21265i
\(426\) 7.03590 3.08201i 0.340890 0.149324i
\(427\) 0 0
\(428\) 9.93768 0.401002i 0.480356 0.0193831i
\(429\) 1.23590 0.713547i 0.0596698 0.0344504i
\(430\) −13.9003 3.96398i −0.670333 0.191160i
\(431\) −17.0409 9.83859i −0.820833 0.473908i 0.0298705 0.999554i \(-0.490491\pi\)
−0.850704 + 0.525646i \(0.823824\pi\)
\(432\) −3.19276 + 17.4327i −0.153612 + 0.838733i
\(433\) 12.6198 12.6198i 0.606466 0.606466i −0.335554 0.942021i \(-0.608924\pi\)
0.942021 + 0.335554i \(0.108924\pi\)
\(434\) 0 0
\(435\) 7.11290 5.06010i 0.341037 0.242613i
\(436\) −21.8609 4.92226i −1.04695 0.235734i
\(437\) −18.9572 + 5.07957i −0.906847 + 0.242989i
\(438\) 1.14473 0.915641i 0.0546975 0.0437510i
\(439\) 2.34778 + 4.06648i 0.112054 + 0.194082i 0.916598 0.399810i \(-0.130924\pi\)
−0.804545 + 0.593892i \(0.797591\pi\)
\(440\) 29.5523 8.69438i 1.40885 0.414488i
\(441\) 0 0
\(442\) −2.78983 1.09021i −0.132699 0.0518562i
\(443\) −1.07698 + 4.01934i −0.0511688 + 0.190965i −0.986779 0.162069i \(-0.948183\pi\)
0.935611 + 0.353034i \(0.114850\pi\)
\(444\) −1.23315 3.95659i −0.0585229 0.187771i
\(445\) −16.4553 13.5994i −0.780054 0.644676i
\(446\) −8.36383 + 11.3674i −0.396039 + 0.538262i
\(447\) −3.44978 + 3.44978i −0.163169 + 0.163169i
\(448\) 0 0
\(449\) 41.3539i 1.95161i 0.218641 + 0.975805i \(0.429837\pi\)
−0.218641 + 0.975805i \(0.570163\pi\)
\(450\) −16.0025 2.96263i −0.754365 0.139660i
\(451\) −4.86537 2.80902i −0.229101 0.132272i
\(452\) −7.73796 + 14.7454i −0.363963 + 0.693563i
\(453\) 2.99151 + 0.801572i 0.140553 + 0.0376612i
\(454\) −26.3897 + 11.5597i −1.23853 + 0.542526i
\(455\) 0 0
\(456\) 2.29511 6.65268i 0.107478 0.311540i
\(457\) 5.99940 22.3901i 0.280640 1.04736i −0.671326 0.741162i \(-0.734275\pi\)
0.951967 0.306202i \(-0.0990582\pi\)
\(458\) −8.43345 10.5435i −0.394069 0.492665i
\(459\) 13.3833 23.1806i 0.624680 1.08198i
\(460\) −27.1897 + 11.3953i −1.26773 + 0.531307i
\(461\) −16.9131 −0.787723 −0.393861 0.919170i \(-0.628861\pi\)
−0.393861 + 0.919170i \(0.628861\pi\)
\(462\) 0 0
\(463\) −22.3542 22.3542i −1.03889 1.03889i −0.999213 0.0396749i \(-0.987368\pi\)
−0.0396749 0.999213i \(-0.512632\pi\)
\(464\) −10.6156 15.3759i −0.492816 0.713806i
\(465\) −1.17542 12.3702i −0.0545089 0.573655i
\(466\) −3.19962 + 28.7762i −0.148220 + 1.33303i
\(467\) −8.28849 2.22089i −0.383546 0.102771i 0.0618940 0.998083i \(-0.480286\pi\)
−0.445440 + 0.895312i \(0.646953\pi\)
\(468\) 0.0650665 + 1.61249i 0.00300770 + 0.0745373i
\(469\) 0 0
\(470\) −15.0656 + 3.77956i −0.694925 + 0.174338i
\(471\) −7.99094 + 4.61357i −0.368203 + 0.212582i
\(472\) 2.38927 + 0.168495i 0.109975 + 0.00775561i
\(473\) 5.76217 + 21.5047i 0.264945 + 0.988787i
\(474\) 6.23008 8.46739i 0.286157 0.388920i
\(475\) 14.0626 + 4.88173i 0.645237 + 0.223989i
\(476\) 0 0
\(477\) −0.520673 0.520673i −0.0238400 0.0238400i
\(478\) 5.44478 + 35.7682i 0.249039 + 1.63600i
\(479\) 12.0963 20.9514i 0.552694 0.957294i −0.445385 0.895339i \(-0.646933\pi\)
0.998079 0.0619545i \(-0.0197334\pi\)
\(480\) 2.07053 10.3665i 0.0945065 0.473164i
\(481\) −0.434634 0.752808i −0.0198176 0.0343251i
\(482\) −21.1083 8.24873i −0.961457 0.375719i
\(483\) 0 0
\(484\) −18.7043 17.2533i −0.850194 0.784241i
\(485\) −3.10203 + 6.78417i −0.140856 + 0.308053i
\(486\) −22.4437 2.49550i −1.01807 0.113198i
\(487\) −4.79710 17.9030i −0.217377 0.811263i −0.985316 0.170740i \(-0.945384\pi\)
0.767939 0.640523i \(-0.221282\pi\)
\(488\) −15.9750 + 23.6537i −0.723155 + 1.07075i
\(489\) 0.605222i 0.0273691i
\(490\) 0 0
\(491\) 26.3306i 1.18828i 0.804360 + 0.594142i \(0.202508\pi\)
−0.804360 + 0.594142i \(0.797492\pi\)
\(492\) −1.62943 + 1.03051i −0.0734602 + 0.0464589i
\(493\) 7.30366 + 27.2576i 0.328940 + 1.22762i
\(494\) 0.163122 1.46706i 0.00733922 0.0660063i
\(495\) 8.74894 + 23.4901i 0.393236 + 1.05580i
\(496\) −26.5108 + 2.14300i −1.19037 + 0.0962235i
\(497\) 0 0
\(498\) 6.59741 16.8826i 0.295637 0.756528i
\(499\) 5.41316 + 9.37586i 0.242326 + 0.419721i 0.961376 0.275237i \(-0.0887562\pi\)
−0.719050 + 0.694958i \(0.755423\pi\)
\(500\) 21.9191 + 4.42181i 0.980253 + 0.197749i
\(501\) −1.65055 + 2.85883i −0.0737409 + 0.127723i
\(502\) −40.4674 + 6.16012i −1.80615 + 0.274940i
\(503\) −1.75566 1.75566i −0.0782809 0.0782809i 0.666882 0.745163i \(-0.267628\pi\)
−0.745163 + 0.666882i \(0.767628\pi\)
\(504\) 0 0
\(505\) 3.21697 + 0.542494i 0.143153 + 0.0241407i
\(506\) 36.5744 + 26.9105i 1.62593 + 1.19632i
\(507\) 2.78535 + 10.3951i 0.123702 + 0.461662i
\(508\) −7.19001 + 13.7012i −0.319005 + 0.607892i
\(509\) −27.6605 + 15.9698i −1.22603 + 0.707849i −0.966197 0.257804i \(-0.917001\pi\)
−0.259834 + 0.965653i \(0.583668\pi\)
\(510\) −8.20309 + 13.6973i −0.363239 + 0.606527i
\(511\) 0 0
\(512\) −22.1246 4.74380i −0.977777 0.209648i
\(513\) 12.7414 + 3.41405i 0.562546 + 0.150734i
\(514\) −28.9619 3.22026i −1.27745 0.142040i
\(515\) 1.22836 0.116719i 0.0541279 0.00514325i
\(516\) 7.45350 + 1.67825i 0.328122 + 0.0738809i
\(517\) 16.9166 + 16.9166i 0.743991 + 0.743991i
\(518\) 0 0
\(519\) −18.8714 −0.828364
\(520\) −0.0539440 2.21667i −0.00236560 0.0972072i
\(521\) 16.3491 28.3174i 0.716265 1.24061i −0.246204 0.969218i \(-0.579183\pi\)
0.962469 0.271390i \(-0.0874833\pi\)
\(522\) 11.8730 9.49690i 0.519668 0.415668i
\(523\) −9.21055 + 34.3742i −0.402749 + 1.50308i 0.405421 + 0.914130i \(0.367125\pi\)
−0.808170 + 0.588950i \(0.799542\pi\)
\(524\) 7.71966 8.36885i 0.337235 0.365595i
\(525\) 0 0
\(526\) −7.16760 16.3629i −0.312522 0.713456i
\(527\) 38.8012 + 10.3968i 1.69021 + 0.452890i
\(528\) −15.3368 + 5.46764i −0.667446 + 0.237949i
\(529\) −17.7159 10.2283i −0.770257 0.444708i
\(530\) 0.703856 + 0.726746i 0.0305735 + 0.0315678i
\(531\) 1.94903i 0.0845806i
\(532\) 0 0
\(533\) −0.285944 + 0.285944i −0.0123856 + 0.0123856i
\(534\) 9.08853 + 6.68710i 0.393299 + 0.289379i
\(535\) −1.05186 11.0698i −0.0454759 0.478591i
\(536\) −5.95740 + 5.17250i −0.257321 + 0.223418i
\(537\) −2.01770 + 7.53016i −0.0870702 + 0.324950i
\(538\) 5.76483 14.7521i 0.248540 0.636006i
\(539\) 0 0
\(540\) 19.6557 + 2.50446i 0.845845 + 0.107775i
\(541\) 18.6970 + 32.3842i 0.803848 + 1.39231i 0.917066 + 0.398736i \(0.130551\pi\)
−0.113218 + 0.993570i \(0.536116\pi\)
\(542\) 21.0567 + 26.3251i 0.904463 + 1.13076i
\(543\) −11.1311 + 2.98257i −0.477681 + 0.127994i
\(544\) 29.0686 + 17.9694i 1.24631 + 0.770431i
\(545\) −4.16602 + 24.7043i −0.178453 + 1.05822i
\(546\) 0 0
\(547\) −27.0715 + 27.0715i −1.15749 + 1.15749i −0.172480 + 0.985013i \(0.555178\pi\)
−0.985013 + 0.172480i \(0.944822\pi\)
\(548\) 0.839110 0.530683i 0.0358450 0.0226697i
\(549\) −20.1143 11.6130i −0.858458 0.495631i
\(550\) −11.5030 32.4630i −0.490487 1.38423i
\(551\) −12.0435 + 6.95334i −0.513072 + 0.296222i
\(552\) 14.0096 6.82266i 0.596287 0.290392i
\(553\) 0 0
\(554\) −3.11852 7.11924i −0.132493 0.302468i
\(555\) −4.34208 + 1.61722i −0.184311 + 0.0686472i
\(556\) 12.1700 3.79302i 0.516122 0.160860i
\(557\) −15.8098 + 4.23623i −0.669884 + 0.179495i −0.577703 0.816247i \(-0.696051\pi\)
−0.0921814 + 0.995742i \(0.529384\pi\)
\(558\) −3.25704 21.3963i −0.137881 0.905778i
\(559\) 1.60251 0.0677790
\(560\) 0 0
\(561\) 24.5911 1.03824
\(562\) −6.33919 41.6437i −0.267403 1.75664i
\(563\) −22.6700 + 6.07440i −0.955425 + 0.256005i −0.702663 0.711523i \(-0.748006\pi\)
−0.252762 + 0.967528i \(0.581339\pi\)
\(564\) 7.83802 2.44288i 0.330040 0.102864i
\(565\) 16.9319 + 7.74202i 0.712329 + 0.325709i
\(566\) 12.2991 + 28.0774i 0.516968 + 1.18018i
\(567\) 0 0
\(568\) −16.5266 + 8.04848i −0.693443 + 0.337707i
\(569\) −16.8334 + 9.71879i −0.705694 + 0.407433i −0.809465 0.587168i \(-0.800243\pi\)
0.103770 + 0.994601i \(0.466909\pi\)
\(570\) −7.56645 2.15774i −0.316924 0.0903778i
\(571\) 40.3258 + 23.2821i 1.68758 + 0.974327i 0.956361 + 0.292189i \(0.0943835\pi\)
0.731223 + 0.682138i \(0.238950\pi\)
\(572\) −2.88639 + 1.82546i −0.120686 + 0.0763263i
\(573\) −0.102236 + 0.102236i −0.00427097 + 0.00427097i
\(574\) 0 0
\(575\) 14.3745 + 29.6612i 0.599459 + 1.23696i
\(576\) 2.58410 18.2302i 0.107671 0.759591i
\(577\) 23.5105 6.29961i 0.978754 0.262256i 0.266234 0.963908i \(-0.414221\pi\)
0.712520 + 0.701652i \(0.247554\pi\)
\(578\) −17.2224 21.5314i −0.716356 0.895587i
\(579\) −3.93306 6.81225i −0.163452 0.283108i
\(580\) −16.5199 + 12.7859i −0.685951 + 0.530904i
\(581\) 0 0
\(582\) 1.43514 3.67248i 0.0594884 0.152229i
\(583\) 0.403313 1.50519i 0.0167035 0.0623385i
\(584\) −2.64890 + 2.29990i −0.109612 + 0.0951707i
\(585\) 1.79619 0.170675i 0.0742634 0.00705653i
\(586\) −4.59398 3.38013i −0.189776 0.139632i
\(587\) −0.195894 + 0.195894i −0.00808542 + 0.00808542i −0.711138 0.703053i \(-0.751820\pi\)
0.703053 + 0.711138i \(0.251820\pi\)
\(588\) 0 0
\(589\) 19.7961i 0.815686i
\(590\) 0.0428419 2.67757i 0.00176377 0.110234i
\(591\) −10.9179 6.30346i −0.449103 0.259290i
\(592\) 3.33044 + 9.34189i 0.136880 + 0.383949i
\(593\) −4.03218 1.08042i −0.165582 0.0443676i 0.175076 0.984555i \(-0.443983\pi\)
−0.340658 + 0.940187i \(0.610650\pi\)
\(594\) −12.2453 27.9548i −0.502432 1.14700i
\(595\) 0 0
\(596\) 7.91615 8.58187i 0.324258 0.351527i
\(597\) −3.71182 + 13.8527i −0.151915 + 0.566954i
\(598\) 2.55239 2.04158i 0.104375 0.0834866i
\(599\) 8.35085 14.4641i 0.341206 0.590987i −0.643451 0.765488i \(-0.722498\pi\)
0.984657 + 0.174501i \(0.0558311\pi\)
\(600\) −11.6988 1.68124i −0.477603 0.0686363i
\(601\) 38.4209 1.56722 0.783610 0.621253i \(-0.213376\pi\)
0.783610 + 0.621253i \(0.213376\pi\)
\(602\) 0 0
\(603\) −4.53957 4.53957i −0.184866 0.184866i
\(604\) −7.23054 1.62805i −0.294207 0.0662444i
\(605\) −18.1241 + 21.9300i −0.736848 + 0.891582i
\(606\) −1.71382 0.190559i −0.0696190 0.00774091i
\(607\) −30.8579 8.26835i −1.25248 0.335602i −0.429188 0.903215i \(-0.641200\pi\)
−0.823295 + 0.567613i \(0.807867\pi\)
\(608\) −4.84608 + 16.1291i −0.196535 + 0.654122i
\(609\) 0 0
\(610\) 27.3778 + 16.3961i 1.10849 + 0.663858i
\(611\) 1.49132 0.861012i 0.0603322 0.0348328i
\(612\) −12.9219 + 24.6238i −0.522336 + 0.995357i
\(613\) 7.17171 + 26.7652i 0.289663 + 1.08104i 0.945364 + 0.326016i \(0.105706\pi\)
−0.655702 + 0.755020i \(0.727627\pi\)
\(614\) −5.77103 4.24617i −0.232900 0.171361i
\(615\) 1.24950 + 1.75641i 0.0503848 + 0.0708251i
\(616\) 0 0
\(617\) 10.6961 + 10.6961i 0.430610 + 0.430610i 0.888836 0.458226i \(-0.151515\pi\)
−0.458226 + 0.888836i \(0.651515\pi\)
\(618\) −0.644761 + 0.0981483i −0.0259361 + 0.00394810i
\(619\) 1.43357 2.48301i 0.0576199 0.0998006i −0.835777 0.549070i \(-0.814982\pi\)
0.893397 + 0.449269i \(0.148316\pi\)
\(620\) 4.00420 + 29.4658i 0.160813 + 1.18338i
\(621\) 14.6039 + 25.2946i 0.586033 + 1.01504i
\(622\) 12.6644 32.4080i 0.507798 1.29944i
\(623\) 0 0
\(624\) 0.0944300 + 1.16818i 0.00378022 + 0.0467648i
\(625\) 3.60378 24.7389i 0.144151 0.989556i
\(626\) −1.05089 + 9.45128i −0.0420018 + 0.377749i
\(627\) 3.13656 + 11.7058i 0.125262 + 0.467485i
\(628\) 18.6625 11.8028i 0.744715 0.470985i
\(629\) 14.9789i 0.597247i
\(630\) 0 0
\(631\) 0.116828i 0.00465086i −0.999997 0.00232543i \(-0.999260\pi\)
0.999997 0.00232543i \(-0.000740209\pi\)
\(632\) −14.0802 + 20.8481i −0.560079 + 0.829292i
\(633\) −0.535103 1.99703i −0.0212684 0.0793748i
\(634\) −19.4234 2.15968i −0.771402 0.0857719i
\(635\) 15.7329 + 7.19378i 0.624340 + 0.285476i
\(636\) −0.393068 0.362577i −0.0155862 0.0143771i
\(637\) 0 0
\(638\) 29.9683 + 11.7111i 1.18646 + 0.463645i
\(639\) −7.47903 12.9541i −0.295866 0.512455i
\(640\) −3.95075 + 24.9878i −0.156167 + 0.987731i
\(641\) −3.64503 + 6.31338i −0.143970 + 0.249364i −0.928988 0.370109i \(-0.879320\pi\)
0.785018 + 0.619473i \(0.212654\pi\)
\(642\) 0.884504 + 5.81053i 0.0349086 + 0.229323i
\(643\) −2.55764 2.55764i −0.100863 0.100863i 0.654874 0.755738i \(-0.272722\pi\)
−0.755738 + 0.654874i \(0.772722\pi\)
\(644\) 0 0
\(645\) 1.42041 8.42297i 0.0559286 0.331654i
\(646\) 15.0742 20.4876i 0.593086 0.806072i
\(647\) −3.58712 13.3873i −0.141024 0.526309i −0.999900 0.0141258i \(-0.995503\pi\)
0.858876 0.512183i \(-0.171163\pi\)
\(648\) 9.03364 + 0.637067i 0.354875 + 0.0250264i
\(649\) −3.57203 + 2.06231i −0.140214 + 0.0809528i
\(650\) −2.47136 + 0.194991i −0.0969347 + 0.00764816i
\(651\) 0 0
\(652\) 0.0583963 + 1.44719i 0.00228698 + 0.0566762i
\(653\) −28.5901 7.66070i −1.11882 0.299786i −0.348413 0.937341i \(-0.613279\pi\)
−0.770405 + 0.637555i \(0.779946\pi\)
\(654\) 1.46337 13.1610i 0.0572224 0.514638i
\(655\) −9.81216 8.10926i −0.383393 0.316855i
\(656\) 3.79680 2.62133i 0.148240 0.102346i
\(657\) −2.01848 2.01848i −0.0787482 0.0787482i
\(658\) 0 0
\(659\) 41.1139 1.60157 0.800784 0.598953i \(-0.204416\pi\)
0.800784 + 0.598953i \(0.204416\pi\)
\(660\) 7.03641 + 16.7892i 0.273892 + 0.653519i
\(661\) −7.77799 + 13.4719i −0.302529 + 0.523995i −0.976708 0.214572i \(-0.931164\pi\)
0.674179 + 0.738568i \(0.264498\pi\)
\(662\) 1.65293 + 2.06649i 0.0642430 + 0.0803166i
\(663\) 0.458127 1.70975i 0.0177922 0.0664013i
\(664\) −14.1466 + 41.0057i −0.548993 + 1.59133i
\(665\) 0 0
\(666\) −7.39222 + 3.23809i −0.286443 + 0.125474i
\(667\) −29.7435 7.96973i −1.15167 0.308589i
\(668\) 3.67089 6.99520i 0.142031 0.270652i
\(669\) −7.22264 4.16999i −0.279243 0.161221i
\(670\) 6.13667 + 6.33624i 0.237080 + 0.244790i
\(671\) 49.1520i 1.89749i
\(672\) 0 0
\(673\) 2.25638 2.25638i 0.0869771 0.0869771i −0.662280 0.749257i \(-0.730411\pi\)
0.749257 + 0.662280i \(0.230411\pi\)
\(674\) 18.3824 24.9838i 0.708065 0.962342i
\(675\) 1.60090 22.0955i 0.0616188 0.850454i
\(676\) −7.66325 24.5876i −0.294740 0.945679i
\(677\) 10.7790 40.2278i 0.414271 1.54608i −0.372022 0.928224i \(-0.621335\pi\)
0.786292 0.617855i \(-0.211998\pi\)
\(678\) −9.16574 3.58180i −0.352008 0.137558i
\(679\) 0 0
\(680\) 18.2933 33.5441i 0.701518 1.28636i
\(681\) −8.51279 14.7446i −0.326211 0.565014i
\(682\) 35.7672 28.6092i 1.36960 1.09550i
\(683\) −41.8335 + 11.2093i −1.60072 + 0.428910i −0.945259 0.326322i \(-0.894190\pi\)
−0.655457 + 0.755233i \(0.727524\pi\)
\(684\) −13.3695 3.01032i −0.511196 0.115102i
\(685\) −0.643460 0.904501i −0.0245853 0.0345592i
\(686\) 0 0
\(687\) 5.64178 5.64178i 0.215247 0.215247i
\(688\) −17.9845 3.29381i −0.685652 0.125575i
\(689\) −0.0971379 0.0560826i −0.00370066 0.00213658i
\(690\) −8.46844 15.2252i −0.322388 0.579613i
\(691\) 37.3091 21.5404i 1.41930 0.819436i 0.423067 0.906098i \(-0.360954\pi\)
0.996238 + 0.0866626i \(0.0276202\pi\)
\(692\) 45.1248 1.82086i 1.71539 0.0692186i
\(693\) 0 0
\(694\) −13.6632 + 5.98504i −0.518648 + 0.227189i
\(695\) −4.97436 13.3557i −0.188688 0.506610i
\(696\) 8.33748 7.23900i 0.316031 0.274394i
\(697\) −6.73079 + 1.80351i −0.254947 + 0.0683128i
\(698\) 11.0795 1.68656i 0.419364 0.0638374i
\(699\) −17.1102 −0.647166
\(700\) 0 0
\(701\) −13.3256 −0.503300 −0.251650 0.967818i \(-0.580973\pi\)
−0.251650 + 0.967818i \(0.580973\pi\)
\(702\) −2.17175 + 0.330593i −0.0819673 + 0.0124774i
\(703\) 7.13021 1.91053i 0.268921 0.0720572i
\(704\) 36.1452 14.5539i 1.36227 0.548519i
\(705\) −3.20372 8.60169i −0.120659 0.323958i
\(706\) 11.6161 5.08830i 0.437176 0.191501i
\(707\) 0 0
\(708\) 0.0570692 + 1.41430i 0.00214479 + 0.0531525i
\(709\) −3.81245 + 2.20112i −0.143180 + 0.0826648i −0.569879 0.821729i \(-0.693010\pi\)
0.426699 + 0.904394i \(0.359676\pi\)
\(710\) 9.98994 + 17.9607i 0.374916 + 0.674052i
\(711\) −17.7285 10.2356i −0.664871 0.383863i
\(712\) −22.3774 15.1130i −0.838629 0.566385i
\(713\) −30.9949 + 30.9949i −1.16077 + 1.16077i
\(714\) 0 0
\(715\) 2.21339 + 3.11133i 0.0827762 + 0.116357i
\(716\) 4.09809 18.2006i 0.153153 0.680187i
\(717\) −20.6522 + 5.53374i −0.771271 + 0.206661i
\(718\) −25.6464 + 20.5138i −0.957114 + 0.765570i
\(719\) 0.144472 + 0.250232i 0.00538788 + 0.00933208i 0.868707 0.495327i \(-0.164952\pi\)
−0.863319 + 0.504659i \(0.831618\pi\)
\(720\) −20.5089 1.77648i −0.764322 0.0662053i
\(721\) 0 0
\(722\) −13.3519 5.21766i −0.496905 0.194181i
\(723\) 3.46626 12.9363i 0.128912 0.481105i
\(724\) 26.3286 8.20584i 0.978493 0.304968i
\(725\) 15.2782 + 17.6651i 0.567420 + 0.656066i
\(726\) 8.91193 12.1123i 0.330753 0.449531i
\(727\) −4.87969 + 4.87969i −0.180978 + 0.180978i −0.791782 0.610804i \(-0.790846\pi\)
0.610804 + 0.791782i \(0.290846\pi\)
\(728\) 0 0
\(729\) 3.73943i 0.138497i
\(730\) 2.72861 + 2.81735i 0.100991 + 0.104275i
\(731\) 23.9143 + 13.8069i 0.884502 + 0.510667i
\(732\) −14.9358 7.83792i −0.552044 0.289698i
\(733\) −21.9180 5.87292i −0.809561 0.216921i −0.169783 0.985481i \(-0.554307\pi\)
−0.639777 + 0.768560i \(0.720973\pi\)
\(734\) 40.4105 17.7014i 1.49158 0.653371i
\(735\) 0 0
\(736\) −32.8409 + 17.6659i −1.21053 + 0.651173i
\(737\) 3.51635 13.1232i 0.129526 0.483399i
\(738\) 2.34509 + 2.93183i 0.0863241 + 0.107922i
\(739\) −2.90840 + 5.03750i −0.106987 + 0.185307i −0.914548 0.404477i \(-0.867454\pi\)
0.807561 + 0.589784i \(0.200787\pi\)
\(740\) 10.2266 4.28600i 0.375938 0.157557i
\(741\) 0.872306 0.0320449
\(742\) 0 0
\(743\) −5.70591 5.70591i −0.209329 0.209329i 0.594653 0.803982i \(-0.297289\pi\)
−0.803982 + 0.594653i \(0.797289\pi\)
\(744\) −2.98995 15.4307i −0.109617 0.565717i
\(745\) −10.0619 8.31567i −0.368640 0.304663i
\(746\) 2.91208 26.1902i 0.106619 0.958890i
\(747\) −34.0944 9.13556i −1.24745 0.334253i
\(748\) −58.8015 + 2.37274i −2.15000 + 0.0867558i
\(749\) 0 0
\(750\) −1.16564 + 13.1626i −0.0425630 + 0.480629i
\(751\) 36.3916 21.0107i 1.32795 0.766690i 0.342965 0.939348i \(-0.388569\pi\)
0.984982 + 0.172658i \(0.0552355\pi\)
\(752\) −18.5063 + 6.59761i −0.674856 + 0.240590i
\(753\) −6.26077 23.3655i −0.228155 0.851486i
\(754\) 1.37254 1.86544i 0.0499850 0.0679353i
\(755\) −1.37792 + 8.17101i −0.0501477 + 0.297374i
\(756\) 0 0
\(757\) −36.1581 36.1581i −1.31419 1.31419i −0.918298 0.395891i \(-0.870436\pi\)
−0.395891 0.918298i \(-0.629564\pi\)
\(758\) 3.96173 + 26.0256i 0.143896 + 0.945292i
\(759\) −13.4169 + 23.2387i −0.487002 + 0.843512i
\(760\) 18.3009 + 4.42945i 0.663842 + 0.160673i
\(761\) 0.178655 + 0.309439i 0.00647623 + 0.0112172i 0.869245 0.494381i \(-0.164605\pi\)
−0.862769 + 0.505598i \(0.831272\pi\)
\(762\) −8.51669 3.32816i −0.308527 0.120567i
\(763\) 0 0
\(764\) 0.234599 0.254328i 0.00848748 0.00920125i
\(765\) 28.2751 + 12.9287i 1.02229 + 0.467437i
\(766\) −43.8562 4.87636i −1.58459 0.176190i
\(767\) 0.0768408 + 0.286774i 0.00277456 + 0.0103548i
\(768\) 1.34133 13.3043i 0.0484012 0.480076i
\(769\) 23.4758i 0.846559i −0.905999 0.423279i \(-0.860879\pi\)
0.905999 0.423279i \(-0.139121\pi\)
\(770\) 0 0
\(771\) 17.2205i 0.620183i
\(772\) 10.0619 + 15.9097i 0.362135 + 0.572604i
\(773\) 6.57570 + 24.5409i 0.236512 + 0.882673i 0.977462 + 0.211113i \(0.0677089\pi\)
−0.740950 + 0.671560i \(0.765624\pi\)
\(774\) 1.64412 14.7867i 0.0590968 0.531496i
\(775\) 32.6516 6.26167i 1.17288 0.224926i
\(776\) −3.07731 + 8.92000i −0.110469 + 0.320209i
\(777\) 0 0
\(778\) −1.91272 + 4.89461i −0.0685745 + 0.175480i
\(779\) −1.71700 2.97394i −0.0615181 0.106552i
\(780\) 1.29840 0.176443i 0.0464900 0.00631767i
\(781\) 15.8275 27.4140i 0.566351 0.980949i
\(782\) 55.6792 8.47572i 1.99108 0.303091i
\(783\) 14.6344 + 14.6344i 0.522990 + 0.522990i
\(784\) 0 0
\(785\) −14.3111 20.1169i −0.510785 0.718002i
\(786\) 5.41943 + 3.98747i 0.193305 + 0.142228i
\(787\) −0.657725 2.45466i −0.0234454 0.0874993i 0.953212 0.302303i \(-0.0977555\pi\)
−0.976657 + 0.214804i \(0.931089\pi\)
\(788\) 26.7148 + 14.0192i 0.951675 + 0.499413i
\(789\) 9.14236 5.27834i 0.325477 0.187914i
\(790\) 24.1304 + 14.4513i 0.858522 + 0.514154i
\(791\) 0 0
\(792\) 13.8825 + 28.5062i 0.493293 + 1.01292i
\(793\) −3.41740 0.915690i −0.121356 0.0325171i
\(794\) −6.24908 0.694833i −0.221771 0.0246587i
\(795\) −0.380875 + 0.460857i −0.0135083 + 0.0163449i
\(796\) 7.53898 33.4823i 0.267212 1.18675i
\(797\) −31.6762 31.6762i −1.12203 1.12203i −0.991436 0.130593i \(-0.958312\pi\)
−0.130593 0.991436i \(-0.541688\pi\)
\(798\) 0 0
\(799\) 29.6732 1.04976
\(800\) 28.1361 + 2.89133i 0.994761 + 0.102224i
\(801\) 10.9864 19.0290i 0.388185 0.672357i
\(802\) −38.7557 + 30.9996i −1.36851 + 1.09463i
\(803\) 1.56351 5.83510i 0.0551751 0.205916i
\(804\) −3.42702 3.16118i −0.120862 0.111486i
\(805\) 0 0
\(806\) −1.32278 3.01978i −0.0465931 0.106367i
\(807\) 9.04083 + 2.42248i 0.318252 + 0.0852754i
\(808\) 4.11641 + 0.290296i 0.144815 + 0.0102126i
\(809\) 40.9623 + 23.6496i 1.44016 + 0.831475i 0.997860 0.0653930i \(-0.0208301\pi\)
0.442298 + 0.896868i \(0.354163\pi\)
\(810\) 0.161982 10.1237i 0.00569147 0.355711i
\(811\) 5.30651i 0.186337i −0.995650 0.0931683i \(-0.970301\pi\)
0.995650 0.0931683i \(-0.0296995\pi\)
\(812\) 0 0
\(813\) −14.0864 + 14.0864i −0.494033 + 0.494033i
\(814\) −13.7564 10.1216i −0.482162 0.354762i
\(815\) 1.61206 0.153178i 0.0564680 0.00536561i
\(816\) −8.65566 + 18.2464i −0.303009 + 0.638752i
\(817\) −3.52210 + 13.1447i −0.123223 + 0.459874i
\(818\) 18.9620 48.5233i 0.662991 1.69658i
\(819\) 0 0
\(820\) −3.15724 4.07930i −0.110256 0.142455i
\(821\) 3.34048 + 5.78588i 0.116584 + 0.201929i 0.918412 0.395626i \(-0.129472\pi\)
−0.801828 + 0.597555i \(0.796139\pi\)
\(822\) 0.366485 + 0.458179i 0.0127826 + 0.0159808i
\(823\) 29.6750 7.95140i 1.03441 0.277168i 0.298613 0.954374i \(-0.403476\pi\)
0.735794 + 0.677206i \(0.236809\pi\)
\(824\) 1.53226 0.296900i 0.0533789 0.0103430i
\(825\) 18.3153 8.87605i 0.637658 0.309024i
\(826\) 0 0
\(827\) 34.0292 34.0292i 1.18331 1.18331i 0.204428 0.978882i \(-0.434467\pi\)
0.978882 0.204428i \(-0.0655334\pi\)
\(828\) −16.2194 25.6459i −0.563663 0.891258i
\(829\) −3.90921 2.25698i −0.135773 0.0783883i 0.430575 0.902555i \(-0.358311\pi\)
−0.566348 + 0.824166i \(0.691644\pi\)
\(830\) 46.6380 + 13.2999i 1.61883 + 0.461645i
\(831\) 3.97770 2.29653i 0.137985 0.0796657i
\(832\) −0.338513 2.78421i −0.0117358 0.0965252i
\(833\) 0 0
\(834\) 3.02252 + 6.90010i 0.104661 + 0.238931i
\(835\) −8.03248 3.67281i −0.277975 0.127103i
\(836\) −8.62950 27.6879i −0.298458 0.957606i
\(837\) 28.4571 7.62506i 0.983622 0.263561i
\(838\) 6.76851 + 44.4640i 0.233814 + 1.53598i
\(839\) 28.1768 0.972772 0.486386 0.873744i \(-0.338315\pi\)
0.486386 + 0.873744i \(0.338315\pi\)
\(840\) 0 0
\(841\) 7.18076 0.247612
\(842\) −2.79213 18.3422i −0.0962232 0.632115i
\(843\) 24.0447 6.44276i 0.828144 0.221900i
\(844\) 1.47221 + 4.72360i 0.0506755 + 0.162593i
\(845\) −26.9832 + 10.0500i −0.928251 + 0.345729i
\(846\) −6.41468 14.6440i −0.220541 0.503472i
\(847\) 0 0
\(848\) 0.974876 + 0.829055i 0.0334774 + 0.0284699i
\(849\) −15.6876 + 9.05723i −0.538396 + 0.310843i
\(850\) −38.5601 18.3829i −1.32260 0.630528i
\(851\) 14.1551 + 8.17246i 0.485231 + 0.280148i
\(852\) −5.80640 9.18102i −0.198924 0.314536i
\(853\) −7.11404 + 7.11404i −0.243580 + 0.243580i −0.818329 0.574749i \(-0.805100\pi\)
0.574749 + 0.818329i \(0.305100\pi\)
\(854\) 0 0
\(855\) −2.54782 + 15.1085i −0.0871336 + 0.516699i
\(856\) −2.67564 13.8086i −0.0914515 0.471968i
\(857\) 21.4508 5.74773i 0.732746 0.196339i 0.126894 0.991916i \(-0.459499\pi\)
0.605852 + 0.795578i \(0.292832\pi\)
\(858\) −1.26065 1.57606i −0.0430378 0.0538058i
\(859\) −9.63913 16.6955i −0.328883 0.569642i 0.653408 0.757006i \(-0.273339\pi\)
−0.982290 + 0.187364i \(0.940005\pi\)
\(860\) −2.58373 + 20.2778i −0.0881043 + 0.691466i
\(861\) 0 0
\(862\) −10.1287 + 25.9190i −0.344983 + 0.882804i
\(863\) −4.28964 + 16.0091i −0.146021 + 0.544958i 0.853687 + 0.520787i \(0.174361\pi\)
−0.999708 + 0.0241711i \(0.992305\pi\)
\(864\) 25.0523 + 0.753684i 0.852298 + 0.0256409i
\(865\) −4.77626 50.2657i −0.162398 1.70908i
\(866\) −20.3296 14.9580i −0.690827 0.508292i
\(867\) 11.5214 11.5214i 0.391286 0.391286i
\(868\) 0 0
\(869\) 43.3219i 1.46960i
\(870\) −8.58837 8.86767i −0.291173 0.300642i
\(871\) −0.846911 0.488964i −0.0286965 0.0165679i
\(872\) −2.22929 + 31.6115i −0.0754933 + 1.07050i
\(873\) −7.41657 1.98726i −0.251013 0.0672587i
\(874\) 11.1364 + 25.4232i 0.376694 + 0.859952i
\(875\) 0 0
\(876\) −1.52379 1.40559i −0.0514842 0.0474904i
\(877\) −10.0222 + 37.4032i −0.338424 + 1.26302i 0.561685 + 0.827351i \(0.310153\pi\)
−0.900109 + 0.435665i \(0.856513\pi\)
\(878\) 5.18571 4.14790i 0.175009 0.139985i
\(879\) 1.68525 2.91893i 0.0568419 0.0984531i
\(880\) −18.4452 39.4669i −0.621787 1.33043i
\(881\) −34.3504 −1.15729 −0.578647 0.815578i \(-0.696419\pi\)
−0.578647 + 0.815578i \(0.696419\pi\)
\(882\) 0 0
\(883\) −34.1114 34.1114i −1.14794 1.14794i −0.986957 0.160984i \(-0.948533\pi\)
−0.160984 0.986957i \(-0.551467\pi\)
\(884\) −0.930489 + 4.13251i −0.0312957 + 0.138991i
\(885\) 1.57542 0.149697i 0.0529572 0.00503201i
\(886\) 5.84868 + 0.650313i 0.196490 + 0.0218477i
\(887\) 40.4245 + 10.8317i 1.35732 + 0.363693i 0.862832 0.505490i \(-0.168688\pi\)
0.494490 + 0.869184i \(0.335355\pi\)
\(888\) −5.26929 + 2.56615i −0.176826 + 0.0861142i
\(889\) 0 0
\(890\) −15.5114 + 25.9005i −0.519943 + 0.868188i
\(891\) −13.5056 + 7.79744i −0.452454 + 0.261224i
\(892\) 17.6729 + 9.27425i 0.591732 + 0.310525i
\(893\) 3.78478 + 14.1250i 0.126653 + 0.472674i
\(894\) 5.55737 + 4.08897i 0.185866 + 0.136755i
\(895\) −20.5679 3.46847i −0.687509 0.115938i
\(896\) 0 0
\(897\) 1.36577 + 1.36577i 0.0456018 + 0.0456018i
\(898\) 57.8172 8.80118i 1.92938 0.293699i
\(899\) −15.5298 + 26.8985i −0.517949 + 0.897114i
\(900\) −0.736321 + 23.0038i −0.0245440 + 0.766792i
\(901\) −0.966393 1.67384i −0.0321952 0.0557637i
\(902\) −2.89184 + 7.40015i −0.0962877 + 0.246398i
\(903\) 0 0
\(904\) 22.2624 + 7.68031i 0.740437 + 0.255443i
\(905\) −10.7616 28.8938i −0.357726 0.960461i
\(906\) 0.484014 4.35305i 0.0160803 0.144620i
\(907\) −7.45963 27.8397i −0.247693 0.924403i −0.972011 0.234936i \(-0.924512\pi\)
0.724318 0.689466i \(-0.242155\pi\)
\(908\) 21.7782 + 34.4354i 0.722734 + 1.14278i
\(909\) 3.35793i 0.111375i
\(910\) 0 0
\(911\) 19.1234i 0.633586i −0.948495 0.316793i \(-0.897394\pi\)
0.948495 0.316793i \(-0.102606\pi\)
\(912\) −9.78962 1.79294i −0.324167 0.0593703i
\(913\) −19.3331 72.1521i −0.639832 2.38789i
\(914\) −32.5806 3.62262i −1.07767 0.119826i
\(915\) −7.84203 + 17.1506i −0.259249 + 0.566981i
\(916\) −12.9461 + 14.0348i −0.427751 + 0.463723i
\(917\) 0 0
\(918\) −35.2573 13.7779i −1.16366 0.454738i
\(919\) 13.6744 + 23.6848i 0.451077 + 0.781289i 0.998453 0.0555980i \(-0.0177065\pi\)
−0.547376 + 0.836887i \(0.684373\pi\)
\(920\) 21.7185 + 35.5889i 0.716037 + 1.17333i
\(921\) 2.11703 3.66680i 0.0697585 0.120825i
\(922\) 3.59955 + 23.6464i 0.118545 + 0.778752i
\(923\) −1.61116 1.61116i −0.0530319 0.0530319i
\(924\) 0 0
\(925\) −5.40656 11.1562i −0.177767 0.366814i
\(926\) −26.4960 + 36.0111i −0.870713 + 1.18340i
\(927\) 0.328707 + 1.22675i 0.0107962 + 0.0402918i
\(928\) −19.2378 + 18.1141i −0.631513 + 0.594625i
\(929\) −12.9501 + 7.47676i −0.424880 + 0.245305i −0.697163 0.716913i \(-0.745555\pi\)
0.272283 + 0.962217i \(0.412221\pi\)
\(930\) −17.0447 + 4.27607i −0.558919 + 0.140218i
\(931\) 0 0
\(932\) 40.9133 1.65092i 1.34016 0.0540776i
\(933\) 19.8613 + 5.32182i 0.650230 + 0.174229i
\(934\) −1.34104 + 12.0609i −0.0438803 + 0.394644i
\(935\) 6.22388 + 65.5005i 0.203543 + 2.14210i
\(936\) 2.24058 0.434149i 0.0732358 0.0141906i
\(937\) −22.4138 22.4138i −0.732226 0.732226i 0.238835 0.971060i \(-0.423235\pi\)
−0.971060 + 0.238835i \(0.923235\pi\)
\(938\) 0 0
\(939\) −5.61967 −0.183391
\(940\) 8.49059 + 20.2590i 0.276932 + 0.660774i
\(941\) −12.6079 + 21.8376i −0.411007 + 0.711884i −0.995000 0.0998741i \(-0.968156\pi\)
0.583994 + 0.811758i \(0.301489\pi\)
\(942\) 8.15094 + 10.1903i 0.265572 + 0.332018i
\(943\) 1.96799 7.34462i 0.0640864 0.239174i
\(944\) −0.272924 3.37631i −0.00888292 0.109890i
\(945\) 0 0
\(946\) 28.8395 12.6329i 0.937655 0.410731i
\(947\) −20.9252 5.60688i −0.679976 0.182199i −0.0977318 0.995213i \(-0.531159\pi\)
−0.582245 + 0.813014i \(0.697825\pi\)
\(948\) −13.1642 6.90824i −0.427555 0.224369i
\(949\) −0.376571 0.217413i −0.0122240 0.00705754i
\(950\) 3.83230 20.7000i 0.124336 0.671597i
\(951\) 11.5490i 0.374503i
\(952\) 0 0
\(953\) 22.8157 22.8157i 0.739074 0.739074i −0.233325 0.972399i \(-0.574960\pi\)
0.972399 + 0.233325i \(0.0749605\pi\)
\(954\) −0.617145 + 0.838770i −0.0199808 + 0.0271562i
\(955\) −0.298189 0.246439i −0.00964918 0.00797457i
\(956\) 48.8490 15.2248i 1.57989 0.492405i
\(957\) −4.92119 + 18.3661i −0.159079 + 0.593692i
\(958\) −31.8667 12.4529i −1.02957 0.402336i
\(959\) 0 0
\(960\) −14.9342 0.688567i −0.481998 0.0222234i
\(961\) 6.60673 + 11.4432i 0.213120 + 0.369135i
\(962\) −0.960006 + 0.767883i −0.0309518 + 0.0247575i
\(963\) 11.0554 2.96228i 0.356254 0.0954580i
\(964\) −7.04022 + 31.2672i −0.226750 + 1.00705i
\(965\) 17.1496 12.2002i 0.552064 0.392737i
\(966\) 0 0
\(967\) 11.0053 11.0053i 0.353908 0.353908i −0.507654 0.861561i \(-0.669487\pi\)
0.861561 + 0.507654i \(0.169487\pi\)
\(968\) −20.1412 + 29.8225i −0.647364 + 0.958532i
\(969\) 13.0174 + 7.51561i 0.418180 + 0.241436i
\(970\) 10.1452 + 2.89313i 0.325743 + 0.0928927i
\(971\) −15.7328 + 9.08331i −0.504888 + 0.291497i −0.730730 0.682667i \(-0.760820\pi\)
0.225842 + 0.974164i \(0.427487\pi\)
\(972\) 1.28761 + 31.9098i 0.0413002 + 1.02351i
\(973\) 0 0
\(974\) −24.0094 + 10.5171i −0.769310 + 0.336989i
\(975\) −0.275917 1.43877i −0.00883641 0.0460777i
\(976\) 36.4703 + 17.3007i 1.16739 + 0.553781i
\(977\) −0.733186 + 0.196456i −0.0234567 + 0.00628520i −0.270528 0.962712i \(-0.587198\pi\)
0.247072 + 0.968997i \(0.420532\pi\)
\(978\) −0.846165 + 0.128807i −0.0270574 + 0.00411879i
\(979\) 46.4999 1.48614
\(980\) 0 0
\(981\) −25.7868 −0.823310
\(982\) 36.8130 5.60383i 1.17475 0.178826i
\(983\) −32.5127 + 8.71176i −1.03699 + 0.277862i −0.736867 0.676037i \(-0.763696\pi\)
−0.300127 + 0.953899i \(0.597029\pi\)
\(984\) 1.78754 + 2.05879i 0.0569848 + 0.0656320i
\(985\) 14.0265 30.6762i 0.446923 0.977424i
\(986\) 36.5547 16.0124i 1.16414 0.509940i
\(987\) 0 0
\(988\) −2.08583 + 0.0841666i −0.0663591 + 0.00267770i
\(989\) −26.0952 + 15.0661i −0.829779 + 0.479073i
\(990\) 30.9797 17.2313i 0.984599 0.547645i
\(991\) 25.1531 + 14.5222i 0.799016 + 0.461312i 0.843127 0.537715i \(-0.180712\pi\)
−0.0441111 + 0.999027i \(0.514046\pi\)
\(992\) 8.63833 + 36.6089i 0.274267 + 1.16233i
\(993\) −1.10577 + 1.10577i −0.0350906 + 0.0350906i
\(994\) 0 0
\(995\) −37.8373 6.38071i −1.19952 0.202282i
\(996\) −25.0078 5.63083i −0.792402 0.178420i
\(997\) −45.9271 + 12.3061i −1.45453 + 0.389739i −0.897596 0.440820i \(-0.854688\pi\)
−0.556931 + 0.830559i \(0.688021\pi\)
\(998\) 11.9564 9.56361i 0.378473 0.302731i
\(999\) −5.49282 9.51384i −0.173785 0.301004i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 980.2.x.m.67.9 72
4.3 odd 2 inner 980.2.x.m.67.12 72
5.3 odd 4 inner 980.2.x.m.263.1 72
7.2 even 3 inner 980.2.x.m.667.4 72
7.3 odd 6 980.2.k.k.687.16 36
7.4 even 3 980.2.k.j.687.16 36
7.5 odd 6 140.2.w.b.107.4 yes 72
7.6 odd 2 140.2.w.b.67.9 yes 72
20.3 even 4 inner 980.2.x.m.263.4 72
28.3 even 6 980.2.k.k.687.12 36
28.11 odd 6 980.2.k.j.687.12 36
28.19 even 6 140.2.w.b.107.1 yes 72
28.23 odd 6 inner 980.2.x.m.667.1 72
28.27 even 2 140.2.w.b.67.12 yes 72
35.3 even 12 980.2.k.k.883.12 36
35.12 even 12 700.2.be.e.443.7 72
35.13 even 4 140.2.w.b.123.1 yes 72
35.18 odd 12 980.2.k.j.883.12 36
35.19 odd 6 700.2.be.e.107.15 72
35.23 odd 12 inner 980.2.x.m.863.12 72
35.27 even 4 700.2.be.e.543.18 72
35.33 even 12 140.2.w.b.23.12 yes 72
35.34 odd 2 700.2.be.e.207.10 72
140.3 odd 12 980.2.k.k.883.16 36
140.19 even 6 700.2.be.e.107.18 72
140.23 even 12 inner 980.2.x.m.863.9 72
140.27 odd 4 700.2.be.e.543.15 72
140.47 odd 12 700.2.be.e.443.10 72
140.83 odd 4 140.2.w.b.123.4 yes 72
140.103 odd 12 140.2.w.b.23.9 72
140.123 even 12 980.2.k.j.883.16 36
140.139 even 2 700.2.be.e.207.7 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.w.b.23.9 72 140.103 odd 12
140.2.w.b.23.12 yes 72 35.33 even 12
140.2.w.b.67.9 yes 72 7.6 odd 2
140.2.w.b.67.12 yes 72 28.27 even 2
140.2.w.b.107.1 yes 72 28.19 even 6
140.2.w.b.107.4 yes 72 7.5 odd 6
140.2.w.b.123.1 yes 72 35.13 even 4
140.2.w.b.123.4 yes 72 140.83 odd 4
700.2.be.e.107.15 72 35.19 odd 6
700.2.be.e.107.18 72 140.19 even 6
700.2.be.e.207.7 72 140.139 even 2
700.2.be.e.207.10 72 35.34 odd 2
700.2.be.e.443.7 72 35.12 even 12
700.2.be.e.443.10 72 140.47 odd 12
700.2.be.e.543.15 72 140.27 odd 4
700.2.be.e.543.18 72 35.27 even 4
980.2.k.j.687.12 36 28.11 odd 6
980.2.k.j.687.16 36 7.4 even 3
980.2.k.j.883.12 36 35.18 odd 12
980.2.k.j.883.16 36 140.123 even 12
980.2.k.k.687.12 36 28.3 even 6
980.2.k.k.687.16 36 7.3 odd 6
980.2.k.k.883.12 36 35.3 even 12
980.2.k.k.883.16 36 140.3 odd 12
980.2.x.m.67.9 72 1.1 even 1 trivial
980.2.x.m.67.12 72 4.3 odd 2 inner
980.2.x.m.263.1 72 5.3 odd 4 inner
980.2.x.m.263.4 72 20.3 even 4 inner
980.2.x.m.667.1 72 28.23 odd 6 inner
980.2.x.m.667.4 72 7.2 even 3 inner
980.2.x.m.863.9 72 140.23 even 12 inner
980.2.x.m.863.12 72 35.23 odd 12 inner