Properties

Label 980.2.x.m.67.1
Level $980$
Weight $2$
Character 980.67
Analytic conductor $7.825$
Analytic rank $0$
Dimension $72$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [980,2,Mod(67,980)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("980.67"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(980, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 3, 8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.x (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72,2,0,0,8,16,0,-4,0,-2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(18\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 67.1
Character \(\chi\) \(=\) 980.67
Dual form 980.2.x.m.863.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.41262 + 0.0671791i) q^{2} +(-2.38471 + 0.638980i) q^{3} +(1.99097 - 0.189797i) q^{4} +(0.525600 - 2.17342i) q^{5} +(3.32575 - 1.06284i) q^{6} +(-2.79973 + 0.401862i) q^{8} +(2.68045 - 1.54756i) q^{9} +(-0.596463 + 3.10552i) q^{10} +(-4.09588 - 2.36476i) q^{11} +(-4.62661 + 1.72480i) q^{12} +(-0.0592655 + 0.0592655i) q^{13} +(0.135370 + 5.51881i) q^{15} +(3.92795 - 0.755761i) q^{16} +(-4.77484 + 1.27942i) q^{17} +(-3.68249 + 2.36618i) q^{18} +(1.31544 + 2.27842i) q^{19} +(0.633947 - 4.42698i) q^{20} +(5.94478 + 3.06534i) q^{22} +(-0.292774 + 1.09265i) q^{23} +(6.41976 - 2.74730i) q^{24} +(-4.44749 - 2.28469i) q^{25} +(0.0797380 - 0.0877008i) q^{26} +(-0.166053 + 0.166053i) q^{27} -7.27332i q^{29} +(-0.561975 - 7.78687i) q^{30} +(4.01558 + 2.31840i) q^{31} +(-5.49792 + 1.33148i) q^{32} +(11.2785 + 3.02207i) q^{33} +(6.65908 - 2.12809i) q^{34} +(5.04299 - 3.58989i) q^{36} +(-0.596933 + 2.22779i) q^{37} +(-2.01128 - 3.13016i) q^{38} +(0.103461 - 0.179200i) q^{39} +(-0.598125 + 6.29621i) q^{40} +5.71767 q^{41} +(-1.57302 - 1.57302i) q^{43} +(-8.60362 - 3.93079i) q^{44} +(-1.95465 - 6.63914i) q^{45} +(0.340174 - 1.56316i) q^{46} +(-2.67468 - 0.716679i) q^{47} +(-8.88410 + 4.31215i) q^{48} +(6.43608 + 2.92862i) q^{50} +(10.5691 - 6.10206i) q^{51} +(-0.106748 + 0.129244i) q^{52} +(2.44441 + 9.12265i) q^{53} +(0.223414 - 0.245724i) q^{54} +(-7.29241 + 7.65915i) q^{55} +(-4.59281 - 4.59281i) q^{57} +(0.488615 + 10.2744i) q^{58} +(1.67748 - 2.90547i) q^{59} +(1.31697 + 10.9621i) q^{60} +(0.978771 + 1.69528i) q^{61} +(-5.82822 - 3.00524i) q^{62} +(7.67701 - 2.25021i) q^{64} +(0.0976587 + 0.159959i) q^{65} +(-16.1352 - 3.51135i) q^{66} +(-0.131802 - 0.491893i) q^{67} +(-9.26376 + 3.45353i) q^{68} -2.79272i q^{69} +14.4625i q^{71} +(-6.88265 + 5.40993i) q^{72} +(2.48257 + 9.26507i) q^{73} +(0.693578 - 3.18711i) q^{74} +(12.0658 + 2.60647i) q^{75} +(3.05145 + 4.28660i) q^{76} +(-0.134113 + 0.260092i) q^{78} +(3.05204 + 5.28630i) q^{79} +(0.421947 - 8.93431i) q^{80} +(-4.35280 + 7.53927i) q^{81} +(-8.07688 + 0.384108i) q^{82} +(5.62620 + 5.62620i) q^{83} +(0.271049 + 11.0502i) q^{85} +(2.32775 + 2.11640i) q^{86} +(4.64751 + 17.3447i) q^{87} +(12.4177 + 4.97472i) q^{88} +(-14.4482 + 8.34169i) q^{89} +(3.20718 + 9.24725i) q^{90} +(-0.375524 + 2.23100i) q^{92} +(-11.0574 - 2.96282i) q^{93} +(3.82645 + 0.832711i) q^{94} +(5.64335 - 1.66148i) q^{95} +(12.2601 - 6.68825i) q^{96} +(-5.81505 - 5.81505i) q^{97} -14.6384 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 2 q^{2} + 8 q^{5} + 16 q^{6} - 4 q^{8} - 2 q^{10} - 10 q^{12} - 28 q^{16} - 4 q^{17} - 20 q^{18} + 56 q^{20} - 16 q^{22} - 16 q^{25} + 4 q^{26} - 32 q^{30} - 38 q^{32} + 64 q^{33} + 16 q^{36} - 4 q^{37}+ \cdots + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.41262 + 0.0671791i −0.998871 + 0.0475028i
\(3\) −2.38471 + 0.638980i −1.37681 + 0.368915i −0.869962 0.493119i \(-0.835857\pi\)
−0.506849 + 0.862035i \(0.669190\pi\)
\(4\) 1.99097 0.189797i 0.995487 0.0948984i
\(5\) 0.525600 2.17342i 0.235055 0.971982i
\(6\) 3.32575 1.06284i 1.35773 0.433901i
\(7\) 0 0
\(8\) −2.79973 + 0.401862i −0.989855 + 0.142080i
\(9\) 2.68045 1.54756i 0.893484 0.515853i
\(10\) −0.596463 + 3.10552i −0.188618 + 0.982051i
\(11\) −4.09588 2.36476i −1.23496 0.713002i −0.266897 0.963725i \(-0.585998\pi\)
−0.968059 + 0.250723i \(0.919332\pi\)
\(12\) −4.62661 + 1.72480i −1.33559 + 0.497908i
\(13\) −0.0592655 + 0.0592655i −0.0164373 + 0.0164373i −0.715278 0.698840i \(-0.753700\pi\)
0.698840 + 0.715278i \(0.253700\pi\)
\(14\) 0 0
\(15\) 0.135370 + 5.51881i 0.0349524 + 1.42495i
\(16\) 3.92795 0.755761i 0.981989 0.188940i
\(17\) −4.77484 + 1.27942i −1.15807 + 0.310304i −0.786195 0.617979i \(-0.787952\pi\)
−0.371875 + 0.928283i \(0.621285\pi\)
\(18\) −3.68249 + 2.36618i −0.867971 + 0.557714i
\(19\) 1.31544 + 2.27842i 0.301784 + 0.522705i 0.976540 0.215336i \(-0.0690846\pi\)
−0.674756 + 0.738041i \(0.735751\pi\)
\(20\) 0.633947 4.42698i 0.141755 0.989902i
\(21\) 0 0
\(22\) 5.94478 + 3.06534i 1.26743 + 0.653533i
\(23\) −0.292774 + 1.09265i −0.0610475 + 0.227832i −0.989709 0.143097i \(-0.954294\pi\)
0.928661 + 0.370929i \(0.120961\pi\)
\(24\) 6.41976 2.74730i 1.31043 0.560790i
\(25\) −4.44749 2.28469i −0.889498 0.456939i
\(26\) 0.0797380 0.0877008i 0.0156379 0.0171995i
\(27\) −0.166053 + 0.166053i −0.0319568 + 0.0319568i
\(28\) 0 0
\(29\) 7.27332i 1.35062i −0.737533 0.675311i \(-0.764009\pi\)
0.737533 0.675311i \(-0.235991\pi\)
\(30\) −0.561975 7.78687i −0.102602 1.42168i
\(31\) 4.01558 + 2.31840i 0.721219 + 0.416396i 0.815201 0.579178i \(-0.196626\pi\)
−0.0939821 + 0.995574i \(0.529960\pi\)
\(32\) −5.49792 + 1.33148i −0.971905 + 0.235374i
\(33\) 11.2785 + 3.02207i 1.96334 + 0.526075i
\(34\) 6.65908 2.12809i 1.14202 0.364965i
\(35\) 0 0
\(36\) 5.04299 3.58989i 0.840498 0.598315i
\(37\) −0.596933 + 2.22779i −0.0981352 + 0.366246i −0.997476 0.0710024i \(-0.977380\pi\)
0.899341 + 0.437248i \(0.144047\pi\)
\(38\) −2.01128 3.13016i −0.326273 0.507779i
\(39\) 0.103461 0.179200i 0.0165671 0.0286950i
\(40\) −0.598125 + 6.29621i −0.0945718 + 0.995518i
\(41\) 5.71767 0.892950 0.446475 0.894796i \(-0.352679\pi\)
0.446475 + 0.894796i \(0.352679\pi\)
\(42\) 0 0
\(43\) −1.57302 1.57302i −0.239883 0.239883i 0.576918 0.816802i \(-0.304255\pi\)
−0.816802 + 0.576918i \(0.804255\pi\)
\(44\) −8.60362 3.93079i −1.29704 0.592589i
\(45\) −1.95465 6.63914i −0.291382 0.989704i
\(46\) 0.340174 1.56316i 0.0501559 0.230475i
\(47\) −2.67468 0.716679i −0.390143 0.104538i 0.0584148 0.998292i \(-0.481395\pi\)
−0.448558 + 0.893754i \(0.648062\pi\)
\(48\) −8.88410 + 4.31215i −1.28231 + 0.622406i
\(49\) 0 0
\(50\) 6.43608 + 2.92862i 0.910200 + 0.414169i
\(51\) 10.5691 6.10206i 1.47997 0.854459i
\(52\) −0.106748 + 0.129244i −0.0148032 + 0.0179230i
\(53\) 2.44441 + 9.12265i 0.335765 + 1.25309i 0.903037 + 0.429562i \(0.141332\pi\)
−0.567272 + 0.823530i \(0.692001\pi\)
\(54\) 0.223414 0.245724i 0.0304027 0.0334388i
\(55\) −7.29241 + 7.65915i −0.983308 + 1.03276i
\(56\) 0 0
\(57\) −4.59281 4.59281i −0.608333 0.608333i
\(58\) 0.488615 + 10.2744i 0.0641584 + 1.34910i
\(59\) 1.67748 2.90547i 0.218389 0.378260i −0.735927 0.677061i \(-0.763253\pi\)
0.954315 + 0.298801i \(0.0965866\pi\)
\(60\) 1.31697 + 10.9621i 0.170020 + 1.41520i
\(61\) 0.978771 + 1.69528i 0.125319 + 0.217058i 0.921857 0.387529i \(-0.126671\pi\)
−0.796539 + 0.604587i \(0.793338\pi\)
\(62\) −5.82822 3.00524i −0.740185 0.381666i
\(63\) 0 0
\(64\) 7.67701 2.25021i 0.959627 0.281277i
\(65\) 0.0976587 + 0.159959i 0.0121131 + 0.0198404i
\(66\) −16.1352 3.51135i −1.98611 0.432217i
\(67\) −0.131802 0.491893i −0.0161022 0.0600943i 0.957407 0.288741i \(-0.0932366\pi\)
−0.973509 + 0.228647i \(0.926570\pi\)
\(68\) −9.26376 + 3.45353i −1.12340 + 0.418802i
\(69\) 2.79272i 0.336204i
\(70\) 0 0
\(71\) 14.4625i 1.71638i 0.513329 + 0.858192i \(0.328412\pi\)
−0.513329 + 0.858192i \(0.671588\pi\)
\(72\) −6.88265 + 5.40993i −0.811128 + 0.637566i
\(73\) 2.48257 + 9.26507i 0.290563 + 1.08439i 0.944678 + 0.327999i \(0.106374\pi\)
−0.654115 + 0.756395i \(0.726959\pi\)
\(74\) 0.693578 3.18711i 0.0806268 0.370494i
\(75\) 12.0658 + 2.60647i 1.39324 + 0.300969i
\(76\) 3.05145 + 4.28660i 0.350026 + 0.491707i
\(77\) 0 0
\(78\) −0.134113 + 0.260092i −0.0151853 + 0.0294496i
\(79\) 3.05204 + 5.28630i 0.343382 + 0.594755i 0.985058 0.172221i \(-0.0550942\pi\)
−0.641677 + 0.766975i \(0.721761\pi\)
\(80\) 0.421947 8.93431i 0.0471751 0.998887i
\(81\) −4.35280 + 7.53927i −0.483644 + 0.837696i
\(82\) −8.07688 + 0.384108i −0.891942 + 0.0424176i
\(83\) 5.62620 + 5.62620i 0.617555 + 0.617555i 0.944904 0.327348i \(-0.106155\pi\)
−0.327348 + 0.944904i \(0.606155\pi\)
\(84\) 0 0
\(85\) 0.271049 + 11.0502i 0.0293994 + 1.19856i
\(86\) 2.32775 + 2.11640i 0.251008 + 0.228217i
\(87\) 4.64751 + 17.3447i 0.498265 + 1.85955i
\(88\) 12.4177 + 4.97472i 1.32373 + 0.530307i
\(89\) −14.4482 + 8.34169i −1.53151 + 0.884218i −0.532217 + 0.846608i \(0.678641\pi\)
−0.999292 + 0.0376100i \(0.988026\pi\)
\(90\) 3.20718 + 9.24725i 0.338067 + 0.974746i
\(91\) 0 0
\(92\) −0.375524 + 2.23100i −0.0391511 + 0.232598i
\(93\) −11.0574 2.96282i −1.14660 0.307230i
\(94\) 3.82645 + 0.832711i 0.394668 + 0.0858875i
\(95\) 5.64335 1.66148i 0.578996 0.170464i
\(96\) 12.2601 6.68825i 1.25130 0.682616i
\(97\) −5.81505 5.81505i −0.590429 0.590429i 0.347318 0.937747i \(-0.387092\pi\)
−0.937747 + 0.347318i \(0.887092\pi\)
\(98\) 0 0
\(99\) −14.6384 −1.47122
\(100\) −9.28846 3.70465i −0.928846 0.370465i
\(101\) −4.28723 + 7.42571i −0.426596 + 0.738885i −0.996568 0.0827785i \(-0.973621\pi\)
0.569972 + 0.821664i \(0.306954\pi\)
\(102\) −14.5201 + 9.32990i −1.43771 + 0.923798i
\(103\) −0.845330 + 3.15482i −0.0832929 + 0.310853i −0.994985 0.100020i \(-0.968109\pi\)
0.911693 + 0.410873i \(0.134776\pi\)
\(104\) 0.142111 0.189744i 0.0139351 0.0186059i
\(105\) 0 0
\(106\) −4.06586 12.7226i −0.394911 1.23573i
\(107\) 6.56081 + 1.75796i 0.634257 + 0.169949i 0.561601 0.827408i \(-0.310186\pi\)
0.0726563 + 0.997357i \(0.476852\pi\)
\(108\) −0.299090 + 0.362123i −0.0287800 + 0.0348453i
\(109\) −3.39423 1.95966i −0.325108 0.187701i 0.328559 0.944483i \(-0.393437\pi\)
−0.653667 + 0.756782i \(0.726770\pi\)
\(110\) 9.78684 11.3093i 0.933139 1.07830i
\(111\) 5.69404i 0.540455i
\(112\) 0 0
\(113\) −0.0280186 + 0.0280186i −0.00263577 + 0.00263577i −0.708423 0.705788i \(-0.750593\pi\)
0.705788 + 0.708423i \(0.250593\pi\)
\(114\) 6.79643 + 6.17935i 0.636544 + 0.578749i
\(115\) 2.22089 + 1.21061i 0.207100 + 0.112890i
\(116\) −1.38045 14.4810i −0.128172 1.34453i
\(117\) −0.0671414 + 0.250575i −0.00620723 + 0.0231657i
\(118\) −2.17444 + 4.21701i −0.200174 + 0.388207i
\(119\) 0 0
\(120\) −2.59680 15.3968i −0.237054 1.40553i
\(121\) 5.68418 + 9.84529i 0.516744 + 0.895026i
\(122\) −1.49652 2.32903i −0.135488 0.210860i
\(123\) −13.6350 + 3.65348i −1.22942 + 0.329423i
\(124\) 8.43494 + 3.85372i 0.757480 + 0.346074i
\(125\) −7.30320 + 8.46542i −0.653218 + 0.757170i
\(126\) 0 0
\(127\) −6.53450 + 6.53450i −0.579843 + 0.579843i −0.934860 0.355017i \(-0.884475\pi\)
0.355017 + 0.934860i \(0.384475\pi\)
\(128\) −10.6935 + 3.69442i −0.945182 + 0.326544i
\(129\) 4.75632 + 2.74606i 0.418770 + 0.241777i
\(130\) −0.148700 0.219400i −0.0130419 0.0192426i
\(131\) −3.19588 + 1.84514i −0.279225 + 0.161211i −0.633073 0.774092i \(-0.718207\pi\)
0.353847 + 0.935303i \(0.384873\pi\)
\(132\) 23.0288 + 3.87624i 2.00440 + 0.337383i
\(133\) 0 0
\(134\) 0.219231 + 0.686002i 0.0189387 + 0.0592616i
\(135\) 0.273625 + 0.448179i 0.0235499 + 0.0385731i
\(136\) 12.8541 5.50085i 1.10223 0.471694i
\(137\) 19.1819 5.13977i 1.63882 0.439120i 0.682366 0.731010i \(-0.260951\pi\)
0.956452 + 0.291890i \(0.0942843\pi\)
\(138\) 0.187612 + 3.94504i 0.0159706 + 0.335824i
\(139\) −1.15593 −0.0980447 −0.0490223 0.998798i \(-0.515611\pi\)
−0.0490223 + 0.998798i \(0.515611\pi\)
\(140\) 0 0
\(141\) 6.83628 0.575719
\(142\) −0.971579 20.4300i −0.0815331 1.71445i
\(143\) 0.382893 0.102596i 0.0320191 0.00857950i
\(144\) 9.35911 8.10452i 0.779926 0.675377i
\(145\) −15.8080 3.82286i −1.31278 0.317471i
\(146\) −4.12934 12.9212i −0.341746 1.06937i
\(147\) 0 0
\(148\) −0.765652 + 4.54876i −0.0629362 + 0.373906i
\(149\) −5.37045 + 3.10063i −0.439965 + 0.254014i −0.703583 0.710613i \(-0.748418\pi\)
0.263618 + 0.964627i \(0.415084\pi\)
\(150\) −17.2195 2.87137i −1.40597 0.234446i
\(151\) 8.72300 + 5.03623i 0.709868 + 0.409842i 0.811012 0.585029i \(-0.198917\pi\)
−0.101144 + 0.994872i \(0.532250\pi\)
\(152\) −4.59850 5.85033i −0.372988 0.474525i
\(153\) −10.8188 + 10.8188i −0.874646 + 0.874646i
\(154\) 0 0
\(155\) 7.14943 7.50898i 0.574256 0.603136i
\(156\) 0.171977 0.376420i 0.0137692 0.0301377i
\(157\) 14.0732 3.77089i 1.12316 0.300950i 0.350999 0.936376i \(-0.385842\pi\)
0.772162 + 0.635426i \(0.219175\pi\)
\(158\) −4.66650 7.26248i −0.371247 0.577772i
\(159\) −11.6584 20.1929i −0.924570 1.60140i
\(160\) 0.00414940 + 12.6491i 0.000328038 + 1.00000i
\(161\) 0 0
\(162\) 5.64235 10.9425i 0.443305 0.859725i
\(163\) −0.763938 + 2.85106i −0.0598363 + 0.223312i −0.989369 0.145428i \(-0.953544\pi\)
0.929533 + 0.368740i \(0.120211\pi\)
\(164\) 11.3837 1.08519i 0.888920 0.0847395i
\(165\) 12.4962 22.9245i 0.972828 1.78467i
\(166\) −8.32562 7.56970i −0.646194 0.587522i
\(167\) 6.13096 6.13096i 0.474428 0.474428i −0.428916 0.903344i \(-0.641105\pi\)
0.903344 + 0.428916i \(0.141105\pi\)
\(168\) 0 0
\(169\) 12.9930i 0.999460i
\(170\) −1.12523 15.5915i −0.0863012 1.19581i
\(171\) 7.05197 + 4.07146i 0.539278 + 0.311352i
\(172\) −3.43039 2.83329i −0.261565 0.216036i
\(173\) −1.73431 0.464708i −0.131857 0.0353311i 0.192287 0.981339i \(-0.438410\pi\)
−0.324144 + 0.946008i \(0.605076\pi\)
\(174\) −7.73035 24.1893i −0.586037 1.83378i
\(175\) 0 0
\(176\) −17.8756 6.19316i −1.34743 0.466827i
\(177\) −2.14375 + 8.00057i −0.161134 + 0.601360i
\(178\) 19.8494 12.7542i 1.48778 0.955971i
\(179\) 10.7713 18.6564i 0.805084 1.39445i −0.111150 0.993804i \(-0.535453\pi\)
0.916234 0.400643i \(-0.131213\pi\)
\(180\) −5.15174 12.8474i −0.383988 0.957586i
\(181\) 16.2122 1.20504 0.602520 0.798104i \(-0.294163\pi\)
0.602520 + 0.798104i \(0.294163\pi\)
\(182\) 0 0
\(183\) −3.41733 3.41733i −0.252616 0.252616i
\(184\) 0.380595 3.17677i 0.0280578 0.234195i
\(185\) 4.52816 + 2.46831i 0.332917 + 0.181474i
\(186\) 15.8189 + 3.44250i 1.15990 + 0.252416i
\(187\) 22.5827 + 6.05102i 1.65141 + 0.442495i
\(188\) −5.46125 0.919244i −0.398303 0.0670427i
\(189\) 0 0
\(190\) −7.86028 + 2.72614i −0.570244 + 0.197775i
\(191\) −14.2331 + 8.21746i −1.02987 + 0.594595i −0.916947 0.399009i \(-0.869354\pi\)
−0.112921 + 0.993604i \(0.536021\pi\)
\(192\) −16.8696 + 10.2716i −1.21746 + 0.741286i
\(193\) 1.28369 + 4.79080i 0.0924021 + 0.344849i 0.996613 0.0822374i \(-0.0262066\pi\)
−0.904211 + 0.427087i \(0.859540\pi\)
\(194\) 8.60509 + 7.82379i 0.617810 + 0.561716i
\(195\) −0.335098 0.319052i −0.0239968 0.0228478i
\(196\) 0 0
\(197\) −3.89922 3.89922i −0.277808 0.277808i 0.554425 0.832233i \(-0.312938\pi\)
−0.832233 + 0.554425i \(0.812938\pi\)
\(198\) 20.6785 0.983397i 1.46956 0.0698870i
\(199\) −9.44788 + 16.3642i −0.669743 + 1.16003i 0.308233 + 0.951311i \(0.400262\pi\)
−0.977976 + 0.208717i \(0.933071\pi\)
\(200\) 13.3699 + 4.60926i 0.945396 + 0.325924i
\(201\) 0.628620 + 1.08880i 0.0443394 + 0.0767981i
\(202\) 5.55737 10.7777i 0.391015 0.758316i
\(203\) 0 0
\(204\) 19.8846 14.1550i 1.39220 0.991050i
\(205\) 3.00520 12.4269i 0.209893 0.867931i
\(206\) 0.982190 4.51334i 0.0684324 0.314459i
\(207\) 0.906169 + 3.38187i 0.0629831 + 0.235056i
\(208\) −0.188002 + 0.277583i −0.0130356 + 0.0192469i
\(209\) 12.4428i 0.860690i
\(210\) 0 0
\(211\) 10.9795i 0.755859i 0.925834 + 0.377929i \(0.123364\pi\)
−0.925834 + 0.377929i \(0.876636\pi\)
\(212\) 6.59820 + 17.6990i 0.453166 + 1.21557i
\(213\) −9.24126 34.4888i −0.633201 2.36314i
\(214\) −9.38600 2.04258i −0.641614 0.139628i
\(215\) −4.24561 + 2.59205i −0.289548 + 0.176776i
\(216\) 0.398173 0.531633i 0.0270922 0.0361731i
\(217\) 0 0
\(218\) 4.92639 + 2.54022i 0.333657 + 0.172046i
\(219\) −11.8404 20.5082i −0.800099 1.38581i
\(220\) −13.0653 + 16.6332i −0.880863 + 1.12141i
\(221\) 0.207158 0.358809i 0.0139350 0.0241361i
\(222\) 0.382521 + 8.04350i 0.0256731 + 0.539845i
\(223\) −13.6990 13.6990i −0.917356 0.917356i 0.0794806 0.996836i \(-0.474674\pi\)
−0.996836 + 0.0794806i \(0.974674\pi\)
\(224\) 0 0
\(225\) −15.4570 + 0.758741i −1.03047 + 0.0505828i
\(226\) 0.0376973 0.0414618i 0.00250759 0.00275800i
\(227\) −5.94107 22.1724i −0.394322 1.47163i −0.822931 0.568141i \(-0.807663\pi\)
0.428609 0.903490i \(-0.359004\pi\)
\(228\) −10.0159 8.27247i −0.663317 0.547858i
\(229\) 10.3396 5.96955i 0.683258 0.394479i −0.117824 0.993035i \(-0.537592\pi\)
0.801081 + 0.598556i \(0.204258\pi\)
\(230\) −3.21860 1.56094i −0.212228 0.102925i
\(231\) 0 0
\(232\) 2.92287 + 20.3634i 0.191896 + 1.33692i
\(233\) 22.9805 + 6.15761i 1.50550 + 0.403399i 0.914939 0.403592i \(-0.132238\pi\)
0.590565 + 0.806990i \(0.298905\pi\)
\(234\) 0.0780117 0.358477i 0.00509978 0.0234344i
\(235\) −2.96346 + 5.43652i −0.193315 + 0.354639i
\(236\) 2.78836 6.10310i 0.181507 0.397278i
\(237\) −10.6561 10.6561i −0.692186 0.692186i
\(238\) 0 0
\(239\) 1.50749 0.0975113 0.0487556 0.998811i \(-0.484474\pi\)
0.0487556 + 0.998811i \(0.484474\pi\)
\(240\) 4.70263 + 21.5753i 0.303553 + 1.39268i
\(241\) −9.26556 + 16.0484i −0.596847 + 1.03377i 0.396436 + 0.918062i \(0.370247\pi\)
−0.993283 + 0.115708i \(0.963086\pi\)
\(242\) −8.69097 13.5258i −0.558676 0.869469i
\(243\) 5.74504 21.4408i 0.368544 1.37543i
\(244\) 2.27047 + 3.18949i 0.145352 + 0.204186i
\(245\) 0 0
\(246\) 19.0155 6.07695i 1.21239 0.387452i
\(247\) −0.212992 0.0570710i −0.0135524 0.00363134i
\(248\) −12.1742 4.87718i −0.773064 0.309701i
\(249\) −17.0119 9.82180i −1.07808 0.622431i
\(250\) 9.74792 12.4490i 0.616513 0.787345i
\(251\) 18.0219i 1.13753i 0.822500 + 0.568765i \(0.192579\pi\)
−0.822500 + 0.568765i \(0.807421\pi\)
\(252\) 0 0
\(253\) 3.78301 3.78301i 0.237836 0.237836i
\(254\) 8.79176 9.66973i 0.551644 0.606733i
\(255\) −7.70722 26.1783i −0.482645 1.63935i
\(256\) 14.8577 5.93719i 0.928603 0.371074i
\(257\) 3.85933 14.4032i 0.240738 0.898448i −0.734739 0.678350i \(-0.762696\pi\)
0.975478 0.220098i \(-0.0706378\pi\)
\(258\) −6.90333 3.55961i −0.429783 0.221611i
\(259\) 0 0
\(260\) 0.224796 + 0.299938i 0.0139412 + 0.0186014i
\(261\) −11.2559 19.4958i −0.696723 1.20676i
\(262\) 4.39060 2.82117i 0.271252 0.174293i
\(263\) −6.84826 + 1.83499i −0.422282 + 0.113150i −0.463701 0.885992i \(-0.653479\pi\)
0.0414191 + 0.999142i \(0.486812\pi\)
\(264\) −32.7913 3.92858i −2.01816 0.241787i
\(265\) 21.1121 0.517856i 1.29691 0.0318117i
\(266\) 0 0
\(267\) 29.1246 29.1246i 1.78240 1.78240i
\(268\) −0.355775 0.954331i −0.0217324 0.0582950i
\(269\) −5.23463 3.02221i −0.319161 0.184268i 0.331858 0.943329i \(-0.392325\pi\)
−0.651019 + 0.759062i \(0.725658\pi\)
\(270\) −0.416635 0.614723i −0.0253556 0.0374109i
\(271\) −20.3476 + 11.7477i −1.23603 + 0.713622i −0.968280 0.249866i \(-0.919613\pi\)
−0.267750 + 0.963488i \(0.586280\pi\)
\(272\) −17.7884 + 8.63413i −1.07858 + 0.523521i
\(273\) 0 0
\(274\) −26.7514 + 8.54914i −1.61611 + 0.516473i
\(275\) 12.8137 + 19.8751i 0.772692 + 1.19851i
\(276\) −0.530048 5.56023i −0.0319052 0.334686i
\(277\) −22.5298 + 6.03684i −1.35369 + 0.362719i −0.861494 0.507768i \(-0.830471\pi\)
−0.492191 + 0.870487i \(0.663804\pi\)
\(278\) 1.63289 0.0776543i 0.0979340 0.00465740i
\(279\) 14.3514 0.859197
\(280\) 0 0
\(281\) −19.3011 −1.15141 −0.575703 0.817659i \(-0.695272\pi\)
−0.575703 + 0.817659i \(0.695272\pi\)
\(282\) −9.65704 + 0.459255i −0.575069 + 0.0273483i
\(283\) −6.88593 + 1.84508i −0.409326 + 0.109679i −0.457606 0.889155i \(-0.651293\pi\)
0.0482794 + 0.998834i \(0.484626\pi\)
\(284\) 2.74494 + 28.7945i 0.162882 + 1.70864i
\(285\) −12.3961 + 7.56812i −0.734281 + 0.448297i
\(286\) −0.533989 + 0.170651i −0.0315754 + 0.0100908i
\(287\) 0 0
\(288\) −12.6764 + 12.0773i −0.746963 + 0.711663i
\(289\) 6.43980 3.71802i 0.378812 0.218707i
\(290\) 22.5874 + 4.33827i 1.32638 + 0.254752i
\(291\) 17.5829 + 10.1515i 1.03073 + 0.595091i
\(292\) 6.70121 + 17.9753i 0.392159 + 1.05193i
\(293\) −1.29442 + 1.29442i −0.0756208 + 0.0756208i −0.743906 0.668285i \(-0.767029\pi\)
0.668285 + 0.743906i \(0.267029\pi\)
\(294\) 0 0
\(295\) −5.43312 5.17297i −0.316329 0.301182i
\(296\) 0.775992 6.47709i 0.0451036 0.376473i
\(297\) 1.07281 0.287458i 0.0622506 0.0166800i
\(298\) 7.37810 4.74079i 0.427402 0.274627i
\(299\) −0.0474048 0.0821076i −0.00274149 0.00474840i
\(300\) 24.5175 + 2.89936i 1.41552 + 0.167394i
\(301\) 0 0
\(302\) −12.6606 6.52826i −0.728535 0.375659i
\(303\) 5.47891 20.4476i 0.314755 1.17468i
\(304\) 6.88895 + 7.95536i 0.395108 + 0.456271i
\(305\) 4.19899 1.23624i 0.240434 0.0707868i
\(306\) 14.5560 16.0096i 0.832110 0.915206i
\(307\) −3.86175 + 3.86175i −0.220402 + 0.220402i −0.808667 0.588266i \(-0.799811\pi\)
0.588266 + 0.808667i \(0.299811\pi\)
\(308\) 0 0
\(309\) 8.06346i 0.458714i
\(310\) −9.59496 + 11.0876i −0.544957 + 0.629734i
\(311\) 17.7808 + 10.2657i 1.00826 + 0.582116i 0.910680 0.413112i \(-0.135558\pi\)
0.0975749 + 0.995228i \(0.468891\pi\)
\(312\) −0.217650 + 0.543290i −0.0123220 + 0.0307577i
\(313\) 26.9598 + 7.22385i 1.52386 + 0.408316i 0.921009 0.389540i \(-0.127366\pi\)
0.602847 + 0.797856i \(0.294033\pi\)
\(314\) −19.6267 + 6.27225i −1.10760 + 0.353964i
\(315\) 0 0
\(316\) 7.07986 + 9.94561i 0.398273 + 0.559484i
\(317\) −3.35388 + 12.5169i −0.188373 + 0.703016i 0.805511 + 0.592581i \(0.201891\pi\)
−0.993883 + 0.110435i \(0.964776\pi\)
\(318\) 17.8254 + 27.7417i 0.999597 + 1.55567i
\(319\) −17.1997 + 29.7907i −0.962996 + 1.66796i
\(320\) −0.855618 17.8681i −0.0478305 0.998855i
\(321\) −16.7689 −0.935949
\(322\) 0 0
\(323\) −9.19609 9.19609i −0.511684 0.511684i
\(324\) −7.23538 + 15.8366i −0.401965 + 0.879813i
\(325\) 0.398986 0.128179i 0.0221318 0.00711010i
\(326\) 0.887621 4.07877i 0.0491608 0.225902i
\(327\) 9.34642 + 2.50436i 0.516858 + 0.138492i
\(328\) −16.0079 + 2.29771i −0.883891 + 0.126870i
\(329\) 0 0
\(330\) −16.1123 + 33.2231i −0.886953 + 1.82887i
\(331\) −6.41324 + 3.70269i −0.352504 + 0.203518i −0.665787 0.746142i \(-0.731904\pi\)
0.313284 + 0.949660i \(0.398571\pi\)
\(332\) 12.2694 + 10.1338i 0.673373 + 0.556163i
\(333\) 1.84758 + 6.89526i 0.101247 + 0.377858i
\(334\) −8.24882 + 9.07257i −0.451356 + 0.496429i
\(335\) −1.13836 + 0.0279228i −0.0621955 + 0.00152559i
\(336\) 0 0
\(337\) −5.81990 5.81990i −0.317030 0.317030i 0.530595 0.847625i \(-0.321968\pi\)
−0.847625 + 0.530595i \(0.821968\pi\)
\(338\) −0.872857 18.3541i −0.0474771 0.998331i
\(339\) 0.0489128 0.0847195i 0.00265658 0.00460133i
\(340\) 2.63694 + 21.9492i 0.143008 + 1.19036i
\(341\) −10.9649 18.9918i −0.593782 1.02846i
\(342\) −10.2353 5.27767i −0.553459 0.285384i
\(343\) 0 0
\(344\) 5.03617 + 3.77190i 0.271532 + 0.203367i
\(345\) −6.06974 1.46785i −0.326784 0.0790264i
\(346\) 2.48114 + 0.539944i 0.133387 + 0.0290276i
\(347\) −2.85823 10.6671i −0.153438 0.572638i −0.999234 0.0391317i \(-0.987541\pi\)
0.845796 0.533506i \(-0.179126\pi\)
\(348\) 12.5450 + 33.6508i 0.672485 + 1.80387i
\(349\) 10.3995i 0.556672i 0.960484 + 0.278336i \(0.0897829\pi\)
−0.960484 + 0.278336i \(0.910217\pi\)
\(350\) 0 0
\(351\) 0.0196824i 0.00105057i
\(352\) 25.6675 + 7.54769i 1.36808 + 0.402293i
\(353\) 1.95306 + 7.28892i 0.103951 + 0.387950i 0.998224 0.0595714i \(-0.0189734\pi\)
−0.894273 + 0.447522i \(0.852307\pi\)
\(354\) 2.49082 11.4458i 0.132386 0.608335i
\(355\) 31.4331 + 7.60149i 1.66829 + 0.403445i
\(356\) −27.1828 + 19.3503i −1.44069 + 1.02556i
\(357\) 0 0
\(358\) −13.9624 + 27.0780i −0.737935 + 1.43112i
\(359\) −5.74179 9.94507i −0.303040 0.524881i 0.673783 0.738929i \(-0.264668\pi\)
−0.976823 + 0.214049i \(0.931335\pi\)
\(360\) 8.14052 + 17.8023i 0.429043 + 0.938265i
\(361\) 6.03921 10.4602i 0.317853 0.550538i
\(362\) −22.9016 + 1.08912i −1.20368 + 0.0572428i
\(363\) −19.8460 19.8460i −1.04165 1.04165i
\(364\) 0 0
\(365\) 21.4417 0.525941i 1.12231 0.0275290i
\(366\) 5.05695 + 4.59781i 0.264331 + 0.240331i
\(367\) −3.27735 12.2312i −0.171076 0.638465i −0.997187 0.0749570i \(-0.976118\pi\)
0.826111 0.563508i \(-0.190549\pi\)
\(368\) −0.324222 + 4.51313i −0.0169013 + 0.235263i
\(369\) 15.3259 8.84843i 0.797836 0.460631i
\(370\) −6.56238 3.18258i −0.341162 0.165454i
\(371\) 0 0
\(372\) −22.5773 3.80024i −1.17058 0.197033i
\(373\) 24.0550 + 6.44552i 1.24552 + 0.333737i 0.820605 0.571496i \(-0.193637\pi\)
0.424917 + 0.905232i \(0.360303\pi\)
\(374\) −32.3072 7.03069i −1.67057 0.363548i
\(375\) 12.0067 24.8541i 0.620025 1.28346i
\(376\) 7.77641 + 0.931657i 0.401038 + 0.0480466i
\(377\) 0.431057 + 0.431057i 0.0222006 + 0.0222006i
\(378\) 0 0
\(379\) 4.18354 0.214894 0.107447 0.994211i \(-0.465732\pi\)
0.107447 + 0.994211i \(0.465732\pi\)
\(380\) 10.9204 4.37905i 0.560206 0.224640i
\(381\) 11.4074 19.7583i 0.584421 1.01225i
\(382\) 19.5538 12.5643i 1.00046 0.642845i
\(383\) −3.47535 + 12.9702i −0.177582 + 0.662745i 0.818515 + 0.574484i \(0.194797\pi\)
−0.996097 + 0.0882604i \(0.971869\pi\)
\(384\) 23.1402 15.6431i 1.18087 0.798282i
\(385\) 0 0
\(386\) −2.13521 6.68133i −0.108679 0.340071i
\(387\) −6.65075 1.78206i −0.338076 0.0905873i
\(388\) −12.6813 10.4739i −0.643795 0.531734i
\(389\) −15.5106 8.95506i −0.786419 0.454039i 0.0522811 0.998632i \(-0.483351\pi\)
−0.838700 + 0.544593i \(0.816684\pi\)
\(390\) 0.494798 + 0.428187i 0.0250551 + 0.0216821i
\(391\) 5.59179i 0.282789i
\(392\) 0 0
\(393\) 6.44222 6.44222i 0.324967 0.324967i
\(394\) 5.77005 + 5.24616i 0.290691 + 0.264298i
\(395\) 13.0935 3.85489i 0.658805 0.193961i
\(396\) −29.1447 + 2.77833i −1.46458 + 0.139616i
\(397\) 1.58258 5.90626i 0.0794273 0.296427i −0.914773 0.403967i \(-0.867631\pi\)
0.994201 + 0.107541i \(0.0342976\pi\)
\(398\) 12.2469 23.7511i 0.613882 1.19053i
\(399\) 0 0
\(400\) −19.1962 5.61294i −0.959811 0.280647i
\(401\) −9.81777 17.0049i −0.490276 0.849183i 0.509662 0.860375i \(-0.329771\pi\)
−0.999937 + 0.0111923i \(0.996437\pi\)
\(402\) −0.961144 1.49583i −0.0479375 0.0746052i
\(403\) −0.375386 + 0.100584i −0.0186993 + 0.00501046i
\(404\) −7.12640 + 15.5981i −0.354551 + 0.776034i
\(405\) 14.0981 + 13.4231i 0.700542 + 0.666998i
\(406\) 0 0
\(407\) 7.71315 7.71315i 0.382327 0.382327i
\(408\) −27.1384 + 21.3315i −1.34355 + 1.05606i
\(409\) −8.70611 5.02647i −0.430489 0.248543i 0.269066 0.963122i \(-0.413285\pi\)
−0.699555 + 0.714579i \(0.746618\pi\)
\(410\) −3.41038 + 17.7563i −0.168426 + 0.876922i
\(411\) −42.4589 + 24.5137i −2.09434 + 1.20917i
\(412\) −1.08426 + 6.44160i −0.0534175 + 0.317355i
\(413\) 0 0
\(414\) −1.50726 4.71641i −0.0740779 0.231799i
\(415\) 15.1852 9.27095i 0.745412 0.455093i
\(416\) 0.246926 0.404748i 0.0121066 0.0198444i
\(417\) 2.75655 0.738616i 0.134989 0.0361702i
\(418\) 0.835899 + 17.5770i 0.0408852 + 0.859718i
\(419\) 17.7853 0.868870 0.434435 0.900703i \(-0.356948\pi\)
0.434435 + 0.900703i \(0.356948\pi\)
\(420\) 0 0
\(421\) 39.6482 1.93234 0.966168 0.257913i \(-0.0830348\pi\)
0.966168 + 0.257913i \(0.0830348\pi\)
\(422\) −0.737592 15.5098i −0.0359054 0.755006i
\(423\) −8.27847 + 2.21821i −0.402513 + 0.107853i
\(424\) −10.5097 24.5587i −0.510398 1.19267i
\(425\) 24.1591 + 5.21887i 1.17189 + 0.253153i
\(426\) 15.3713 + 48.0987i 0.744741 + 2.33039i
\(427\) 0 0
\(428\) 13.3960 + 2.25484i 0.647522 + 0.108992i
\(429\) −0.847531 + 0.489322i −0.0409192 + 0.0236247i
\(430\) 5.82329 3.94679i 0.280824 0.190331i
\(431\) 21.7939 + 12.5827i 1.04977 + 0.606087i 0.922586 0.385792i \(-0.126072\pi\)
0.127187 + 0.991879i \(0.459405\pi\)
\(432\) −0.526751 + 0.777743i −0.0253433 + 0.0374192i
\(433\) −9.19231 + 9.19231i −0.441754 + 0.441754i −0.892601 0.450847i \(-0.851122\pi\)
0.450847 + 0.892601i \(0.351122\pi\)
\(434\) 0 0
\(435\) 40.1401 0.984591i 1.92457 0.0472075i
\(436\) −7.12975 3.25741i −0.341453 0.156002i
\(437\) −2.87463 + 0.770255i −0.137512 + 0.0368463i
\(438\) 18.1037 + 28.1747i 0.865026 + 1.34624i
\(439\) −14.8997 25.8071i −0.711125 1.23170i −0.964435 0.264320i \(-0.914853\pi\)
0.253310 0.967385i \(-0.418481\pi\)
\(440\) 17.3389 24.3741i 0.826598 1.16199i
\(441\) 0 0
\(442\) −0.268531 + 0.520776i −0.0127727 + 0.0247708i
\(443\) −10.5682 + 39.4412i −0.502112 + 1.87391i −0.0162556 + 0.999868i \(0.505175\pi\)
−0.485856 + 0.874039i \(0.661492\pi\)
\(444\) −1.08071 11.3367i −0.0512883 0.538016i
\(445\) 10.5360 + 35.7864i 0.499454 + 1.69644i
\(446\) 20.2718 + 18.4312i 0.959897 + 0.872743i
\(447\) 10.8257 10.8257i 0.512039 0.512039i
\(448\) 0 0
\(449\) 20.7052i 0.977139i −0.872525 0.488570i \(-0.837519\pi\)
0.872525 0.488570i \(-0.162481\pi\)
\(450\) 21.7838 2.11020i 1.02690 0.0994757i
\(451\) −23.4189 13.5209i −1.10275 0.636675i
\(452\) −0.0504665 + 0.0611021i −0.00237374 + 0.00287400i
\(453\) −24.0199 6.43610i −1.12855 0.302394i
\(454\) 9.88197 + 30.9219i 0.463784 + 1.45124i
\(455\) 0 0
\(456\) 14.7043 + 11.0130i 0.688593 + 0.515730i
\(457\) 0.969683 3.61891i 0.0453599 0.169285i −0.939530 0.342466i \(-0.888738\pi\)
0.984890 + 0.173181i \(0.0554045\pi\)
\(458\) −14.2048 + 9.12729i −0.663748 + 0.426490i
\(459\) 0.580425 1.00533i 0.0270919 0.0469246i
\(460\) 4.65151 + 1.98878i 0.216878 + 0.0927274i
\(461\) 6.66823 0.310570 0.155285 0.987870i \(-0.450370\pi\)
0.155285 + 0.987870i \(0.450370\pi\)
\(462\) 0 0
\(463\) −14.7884 14.7884i −0.687277 0.687277i 0.274353 0.961629i \(-0.411536\pi\)
−0.961629 + 0.274353i \(0.911536\pi\)
\(464\) −5.49689 28.5693i −0.255187 1.32630i
\(465\) −12.2512 + 22.4751i −0.568136 + 1.04226i
\(466\) −32.8763 7.15454i −1.52297 0.331428i
\(467\) −27.1281 7.26895i −1.25534 0.336367i −0.430941 0.902380i \(-0.641818\pi\)
−0.824396 + 0.566013i \(0.808485\pi\)
\(468\) −0.0861184 + 0.511632i −0.00398083 + 0.0236502i
\(469\) 0 0
\(470\) 3.82101 7.87880i 0.176250 0.363422i
\(471\) −31.1509 + 17.9850i −1.43536 + 0.828703i
\(472\) −3.52888 + 8.80866i −0.162430 + 0.405451i
\(473\) 2.72309 + 10.1627i 0.125208 + 0.467282i
\(474\) 15.7688 + 14.3371i 0.724285 + 0.658524i
\(475\) −0.644940 13.1386i −0.0295919 0.602842i
\(476\) 0 0
\(477\) 20.6700 + 20.6700i 0.946413 + 0.946413i
\(478\) −2.12950 + 0.101272i −0.0974012 + 0.00463206i
\(479\) 5.27141 9.13034i 0.240857 0.417176i −0.720102 0.693868i \(-0.755905\pi\)
0.960959 + 0.276692i \(0.0892383\pi\)
\(480\) −8.09242 30.1618i −0.369367 1.37669i
\(481\) −0.0966532 0.167408i −0.00440701 0.00763316i
\(482\) 12.0106 23.2927i 0.547067 1.06096i
\(483\) 0 0
\(484\) 13.1857 + 18.5229i 0.599348 + 0.841949i
\(485\) −15.6949 + 9.58215i −0.712670 + 0.435103i
\(486\) −6.67517 + 30.6736i −0.302792 + 1.39138i
\(487\) −9.85078 36.7636i −0.446381 1.66592i −0.712263 0.701913i \(-0.752330\pi\)
0.265882 0.964006i \(-0.414337\pi\)
\(488\) −3.42157 4.35300i −0.154887 0.197051i
\(489\) 7.28707i 0.329533i
\(490\) 0 0
\(491\) 3.59770i 0.162362i −0.996699 0.0811809i \(-0.974131\pi\)
0.996699 0.0811809i \(-0.0258691\pi\)
\(492\) −26.4534 + 9.86185i −1.19261 + 0.444606i
\(493\) 9.30560 + 34.7290i 0.419103 + 1.56411i
\(494\) 0.304710 + 0.0663109i 0.0137096 + 0.00298347i
\(495\) −7.69395 + 31.8154i −0.345817 + 1.43000i
\(496\) 17.5252 + 6.07173i 0.786903 + 0.272629i
\(497\) 0 0
\(498\) 24.6910 + 12.7316i 1.10643 + 0.570516i
\(499\) −5.11616 8.86145i −0.229031 0.396693i 0.728490 0.685056i \(-0.240222\pi\)
−0.957521 + 0.288363i \(0.906889\pi\)
\(500\) −12.9338 + 18.2406i −0.578415 + 0.815742i
\(501\) −10.7030 + 18.5381i −0.478174 + 0.828221i
\(502\) −1.21069 25.4580i −0.0540359 1.13625i
\(503\) 30.0943 + 30.0943i 1.34184 + 1.34184i 0.894231 + 0.447605i \(0.147723\pi\)
0.447605 + 0.894231i \(0.352277\pi\)
\(504\) 0 0
\(505\) 13.8858 + 13.2209i 0.617910 + 0.588322i
\(506\) −5.08981 + 5.59809i −0.226270 + 0.248865i
\(507\) −8.30225 30.9844i −0.368716 1.37607i
\(508\) −11.7698 + 14.2502i −0.522200 + 0.632252i
\(509\) −0.0145211 + 0.00838376i −0.000643637 + 0.000371604i −0.500322 0.865840i \(-0.666785\pi\)
0.499678 + 0.866211i \(0.333452\pi\)
\(510\) 12.6460 + 36.4621i 0.559974 + 1.61457i
\(511\) 0 0
\(512\) −20.5893 + 9.38510i −0.909928 + 0.414767i
\(513\) −0.596770 0.159904i −0.0263481 0.00705994i
\(514\) −4.48416 + 20.6055i −0.197788 + 0.908869i
\(515\) 6.41243 + 3.49543i 0.282565 + 0.154027i
\(516\) 9.99090 + 4.56460i 0.439825 + 0.200945i
\(517\) 9.26042 + 9.26042i 0.407273 + 0.407273i
\(518\) 0 0
\(519\) 4.43276 0.194577
\(520\) −0.337700 0.408596i −0.0148091 0.0179181i
\(521\) −0.00830997 + 0.0143933i −0.000364066 + 0.000630582i −0.866207 0.499685i \(-0.833449\pi\)
0.865843 + 0.500315i \(0.166783\pi\)
\(522\) 17.2100 + 26.7839i 0.753261 + 1.17230i
\(523\) 8.00409 29.8717i 0.349994 1.30620i −0.536674 0.843790i \(-0.680319\pi\)
0.886668 0.462407i \(-0.153014\pi\)
\(524\) −6.01271 + 4.28019i −0.262666 + 0.186981i
\(525\) 0 0
\(526\) 9.55070 3.05219i 0.416430 0.133082i
\(527\) −22.1400 5.93238i −0.964432 0.258419i
\(528\) 46.5855 + 3.34669i 2.02737 + 0.145646i
\(529\) 18.8104 + 10.8602i 0.817845 + 0.472183i
\(530\) −29.7885 + 2.14983i −1.29393 + 0.0933825i
\(531\) 10.3840i 0.450626i
\(532\) 0 0
\(533\) −0.338860 + 0.338860i −0.0146777 + 0.0146777i
\(534\) −39.1854 + 43.0985i −1.69572 + 1.86505i
\(535\) 7.26914 13.3354i 0.314272 0.576539i
\(536\) 0.566685 + 1.32420i 0.0244771 + 0.0571969i
\(537\) −13.7653 + 51.3727i −0.594016 + 2.21690i
\(538\) 7.59756 + 3.91757i 0.327554 + 0.168899i
\(539\) 0 0
\(540\) 0.629842 + 0.840380i 0.0271041 + 0.0361642i
\(541\) −14.5885 25.2681i −0.627211 1.08636i −0.988109 0.153756i \(-0.950863\pi\)
0.360898 0.932605i \(-0.382470\pi\)
\(542\) 27.9542 17.9619i 1.20074 0.771532i
\(543\) −38.6612 + 10.3592i −1.65911 + 0.444558i
\(544\) 24.5482 13.3917i 1.05250 0.574166i
\(545\) −6.04316 + 6.34708i −0.258860 + 0.271879i
\(546\) 0 0
\(547\) 0.913792 0.913792i 0.0390709 0.0390709i −0.687301 0.726372i \(-0.741205\pi\)
0.726372 + 0.687301i \(0.241205\pi\)
\(548\) 37.2151 13.8738i 1.58975 0.592659i
\(549\) 5.24710 + 3.02941i 0.223941 + 0.129292i
\(550\) −19.4360 27.2151i −0.828753 1.16046i
\(551\) 16.5717 9.56766i 0.705977 0.407596i
\(552\) 1.12229 + 7.81886i 0.0477677 + 0.332793i
\(553\) 0 0
\(554\) 31.4204 10.0413i 1.33493 0.426613i
\(555\) −12.3755 2.99279i −0.525312 0.127037i
\(556\) −2.30143 + 0.219392i −0.0976022 + 0.00930428i
\(557\) −2.78027 + 0.744970i −0.117804 + 0.0315654i −0.317239 0.948346i \(-0.602756\pi\)
0.199436 + 0.979911i \(0.436089\pi\)
\(558\) −20.2731 + 0.964116i −0.858227 + 0.0408143i
\(559\) 0.186452 0.00788606
\(560\) 0 0
\(561\) −57.7196 −2.43693
\(562\) 27.2651 1.29663i 1.15011 0.0546951i
\(563\) −26.9945 + 7.23315i −1.13768 + 0.304841i −0.778018 0.628241i \(-0.783775\pi\)
−0.359663 + 0.933082i \(0.617108\pi\)
\(564\) 13.6109 1.29750i 0.573120 0.0546348i
\(565\) 0.0461696 + 0.0756227i 0.00194237 + 0.00318147i
\(566\) 9.60324 3.06898i 0.403654 0.128999i
\(567\) 0 0
\(568\) −5.81193 40.4912i −0.243863 1.69897i
\(569\) −31.8950 + 18.4146i −1.33711 + 0.771981i −0.986378 0.164495i \(-0.947400\pi\)
−0.350732 + 0.936476i \(0.614067\pi\)
\(570\) 17.0025 11.5236i 0.712156 0.482671i
\(571\) −35.5147 20.5044i −1.48624 0.858084i −0.486367 0.873754i \(-0.661678\pi\)
−0.999877 + 0.0156706i \(0.995012\pi\)
\(572\) 0.742858 0.276938i 0.0310605 0.0115793i
\(573\) 28.6909 28.6909i 1.19858 1.19858i
\(574\) 0 0
\(575\) 3.79847 4.19063i 0.158407 0.174762i
\(576\) 17.0955 17.9122i 0.712314 0.746343i
\(577\) 20.6267 5.52692i 0.858703 0.230089i 0.197506 0.980302i \(-0.436716\pi\)
0.661196 + 0.750213i \(0.270049\pi\)
\(578\) −8.84720 + 5.68476i −0.367995 + 0.236455i
\(579\) −6.12245 10.6044i −0.254440 0.440704i
\(580\) −32.1988 4.61090i −1.33698 0.191457i
\(581\) 0 0
\(582\) −25.5199 13.1590i −1.05783 0.545457i
\(583\) 11.5609 43.1458i 0.478802 1.78691i
\(584\) −10.6738 24.9421i −0.441685 1.03211i
\(585\) 0.509315 + 0.277629i 0.0210576 + 0.0114785i
\(586\) 1.74156 1.91548i 0.0719432 0.0791276i
\(587\) 0.870374 0.870374i 0.0359242 0.0359242i −0.688917 0.724841i \(-0.741913\pi\)
0.724841 + 0.688917i \(0.241913\pi\)
\(588\) 0 0
\(589\) 12.1989i 0.502646i
\(590\) 8.02244 + 6.94243i 0.330279 + 0.285815i
\(591\) 11.7900 + 6.80697i 0.484977 + 0.280001i
\(592\) −0.661054 + 9.20178i −0.0271692 + 0.378191i
\(593\) 2.04214 + 0.547190i 0.0838607 + 0.0224704i 0.300505 0.953780i \(-0.402845\pi\)
−0.216645 + 0.976251i \(0.569511\pi\)
\(594\) −1.49615 + 0.478138i −0.0613880 + 0.0196182i
\(595\) 0 0
\(596\) −10.1039 + 7.19257i −0.413874 + 0.294619i
\(597\) 12.0740 45.0608i 0.494157 1.84422i
\(598\) 0.0724808 + 0.112802i 0.00296396 + 0.00461281i
\(599\) −12.9248 + 22.3864i −0.528092 + 0.914683i 0.471371 + 0.881935i \(0.343759\pi\)
−0.999464 + 0.0327479i \(0.989574\pi\)
\(600\) −34.8286 2.44862i −1.42187 0.0999644i
\(601\) −20.5570 −0.838537 −0.419269 0.907862i \(-0.637713\pi\)
−0.419269 + 0.907862i \(0.637713\pi\)
\(602\) 0 0
\(603\) −1.11452 1.11452i −0.0453869 0.0453869i
\(604\) 18.3231 + 8.37140i 0.745558 + 0.340627i
\(605\) 24.3855 7.17942i 0.991412 0.291885i
\(606\) −6.36596 + 29.2527i −0.258599 + 1.18831i
\(607\) −21.6414 5.79881i −0.878399 0.235366i −0.208683 0.977983i \(-0.566918\pi\)
−0.669716 + 0.742617i \(0.733584\pi\)
\(608\) −10.2659 10.7751i −0.416336 0.436987i
\(609\) 0 0
\(610\) −5.84852 + 2.02842i −0.236800 + 0.0821282i
\(611\) 0.200991 0.116042i 0.00813122 0.00469456i
\(612\) −19.4865 + 23.5933i −0.787696 + 0.953701i
\(613\) −8.56832 31.9774i −0.346071 1.29156i −0.891356 0.453304i \(-0.850245\pi\)
0.545285 0.838251i \(-0.316422\pi\)
\(614\) 5.19574 5.71460i 0.209683 0.230622i
\(615\) 0.774002 + 31.5547i 0.0312108 + 1.27241i
\(616\) 0 0
\(617\) 27.2948 + 27.2948i 1.09885 + 1.09885i 0.994546 + 0.104300i \(0.0332603\pi\)
0.104300 + 0.994546i \(0.466740\pi\)
\(618\) 0.541696 + 11.3906i 0.0217902 + 0.458196i
\(619\) −18.1903 + 31.5065i −0.731130 + 1.26635i 0.225270 + 0.974296i \(0.427674\pi\)
−0.956400 + 0.292059i \(0.905660\pi\)
\(620\) 12.8091 16.3071i 0.514428 0.654910i
\(621\) −0.132821 0.230053i −0.00532992 0.00923169i
\(622\) −25.8071 13.3071i −1.03477 0.533564i
\(623\) 0 0
\(624\) 0.270959 0.782082i 0.0108470 0.0313083i
\(625\) 14.5603 + 20.3223i 0.582414 + 0.812893i
\(626\) −38.5691 8.39340i −1.54153 0.335468i
\(627\) 7.95073 + 29.6725i 0.317522 + 1.18501i
\(628\) 27.3036 10.1788i 1.08953 0.406178i
\(629\) 11.4011i 0.454590i
\(630\) 0 0
\(631\) 10.6984i 0.425897i 0.977063 + 0.212949i \(0.0683067\pi\)
−0.977063 + 0.212949i \(0.931693\pi\)
\(632\) −10.6693 13.5737i −0.424401 0.539934i
\(633\) −7.01567 26.1828i −0.278848 1.04067i
\(634\) 3.89688 17.9068i 0.154765 0.711171i
\(635\) 10.7677 + 17.6367i 0.427302 + 0.699892i
\(636\) −27.0441 37.9908i −1.07237 1.50643i
\(637\) 0 0
\(638\) 22.2952 43.2383i 0.882676 1.71182i
\(639\) 22.3816 + 38.7661i 0.885402 + 1.53356i
\(640\) 2.40902 + 25.1833i 0.0952249 + 0.995456i
\(641\) −2.64450 + 4.58042i −0.104452 + 0.180916i −0.913514 0.406807i \(-0.866642\pi\)
0.809062 + 0.587723i \(0.199975\pi\)
\(642\) 23.6880 1.12652i 0.934892 0.0444602i
\(643\) 6.36844 + 6.36844i 0.251147 + 0.251147i 0.821441 0.570294i \(-0.193171\pi\)
−0.570294 + 0.821441i \(0.693171\pi\)
\(644\) 0 0
\(645\) 8.46826 8.89414i 0.333437 0.350206i
\(646\) 13.6083 + 12.3728i 0.535413 + 0.486800i
\(647\) −1.58576 5.91812i −0.0623425 0.232665i 0.927724 0.373268i \(-0.121763\pi\)
−0.990066 + 0.140602i \(0.955096\pi\)
\(648\) 9.15693 22.8572i 0.359718 0.897914i
\(649\) −13.7415 + 7.93365i −0.539401 + 0.311423i
\(650\) −0.555004 + 0.207872i −0.0217690 + 0.00815339i
\(651\) 0 0
\(652\) −0.979860 + 5.82137i −0.0383743 + 0.227983i
\(653\) −37.7871 10.1250i −1.47872 0.396223i −0.572812 0.819687i \(-0.694147\pi\)
−0.905913 + 0.423464i \(0.860814\pi\)
\(654\) −13.3711 2.90982i −0.522853 0.113783i
\(655\) 2.33051 + 7.91578i 0.0910606 + 0.309295i
\(656\) 22.4587 4.32119i 0.876867 0.168714i
\(657\) 20.9927 + 20.9927i 0.819001 + 0.819001i
\(658\) 0 0
\(659\) −7.96382 −0.310226 −0.155113 0.987897i \(-0.549574\pi\)
−0.155113 + 0.987897i \(0.549574\pi\)
\(660\) 20.5286 48.0139i 0.799075 1.86894i
\(661\) 17.8362 30.8932i 0.693748 1.20161i −0.276854 0.960912i \(-0.589292\pi\)
0.970601 0.240694i \(-0.0773750\pi\)
\(662\) 8.81071 5.66131i 0.342438 0.220033i
\(663\) −0.264740 + 0.988023i −0.0102817 + 0.0383716i
\(664\) −18.0128 13.4909i −0.699032 0.523548i
\(665\) 0 0
\(666\) −3.07314 9.61625i −0.119082 0.372622i
\(667\) 7.94717 + 2.12944i 0.307716 + 0.0824521i
\(668\) 11.0429 13.3702i 0.427264 0.517309i
\(669\) 41.4216 + 23.9148i 1.60145 + 0.924599i
\(670\) 1.60620 0.115919i 0.0620528 0.00447832i
\(671\) 9.25823i 0.357410i
\(672\) 0 0
\(673\) −29.4853 + 29.4853i −1.13657 + 1.13657i −0.147515 + 0.989060i \(0.547127\pi\)
−0.989060 + 0.147515i \(0.952873\pi\)
\(674\) 8.61226 + 7.83031i 0.331732 + 0.301612i
\(675\) 1.11790 0.359138i 0.0430279 0.0138232i
\(676\) 2.46602 + 25.8687i 0.0948471 + 0.994949i
\(677\) −11.9320 + 44.5308i −0.458584 + 1.71146i 0.218750 + 0.975781i \(0.429802\pi\)
−0.677333 + 0.735676i \(0.736864\pi\)
\(678\) −0.0634037 + 0.122962i −0.00243500 + 0.00472233i
\(679\) 0 0
\(680\) −5.19952 30.8287i −0.199392 1.18223i
\(681\) 28.3354 + 49.0783i 1.08581 + 1.88069i
\(682\) 16.7650 + 26.0915i 0.641967 + 0.999094i
\(683\) 40.1276 10.7522i 1.53544 0.411420i 0.610652 0.791899i \(-0.290907\pi\)
0.924790 + 0.380479i \(0.124241\pi\)
\(684\) 14.8130 + 6.76773i 0.566391 + 0.258771i
\(685\) −1.08888 44.3917i −0.0416039 1.69612i
\(686\) 0 0
\(687\) −20.8424 + 20.8424i −0.795187 + 0.795187i
\(688\) −7.36758 4.98992i −0.280886 0.190239i
\(689\) −0.685527 0.395789i −0.0261165 0.0150784i
\(690\) 8.67283 + 1.66575i 0.330169 + 0.0634141i
\(691\) −15.8798 + 9.16821i −0.604096 + 0.348775i −0.770651 0.637257i \(-0.780069\pi\)
0.166555 + 0.986032i \(0.446736\pi\)
\(692\) −3.54117 0.596054i −0.134615 0.0226586i
\(693\) 0 0
\(694\) 4.75419 + 14.8765i 0.180466 + 0.564703i
\(695\) −0.607556 + 2.51232i −0.0230459 + 0.0952977i
\(696\) −19.9820 46.6930i −0.757415 1.76989i
\(697\) −27.3010 + 7.31528i −1.03410 + 0.277086i
\(698\) −0.698628 14.6905i −0.0264435 0.556043i
\(699\) −58.7364 −2.22161
\(700\) 0 0
\(701\) 3.42628 0.129409 0.0647045 0.997904i \(-0.479390\pi\)
0.0647045 + 0.997904i \(0.479390\pi\)
\(702\) 0.00132224 + 0.0278037i 4.99049e−5 + 0.00104938i
\(703\) −5.86106 + 1.57047i −0.221054 + 0.0592312i
\(704\) −36.7654 8.93768i −1.38565 0.336852i
\(705\) 3.59315 14.8581i 0.135326 0.559588i
\(706\) −3.24859 10.1653i −0.122262 0.382574i
\(707\) 0 0
\(708\) −2.74966 + 16.3358i −0.103339 + 0.613937i
\(709\) 26.8261 15.4881i 1.00748 0.581667i 0.0970248 0.995282i \(-0.469067\pi\)
0.910452 + 0.413615i \(0.135734\pi\)
\(710\) −44.9136 8.62635i −1.68558 0.323741i
\(711\) 16.3617 + 9.44644i 0.613612 + 0.354269i
\(712\) 37.0990 29.1607i 1.39034 1.09284i
\(713\) −3.70884 + 3.70884i −0.138897 + 0.138897i
\(714\) 0 0
\(715\) −0.0217353 0.886111i −0.000812854 0.0331387i
\(716\) 17.9044 39.1888i 0.669120 1.46456i
\(717\) −3.59492 + 0.963255i −0.134255 + 0.0359734i
\(718\) 8.77905 + 13.6628i 0.327631 + 0.509893i
\(719\) 21.3674 + 37.0094i 0.796869 + 1.38022i 0.921646 + 0.388033i \(0.126845\pi\)
−0.124777 + 0.992185i \(0.539821\pi\)
\(720\) −12.6954 24.6010i −0.473129 0.916825i
\(721\) 0 0
\(722\) −7.82838 + 15.1820i −0.291342 + 0.565015i
\(723\) 11.8410 44.1913i 0.440372 1.64349i
\(724\) 32.2780 3.07701i 1.19960 0.114356i
\(725\) −16.6173 + 32.3480i −0.617152 + 1.20138i
\(726\) 29.3681 + 26.7016i 1.08995 + 0.990990i
\(727\) −21.7303 + 21.7303i −0.805931 + 0.805931i −0.984015 0.178084i \(-0.943010\pi\)
0.178084 + 0.984015i \(0.443010\pi\)
\(728\) 0 0
\(729\) 28.6841i 1.06238i
\(730\) −30.2536 + 2.18339i −1.11974 + 0.0808108i
\(731\) 9.52347 + 5.49838i 0.352238 + 0.203365i
\(732\) −7.45242 6.15522i −0.275449 0.227503i
\(733\) 3.68215 + 0.986629i 0.136003 + 0.0364420i 0.326179 0.945308i \(-0.394239\pi\)
−0.190175 + 0.981750i \(0.560906\pi\)
\(734\) 5.45132 + 17.0579i 0.201212 + 0.629618i
\(735\) 0 0
\(736\) 0.154814 6.39711i 0.00570652 0.235800i
\(737\) −0.623362 + 2.32642i −0.0229618 + 0.0856947i
\(738\) −21.0553 + 13.5290i −0.775054 + 0.498011i
\(739\) 6.00177 10.3954i 0.220779 0.382400i −0.734266 0.678862i \(-0.762474\pi\)
0.955045 + 0.296462i \(0.0958068\pi\)
\(740\) 9.48393 + 4.05491i 0.348636 + 0.149061i
\(741\) 0.544391 0.0199987
\(742\) 0 0
\(743\) −7.86007 7.86007i −0.288358 0.288358i 0.548073 0.836431i \(-0.315362\pi\)
−0.836431 + 0.548073i \(0.815362\pi\)
\(744\) 32.1484 + 3.85156i 1.17862 + 0.141205i
\(745\) 3.91626 + 13.3019i 0.143481 + 0.487345i
\(746\) −34.4135 7.48906i −1.25997 0.274194i
\(747\) 23.7876 + 6.37387i 0.870344 + 0.233208i
\(748\) 46.1101 + 7.76130i 1.68595 + 0.283781i
\(749\) 0 0
\(750\) −15.2912 + 35.9160i −0.558357 + 1.31147i
\(751\) 1.00430 0.579834i 0.0366475 0.0211584i −0.481564 0.876411i \(-0.659931\pi\)
0.518212 + 0.855252i \(0.326598\pi\)
\(752\) −11.0477 0.793663i −0.402867 0.0289419i
\(753\) −11.5156 42.9769i −0.419653 1.56616i
\(754\) −0.637876 0.579960i −0.0232301 0.0211209i
\(755\) 15.5306 16.3117i 0.565218 0.593643i
\(756\) 0 0
\(757\) −15.7431 15.7431i −0.572192 0.572192i 0.360549 0.932740i \(-0.382590\pi\)
−0.932740 + 0.360549i \(0.882590\pi\)
\(758\) −5.90974 + 0.281047i −0.214652 + 0.0102081i
\(759\) −6.60410 + 11.4386i −0.239714 + 0.415196i
\(760\) −15.1322 + 6.91954i −0.548902 + 0.250998i
\(761\) −9.62047 16.6631i −0.348742 0.604039i 0.637284 0.770629i \(-0.280058\pi\)
−0.986026 + 0.166590i \(0.946724\pi\)
\(762\) −14.7870 + 28.6772i −0.535677 + 1.03887i
\(763\) 0 0
\(764\) −26.7780 + 19.0621i −0.968794 + 0.689644i
\(765\) 17.8274 + 29.2000i 0.644550 + 1.05573i
\(766\) 4.03801 18.5554i 0.145899 0.670432i
\(767\) 0.0727778 + 0.271611i 0.00262786 + 0.00980729i
\(768\) −31.6374 + 23.6522i −1.14162 + 0.853475i
\(769\) 30.8833i 1.11368i 0.830620 + 0.556840i \(0.187986\pi\)
−0.830620 + 0.556840i \(0.812014\pi\)
\(770\) 0 0
\(771\) 36.8135i 1.32580i
\(772\) 3.46507 + 9.29472i 0.124711 + 0.334524i
\(773\) 4.19873 + 15.6699i 0.151018 + 0.563607i 0.999414 + 0.0342438i \(0.0109023\pi\)
−0.848396 + 0.529363i \(0.822431\pi\)
\(774\) 9.51467 + 2.07058i 0.341998 + 0.0744254i
\(775\) −12.5624 19.4854i −0.451255 0.699937i
\(776\) 18.6174 + 13.9437i 0.668327 + 0.500551i
\(777\) 0 0
\(778\) 22.5122 + 11.6081i 0.807100 + 0.416170i
\(779\) 7.52128 + 13.0272i 0.269478 + 0.466749i
\(780\) −0.727726 0.571624i −0.0260568 0.0204674i
\(781\) 34.2004 59.2368i 1.22379 2.11966i
\(782\) 0.375652 + 7.89906i 0.0134333 + 0.282470i
\(783\) 1.20775 + 1.20775i 0.0431616 + 0.0431616i
\(784\) 0 0
\(785\) −0.798877 32.5689i −0.0285132 1.16243i
\(786\) −8.66761 + 9.53317i −0.309163 + 0.340037i
\(787\) 10.8721 + 40.5750i 0.387547 + 1.44634i 0.834113 + 0.551594i \(0.185980\pi\)
−0.446566 + 0.894751i \(0.647353\pi\)
\(788\) −8.50331 7.02319i −0.302918 0.250191i
\(789\) 15.1586 8.75180i 0.539659 0.311572i
\(790\) −18.2371 + 6.32510i −0.648847 + 0.225037i
\(791\) 0 0
\(792\) 40.9837 5.88263i 1.45629 0.209030i
\(793\) −0.158479 0.0424643i −0.00562775 0.00150795i
\(794\) −1.83880 + 8.44960i −0.0652565 + 0.299865i
\(795\) −50.0153 + 14.7252i −1.77386 + 0.522247i
\(796\) −15.7046 + 34.3739i −0.556635 + 1.21835i
\(797\) −5.01705 5.01705i −0.177713 0.177713i 0.612645 0.790358i \(-0.290106\pi\)
−0.790358 + 0.612645i \(0.790106\pi\)
\(798\) 0 0
\(799\) 13.6881 0.484251
\(800\) 27.4940 + 6.63935i 0.972059 + 0.234736i
\(801\) −25.8185 + 44.7190i −0.912253 + 1.58007i
\(802\) 15.0111 + 23.3618i 0.530061 + 0.824935i
\(803\) 11.7414 43.8193i 0.414343 1.54635i
\(804\) 1.45822 + 2.04847i 0.0514273 + 0.0722438i
\(805\) 0 0
\(806\) 0.523519 0.167305i 0.0184402 0.00589308i
\(807\) 14.4142 + 3.86227i 0.507403 + 0.135958i
\(808\) 9.01900 22.5129i 0.317287 0.792000i
\(809\) −16.3576 9.44409i −0.575104 0.332036i 0.184081 0.982911i \(-0.441069\pi\)
−0.759185 + 0.650875i \(0.774402\pi\)
\(810\) −20.8170 18.0146i −0.731436 0.632968i
\(811\) 21.4189i 0.752118i −0.926596 0.376059i \(-0.877279\pi\)
0.926596 0.376059i \(-0.122721\pi\)
\(812\) 0 0
\(813\) 41.0166 41.0166i 1.43851 1.43851i
\(814\) −10.3776 + 11.4139i −0.363733 + 0.400057i
\(815\) 5.79501 + 3.15887i 0.202990 + 0.110650i
\(816\) 36.9032 31.9563i 1.29187 1.11869i
\(817\) 1.51477 5.65322i 0.0529953 0.197781i
\(818\) 12.6361 + 6.51561i 0.441810 + 0.227813i
\(819\) 0 0
\(820\) 3.62470 25.3120i 0.126580 0.883933i
\(821\) 20.8528 + 36.1180i 0.727766 + 1.26053i 0.957825 + 0.287351i \(0.0927747\pi\)
−0.230059 + 0.973177i \(0.573892\pi\)
\(822\) 58.3314 37.4808i 2.03454 1.30729i
\(823\) 39.0933 10.4750i 1.36271 0.365136i 0.497897 0.867236i \(-0.334106\pi\)
0.864809 + 0.502100i \(0.167439\pi\)
\(824\) 1.09890 9.17235i 0.0382820 0.319534i
\(825\) −43.2566 39.2086i −1.50600 1.36507i
\(826\) 0 0
\(827\) −30.7849 + 30.7849i −1.07050 + 1.07050i −0.0731766 + 0.997319i \(0.523314\pi\)
−0.997319 + 0.0731766i \(0.976686\pi\)
\(828\) 2.44603 + 6.56123i 0.0850053 + 0.228018i
\(829\) −36.1486 20.8704i −1.25549 0.724859i −0.283298 0.959032i \(-0.591429\pi\)
−0.972195 + 0.234172i \(0.924762\pi\)
\(830\) −20.8281 + 14.1164i −0.722952 + 0.489988i
\(831\) 49.8696 28.7922i 1.72996 0.998790i
\(832\) −0.321622 + 0.588342i −0.0111502 + 0.0203971i
\(833\) 0 0
\(834\) −3.84433 + 1.22856i −0.133118 + 0.0425417i
\(835\) −10.1027 16.5476i −0.349619 0.572652i
\(836\) −2.36161 24.7734i −0.0816780 0.856805i
\(837\) −1.05177 + 0.281822i −0.0363546 + 0.00974118i
\(838\) −25.1239 + 1.19480i −0.867889 + 0.0412738i
\(839\) 20.9842 0.724456 0.362228 0.932090i \(-0.382016\pi\)
0.362228 + 0.932090i \(0.382016\pi\)
\(840\) 0 0
\(841\) −23.9012 −0.824180
\(842\) −56.0078 + 2.66353i −1.93015 + 0.0917914i
\(843\) 46.0274 12.3330i 1.58527 0.424772i
\(844\) 2.08387 + 21.8599i 0.0717298 + 0.752448i
\(845\) 28.2392 + 6.82910i 0.971457 + 0.234928i
\(846\) 11.5453 3.68962i 0.396935 0.126852i
\(847\) 0 0
\(848\) 16.4961 + 33.9860i 0.566477 + 1.16708i
\(849\) 15.2420 8.79995i 0.523103 0.302014i
\(850\) −34.4782 5.74928i −1.18259 0.197199i
\(851\) −2.25941 1.30447i −0.0774517 0.0447168i
\(852\) −24.9450 66.9124i −0.854601 2.29238i
\(853\) −19.9509 + 19.9509i −0.683106 + 0.683106i −0.960699 0.277593i \(-0.910463\pi\)
0.277593 + 0.960699i \(0.410463\pi\)
\(854\) 0 0
\(855\) 12.5555 13.1869i 0.429389 0.450983i
\(856\) −19.0750 2.28529i −0.651969 0.0781095i
\(857\) −37.0531 + 9.92835i −1.26571 + 0.339146i −0.828386 0.560158i \(-0.810740\pi\)
−0.437324 + 0.899304i \(0.644074\pi\)
\(858\) 1.16436 0.748161i 0.0397507 0.0255418i
\(859\) −3.51740 6.09232i −0.120012 0.207867i 0.799760 0.600320i \(-0.204960\pi\)
−0.919772 + 0.392453i \(0.871627\pi\)
\(860\) −7.96093 + 5.96651i −0.271465 + 0.203456i
\(861\) 0 0
\(862\) −31.6317 16.3104i −1.07738 0.555536i
\(863\) −11.5958 + 43.2762i −0.394726 + 1.47314i 0.427520 + 0.904006i \(0.359387\pi\)
−0.822246 + 0.569132i \(0.807279\pi\)
\(864\) 0.691849 1.13404i 0.0235372 0.0385808i
\(865\) −1.92156 + 3.52514i −0.0653349 + 0.119858i
\(866\) 12.3677 13.6027i 0.420271 0.462240i
\(867\) −12.9813 + 12.9813i −0.440868 + 0.440868i
\(868\) 0 0
\(869\) 28.8694i 0.979328i
\(870\) −56.6364 + 4.08743i −1.92016 + 0.138577i
\(871\) 0.0369636 + 0.0213410i 0.00125246 + 0.000723111i
\(872\) 10.2904 + 4.12251i 0.348478 + 0.139606i
\(873\) −24.5861 6.58783i −0.832114 0.222964i
\(874\) 4.00901 1.28119i 0.135607 0.0433369i
\(875\) 0 0
\(876\) −27.4663 38.5839i −0.928000 1.30363i
\(877\) 1.48622 5.54663i 0.0501860 0.187297i −0.936282 0.351248i \(-0.885757\pi\)
0.986468 + 0.163951i \(0.0524241\pi\)
\(878\) 22.7813 + 35.4546i 0.768832 + 1.19653i
\(879\) 2.25970 3.91392i 0.0762179 0.132013i
\(880\) −22.8558 + 35.5961i −0.770467 + 1.19994i
\(881\) −3.68416 −0.124122 −0.0620612 0.998072i \(-0.519767\pi\)
−0.0620612 + 0.998072i \(0.519767\pi\)
\(882\) 0 0
\(883\) −10.4605 10.4605i −0.352023 0.352023i 0.508839 0.860862i \(-0.330075\pi\)
−0.860862 + 0.508839i \(0.830075\pi\)
\(884\) 0.344346 0.753697i 0.0115816 0.0253496i
\(885\) 16.2618 + 8.86435i 0.546635 + 0.297972i
\(886\) 12.2792 56.4252i 0.412529 1.89564i
\(887\) 30.8995 + 8.27950i 1.03750 + 0.277998i 0.737079 0.675807i \(-0.236205\pi\)
0.300426 + 0.953805i \(0.402871\pi\)
\(888\) 2.28822 + 15.9418i 0.0767876 + 0.534972i
\(889\) 0 0
\(890\) −17.2874 49.8447i −0.579476 1.67080i
\(891\) 35.6571 20.5866i 1.19456 0.689678i
\(892\) −29.8745 24.6744i −1.00027 0.826160i
\(893\) −1.88550 7.03680i −0.0630960 0.235477i
\(894\) −14.5653 + 16.0198i −0.487137 + 0.535784i
\(895\) −34.8868 33.2163i −1.16614 1.11030i
\(896\) 0 0
\(897\) 0.165512 + 0.165512i 0.00552627 + 0.00552627i
\(898\) 1.39096 + 29.2485i 0.0464169 + 0.976036i
\(899\) 16.8624 29.2066i 0.562394 0.974095i
\(900\) −30.6305 + 4.44432i −1.02102 + 0.148144i
\(901\) −23.3433 40.4318i −0.777679 1.34698i
\(902\) 33.9903 + 17.5266i 1.13175 + 0.583572i
\(903\) 0 0
\(904\) 0.0671850 0.0897042i 0.00223454 0.00298352i
\(905\) 8.52110 35.2358i 0.283251 1.17128i
\(906\) 34.3632 + 7.47811i 1.14164 + 0.248444i
\(907\) 3.58771 + 13.3895i 0.119128 + 0.444592i 0.999563 0.0295760i \(-0.00941571\pi\)
−0.880435 + 0.474168i \(0.842749\pi\)
\(908\) −16.0368 43.0170i −0.532198 1.42757i
\(909\) 26.5390i 0.880243i
\(910\) 0 0
\(911\) 47.8573i 1.58558i −0.609494 0.792791i \(-0.708627\pi\)
0.609494 0.792791i \(-0.291373\pi\)
\(912\) −21.5114 14.5693i −0.712315 0.482437i
\(913\) −9.73964 36.3488i −0.322335 1.20297i
\(914\) −1.12668 + 5.17727i −0.0372671 + 0.171249i
\(915\) −9.22344 + 5.63114i −0.304917 + 0.186160i
\(916\) 19.4528 13.8476i 0.642739 0.457539i
\(917\) 0 0
\(918\) −0.752382 + 1.45913i −0.0248323 + 0.0481586i
\(919\) −3.56719 6.17855i −0.117671 0.203812i 0.801173 0.598432i \(-0.204209\pi\)
−0.918844 + 0.394620i \(0.870876\pi\)
\(920\) −6.70441 2.49690i −0.221038 0.0823204i
\(921\) 6.74155 11.6767i 0.222142 0.384761i
\(922\) −9.41965 + 0.447966i −0.310220 + 0.0147530i
\(923\) −0.857128 0.857128i −0.0282127 0.0282127i
\(924\) 0 0
\(925\) 7.74467 8.54424i 0.254643 0.280933i
\(926\) 21.8839 + 19.8969i 0.719148 + 0.653853i
\(927\) 2.61640 + 9.76453i 0.0859338 + 0.320709i
\(928\) 9.68426 + 39.9882i 0.317902 + 1.31268i
\(929\) 22.9712 13.2625i 0.753662 0.435127i −0.0733534 0.997306i \(-0.523370\pi\)
0.827016 + 0.562179i \(0.190037\pi\)
\(930\) 15.7964 32.5717i 0.517984 1.06807i
\(931\) 0 0
\(932\) 46.9223 + 7.89802i 1.53699 + 0.258708i
\(933\) −48.9615 13.1192i −1.60293 0.429503i
\(934\) 38.8099 + 8.44580i 1.26990 + 0.276355i
\(935\) 25.0209 45.9013i 0.818270 1.50113i
\(936\) 0.0872814 0.728525i 0.00285288 0.0238126i
\(937\) −4.34151 4.34151i −0.141831 0.141831i 0.632626 0.774457i \(-0.281977\pi\)
−0.774457 + 0.632626i \(0.781977\pi\)
\(938\) 0 0
\(939\) −68.9071 −2.24870
\(940\) −4.86833 + 11.3864i −0.158787 + 0.371384i
\(941\) 12.9331 22.4008i 0.421607 0.730245i −0.574490 0.818512i \(-0.694800\pi\)
0.996097 + 0.0882670i \(0.0281329\pi\)
\(942\) 42.7960 27.4985i 1.39437 0.895951i
\(943\) −1.67398 + 6.24739i −0.0545124 + 0.203443i
\(944\) 4.39320 12.6803i 0.142987 0.412710i
\(945\) 0 0
\(946\) −4.52941 14.1731i −0.147264 0.460807i
\(947\) 28.6706 + 7.68227i 0.931670 + 0.249640i 0.692567 0.721354i \(-0.256480\pi\)
0.239103 + 0.970994i \(0.423147\pi\)
\(948\) −23.2384 19.1935i −0.754750 0.623375i
\(949\) −0.696229 0.401968i −0.0226006 0.0130484i
\(950\) 1.79369 + 18.5165i 0.0581951 + 0.600755i
\(951\) 31.9921i 1.03741i
\(952\) 0 0
\(953\) −33.9836 + 33.9836i −1.10084 + 1.10084i −0.106528 + 0.994310i \(0.533973\pi\)
−0.994310 + 0.106528i \(0.966027\pi\)
\(954\) −30.5873 27.8102i −0.990301 0.900387i
\(955\) 10.3791 + 35.2535i 0.335859 + 1.14078i
\(956\) 3.00137 0.286116i 0.0970712 0.00925366i
\(957\) 21.9805 82.0323i 0.710528 2.65173i
\(958\) −6.83311 + 13.2518i −0.220768 + 0.428146i
\(959\) 0 0
\(960\) 13.4577 + 42.0634i 0.434347 + 1.35759i
\(961\) −4.75009 8.22739i −0.153229 0.265400i
\(962\) 0.147780 + 0.229991i 0.00476463 + 0.00741520i
\(963\) 20.3065 5.44110i 0.654367 0.175337i
\(964\) −15.4016 + 33.7106i −0.496051 + 1.08574i
\(965\) 11.0871 0.271955i 0.356907 0.00875453i
\(966\) 0 0
\(967\) 26.2766 26.2766i 0.844999 0.844999i −0.144505 0.989504i \(-0.546159\pi\)
0.989504 + 0.144505i \(0.0461589\pi\)
\(968\) −19.8706 25.2799i −0.638666 0.812527i
\(969\) 27.8061 + 16.0539i 0.893260 + 0.515724i
\(970\) 21.5272 14.5903i 0.691197 0.468466i
\(971\) −40.7412 + 23.5219i −1.30745 + 0.754855i −0.981670 0.190591i \(-0.938960\pi\)
−0.325778 + 0.945446i \(0.605626\pi\)
\(972\) 7.36883 43.7784i 0.236355 1.40419i
\(973\) 0 0
\(974\) 16.3851 + 51.2711i 0.525013 + 1.64283i
\(975\) −0.869561 + 0.560614i −0.0278482 + 0.0179540i
\(976\) 5.12579 + 5.91927i 0.164073 + 0.189471i
\(977\) 21.3849 5.73007i 0.684163 0.183321i 0.100037 0.994984i \(-0.468104\pi\)
0.584126 + 0.811663i \(0.301437\pi\)
\(978\) 0.489539 + 10.2938i 0.0156537 + 0.329161i
\(979\) 78.9044 2.52180
\(980\) 0 0
\(981\) −12.1307 −0.387305
\(982\) 0.241690 + 5.08217i 0.00771264 + 0.162178i
\(983\) 17.0668 4.57305i 0.544348 0.145858i 0.0238421 0.999716i \(-0.492410\pi\)
0.520506 + 0.853858i \(0.325743\pi\)
\(984\) 36.7061 15.7081i 1.17015 0.500757i
\(985\) −10.5241 + 6.42521i −0.335325 + 0.204724i
\(986\) −15.4783 48.4336i −0.492930 1.54244i
\(987\) 0 0
\(988\) −0.434893 0.0732017i −0.0138358 0.00232886i
\(989\) 2.17929 1.25821i 0.0692975 0.0400089i
\(990\) 8.73128 45.4599i 0.277498 1.44481i
\(991\) −3.59673 2.07657i −0.114254 0.0659645i 0.441784 0.897121i \(-0.354346\pi\)
−0.556038 + 0.831157i \(0.687679\pi\)
\(992\) −25.1642 7.39971i −0.798965 0.234941i
\(993\) 12.9278 12.9278i 0.410250 0.410250i
\(994\) 0 0
\(995\) 30.6005 + 29.1352i 0.970100 + 0.923649i
\(996\) −35.7343 16.3261i −1.13228 0.517314i
\(997\) −23.3879 + 6.26677i −0.740702 + 0.198471i −0.609390 0.792870i \(-0.708586\pi\)
−0.131312 + 0.991341i \(0.541919\pi\)
\(998\) 7.82248 + 12.1741i 0.247616 + 0.385366i
\(999\) −0.270807 0.469052i −0.00856796 0.0148401i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 980.2.x.m.67.1 72
4.3 odd 2 inner 980.2.x.m.67.15 72
5.3 odd 4 inner 980.2.x.m.263.9 72
7.2 even 3 inner 980.2.x.m.667.12 72
7.3 odd 6 980.2.k.k.687.14 36
7.4 even 3 980.2.k.j.687.14 36
7.5 odd 6 140.2.w.b.107.12 yes 72
7.6 odd 2 140.2.w.b.67.1 yes 72
20.3 even 4 inner 980.2.x.m.263.12 72
28.3 even 6 980.2.k.k.687.4 36
28.11 odd 6 980.2.k.j.687.4 36
28.19 even 6 140.2.w.b.107.9 yes 72
28.23 odd 6 inner 980.2.x.m.667.9 72
28.27 even 2 140.2.w.b.67.15 yes 72
35.3 even 12 980.2.k.k.883.4 36
35.12 even 12 700.2.be.e.443.4 72
35.13 even 4 140.2.w.b.123.9 yes 72
35.18 odd 12 980.2.k.j.883.4 36
35.19 odd 6 700.2.be.e.107.7 72
35.23 odd 12 inner 980.2.x.m.863.15 72
35.27 even 4 700.2.be.e.543.10 72
35.33 even 12 140.2.w.b.23.15 yes 72
35.34 odd 2 700.2.be.e.207.18 72
140.3 odd 12 980.2.k.k.883.14 36
140.19 even 6 700.2.be.e.107.10 72
140.23 even 12 inner 980.2.x.m.863.1 72
140.27 odd 4 700.2.be.e.543.7 72
140.47 odd 12 700.2.be.e.443.18 72
140.83 odd 4 140.2.w.b.123.12 yes 72
140.103 odd 12 140.2.w.b.23.1 72
140.123 even 12 980.2.k.j.883.14 36
140.139 even 2 700.2.be.e.207.4 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.w.b.23.1 72 140.103 odd 12
140.2.w.b.23.15 yes 72 35.33 even 12
140.2.w.b.67.1 yes 72 7.6 odd 2
140.2.w.b.67.15 yes 72 28.27 even 2
140.2.w.b.107.9 yes 72 28.19 even 6
140.2.w.b.107.12 yes 72 7.5 odd 6
140.2.w.b.123.9 yes 72 35.13 even 4
140.2.w.b.123.12 yes 72 140.83 odd 4
700.2.be.e.107.7 72 35.19 odd 6
700.2.be.e.107.10 72 140.19 even 6
700.2.be.e.207.4 72 140.139 even 2
700.2.be.e.207.18 72 35.34 odd 2
700.2.be.e.443.4 72 35.12 even 12
700.2.be.e.443.18 72 140.47 odd 12
700.2.be.e.543.7 72 140.27 odd 4
700.2.be.e.543.10 72 35.27 even 4
980.2.k.j.687.4 36 28.11 odd 6
980.2.k.j.687.14 36 7.4 even 3
980.2.k.j.883.4 36 35.18 odd 12
980.2.k.j.883.14 36 140.123 even 12
980.2.k.k.687.4 36 28.3 even 6
980.2.k.k.687.14 36 7.3 odd 6
980.2.k.k.883.4 36 35.3 even 12
980.2.k.k.883.14 36 140.3 odd 12
980.2.x.m.67.1 72 1.1 even 1 trivial
980.2.x.m.67.15 72 4.3 odd 2 inner
980.2.x.m.263.9 72 5.3 odd 4 inner
980.2.x.m.263.12 72 20.3 even 4 inner
980.2.x.m.667.9 72 28.23 odd 6 inner
980.2.x.m.667.12 72 7.2 even 3 inner
980.2.x.m.863.1 72 140.23 even 12 inner
980.2.x.m.863.15 72 35.23 odd 12 inner