Properties

Label 700.2.be.e.443.4
Level $700$
Weight $2$
Character 700.443
Analytic conductor $5.590$
Analytic rank $0$
Dimension $72$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [700,2,Mod(107,700)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("700.107"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(700, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 3, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 700.be (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72,-2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.58952814149\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(18\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 443.4
Character \(\chi\) \(=\) 700.443
Dual form 700.2.be.e.207.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.18977 + 0.764487i) q^{2} +(2.38471 + 0.638980i) q^{3} +(0.831118 - 1.81913i) q^{4} +(-3.32575 + 1.06284i) q^{6} +(2.10106 - 1.60796i) q^{7} +(0.401862 + 2.79973i) q^{8} +(2.68045 + 1.54756i) q^{9} +(4.09588 - 2.36476i) q^{11} +(3.14436 - 3.80703i) q^{12} +(-0.0592655 - 0.0592655i) q^{13} +(-1.27053 + 3.51934i) q^{14} +(-2.61849 - 3.02383i) q^{16} +(-4.77484 - 1.27942i) q^{17} +(-4.37222 + 0.207927i) q^{18} +(1.31544 - 2.27842i) q^{19} +(6.03788 - 2.49197i) q^{21} +(-3.06534 + 5.94478i) q^{22} +(-0.292774 - 1.09265i) q^{23} +(-0.830651 + 6.93332i) q^{24} +(0.115820 + 0.0252047i) q^{26} +(0.166053 + 0.166053i) q^{27} +(-1.17885 - 5.15852i) q^{28} +7.27332i q^{29} +(4.01558 - 2.31840i) q^{31} +(5.42708 + 1.59587i) q^{32} +(11.2785 - 3.02207i) q^{33} +(6.65908 - 2.12809i) q^{34} +(5.04299 - 3.58989i) q^{36} +(0.596933 + 2.22779i) q^{37} +(0.176741 + 3.71644i) q^{38} +(-0.103461 - 0.179200i) q^{39} -5.71767 q^{41} +(-5.27862 + 7.58075i) q^{42} +(-1.57302 + 1.57302i) q^{43} +(-0.897647 - 9.41635i) q^{44} +(1.18365 + 1.07618i) q^{46} +(2.67468 - 0.716679i) q^{47} +(-4.31215 - 8.88410i) q^{48} +(1.82895 - 6.75684i) q^{49} +(-10.5691 - 6.10206i) q^{51} +(-0.157068 + 0.0585551i) q^{52} +(-2.44441 + 9.12265i) q^{53} +(-0.324510 - 0.0706197i) q^{54} +(5.34619 + 5.23624i) q^{56} +(4.59281 - 4.59281i) q^{57} +(-5.56036 - 8.65360i) q^{58} +(1.67748 + 2.90547i) q^{59} +(-0.978771 + 1.69528i) q^{61} +(-3.00524 + 5.82822i) q^{62} +(8.12021 - 1.05853i) q^{63} +(-7.67701 + 2.25021i) q^{64} +(-11.1085 + 12.2179i) q^{66} +(-0.131802 + 0.491893i) q^{67} +(-6.29589 + 7.62273i) q^{68} -2.79272i q^{69} +14.4625i q^{71} +(-3.25558 + 8.12646i) q^{72} +(2.48257 - 9.26507i) q^{73} +(-2.41333 - 2.19421i) q^{74} +(-3.05145 - 4.28660i) q^{76} +(4.80329 - 11.5545i) q^{77} +(0.260092 + 0.134113i) q^{78} +(-3.05204 + 5.28630i) q^{79} +(-4.35280 - 7.53927i) q^{81} +(6.80273 - 4.37109i) q^{82} +(-5.62620 + 5.62620i) q^{83} +(0.484971 - 13.0548i) q^{84} +(0.668982 - 3.07409i) q^{86} +(-4.64751 + 17.3447i) q^{87} +(8.26668 + 10.5171i) q^{88} +(14.4482 + 8.34169i) q^{89} +(-0.219817 - 0.0292243i) q^{91} +(-2.23100 - 0.375524i) q^{92} +(11.0574 - 2.96282i) q^{93} +(-2.63437 + 2.89745i) q^{94} +(11.9223 + 7.27348i) q^{96} +(-5.81505 + 5.81505i) q^{97} +(2.98949 + 9.43732i) q^{98} +14.6384 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 2 q^{2} - 16 q^{6} + 4 q^{8} - 10 q^{12} - 28 q^{16} - 4 q^{17} + 20 q^{18} + 4 q^{21} + 16 q^{22} - 4 q^{26} - 42 q^{28} + 38 q^{32} + 64 q^{33} + 16 q^{36} + 4 q^{37} - 12 q^{38} - 40 q^{41} - 78 q^{42}+ \cdots + 90 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.18977 + 0.764487i −0.841296 + 0.540574i
\(3\) 2.38471 + 0.638980i 1.37681 + 0.368915i 0.869962 0.493119i \(-0.164143\pi\)
0.506849 + 0.862035i \(0.330810\pi\)
\(4\) 0.831118 1.81913i 0.415559 0.909566i
\(5\) 0 0
\(6\) −3.32575 + 1.06284i −1.35773 + 0.433901i
\(7\) 2.10106 1.60796i 0.794128 0.607751i
\(8\) 0.401862 + 2.79973i 0.142080 + 0.989855i
\(9\) 2.68045 + 1.54756i 0.893484 + 0.515853i
\(10\) 0 0
\(11\) 4.09588 2.36476i 1.23496 0.713002i 0.266897 0.963725i \(-0.414002\pi\)
0.968059 + 0.250723i \(0.0806684\pi\)
\(12\) 3.14436 3.80703i 0.907699 1.09899i
\(13\) −0.0592655 0.0592655i −0.0164373 0.0164373i 0.698840 0.715278i \(-0.253700\pi\)
−0.715278 + 0.698840i \(0.753700\pi\)
\(14\) −1.27053 + 3.51934i −0.339563 + 0.940583i
\(15\) 0 0
\(16\) −2.61849 3.02383i −0.654621 0.755957i
\(17\) −4.77484 1.27942i −1.15807 0.310304i −0.371875 0.928283i \(-0.621285\pi\)
−0.786195 + 0.617979i \(0.787952\pi\)
\(18\) −4.37222 + 0.207927i −1.03054 + 0.0490090i
\(19\) 1.31544 2.27842i 0.301784 0.522705i −0.674756 0.738041i \(-0.735751\pi\)
0.976540 + 0.215336i \(0.0690846\pi\)
\(20\) 0 0
\(21\) 6.03788 2.49197i 1.31757 0.543792i
\(22\) −3.06534 + 5.94478i −0.653533 + 1.26743i
\(23\) −0.292774 1.09265i −0.0610475 0.227832i 0.928661 0.370929i \(-0.120961\pi\)
−0.989709 + 0.143097i \(0.954294\pi\)
\(24\) −0.830651 + 6.93332i −0.169556 + 1.41526i
\(25\) 0 0
\(26\) 0.115820 + 0.0252047i 0.0227142 + 0.00494306i
\(27\) 0.166053 + 0.166053i 0.0319568 + 0.0319568i
\(28\) −1.17885 5.15852i −0.222782 0.974868i
\(29\) 7.27332i 1.35062i 0.737533 + 0.675311i \(0.235991\pi\)
−0.737533 + 0.675311i \(0.764009\pi\)
\(30\) 0 0
\(31\) 4.01558 2.31840i 0.721219 0.416396i −0.0939821 0.995574i \(-0.529960\pi\)
0.815201 + 0.579178i \(0.196626\pi\)
\(32\) 5.42708 + 1.59587i 0.959381 + 0.282112i
\(33\) 11.2785 3.02207i 1.96334 0.526075i
\(34\) 6.65908 2.12809i 1.14202 0.364965i
\(35\) 0 0
\(36\) 5.04299 3.58989i 0.840498 0.598315i
\(37\) 0.596933 + 2.22779i 0.0981352 + 0.366246i 0.997476 0.0710024i \(-0.0226198\pi\)
−0.899341 + 0.437248i \(0.855953\pi\)
\(38\) 0.176741 + 3.71644i 0.0286712 + 0.602886i
\(39\) −0.103461 0.179200i −0.0165671 0.0286950i
\(40\) 0 0
\(41\) −5.71767 −0.892950 −0.446475 0.894796i \(-0.647321\pi\)
−0.446475 + 0.894796i \(0.647321\pi\)
\(42\) −5.27862 + 7.58075i −0.814509 + 1.16974i
\(43\) −1.57302 + 1.57302i −0.239883 + 0.239883i −0.816802 0.576918i \(-0.804255\pi\)
0.576918 + 0.816802i \(0.304255\pi\)
\(44\) −0.897647 9.41635i −0.135325 1.41957i
\(45\) 0 0
\(46\) 1.18365 + 1.07618i 0.174519 + 0.158674i
\(47\) 2.67468 0.716679i 0.390143 0.104538i −0.0584148 0.998292i \(-0.518605\pi\)
0.448558 + 0.893754i \(0.351938\pi\)
\(48\) −4.31215 8.88410i −0.622406 1.28231i
\(49\) 1.82895 6.75684i 0.261278 0.965264i
\(50\) 0 0
\(51\) −10.5691 6.10206i −1.47997 0.854459i
\(52\) −0.157068 + 0.0585551i −0.0217815 + 0.00812014i
\(53\) −2.44441 + 9.12265i −0.335765 + 1.25309i 0.567272 + 0.823530i \(0.307999\pi\)
−0.903037 + 0.429562i \(0.858668\pi\)
\(54\) −0.324510 0.0706197i −0.0441602 0.00961013i
\(55\) 0 0
\(56\) 5.34619 + 5.23624i 0.714415 + 0.699723i
\(57\) 4.59281 4.59281i 0.608333 0.608333i
\(58\) −5.56036 8.65360i −0.730112 1.13627i
\(59\) 1.67748 + 2.90547i 0.218389 + 0.378260i 0.954315 0.298801i \(-0.0965866\pi\)
−0.735927 + 0.677061i \(0.763253\pi\)
\(60\) 0 0
\(61\) −0.978771 + 1.69528i −0.125319 + 0.217058i −0.921857 0.387529i \(-0.873329\pi\)
0.796539 + 0.604587i \(0.206662\pi\)
\(62\) −3.00524 + 5.82822i −0.381666 + 0.740185i
\(63\) 8.12021 1.05853i 1.02305 0.133362i
\(64\) −7.67701 + 2.25021i −0.959627 + 0.281277i
\(65\) 0 0
\(66\) −11.1085 + 12.2179i −1.36737 + 1.50391i
\(67\) −0.131802 + 0.491893i −0.0161022 + 0.0600943i −0.973509 0.228647i \(-0.926570\pi\)
0.957407 + 0.288741i \(0.0932366\pi\)
\(68\) −6.29589 + 7.62273i −0.763488 + 0.924392i
\(69\) 2.79272i 0.336204i
\(70\) 0 0
\(71\) 14.4625i 1.71638i 0.513329 + 0.858192i \(0.328412\pi\)
−0.513329 + 0.858192i \(0.671588\pi\)
\(72\) −3.25558 + 8.12646i −0.383674 + 0.957712i
\(73\) 2.48257 9.26507i 0.290563 1.08439i −0.654115 0.756395i \(-0.726959\pi\)
0.944678 0.327999i \(-0.106374\pi\)
\(74\) −2.41333 2.19421i −0.280544 0.255072i
\(75\) 0 0
\(76\) −3.05145 4.28660i −0.350026 0.491707i
\(77\) 4.80329 11.5545i 0.547385 1.31676i
\(78\) 0.260092 + 0.134113i 0.0294496 + 0.0151853i
\(79\) −3.05204 + 5.28630i −0.343382 + 0.594755i −0.985058 0.172221i \(-0.944906\pi\)
0.641677 + 0.766975i \(0.278239\pi\)
\(80\) 0 0
\(81\) −4.35280 7.53927i −0.483644 0.837696i
\(82\) 6.80273 4.37109i 0.751235 0.482706i
\(83\) −5.62620 + 5.62620i −0.617555 + 0.617555i −0.944904 0.327348i \(-0.893845\pi\)
0.327348 + 0.944904i \(0.393845\pi\)
\(84\) 0.484971 13.0548i 0.0529146 1.42440i
\(85\) 0 0
\(86\) 0.668982 3.07409i 0.0721382 0.331488i
\(87\) −4.64751 + 17.3447i −0.498265 + 1.85955i
\(88\) 8.26668 + 10.5171i 0.881231 + 1.12112i
\(89\) 14.4482 + 8.34169i 1.53151 + 0.884218i 0.999292 + 0.0376100i \(0.0119745\pi\)
0.532217 + 0.846608i \(0.321359\pi\)
\(90\) 0 0
\(91\) −0.219817 0.0292243i −0.0230431 0.00306354i
\(92\) −2.23100 0.375524i −0.232598 0.0391511i
\(93\) 11.0574 2.96282i 1.14660 0.307230i
\(94\) −2.63437 + 2.89745i −0.271715 + 0.298849i
\(95\) 0 0
\(96\) 11.9223 + 7.27348i 1.21681 + 0.742346i
\(97\) −5.81505 + 5.81505i −0.590429 + 0.590429i −0.937747 0.347318i \(-0.887092\pi\)
0.347318 + 0.937747i \(0.387092\pi\)
\(98\) 2.98949 + 9.43732i 0.301984 + 0.953313i
\(99\) 14.6384 1.47122
\(100\) 0 0
\(101\) 4.28723 + 7.42571i 0.426596 + 0.738885i 0.996568 0.0827785i \(-0.0263794\pi\)
−0.569972 + 0.821664i \(0.693046\pi\)
\(102\) 17.2398 0.819862i 1.70699 0.0811785i
\(103\) 0.845330 + 3.15482i 0.0832929 + 0.310853i 0.994985 0.100020i \(-0.0318906\pi\)
−0.911693 + 0.410873i \(0.865224\pi\)
\(104\) 0.142111 0.189744i 0.0139351 0.0186059i
\(105\) 0 0
\(106\) −4.06586 12.7226i −0.394911 1.23573i
\(107\) 6.56081 1.75796i 0.634257 0.169949i 0.0726563 0.997357i \(-0.476852\pi\)
0.561601 + 0.827408i \(0.310186\pi\)
\(108\) 0.440081 0.164062i 0.0423468 0.0157869i
\(109\) −3.39423 + 1.95966i −0.325108 + 0.187701i −0.653667 0.756782i \(-0.726770\pi\)
0.328559 + 0.944483i \(0.393437\pi\)
\(110\) 0 0
\(111\) 5.69404i 0.540455i
\(112\) −10.3638 2.14285i −0.979286 0.202480i
\(113\) 0.0280186 + 0.0280186i 0.00263577 + 0.00263577i 0.708423 0.705788i \(-0.249407\pi\)
−0.705788 + 0.708423i \(0.749407\pi\)
\(114\) −1.95326 + 8.97555i −0.182939 + 0.840637i
\(115\) 0 0
\(116\) 13.2311 + 6.04499i 1.22848 + 0.561263i
\(117\) −0.0671414 0.250575i −0.00620723 0.0231657i
\(118\) −4.21701 2.17444i −0.388207 0.200174i
\(119\) −12.0895 + 4.98961i −1.10824 + 0.457397i
\(120\) 0 0
\(121\) 5.68418 9.84529i 0.516744 0.895026i
\(122\) −0.131506 2.76526i −0.0119060 0.250355i
\(123\) −13.6350 3.65348i −1.22942 0.329423i
\(124\) −0.880048 9.23173i −0.0790306 0.829034i
\(125\) 0 0
\(126\) −8.85198 + 7.46721i −0.788597 + 0.665232i
\(127\) −6.53450 6.53450i −0.579843 0.579843i 0.355017 0.934860i \(-0.384475\pi\)
−0.934860 + 0.355017i \(0.884475\pi\)
\(128\) 7.41364 8.54622i 0.655280 0.755386i
\(129\) −4.75632 + 2.74606i −0.418770 + 0.241777i
\(130\) 0 0
\(131\) −3.19588 1.84514i −0.279225 0.161211i 0.353847 0.935303i \(-0.384873\pi\)
−0.633073 + 0.774092i \(0.718207\pi\)
\(132\) 3.87624 23.0288i 0.337383 2.00440i
\(133\) −0.899762 6.90228i −0.0780193 0.598504i
\(134\) −0.219231 0.686002i −0.0189387 0.0592616i
\(135\) 0 0
\(136\) 1.66319 13.8824i 0.142618 1.19041i
\(137\) −19.1819 5.13977i −1.63882 0.439120i −0.682366 0.731010i \(-0.739049\pi\)
−0.956452 + 0.291890i \(0.905716\pi\)
\(138\) 2.13500 + 3.32270i 0.181743 + 0.282847i
\(139\) −1.15593 −0.0980447 −0.0490223 0.998798i \(-0.515611\pi\)
−0.0490223 + 0.998798i \(0.515611\pi\)
\(140\) 0 0
\(141\) 6.83628 0.575719
\(142\) −11.0564 17.2071i −0.927833 1.44399i
\(143\) −0.382893 0.102596i −0.0320191 0.00857950i
\(144\) −2.33917 12.1575i −0.194931 1.01312i
\(145\) 0 0
\(146\) 4.12934 + 12.9212i 0.341746 + 1.06937i
\(147\) 8.67899 14.9444i 0.715831 1.23260i
\(148\) 4.54876 + 0.765652i 0.373906 + 0.0629362i
\(149\) −5.37045 3.10063i −0.439965 0.254014i 0.263618 0.964627i \(-0.415084\pi\)
−0.703583 + 0.710613i \(0.748418\pi\)
\(150\) 0 0
\(151\) −8.72300 + 5.03623i −0.709868 + 0.409842i −0.811012 0.585029i \(-0.801083\pi\)
0.101144 + 0.994872i \(0.467750\pi\)
\(152\) 6.90759 + 2.76729i 0.560279 + 0.224457i
\(153\) −10.8188 10.8188i −0.874646 0.874646i
\(154\) 3.11847 + 17.4193i 0.251293 + 1.40369i
\(155\) 0 0
\(156\) −0.411977 + 0.0392732i −0.0329846 + 0.00314438i
\(157\) 14.0732 + 3.77089i 1.12316 + 0.300950i 0.772162 0.635426i \(-0.219175\pi\)
0.350999 + 0.936376i \(0.385842\pi\)
\(158\) −0.410067 8.62274i −0.0326232 0.685988i
\(159\) −11.6584 + 20.1929i −0.924570 + 1.60140i
\(160\) 0 0
\(161\) −2.37206 1.82495i −0.186945 0.143826i
\(162\) 10.9425 + 5.64235i 0.859725 + 0.443305i
\(163\) −0.763938 2.85106i −0.0598363 0.223312i 0.929533 0.368740i \(-0.120211\pi\)
−0.989369 + 0.145428i \(0.953544\pi\)
\(164\) −4.75206 + 10.4012i −0.371073 + 0.812197i
\(165\) 0 0
\(166\) 2.39274 10.9950i 0.185713 0.853381i
\(167\) −6.13096 6.13096i −0.474428 0.474428i 0.428916 0.903344i \(-0.358895\pi\)
−0.903344 + 0.428916i \(0.858895\pi\)
\(168\) 9.40323 + 15.9030i 0.725475 + 1.22694i
\(169\) 12.9930i 0.999460i
\(170\) 0 0
\(171\) 7.05197 4.07146i 0.539278 0.311352i
\(172\) 1.55417 + 4.16890i 0.118504 + 0.317875i
\(173\) −1.73431 + 0.464708i −0.131857 + 0.0353311i −0.324144 0.946008i \(-0.605076\pi\)
0.192287 + 0.981339i \(0.438410\pi\)
\(174\) −7.73035 24.1893i −0.586037 1.83378i
\(175\) 0 0
\(176\) −17.8756 6.19316i −1.34743 0.466827i
\(177\) 2.14375 + 8.00057i 0.161134 + 0.601360i
\(178\) −23.5672 + 1.12078i −1.76644 + 0.0840057i
\(179\) −10.7713 18.6564i −0.805084 1.39445i −0.916234 0.400643i \(-0.868787\pi\)
0.111150 0.993804i \(-0.464547\pi\)
\(180\) 0 0
\(181\) −16.2122 −1.20504 −0.602520 0.798104i \(-0.705837\pi\)
−0.602520 + 0.798104i \(0.705837\pi\)
\(182\) 0.283874 0.133277i 0.0210421 0.00987915i
\(183\) −3.41733 + 3.41733i −0.252616 + 0.252616i
\(184\) 2.94146 1.25878i 0.216848 0.0927986i
\(185\) 0 0
\(186\) −10.8907 + 11.9783i −0.798548 + 0.878292i
\(187\) −22.5827 + 6.05102i −1.65141 + 0.442495i
\(188\) 0.919244 5.46125i 0.0670427 0.398303i
\(189\) 0.615893 + 0.0818818i 0.0447996 + 0.00595603i
\(190\) 0 0
\(191\) 14.2331 + 8.21746i 1.02987 + 0.594595i 0.916947 0.399009i \(-0.130646\pi\)
0.112921 + 0.993604i \(0.463979\pi\)
\(192\) −19.7453 + 0.460637i −1.42499 + 0.0332436i
\(193\) −1.28369 + 4.79080i −0.0924021 + 0.344849i −0.996613 0.0822374i \(-0.973793\pi\)
0.904211 + 0.427087i \(0.140460\pi\)
\(194\) 2.47306 11.3641i 0.177555 0.815897i
\(195\) 0 0
\(196\) −10.7715 8.94283i −0.769395 0.638774i
\(197\) 3.89922 3.89922i 0.277808 0.277808i −0.554425 0.832233i \(-0.687062\pi\)
0.832233 + 0.554425i \(0.187062\pi\)
\(198\) −17.4164 + 11.1909i −1.23773 + 0.795302i
\(199\) −9.44788 16.3642i −0.669743 1.16003i −0.977976 0.208717i \(-0.933071\pi\)
0.308233 0.951311i \(-0.400262\pi\)
\(200\) 0 0
\(201\) −0.628620 + 1.08880i −0.0443394 + 0.0767981i
\(202\) −10.7777 5.55737i −0.758316 0.391015i
\(203\) 11.6952 + 15.2817i 0.820842 + 1.07257i
\(204\) −19.8846 + 14.1550i −1.39220 + 0.991050i
\(205\) 0 0
\(206\) −3.41757 3.10727i −0.238113 0.216494i
\(207\) 0.906169 3.38187i 0.0629831 0.235056i
\(208\) −0.0240228 + 0.334394i −0.00166568 + 0.0231861i
\(209\) 12.4428i 0.860690i
\(210\) 0 0
\(211\) 10.9795i 0.755859i 0.925834 + 0.377929i \(0.123364\pi\)
−0.925834 + 0.377929i \(0.876636\pi\)
\(212\) 14.5637 + 12.0287i 1.00024 + 0.826135i
\(213\) −9.24126 + 34.4888i −0.633201 + 2.36314i
\(214\) −6.46193 + 7.10723i −0.441728 + 0.485840i
\(215\) 0 0
\(216\) −0.398173 + 0.531633i −0.0270922 + 0.0361731i
\(217\) 4.70911 11.3280i 0.319675 0.768993i
\(218\) 2.54022 4.92639i 0.172046 0.333657i
\(219\) 11.8404 20.5082i 0.800099 1.38581i
\(220\) 0 0
\(221\) 0.207158 + 0.358809i 0.0139350 + 0.0241361i
\(222\) −4.35302 6.77462i −0.292156 0.454683i
\(223\) 13.6990 13.6990i 0.917356 0.917356i −0.0794806 0.996836i \(-0.525326\pi\)
0.996836 + 0.0794806i \(0.0253262\pi\)
\(224\) 13.9687 5.37349i 0.933326 0.359031i
\(225\) 0 0
\(226\) −0.0547556 0.0119159i −0.00364229 0.000792634i
\(227\) 5.94107 22.1724i 0.394322 1.47163i −0.428609 0.903490i \(-0.640996\pi\)
0.822931 0.568141i \(-0.192337\pi\)
\(228\) −4.53776 12.1721i −0.300521 0.806117i
\(229\) −10.3396 5.96955i −0.683258 0.394479i 0.117824 0.993035i \(-0.462408\pi\)
−0.801081 + 0.598556i \(0.795742\pi\)
\(230\) 0 0
\(231\) 18.8375 24.4849i 1.23942 1.61099i
\(232\) −20.3634 + 2.92287i −1.33692 + 0.191896i
\(233\) −22.9805 + 6.15761i −1.50550 + 0.403399i −0.914939 0.403592i \(-0.867762\pi\)
−0.590565 + 0.806990i \(0.701095\pi\)
\(234\) 0.271445 + 0.246799i 0.0177449 + 0.0161337i
\(235\) 0 0
\(236\) 6.67962 0.636759i 0.434806 0.0414495i
\(237\) −10.6561 + 10.6561i −0.692186 + 0.692186i
\(238\) 10.5693 15.1788i 0.685104 0.983894i
\(239\) −1.50749 −0.0975113 −0.0487556 0.998811i \(-0.515526\pi\)
−0.0487556 + 0.998811i \(0.515526\pi\)
\(240\) 0 0
\(241\) 9.26556 + 16.0484i 0.596847 + 1.03377i 0.993283 + 0.115708i \(0.0369136\pi\)
−0.396436 + 0.918062i \(0.629753\pi\)
\(242\) 0.763716 + 16.0591i 0.0490935 + 1.03232i
\(243\) −5.74504 21.4408i −0.368544 1.37543i
\(244\) 2.27047 + 3.18949i 0.145352 + 0.204186i
\(245\) 0 0
\(246\) 19.0155 6.07695i 1.21239 0.387452i
\(247\) −0.212992 + 0.0570710i −0.0135524 + 0.00363134i
\(248\) 8.10460 + 10.3109i 0.514642 + 0.654741i
\(249\) −17.0119 + 9.82180i −1.07808 + 0.622431i
\(250\) 0 0
\(251\) 18.0219i 1.13753i −0.822500 0.568765i \(-0.807421\pi\)
0.822500 0.568765i \(-0.192579\pi\)
\(252\) 4.82325 15.6515i 0.303836 0.985952i
\(253\) −3.78301 3.78301i −0.237836 0.237836i
\(254\) 12.7701 + 2.77903i 0.801268 + 0.174372i
\(255\) 0 0
\(256\) −2.28707 + 15.8357i −0.142942 + 0.989731i
\(257\) 3.85933 + 14.4032i 0.240738 + 0.898448i 0.975478 + 0.220098i \(0.0706378\pi\)
−0.734739 + 0.678350i \(0.762696\pi\)
\(258\) 3.55961 6.90333i 0.221611 0.429783i
\(259\) 4.83638 + 3.72088i 0.300518 + 0.231204i
\(260\) 0 0
\(261\) −11.2559 + 19.4958i −0.696723 + 1.20676i
\(262\) 5.21295 0.247910i 0.322057 0.0153159i
\(263\) −6.84826 1.83499i −0.422282 0.113150i 0.0414191 0.999142i \(-0.486812\pi\)
−0.463701 + 0.885992i \(0.653479\pi\)
\(264\) 12.9934 + 30.3624i 0.799688 + 1.86868i
\(265\) 0 0
\(266\) 6.34722 + 7.52429i 0.389173 + 0.461344i
\(267\) 29.1246 + 29.1246i 1.78240 + 1.78240i
\(268\) 0.785275 + 0.648587i 0.0479683 + 0.0396188i
\(269\) 5.23463 3.02221i 0.319161 0.184268i −0.331858 0.943329i \(-0.607675\pi\)
0.651019 + 0.759062i \(0.274342\pi\)
\(270\) 0 0
\(271\) −20.3476 11.7477i −1.23603 0.713622i −0.267750 0.963488i \(-0.586280\pi\)
−0.968280 + 0.249866i \(0.919613\pi\)
\(272\) 8.63413 + 17.7884i 0.523521 + 1.07858i
\(273\) −0.505525 0.210150i −0.0305958 0.0127189i
\(274\) 26.7514 8.54914i 1.61611 0.516473i
\(275\) 0 0
\(276\) −5.08032 2.32108i −0.305799 0.139712i
\(277\) 22.5298 + 6.03684i 1.35369 + 0.362719i 0.861494 0.507768i \(-0.169529\pi\)
0.492191 + 0.870487i \(0.336196\pi\)
\(278\) 1.37529 0.883694i 0.0824846 0.0530004i
\(279\) 14.3514 0.859197
\(280\) 0 0
\(281\) −19.3011 −1.15141 −0.575703 0.817659i \(-0.695272\pi\)
−0.575703 + 0.817659i \(0.695272\pi\)
\(282\) −8.13362 + 5.22625i −0.484350 + 0.311219i
\(283\) 6.88593 + 1.84508i 0.409326 + 0.109679i 0.457606 0.889155i \(-0.348707\pi\)
−0.0482794 + 0.998834i \(0.515374\pi\)
\(284\) 26.3092 + 12.0201i 1.56117 + 0.713259i
\(285\) 0 0
\(286\) 0.533989 0.170651i 0.0315754 0.0100908i
\(287\) −12.0132 + 9.19377i −0.709116 + 0.542691i
\(288\) 12.0773 + 12.6764i 0.711663 + 0.746963i
\(289\) 6.43980 + 3.71802i 0.378812 + 0.218707i
\(290\) 0 0
\(291\) −17.5829 + 10.1515i −1.03073 + 0.595091i
\(292\) −14.7911 12.2165i −0.865583 0.714916i
\(293\) −1.29442 1.29442i −0.0756208 0.0756208i 0.668285 0.743906i \(-0.267029\pi\)
−0.743906 + 0.668285i \(0.767029\pi\)
\(294\) 1.09880 + 24.4155i 0.0640832 + 1.42394i
\(295\) 0 0
\(296\) −5.99732 + 2.56652i −0.348587 + 0.149176i
\(297\) 1.07281 + 0.287458i 0.0622506 + 0.0166800i
\(298\) 8.76001 0.416596i 0.507454 0.0241327i
\(299\) −0.0474048 + 0.0821076i −0.00274149 + 0.00474840i
\(300\) 0 0
\(301\) −0.775668 + 5.83436i −0.0447088 + 0.336287i
\(302\) 6.52826 12.6606i 0.375659 0.728535i
\(303\) 5.47891 + 20.4476i 0.314755 + 1.17468i
\(304\) −10.3340 + 1.98832i −0.592696 + 0.114038i
\(305\) 0 0
\(306\) 21.1427 + 4.60106i 1.20865 + 0.263025i
\(307\) 3.86175 + 3.86175i 0.220402 + 0.220402i 0.808667 0.588266i \(-0.200189\pi\)
−0.588266 + 0.808667i \(0.700189\pi\)
\(308\) −17.0271 18.3410i −0.970209 1.04507i
\(309\) 8.06346i 0.458714i
\(310\) 0 0
\(311\) 17.7808 10.2657i 1.00826 0.582116i 0.0975749 0.995228i \(-0.468891\pi\)
0.910680 + 0.413112i \(0.135558\pi\)
\(312\) 0.460136 0.361678i 0.0260501 0.0204760i
\(313\) 26.9598 7.22385i 1.52386 0.408316i 0.602847 0.797856i \(-0.294033\pi\)
0.921009 + 0.389540i \(0.127366\pi\)
\(314\) −19.6267 + 6.27225i −1.10760 + 0.353964i
\(315\) 0 0
\(316\) 7.07986 + 9.94561i 0.398273 + 0.559484i
\(317\) 3.35388 + 12.5169i 0.188373 + 0.703016i 0.993883 + 0.110435i \(0.0352244\pi\)
−0.805511 + 0.592581i \(0.798109\pi\)
\(318\) −1.56640 32.9377i −0.0878394 1.84705i
\(319\) 17.1997 + 29.7907i 0.962996 + 1.66796i
\(320\) 0 0
\(321\) 16.7689 0.935949
\(322\) 4.21737 + 0.357866i 0.235025 + 0.0199431i
\(323\) −9.19609 + 9.19609i −0.511684 + 0.511684i
\(324\) −17.3326 + 1.65229i −0.962923 + 0.0917941i
\(325\) 0 0
\(326\) 3.08851 + 2.80809i 0.171057 + 0.155526i
\(327\) −9.34642 + 2.50436i −0.516858 + 0.138492i
\(328\) −2.29771 16.0079i −0.126870 0.883891i
\(329\) 4.46729 5.80657i 0.246290 0.320126i
\(330\) 0 0
\(331\) 6.41324 + 3.70269i 0.352504 + 0.203518i 0.665787 0.746142i \(-0.268096\pi\)
−0.313284 + 0.949660i \(0.601429\pi\)
\(332\) 5.55876 + 14.9108i 0.305077 + 0.818338i
\(333\) −1.84758 + 6.89526i −0.101247 + 0.377858i
\(334\) 11.9815 + 2.60741i 0.655598 + 0.142671i
\(335\) 0 0
\(336\) −23.3454 11.7323i −1.27359 0.640050i
\(337\) 5.81990 5.81990i 0.317030 0.317030i −0.530595 0.847625i \(-0.678032\pi\)
0.847625 + 0.530595i \(0.178032\pi\)
\(338\) 9.93297 + 15.4587i 0.540282 + 0.840842i
\(339\) 0.0489128 + 0.0847195i 0.00265658 + 0.00460133i
\(340\) 0 0
\(341\) 10.9649 18.9918i 0.593782 1.02846i
\(342\) −5.27767 + 10.2353i −0.285384 + 0.553459i
\(343\) −7.02198 17.1374i −0.379151 0.925335i
\(344\) −5.03617 3.77190i −0.271532 0.203367i
\(345\) 0 0
\(346\) 1.70817 1.87876i 0.0918320 0.101003i
\(347\) −2.85823 + 10.6671i −0.153438 + 0.572638i 0.845796 + 0.533506i \(0.179126\pi\)
−0.999234 + 0.0391317i \(0.987541\pi\)
\(348\) 27.6897 + 22.8700i 1.48433 + 1.22596i
\(349\) 10.3995i 0.556672i 0.960484 + 0.278336i \(0.0897829\pi\)
−0.960484 + 0.278336i \(0.910217\pi\)
\(350\) 0 0
\(351\) 0.0196824i 0.00105057i
\(352\) 26.0025 6.29725i 1.38594 0.335644i
\(353\) 1.95306 7.28892i 0.103951 0.387950i −0.894273 0.447522i \(-0.852307\pi\)
0.998224 + 0.0595714i \(0.0189734\pi\)
\(354\) −8.66691 7.87999i −0.460641 0.418817i
\(355\) 0 0
\(356\) 27.1828 19.3503i 1.44069 1.02556i
\(357\) −32.0182 + 4.17380i −1.69458 + 0.220901i
\(358\) 27.0780 + 13.9624i 1.43112 + 0.737935i
\(359\) 5.74179 9.94507i 0.303040 0.524881i −0.673783 0.738929i \(-0.735332\pi\)
0.976823 + 0.214049i \(0.0686651\pi\)
\(360\) 0 0
\(361\) 6.03921 + 10.4602i 0.317853 + 0.550538i
\(362\) 19.2888 12.3940i 1.01380 0.651413i
\(363\) 19.8460 19.8460i 1.04165 1.04165i
\(364\) −0.235857 + 0.375587i −0.0123622 + 0.0196861i
\(365\) 0 0
\(366\) 1.45334 6.67835i 0.0759673 0.349083i
\(367\) 3.27735 12.2312i 0.171076 0.638465i −0.826111 0.563508i \(-0.809451\pi\)
0.997187 0.0749570i \(-0.0238820\pi\)
\(368\) −2.53735 + 3.74637i −0.132269 + 0.195293i
\(369\) −15.3259 8.84843i −0.797836 0.460631i
\(370\) 0 0
\(371\) 9.53297 + 23.0978i 0.494927 + 1.19918i
\(372\) 3.80024 22.5773i 0.197033 1.17058i
\(373\) −24.0550 + 6.44552i −1.24552 + 0.333737i −0.820605 0.571496i \(-0.806363\pi\)
−0.424917 + 0.905232i \(0.639697\pi\)
\(374\) 22.2424 24.4635i 1.15013 1.26498i
\(375\) 0 0
\(376\) 3.08137 + 7.20040i 0.158909 + 0.371332i
\(377\) 0.431057 0.431057i 0.0222006 0.0222006i
\(378\) −0.795370 + 0.373422i −0.0409094 + 0.0192067i
\(379\) −4.18354 −0.214894 −0.107447 0.994211i \(-0.534268\pi\)
−0.107447 + 0.994211i \(0.534268\pi\)
\(380\) 0 0
\(381\) −11.4074 19.7583i −0.584421 1.01225i
\(382\) −23.2163 + 1.10408i −1.18785 + 0.0564898i
\(383\) 3.47535 + 12.9702i 0.177582 + 0.662745i 0.996097 + 0.0882604i \(0.0281308\pi\)
−0.818515 + 0.574484i \(0.805203\pi\)
\(384\) 23.1402 15.6431i 1.18087 0.798282i
\(385\) 0 0
\(386\) −2.13521 6.68133i −0.108679 0.340071i
\(387\) −6.65075 + 1.78206i −0.338076 + 0.0905873i
\(388\) 5.74535 + 15.4113i 0.291676 + 0.782393i
\(389\) −15.5106 + 8.95506i −0.786419 + 0.454039i −0.838700 0.544593i \(-0.816684\pi\)
0.0522811 + 0.998632i \(0.483351\pi\)
\(390\) 0 0
\(391\) 5.59179i 0.282789i
\(392\) 19.6523 + 2.40525i 0.992593 + 0.121483i
\(393\) −6.44222 6.44222i −0.324967 0.324967i
\(394\) −1.65828 + 7.62009i −0.0835430 + 0.383895i
\(395\) 0 0
\(396\) 12.1663 26.6292i 0.611378 1.33817i
\(397\) 1.58258 + 5.90626i 0.0794273 + 0.296427i 0.994201 0.107541i \(-0.0342976\pi\)
−0.914773 + 0.403967i \(0.867631\pi\)
\(398\) 23.7511 + 12.2469i 1.19053 + 0.613882i
\(399\) 2.26475 17.0348i 0.113379 0.852809i
\(400\) 0 0
\(401\) −9.81777 + 17.0049i −0.490276 + 0.849183i −0.999937 0.0111923i \(-0.996437\pi\)
0.509662 + 0.860375i \(0.329771\pi\)
\(402\) −0.0844603 1.77600i −0.00421250 0.0885788i
\(403\) −0.375386 0.100584i −0.0186993 0.00501046i
\(404\) 17.0715 1.62741i 0.849341 0.0809665i
\(405\) 0 0
\(406\) −25.5973 9.24095i −1.27037 0.458621i
\(407\) 7.71315 + 7.71315i 0.382327 + 0.382327i
\(408\) 12.8368 32.0428i 0.635518 1.58635i
\(409\) 8.70611 5.02647i 0.430489 0.248543i −0.269066 0.963122i \(-0.586715\pi\)
0.699555 + 0.714579i \(0.253382\pi\)
\(410\) 0 0
\(411\) −42.4589 24.5137i −2.09434 1.20917i
\(412\) 6.44160 + 1.08426i 0.317355 + 0.0534175i
\(413\) 8.19636 + 3.40728i 0.403316 + 0.167661i
\(414\) 1.50726 + 4.71641i 0.0740779 + 0.231799i
\(415\) 0 0
\(416\) −0.227059 0.416218i −0.0111325 0.0204068i
\(417\) −2.75655 0.738616i −0.134989 0.0361702i
\(418\) 9.51240 + 14.8042i 0.465267 + 0.724095i
\(419\) 17.7853 0.868870 0.434435 0.900703i \(-0.356948\pi\)
0.434435 + 0.900703i \(0.356948\pi\)
\(420\) 0 0
\(421\) 39.6482 1.93234 0.966168 0.257913i \(-0.0830348\pi\)
0.966168 + 0.257913i \(0.0830348\pi\)
\(422\) −8.39368 13.0631i −0.408598 0.635901i
\(423\) 8.27847 + 2.21821i 0.402513 + 0.107853i
\(424\) −26.5233 3.17764i −1.28809 0.154320i
\(425\) 0 0
\(426\) −15.3713 48.0987i −0.744741 2.33039i
\(427\) 0.669478 + 5.13572i 0.0323983 + 0.248535i
\(428\) 2.25484 13.3960i 0.108992 0.647522i
\(429\) −0.847531 0.489322i −0.0409192 0.0236247i
\(430\) 0 0
\(431\) −21.7939 + 12.5827i −1.04977 + 0.606087i −0.922586 0.385792i \(-0.873928\pi\)
−0.127187 + 0.991879i \(0.540595\pi\)
\(432\) 0.0673082 0.936921i 0.00323837 0.0450776i
\(433\) −9.19231 9.19231i −0.441754 0.441754i 0.450847 0.892601i \(-0.351122\pi\)
−0.892601 + 0.450847i \(0.851122\pi\)
\(434\) 3.05732 + 17.0778i 0.146756 + 0.819759i
\(435\) 0 0
\(436\) 0.743873 + 7.80325i 0.0356251 + 0.373708i
\(437\) −2.87463 0.770255i −0.137512 0.0368463i
\(438\) 1.59085 + 33.4519i 0.0760139 + 1.59839i
\(439\) −14.8997 + 25.8071i −0.711125 + 1.23170i 0.253310 + 0.967385i \(0.418481\pi\)
−0.964435 + 0.264320i \(0.914853\pi\)
\(440\) 0 0
\(441\) 15.3590 15.2810i 0.731382 0.727666i
\(442\) −0.520776 0.268531i −0.0247708 0.0127727i
\(443\) −10.5682 39.4412i −0.502112 1.87391i −0.485856 0.874039i \(-0.661492\pi\)
−0.0162556 0.999868i \(-0.505175\pi\)
\(444\) 10.3582 + 4.73242i 0.491579 + 0.224591i
\(445\) 0 0
\(446\) −5.82600 + 26.7715i −0.275869 + 1.26767i
\(447\) −10.8257 10.8257i −0.512039 0.512039i
\(448\) −12.5117 + 17.0722i −0.591120 + 0.806583i
\(449\) 20.7052i 0.977139i 0.872525 + 0.488570i \(0.162481\pi\)
−0.872525 + 0.488570i \(0.837519\pi\)
\(450\) 0 0
\(451\) −23.4189 + 13.5209i −1.10275 + 0.636675i
\(452\) 0.0742563 0.0276828i 0.00349272 0.00130209i
\(453\) −24.0199 + 6.43610i −1.12855 + 0.302394i
\(454\) 9.88197 + 30.9219i 0.463784 + 1.45124i
\(455\) 0 0
\(456\) 14.7043 + 11.0130i 0.688593 + 0.515730i
\(457\) −0.969683 3.61891i −0.0453599 0.169285i 0.939530 0.342466i \(-0.111262\pi\)
−0.984890 + 0.173181i \(0.944596\pi\)
\(458\) 16.8654 0.802058i 0.788067 0.0374777i
\(459\) −0.580425 1.00533i −0.0270919 0.0469246i
\(460\) 0 0
\(461\) −6.66823 −0.310570 −0.155285 0.987870i \(-0.549630\pi\)
−0.155285 + 0.987870i \(0.549630\pi\)
\(462\) −3.69396 + 43.5326i −0.171859 + 2.02532i
\(463\) −14.7884 + 14.7884i −0.687277 + 0.687277i −0.961629 0.274353i \(-0.911536\pi\)
0.274353 + 0.961629i \(0.411536\pi\)
\(464\) 21.9933 19.0451i 1.02101 0.884146i
\(465\) 0 0
\(466\) 22.6342 24.8945i 1.04851 1.15321i
\(467\) 27.1281 7.26895i 1.25534 0.336367i 0.430941 0.902380i \(-0.358182\pi\)
0.824396 + 0.566013i \(0.191515\pi\)
\(468\) −0.511632 0.0861184i −0.0236502 0.00398083i
\(469\) 0.514018 + 1.24543i 0.0237351 + 0.0575087i
\(470\) 0 0
\(471\) 31.1509 + 17.9850i 1.43536 + 0.828703i
\(472\) −7.46043 + 5.86408i −0.343394 + 0.269916i
\(473\) −2.72309 + 10.1627i −0.125208 + 0.467282i
\(474\) 4.53187 20.8247i 0.208156 0.956511i
\(475\) 0 0
\(476\) −0.971046 + 26.1394i −0.0445078 + 1.19810i
\(477\) −20.6700 + 20.6700i −0.946413 + 0.946413i
\(478\) 1.79357 1.15246i 0.0820359 0.0527121i
\(479\) 5.27141 + 9.13034i 0.240857 + 0.417176i 0.960959 0.276692i \(-0.0892383\pi\)
−0.720102 + 0.693868i \(0.755905\pi\)
\(480\) 0 0
\(481\) 0.0966532 0.167408i 0.00440701 0.00763316i
\(482\) −23.2927 12.0106i −1.06096 0.547067i
\(483\) −4.49057 5.86768i −0.204328 0.266989i
\(484\) −13.1857 18.5229i −0.599348 0.841949i
\(485\) 0 0
\(486\) 23.2265 + 21.1176i 1.05358 + 0.957916i
\(487\) −9.85078 + 36.7636i −0.446381 + 1.66592i 0.265882 + 0.964006i \(0.414337\pi\)
−0.712263 + 0.701913i \(0.752330\pi\)
\(488\) −5.13966 2.05903i −0.232662 0.0932078i
\(489\) 7.28707i 0.329533i
\(490\) 0 0
\(491\) 3.59770i 0.162362i −0.996699 0.0811809i \(-0.974131\pi\)
0.996699 0.0811809i \(-0.0258691\pi\)
\(492\) −17.9784 + 21.7673i −0.810530 + 0.981347i
\(493\) 9.30560 34.7290i 0.419103 1.56411i
\(494\) 0.209782 0.230731i 0.00943854 0.0103811i
\(495\) 0 0
\(496\) −17.5252 6.07173i −0.786903 0.272629i
\(497\) 23.2551 + 30.3867i 1.04313 + 1.36303i
\(498\) 12.7316 24.6910i 0.570516 1.10643i
\(499\) 5.11616 8.86145i 0.229031 0.396693i −0.728490 0.685056i \(-0.759778\pi\)
0.957521 + 0.288363i \(0.0931110\pi\)
\(500\) 0 0
\(501\) −10.7030 18.5381i −0.478174 0.828221i
\(502\) 13.7775 + 21.4419i 0.614920 + 0.957000i
\(503\) −30.0943 + 30.0943i −1.34184 + 1.34184i −0.447605 + 0.894231i \(0.647723\pi\)
−0.894231 + 0.447605i \(0.852277\pi\)
\(504\) 6.22680 + 22.3091i 0.277364 + 0.993724i
\(505\) 0 0
\(506\) 7.39299 + 1.60886i 0.328659 + 0.0715225i
\(507\) 8.30225 30.9844i 0.368716 1.37607i
\(508\) −17.3181 + 6.45618i −0.768365 + 0.286447i
\(509\) 0.0145211 + 0.00838376i 0.000643637 + 0.000371604i 0.500322 0.865840i \(-0.333215\pi\)
−0.499678 + 0.866211i \(0.666548\pi\)
\(510\) 0 0
\(511\) −9.68180 23.4584i −0.428298 1.03774i
\(512\) −9.38510 20.5893i −0.414767 0.909928i
\(513\) 0.596770 0.159904i 0.0263481 0.00705994i
\(514\) −15.6028 14.1861i −0.688210 0.625724i
\(515\) 0 0
\(516\) 1.04239 + 10.9347i 0.0458885 + 0.481372i
\(517\) 9.26042 9.26042i 0.407273 0.407273i
\(518\) −8.59876 0.729649i −0.377808 0.0320589i
\(519\) −4.43276 −0.194577
\(520\) 0 0
\(521\) 0.00830997 + 0.0143933i 0.000364066 + 0.000630582i 0.866207 0.499685i \(-0.166551\pi\)
−0.865843 + 0.500315i \(0.833217\pi\)
\(522\) −1.51232 31.8006i −0.0661926 1.39187i
\(523\) −8.00409 29.8717i −0.349994 1.30620i −0.886668 0.462407i \(-0.846986\pi\)
0.536674 0.843790i \(-0.319681\pi\)
\(524\) −6.01271 + 4.28019i −0.262666 + 0.186981i
\(525\) 0 0
\(526\) 9.55070 3.05219i 0.416430 0.133082i
\(527\) −22.1400 + 5.93238i −0.964432 + 0.258419i
\(528\) −38.6708 26.1910i −1.68293 1.13982i
\(529\) 18.8104 10.8602i 0.817845 0.472183i
\(530\) 0 0
\(531\) 10.3840i 0.450626i
\(532\) −13.3040 4.09983i −0.576800 0.177750i
\(533\) 0.338860 + 0.338860i 0.0146777 + 0.0146777i
\(534\) −56.9171 12.3863i −2.46304 0.536007i
\(535\) 0 0
\(536\) −1.43014 0.171338i −0.0617725 0.00740069i
\(537\) −13.7653 51.3727i −0.594016 2.21690i
\(538\) −3.91757 + 7.59756i −0.168899 + 0.327554i
\(539\) −8.48716 32.0003i −0.365568 1.37835i
\(540\) 0 0
\(541\) −14.5885 + 25.2681i −0.627211 + 1.08636i 0.360898 + 0.932605i \(0.382470\pi\)
−0.988109 + 0.153756i \(0.950863\pi\)
\(542\) 33.1900 1.57840i 1.42563 0.0677981i
\(543\) −38.6612 10.3592i −1.65911 0.444558i
\(544\) −23.8717 14.5635i −1.02349 0.624406i
\(545\) 0 0
\(546\) 0.762117 0.136437i 0.0326156 0.00583896i
\(547\) 0.913792 + 0.913792i 0.0390709 + 0.0390709i 0.726372 0.687301i \(-0.241205\pi\)
−0.687301 + 0.726372i \(0.741205\pi\)
\(548\) −25.2923 + 30.6226i −1.08043 + 1.30813i
\(549\) −5.24710 + 3.02941i −0.223941 + 0.129292i
\(550\) 0 0
\(551\) 16.5717 + 9.56766i 0.705977 + 0.407596i
\(552\) 7.81886 1.12229i 0.332793 0.0477677i
\(553\) 2.08759 + 16.0144i 0.0887735 + 0.681002i
\(554\) −31.4204 + 10.0413i −1.33493 + 0.426613i
\(555\) 0 0
\(556\) −0.960714 + 2.10279i −0.0407434 + 0.0891781i
\(557\) 2.78027 + 0.744970i 0.117804 + 0.0315654i 0.317239 0.948346i \(-0.397244\pi\)
−0.199436 + 0.979911i \(0.563911\pi\)
\(558\) −17.0749 + 10.9715i −0.722839 + 0.464460i
\(559\) 0.186452 0.00788606
\(560\) 0 0
\(561\) −57.7196 −2.43693
\(562\) 22.9639 14.7554i 0.968674 0.622421i
\(563\) 26.9945 + 7.23315i 1.13768 + 0.304841i 0.778018 0.628241i \(-0.216225\pi\)
0.359663 + 0.933082i \(0.382892\pi\)
\(564\) 5.68176 12.4361i 0.239245 0.523654i
\(565\) 0 0
\(566\) −9.60324 + 3.06898i −0.403654 + 0.128999i
\(567\) −21.2683 8.84138i −0.893186 0.371303i
\(568\) −40.4912 + 5.81193i −1.69897 + 0.243863i
\(569\) −31.8950 18.4146i −1.33711 0.771981i −0.350732 0.936476i \(-0.614067\pi\)
−0.986378 + 0.164495i \(0.947400\pi\)
\(570\) 0 0
\(571\) 35.5147 20.5044i 1.48624 0.858084i 0.486367 0.873754i \(-0.338322\pi\)
0.999877 + 0.0156706i \(0.00498830\pi\)
\(572\) −0.504865 + 0.611264i −0.0211095 + 0.0255582i
\(573\) 28.6909 + 28.6909i 1.19858 + 1.19858i
\(574\) 7.26445 20.1224i 0.303212 0.839894i
\(575\) 0 0
\(576\) −24.0602 5.84905i −1.00251 0.243710i
\(577\) 20.6267 + 5.52692i 0.858703 + 0.230089i 0.661196 0.750213i \(-0.270049\pi\)
0.197506 + 0.980302i \(0.436716\pi\)
\(578\) −10.5043 + 0.499547i −0.436921 + 0.0207784i
\(579\) −6.12245 + 10.6044i −0.254440 + 0.440704i
\(580\) 0 0
\(581\) −2.77432 + 20.8677i −0.115098 + 0.865737i
\(582\) 13.1590 25.5199i 0.545457 1.05783i
\(583\) 11.5609 + 43.1458i 0.478802 + 1.78691i
\(584\) 26.9374 + 3.22725i 1.11468 + 0.133545i
\(585\) 0 0
\(586\) 2.52963 + 0.550498i 0.104498 + 0.0227408i
\(587\) −0.870374 0.870374i −0.0359242 0.0359242i 0.688917 0.724841i \(-0.258087\pi\)
−0.724841 + 0.688917i \(0.758087\pi\)
\(588\) −19.9726 28.2088i −0.823657 1.16331i
\(589\) 12.1989i 0.502646i
\(590\) 0 0
\(591\) 11.7900 6.80697i 0.484977 0.280001i
\(592\) 5.17338 7.63845i 0.212625 0.313938i
\(593\) 2.04214 0.547190i 0.0838607 0.0224704i −0.216645 0.976251i \(-0.569511\pi\)
0.300505 + 0.953780i \(0.402845\pi\)
\(594\) −1.49615 + 0.478138i −0.0613880 + 0.0196182i
\(595\) 0 0
\(596\) −10.1039 + 7.19257i −0.413874 + 0.294619i
\(597\) −12.0740 45.0608i −0.494157 1.84422i
\(598\) −0.00636923 0.133930i −0.000260457 0.00547679i
\(599\) 12.9248 + 22.3864i 0.528092 + 0.914683i 0.999464 + 0.0327479i \(0.0104258\pi\)
−0.471371 + 0.881935i \(0.656241\pi\)
\(600\) 0 0
\(601\) 20.5570 0.838537 0.419269 0.907862i \(-0.362287\pi\)
0.419269 + 0.907862i \(0.362287\pi\)
\(602\) −3.53743 7.53456i −0.144175 0.307086i
\(603\) −1.11452 + 1.11452i −0.0453869 + 0.0453869i
\(604\) 1.91172 + 20.0540i 0.0777868 + 0.815986i
\(605\) 0 0
\(606\) −22.1506 20.1394i −0.899806 0.818108i
\(607\) 21.6414 5.79881i 0.878399 0.235366i 0.208683 0.977983i \(-0.433082\pi\)
0.669716 + 0.742617i \(0.266416\pi\)
\(608\) 10.7751 10.2659i 0.436987 0.416336i
\(609\) 18.1249 + 43.9154i 0.734457 + 1.77954i
\(610\) 0 0
\(611\) −0.200991 0.116042i −0.00813122 0.00469456i
\(612\) −28.6725 + 10.6891i −1.15902 + 0.432081i
\(613\) 8.56832 31.9774i 0.346071 1.29156i −0.545285 0.838251i \(-0.683578\pi\)
0.891356 0.453304i \(-0.149755\pi\)
\(614\) −7.54686 1.64234i −0.304566 0.0662796i
\(615\) 0 0
\(616\) 34.2798 + 8.80460i 1.38117 + 0.354747i
\(617\) −27.2948 + 27.2948i −1.09885 + 1.09885i −0.104300 + 0.994546i \(0.533260\pi\)
−0.994546 + 0.104300i \(0.966740\pi\)
\(618\) −6.16441 9.59368i −0.247969 0.385914i
\(619\) −18.1903 31.5065i −0.731130 1.26635i −0.956400 0.292059i \(-0.905660\pi\)
0.225270 0.974296i \(-0.427674\pi\)
\(620\) 0 0
\(621\) 0.132821 0.230053i 0.00532992 0.00923169i
\(622\) −13.3071 + 25.8071i −0.533564 + 1.03477i
\(623\) 43.7698 5.70571i 1.75360 0.228594i
\(624\) −0.270959 + 0.782082i −0.0108470 + 0.0313083i
\(625\) 0 0
\(626\) −26.5535 + 29.2052i −1.06129 + 1.16727i
\(627\) 7.95073 29.6725i 0.317522 1.18501i
\(628\) 18.5562 22.4669i 0.740474 0.896527i
\(629\) 11.4011i 0.454590i
\(630\) 0 0
\(631\) 10.6984i 0.425897i 0.977063 + 0.212949i \(0.0683067\pi\)
−0.977063 + 0.212949i \(0.931693\pi\)
\(632\) −16.0267 6.42055i −0.637509 0.255396i
\(633\) −7.01567 + 26.1828i −0.278848 + 1.04067i
\(634\) −13.5593 12.3282i −0.538510 0.489616i
\(635\) 0 0
\(636\) 27.0441 + 37.9908i 1.07237 + 1.50643i
\(637\) −0.508841 + 0.292054i −0.0201610 + 0.0115716i
\(638\) −43.2383 22.2952i −1.71182 0.882676i
\(639\) −22.3816 + 38.7661i −0.885402 + 1.53356i
\(640\) 0 0
\(641\) −2.64450 4.58042i −0.104452 0.180916i 0.809062 0.587723i \(-0.199975\pi\)
−0.913514 + 0.406807i \(0.866642\pi\)
\(642\) −19.9512 + 12.8196i −0.787410 + 0.505950i
\(643\) −6.36844 + 6.36844i −0.251147 + 0.251147i −0.821441 0.570294i \(-0.806829\pi\)
0.570294 + 0.821441i \(0.306829\pi\)
\(644\) −5.29130 + 2.79835i −0.208506 + 0.110270i
\(645\) 0 0
\(646\) 3.91096 17.9715i 0.153875 0.707081i
\(647\) 1.58576 5.91812i 0.0623425 0.232665i −0.927724 0.373268i \(-0.878237\pi\)
0.990066 + 0.140602i \(0.0449039\pi\)
\(648\) 19.3587 15.2164i 0.760482 0.597757i
\(649\) 13.7415 + 7.93365i 0.539401 + 0.311423i
\(650\) 0 0
\(651\) 18.4682 24.0049i 0.723826 0.940825i
\(652\) −5.82137 0.979860i −0.227983 0.0383743i
\(653\) 37.7871 10.1250i 1.47872 0.396223i 0.572812 0.819687i \(-0.305853\pi\)
0.905913 + 0.423464i \(0.139186\pi\)
\(654\) 9.20555 10.1248i 0.359966 0.395913i
\(655\) 0 0
\(656\) 14.9716 + 17.2892i 0.584544 + 0.675032i
\(657\) 20.9927 20.9927i 0.819001 0.819001i
\(658\) −0.876018 + 10.3237i −0.0341508 + 0.402459i
\(659\) 7.96382 0.310226 0.155113 0.987897i \(-0.450426\pi\)
0.155113 + 0.987897i \(0.450426\pi\)
\(660\) 0 0
\(661\) −17.8362 30.8932i −0.693748 1.20161i −0.970601 0.240694i \(-0.922625\pi\)
0.276854 0.960912i \(-0.410708\pi\)
\(662\) −10.4610 + 0.497486i −0.406577 + 0.0193354i
\(663\) 0.264740 + 0.988023i 0.0102817 + 0.0383716i
\(664\) −18.0128 13.4909i −0.699032 0.523548i
\(665\) 0 0
\(666\) −3.07314 9.61625i −0.119082 0.372622i
\(667\) 7.94717 2.12944i 0.307716 0.0824521i
\(668\) −16.2486 + 6.05747i −0.628676 + 0.234371i
\(669\) 41.4216 23.9148i 1.60145 0.924599i
\(670\) 0 0
\(671\) 9.25823i 0.357410i
\(672\) 36.7449 3.88844i 1.41746 0.150000i
\(673\) 29.4853 + 29.4853i 1.13657 + 1.13657i 0.989060 + 0.147515i \(0.0471275\pi\)
0.147515 + 0.989060i \(0.452873\pi\)
\(674\) −2.47512 + 11.3736i −0.0953380 + 0.438094i
\(675\) 0 0
\(676\) −23.6359 10.7987i −0.909075 0.415335i
\(677\) −11.9320 44.5308i −0.458584 1.71146i −0.677333 0.735676i \(-0.736864\pi\)
0.218750 0.975781i \(-0.429802\pi\)
\(678\) −0.122962 0.0634037i −0.00472233 0.00243500i
\(679\) −2.86745 + 21.5682i −0.110043 + 0.827710i
\(680\) 0 0
\(681\) 28.3354 49.0783i 1.08581 1.88069i
\(682\) 1.47322 + 30.9784i 0.0564127 + 1.18622i
\(683\) 40.1276 + 10.7522i 1.53544 + 0.411420i 0.924790 0.380479i \(-0.124241\pi\)
0.610652 + 0.791899i \(0.290907\pi\)
\(684\) −1.54550 16.2123i −0.0590936 0.619894i
\(685\) 0 0
\(686\) 21.4559 + 15.0214i 0.819191 + 0.573521i
\(687\) −20.8424 20.8424i −0.795187 0.795187i
\(688\) 8.87547 + 0.637612i 0.338374 + 0.0243087i
\(689\) 0.685527 0.395789i 0.0261165 0.0150784i
\(690\) 0 0
\(691\) −15.8798 9.16821i −0.604096 0.348775i 0.166555 0.986032i \(-0.446736\pi\)
−0.770651 + 0.637257i \(0.780069\pi\)
\(692\) −0.596054 + 3.54117i −0.0226586 + 0.134615i
\(693\) 30.7563 23.5380i 1.16833 0.894133i
\(694\) −4.75419 14.8765i −0.180466 0.564703i
\(695\) 0 0
\(696\) −50.4283 6.04159i −1.91148 0.229006i
\(697\) 27.3010 + 7.31528i 1.03410 + 0.277086i
\(698\) −7.95028 12.3730i −0.300922 0.468326i
\(699\) −58.7364 −2.22161
\(700\) 0 0
\(701\) 3.42628 0.129409 0.0647045 0.997904i \(-0.479390\pi\)
0.0647045 + 0.997904i \(0.479390\pi\)
\(702\) 0.0150469 + 0.0234176i 0.000567910 + 0.000883839i
\(703\) 5.86106 + 1.57047i 0.221054 + 0.0592312i
\(704\) −26.1229 + 27.3709i −0.984546 + 1.03158i
\(705\) 0 0
\(706\) 3.24859 + 10.1653i 0.122262 + 0.382574i
\(707\) 20.9480 + 8.70820i 0.787830 + 0.327506i
\(708\) 16.3358 + 2.74966i 0.613937 + 0.103339i
\(709\) 26.8261 + 15.4881i 1.00748 + 0.581667i 0.910452 0.413615i \(-0.135734\pi\)
0.0970248 + 0.995282i \(0.469067\pi\)
\(710\) 0 0
\(711\) −16.3617 + 9.44644i −0.613612 + 0.354269i
\(712\) −17.5483 + 43.8034i −0.657651 + 1.64160i
\(713\) −3.70884 3.70884i −0.138897 0.138897i
\(714\) 34.9035 29.4434i 1.30623 1.10189i
\(715\) 0 0
\(716\) −42.8907 + 4.08871i −1.60290 + 0.152802i
\(717\) −3.59492 0.963255i −0.134255 0.0359734i
\(718\) 0.771456 + 16.2219i 0.0287905 + 0.605396i
\(719\) 21.3674 37.0094i 0.796869 1.38022i −0.124777 0.992185i \(-0.539821\pi\)
0.921646 0.388033i \(-0.126845\pi\)
\(720\) 0 0
\(721\) 6.84890 + 5.26922i 0.255066 + 0.196236i
\(722\) −15.1820 7.82838i −0.565015 0.291342i
\(723\) 11.8410 + 44.1913i 0.440372 + 1.64349i
\(724\) −13.4742 + 29.4920i −0.500765 + 1.09606i
\(725\) 0 0
\(726\) −8.44023 + 38.7843i −0.313246 + 1.43942i
\(727\) 21.7303 + 21.7303i 0.805931 + 0.805931i 0.984015 0.178084i \(-0.0569900\pi\)
−0.178084 + 0.984015i \(0.556990\pi\)
\(728\) −0.00651592 0.627173i −0.000241496 0.0232446i
\(729\) 28.6841i 1.06238i
\(730\) 0 0
\(731\) 9.52347 5.49838i 0.352238 0.203365i
\(732\) 3.37637 + 9.05678i 0.124794 + 0.334748i
\(733\) 3.68215 0.986629i 0.136003 0.0364420i −0.190175 0.981750i \(-0.560906\pi\)
0.326179 + 0.945308i \(0.394239\pi\)
\(734\) 5.45132 + 17.0579i 0.201212 + 0.629618i
\(735\) 0 0
\(736\) 0.154814 6.39711i 0.00570652 0.235800i
\(737\) 0.623362 + 2.32642i 0.0229618 + 0.0856947i
\(738\) 24.9989 1.18886i 0.920222 0.0437625i
\(739\) −6.00177 10.3954i −0.220779 0.382400i 0.734266 0.678862i \(-0.237526\pi\)
−0.955045 + 0.296462i \(0.904193\pi\)
\(740\) 0 0
\(741\) −0.544391 −0.0199987
\(742\) −29.0000 20.1933i −1.06462 0.741318i
\(743\) −7.86007 + 7.86007i −0.288358 + 0.288358i −0.836431 0.548073i \(-0.815362\pi\)
0.548073 + 0.836431i \(0.315362\pi\)
\(744\) 12.7386 + 29.7671i 0.467021 + 1.09131i
\(745\) 0 0
\(746\) 23.6925 26.0585i 0.867443 0.954068i
\(747\) −23.7876 + 6.37387i −0.870344 + 0.233208i
\(748\) −7.76130 + 46.1101i −0.283781 + 1.68595i
\(749\) 10.9580 14.2431i 0.400395 0.520431i
\(750\) 0 0
\(751\) −1.00430 0.579834i −0.0366475 0.0211584i 0.481564 0.876411i \(-0.340069\pi\)
−0.518212 + 0.855252i \(0.673402\pi\)
\(752\) −9.17074 6.21117i −0.334422 0.226498i
\(753\) 11.5156 42.9769i 0.419653 1.56616i
\(754\) −0.183322 + 0.842397i −0.00667620 + 0.0306783i
\(755\) 0 0
\(756\) 0.660834 1.05234i 0.0240343 0.0382731i
\(757\) 15.7431 15.7431i 0.572192 0.572192i −0.360549 0.932740i \(-0.617410\pi\)
0.932740 + 0.360549i \(0.117410\pi\)
\(758\) 4.97747 3.19827i 0.180790 0.116166i
\(759\) −6.60410 11.4386i −0.239714 0.415196i
\(760\) 0 0
\(761\) 9.62047 16.6631i 0.348742 0.604039i −0.637284 0.770629i \(-0.719942\pi\)
0.986026 + 0.166590i \(0.0532757\pi\)
\(762\) 28.6772 + 14.7870i 1.03887 + 0.535677i
\(763\) −3.98044 + 9.57514i −0.144102 + 0.346643i
\(764\) 26.7780 19.0621i 0.968794 0.689644i
\(765\) 0 0
\(766\) −14.0504 12.7747i −0.507662 0.461569i
\(767\) 0.0727778 0.271611i 0.00262786 0.00980729i
\(768\) −15.5727 + 36.3021i −0.561931 + 1.30994i
\(769\) 30.8833i 1.11368i 0.830620 + 0.556840i \(0.187986\pi\)
−0.830620 + 0.556840i \(0.812014\pi\)
\(770\) 0 0
\(771\) 36.8135i 1.32580i
\(772\) 7.64820 + 6.31693i 0.275265 + 0.227351i
\(773\) 4.19873 15.6699i 0.151018 0.563607i −0.848396 0.529363i \(-0.822431\pi\)
0.999414 0.0342438i \(-0.0109023\pi\)
\(774\) 6.55051 7.20466i 0.235453 0.258966i
\(775\) 0 0
\(776\) −18.6174 13.9437i −0.668327 0.500551i
\(777\) 9.15578 + 11.9636i 0.328462 + 0.429190i
\(778\) 11.6081 22.5122i 0.416170 0.807100i
\(779\) −7.52128 + 13.0272i −0.269478 + 0.466749i
\(780\) 0 0
\(781\) 34.2004 + 59.2368i 1.22379 + 2.11966i
\(782\) −4.27486 6.65296i −0.152869 0.237910i
\(783\) −1.20775 + 1.20775i −0.0431616 + 0.0431616i
\(784\) −25.2206 + 12.1623i −0.900736 + 0.434367i
\(785\) 0 0
\(786\) 12.5898 + 2.73978i 0.449062 + 0.0977248i
\(787\) −10.8721 + 40.5750i −0.387547 + 1.44634i 0.446566 + 0.894751i \(0.352647\pi\)
−0.834113 + 0.551594i \(0.814020\pi\)
\(788\) −3.85249 10.3339i −0.137239 0.368130i
\(789\) −15.1586 8.75180i −0.539659 0.311572i
\(790\) 0 0
\(791\) 0.103922 + 0.0138162i 0.00369503 + 0.000491247i
\(792\) 5.88263 + 40.9837i 0.209030 + 1.45629i
\(793\) 0.158479 0.0424643i 0.00562775 0.00150795i
\(794\) −6.39817 5.81724i −0.227062 0.206446i
\(795\) 0 0
\(796\) −37.6210 + 3.58635i −1.33344 + 0.127115i
\(797\) −5.01705 + 5.01705i −0.177713 + 0.177713i −0.790358 0.612645i \(-0.790106\pi\)
0.612645 + 0.790358i \(0.290106\pi\)
\(798\) 10.3284 + 21.9990i 0.365621 + 0.778755i
\(799\) −13.6881 −0.484251
\(800\) 0 0
\(801\) 25.8185 + 44.7190i 0.912253 + 1.58007i
\(802\) −1.31910 27.7375i −0.0465790 0.979445i
\(803\) −11.7414 43.8193i −0.414343 1.54635i
\(804\) 1.45822 + 2.04847i 0.0514273 + 0.0722438i
\(805\) 0 0
\(806\) 0.523519 0.167305i 0.0184402 0.00589308i
\(807\) 14.4142 3.86227i 0.507403 0.135958i
\(808\) −19.0671 + 14.9872i −0.670779 + 0.527249i
\(809\) −16.3576 + 9.44409i −0.575104 + 0.332036i −0.759185 0.650875i \(-0.774402\pi\)
0.184081 + 0.982911i \(0.441069\pi\)
\(810\) 0 0
\(811\) 21.4189i 0.752118i 0.926596 + 0.376059i \(0.122721\pi\)
−0.926596 + 0.376059i \(0.877279\pi\)
\(812\) 37.5196 8.57418i 1.31668 0.300895i
\(813\) −41.0166 41.0166i −1.43851 1.43851i
\(814\) −15.0735 3.28029i −0.528326 0.114974i
\(815\) 0 0
\(816\) 9.22340 + 47.9372i 0.322883 + 1.67814i
\(817\) 1.51477 + 5.65322i 0.0529953 + 0.197781i
\(818\) −6.51561 + 12.6361i −0.227813 + 0.441810i
\(819\) −0.543983 0.418514i −0.0190083 0.0146241i
\(820\) 0 0
\(821\) 20.8528 36.1180i 0.727766 1.26053i −0.230059 0.973177i \(-0.573892\pi\)
0.957825 0.287351i \(-0.0927747\pi\)
\(822\) 69.2569 3.29361i 2.41561 0.114878i
\(823\) 39.0933 + 10.4750i 1.36271 + 0.365136i 0.864809 0.502100i \(-0.167439\pi\)
0.497897 + 0.867236i \(0.334106\pi\)
\(824\) −8.49294 + 3.63450i −0.295865 + 0.126614i
\(825\) 0 0
\(826\) −12.3566 + 2.21213i −0.429942 + 0.0769697i
\(827\) −30.7849 30.7849i −1.07050 1.07050i −0.997319 0.0731766i \(-0.976686\pi\)
−0.0731766 0.997319i \(-0.523314\pi\)
\(828\) −5.39894 4.45918i −0.187626 0.154967i
\(829\) 36.1486 20.8704i 1.25549 0.724859i 0.283298 0.959032i \(-0.408571\pi\)
0.972195 + 0.234172i \(0.0752380\pi\)
\(830\) 0 0
\(831\) 49.8696 + 28.7922i 1.72996 + 0.998790i
\(832\) 0.588342 + 0.321622i 0.0203971 + 0.0111502i
\(833\) −17.3778 + 29.9229i −0.602104 + 1.03677i
\(834\) 3.84433 1.22856i 0.133118 0.0425417i
\(835\) 0 0
\(836\) −22.6352 10.3415i −0.782854 0.357667i
\(837\) 1.05177 + 0.281822i 0.0363546 + 0.00974118i
\(838\) −21.1605 + 13.5967i −0.730977 + 0.469689i
\(839\) 20.9842 0.724456 0.362228 0.932090i \(-0.382016\pi\)
0.362228 + 0.932090i \(0.382016\pi\)
\(840\) 0 0
\(841\) −23.9012 −0.824180
\(842\) −47.1724 + 30.3106i −1.62567 + 1.04457i
\(843\) −46.0274 12.3330i −1.58527 0.424772i
\(844\) 19.9731 + 9.12525i 0.687504 + 0.314104i
\(845\) 0 0
\(846\) −11.5453 + 3.68962i −0.396935 + 0.126852i
\(847\) −3.88797 29.8255i −0.133592 1.02482i
\(848\) 33.9860 16.4961i 1.16708 0.566477i
\(849\) 15.2420 + 8.79995i 0.523103 + 0.302014i
\(850\) 0 0
\(851\) 2.25941 1.30447i 0.0774517 0.0447168i
\(852\) 55.0592 + 45.4754i 1.88630 + 1.55796i
\(853\) −19.9509 19.9509i −0.683106 0.683106i 0.277593 0.960699i \(-0.410463\pi\)
−0.960699 + 0.277593i \(0.910463\pi\)
\(854\) −4.72272 5.59853i −0.161608 0.191578i
\(855\) 0 0
\(856\) 7.55837 + 17.6620i 0.258340 + 0.603676i
\(857\) −37.0531 9.92835i −1.26571 0.339146i −0.437324 0.899304i \(-0.644074\pi\)
−0.828386 + 0.560158i \(0.810740\pi\)
\(858\) 1.38245 0.0657445i 0.0471961 0.00224448i
\(859\) −3.51740 + 6.09232i −0.120012 + 0.207867i −0.919772 0.392453i \(-0.871627\pi\)
0.799760 + 0.600320i \(0.204960\pi\)
\(860\) 0 0
\(861\) −34.5226 + 14.2482i −1.17653 + 0.485579i
\(862\) 16.3104 31.6317i 0.555536 1.07738i
\(863\) −11.5958 43.2762i −0.394726 1.47314i −0.822246 0.569132i \(-0.807279\pi\)
0.427520 0.904006i \(-0.359387\pi\)
\(864\) 0.636183 + 1.16618i 0.0216434 + 0.0396742i
\(865\) 0 0
\(866\) 17.9642 + 3.90936i 0.610447 + 0.132845i
\(867\) 12.9813 + 12.9813i 0.440868 + 0.440868i
\(868\) −16.6933 17.9814i −0.566606 0.610328i
\(869\) 28.8694i 0.979328i
\(870\) 0 0
\(871\) 0.0369636 0.0213410i 0.00125246 0.000723111i
\(872\) −6.85053 8.71542i −0.231988 0.295141i
\(873\) −24.5861 + 6.58783i −0.832114 + 0.222964i
\(874\) 4.00901 1.28119i 0.135607 0.0433369i
\(875\) 0 0
\(876\) −27.4663 38.5839i −0.928000 1.30363i
\(877\) −1.48622 5.54663i −0.0501860 0.187297i 0.936282 0.351248i \(-0.114243\pi\)
−0.986468 + 0.163951i \(0.947576\pi\)
\(878\) −2.00190 42.0952i −0.0675609 1.42064i
\(879\) −2.25970 3.91392i −0.0762179 0.132013i
\(880\) 0 0
\(881\) 3.68416 0.124122 0.0620612 0.998072i \(-0.480233\pi\)
0.0620612 + 0.998072i \(0.480233\pi\)
\(882\) −6.59163 + 29.9227i −0.221952 + 1.00755i
\(883\) −10.4605 + 10.4605i −0.352023 + 0.352023i −0.860862 0.508839i \(-0.830075\pi\)
0.508839 + 0.860862i \(0.330075\pi\)
\(884\) 0.824893 0.0786359i 0.0277442 0.00264481i
\(885\) 0 0
\(886\) 42.7261 + 38.8468i 1.43541 + 1.30508i
\(887\) −30.8995 + 8.27950i −1.03750 + 0.277998i −0.737079 0.675807i \(-0.763795\pi\)
−0.300426 + 0.953805i \(0.597129\pi\)
\(888\) −15.9418 + 2.28822i −0.534972 + 0.0767876i
\(889\) −24.2366 3.22221i −0.812869 0.108070i
\(890\) 0 0
\(891\) −35.6571 20.5866i −1.19456 0.689678i
\(892\) −13.5348 36.3059i −0.453180 1.21561i
\(893\) 1.88550 7.03680i 0.0630960 0.235477i
\(894\) 21.1563 + 4.60402i 0.707571 + 0.153981i
\(895\) 0 0
\(896\) 1.83459 29.8770i 0.0612892 0.998120i
\(897\) −0.165512 + 0.165512i −0.00552627 + 0.00552627i
\(898\) −15.8289 24.6345i −0.528216 0.822064i
\(899\) 16.8624 + 29.2066i 0.562394 + 0.974095i
\(900\) 0 0
\(901\) 23.3433 40.4318i 0.777679 1.34698i
\(902\) 17.5266 33.9903i 0.583572 1.13175i
\(903\) −5.57778 + 13.4176i −0.185617 + 0.446510i
\(904\) −0.0671850 + 0.0897042i −0.00223454 + 0.00298352i
\(905\) 0 0
\(906\) 23.6578 26.0204i 0.785979 0.864469i
\(907\) 3.58771 13.3895i 0.119128 0.444592i −0.880435 0.474168i \(-0.842749\pi\)
0.999563 + 0.0295760i \(0.00941571\pi\)
\(908\) −35.3967 29.2354i −1.17468 0.970212i
\(909\) 26.5390i 0.880243i
\(910\) 0 0
\(911\) 47.8573i 1.58558i −0.609494 0.792791i \(-0.708627\pi\)
0.609494 0.792791i \(-0.291373\pi\)
\(912\) −25.9141 1.86166i −0.858101 0.0616458i
\(913\) −9.73964 + 36.3488i −0.322335 + 1.20297i
\(914\) 3.92031 + 3.56437i 0.129672 + 0.117899i
\(915\) 0 0
\(916\) −19.4528 + 13.8476i −0.642739 + 0.457539i
\(917\) −9.68165 + 1.26207i −0.319716 + 0.0416773i
\(918\) 1.45913 + 0.752382i 0.0481586 + 0.0248323i
\(919\) 3.56719 6.17855i 0.117671 0.203812i −0.801173 0.598432i \(-0.795791\pi\)
0.918844 + 0.394620i \(0.129124\pi\)
\(920\) 0 0
\(921\) 6.74155 + 11.6767i 0.222142 + 0.384761i
\(922\) 7.93367 5.09778i 0.261282 0.167886i
\(923\) 0.857128 0.857128i 0.0282127 0.0282127i
\(924\) −28.8851 54.6178i −0.950251 1.79680i
\(925\) 0 0
\(926\) 6.28930 28.9004i 0.206679 0.949727i
\(927\) −2.61640 + 9.76453i −0.0859338 + 0.320709i
\(928\) −11.6073 + 39.4729i −0.381027 + 1.29576i
\(929\) −22.9712 13.2625i −0.753662 0.435127i 0.0733534 0.997306i \(-0.476630\pi\)
−0.827016 + 0.562179i \(0.809963\pi\)
\(930\) 0 0
\(931\) −12.9890 13.0554i −0.425698 0.427872i
\(932\) −7.89802 + 46.9223i −0.258708 + 1.53699i
\(933\) 48.9615 13.1192i 1.60293 0.429503i
\(934\) −26.7192 + 29.3875i −0.874280 + 0.961587i
\(935\) 0 0
\(936\) 0.674562 0.288675i 0.0220487 0.00943563i
\(937\) −4.34151 + 4.34151i −0.141831 + 0.141831i −0.774457 0.632626i \(-0.781977\pi\)
0.632626 + 0.774457i \(0.281977\pi\)
\(938\) −1.56368 1.08882i −0.0510560 0.0355513i
\(939\) 68.9071 2.24870
\(940\) 0 0
\(941\) −12.9331 22.4008i −0.421607 0.730245i 0.574490 0.818512i \(-0.305200\pi\)
−0.996097 + 0.0882670i \(0.971867\pi\)
\(942\) −50.8117 + 2.41643i −1.65553 + 0.0787314i
\(943\) 1.67398 + 6.24739i 0.0545124 + 0.203443i
\(944\) 4.39320 12.6803i 0.142987 0.412710i
\(945\) 0 0
\(946\) −4.52941 14.1731i −0.147264 0.460807i
\(947\) 28.6706 7.68227i 0.931670 0.249640i 0.239103 0.970994i \(-0.423147\pi\)
0.692567 + 0.721354i \(0.256480\pi\)
\(948\) 10.5283 + 28.2413i 0.341945 + 0.917233i
\(949\) −0.696229 + 0.401968i −0.0226006 + 0.0130484i
\(950\) 0 0
\(951\) 31.9921i 1.03741i
\(952\) −18.8279 31.8423i −0.610215 1.03201i
\(953\) 33.9836 + 33.9836i 1.10084 + 1.10084i 0.994310 + 0.106528i \(0.0339734\pi\)
0.106528 + 0.994310i \(0.466027\pi\)
\(954\) 8.79063 40.3945i 0.284607 1.30782i
\(955\) 0 0
\(956\) −1.25290 + 2.74232i −0.0405217 + 0.0886930i
\(957\) 21.9805 + 82.0323i 0.710528 + 2.65173i
\(958\) −13.2518 6.83311i −0.428146 0.220768i
\(959\) −48.5669 + 20.0446i −1.56831 + 0.647275i
\(960\) 0 0
\(961\) −4.75009 + 8.22739i −0.153229 + 0.265400i
\(962\) 0.0129862 + 0.273068i 0.000418691 + 0.00880407i
\(963\) 20.3065 + 5.44110i 0.654367 + 0.175337i
\(964\) 36.8950 3.51715i 1.18831 0.113280i
\(965\) 0 0
\(966\) 9.82852 + 3.54822i 0.316228 + 0.114162i
\(967\) 26.2766 + 26.2766i 0.844999 + 0.844999i 0.989504 0.144505i \(-0.0461589\pi\)
−0.144505 + 0.989504i \(0.546159\pi\)
\(968\) 29.8484 + 11.9577i 0.959365 + 0.384336i
\(969\) −27.8061 + 16.0539i −0.893260 + 0.515724i
\(970\) 0 0
\(971\) −40.7412 23.5219i −1.30745 0.754855i −0.325778 0.945446i \(-0.605626\pi\)
−0.981670 + 0.190591i \(0.938960\pi\)
\(972\) −43.7784 7.36883i −1.40419 0.236355i
\(973\) −2.42868 + 1.85869i −0.0778600 + 0.0595867i
\(974\) −16.3851 51.2711i −0.525013 1.64283i
\(975\) 0 0
\(976\) 7.68913 1.47943i 0.246123 0.0473555i
\(977\) −21.3849 5.73007i −0.684163 0.183321i −0.100037 0.994984i \(-0.531896\pi\)
−0.584126 + 0.811663i \(0.698563\pi\)
\(978\) 5.57087 + 8.66996i 0.178137 + 0.277235i
\(979\) 78.9044 2.52180
\(980\) 0 0
\(981\) −12.1307 −0.387305
\(982\) 2.75039 + 4.28044i 0.0877686 + 0.136594i
\(983\) −17.0668 4.57305i −0.544348 0.145858i −0.0238421 0.999716i \(-0.507590\pi\)
−0.520506 + 0.853858i \(0.674257\pi\)
\(984\) 4.74939 39.6424i 0.151405 1.26376i
\(985\) 0 0
\(986\) 15.4783 + 48.4336i 0.492930 + 1.54244i
\(987\) 14.3635 10.9924i 0.457194 0.349893i
\(988\) −0.0732017 + 0.434893i −0.00232886 + 0.0138358i
\(989\) 2.17929 + 1.25821i 0.0692975 + 0.0400089i
\(990\) 0 0
\(991\) 3.59673 2.07657i 0.114254 0.0659645i −0.441784 0.897121i \(-0.645654\pi\)
0.556038 + 0.831157i \(0.312321\pi\)
\(992\) 25.4927 6.17378i 0.809395 0.196018i
\(993\) 12.9278 + 12.9278i 0.410250 + 0.410250i
\(994\) −50.8985 18.3750i −1.61440 0.582820i
\(995\) 0 0
\(996\) 3.72829 + 39.1099i 0.118135 + 1.23924i
\(997\) −23.3879 6.26677i −0.740702 0.198471i −0.131312 0.991341i \(-0.541919\pi\)
−0.609390 + 0.792870i \(0.708586\pi\)
\(998\) 0.687398 + 14.4544i 0.0217592 + 0.457545i
\(999\) −0.270807 + 0.469052i −0.00856796 + 0.0148401i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.2.be.e.443.4 72
4.3 odd 2 inner 700.2.be.e.443.18 72
5.2 odd 4 inner 700.2.be.e.107.7 72
5.3 odd 4 140.2.w.b.107.12 yes 72
5.4 even 2 140.2.w.b.23.15 yes 72
7.4 even 3 inner 700.2.be.e.543.10 72
20.3 even 4 140.2.w.b.107.9 yes 72
20.7 even 4 inner 700.2.be.e.107.10 72
20.19 odd 2 140.2.w.b.23.1 72
28.11 odd 6 inner 700.2.be.e.543.7 72
35.3 even 12 980.2.x.m.67.1 72
35.4 even 6 140.2.w.b.123.9 yes 72
35.9 even 6 980.2.k.k.883.4 36
35.13 even 4 980.2.x.m.667.12 72
35.18 odd 12 140.2.w.b.67.1 yes 72
35.19 odd 6 980.2.k.j.883.4 36
35.23 odd 12 980.2.k.k.687.14 36
35.24 odd 6 980.2.x.m.263.9 72
35.32 odd 12 inner 700.2.be.e.207.18 72
35.33 even 12 980.2.k.j.687.14 36
35.34 odd 2 980.2.x.m.863.15 72
140.3 odd 12 980.2.x.m.67.15 72
140.19 even 6 980.2.k.j.883.14 36
140.23 even 12 980.2.k.k.687.4 36
140.39 odd 6 140.2.w.b.123.12 yes 72
140.59 even 6 980.2.x.m.263.12 72
140.67 even 12 inner 700.2.be.e.207.4 72
140.79 odd 6 980.2.k.k.883.14 36
140.83 odd 4 980.2.x.m.667.9 72
140.103 odd 12 980.2.k.j.687.4 36
140.123 even 12 140.2.w.b.67.15 yes 72
140.139 even 2 980.2.x.m.863.1 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.w.b.23.1 72 20.19 odd 2
140.2.w.b.23.15 yes 72 5.4 even 2
140.2.w.b.67.1 yes 72 35.18 odd 12
140.2.w.b.67.15 yes 72 140.123 even 12
140.2.w.b.107.9 yes 72 20.3 even 4
140.2.w.b.107.12 yes 72 5.3 odd 4
140.2.w.b.123.9 yes 72 35.4 even 6
140.2.w.b.123.12 yes 72 140.39 odd 6
700.2.be.e.107.7 72 5.2 odd 4 inner
700.2.be.e.107.10 72 20.7 even 4 inner
700.2.be.e.207.4 72 140.67 even 12 inner
700.2.be.e.207.18 72 35.32 odd 12 inner
700.2.be.e.443.4 72 1.1 even 1 trivial
700.2.be.e.443.18 72 4.3 odd 2 inner
700.2.be.e.543.7 72 28.11 odd 6 inner
700.2.be.e.543.10 72 7.4 even 3 inner
980.2.k.j.687.4 36 140.103 odd 12
980.2.k.j.687.14 36 35.33 even 12
980.2.k.j.883.4 36 35.19 odd 6
980.2.k.j.883.14 36 140.19 even 6
980.2.k.k.687.4 36 140.23 even 12
980.2.k.k.687.14 36 35.23 odd 12
980.2.k.k.883.4 36 35.9 even 6
980.2.k.k.883.14 36 140.79 odd 6
980.2.x.m.67.1 72 35.3 even 12
980.2.x.m.67.15 72 140.3 odd 12
980.2.x.m.263.9 72 35.24 odd 6
980.2.x.m.263.12 72 140.59 even 6
980.2.x.m.667.9 72 140.83 odd 4
980.2.x.m.667.12 72 35.13 even 4
980.2.x.m.863.1 72 140.139 even 2
980.2.x.m.863.15 72 35.34 odd 2