Properties

Label 980.2.x.k.67.11
Level $980$
Weight $2$
Character 980.67
Analytic conductor $7.825$
Analytic rank $0$
Dimension $72$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [980,2,Mod(67,980)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("980.67"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(980, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 3, 8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.x (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72,0,0,0,0,-16,0,0,0,16,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(18\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 67.11
Character \(\chi\) \(=\) 980.67
Dual form 980.2.x.k.863.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.370738 + 1.36475i) q^{2} +(1.72922 - 0.463343i) q^{3} +(-1.72511 + 1.01193i) q^{4} +(-0.0513098 - 2.23548i) q^{5} +(1.27344 + 2.18818i) q^{6} +(-2.02060 - 1.97918i) q^{8} +(0.177443 - 0.102447i) q^{9} +(3.03186 - 0.898803i) q^{10} +(1.83014 + 1.05663i) q^{11} +(-2.51422 + 2.54917i) q^{12} +(2.86476 - 2.86476i) q^{13} +(-1.12452 - 3.84186i) q^{15} +(1.95198 - 3.49138i) q^{16} +(6.10660 - 1.63626i) q^{17} +(0.205599 + 0.204185i) q^{18} +(-1.47623 - 2.55691i) q^{19} +(2.35067 + 3.80452i) q^{20} +(-0.763541 + 2.88943i) q^{22} +(1.44328 - 5.38640i) q^{23} +(-4.41111 - 2.48621i) q^{24} +(-4.99473 + 0.229404i) q^{25} +(4.97177 + 2.84762i) q^{26} +(-3.53826 + 3.53826i) q^{27} +2.86818i q^{29} +(4.82630 - 2.95902i) q^{30} +(5.20796 + 3.00682i) q^{31} +(5.48855 + 1.36959i) q^{32} +(3.65431 + 0.979169i) q^{33} +(4.49704 + 7.72739i) q^{34} +(-0.202439 + 0.356292i) q^{36} +(1.43278 - 5.34722i) q^{37} +(2.94225 - 2.96264i) q^{38} +(3.62644 - 6.28117i) q^{39} +(-4.32075 + 4.61857i) q^{40} -7.98984 q^{41} +(5.64967 + 5.64967i) q^{43} +(-4.22644 + 0.0291770i) q^{44} +(-0.238122 - 0.391413i) q^{45} +(7.88619 - 0.0272206i) q^{46} +(5.87853 + 1.57515i) q^{47} +(1.75770 - 6.94181i) q^{48} +(-2.16482 - 6.73153i) q^{50} +(9.80152 - 5.65891i) q^{51} +(-2.04307 + 7.84096i) q^{52} +(-0.205406 - 0.766587i) q^{53} +(-6.14063 - 3.51709i) q^{54} +(2.26818 - 4.14546i) q^{55} +(-3.73746 - 3.73746i) q^{57} +(-3.91435 + 1.06334i) q^{58} +(-2.48910 + 4.31124i) q^{59} +(5.82763 + 5.48968i) q^{60} +(-0.843662 - 1.46127i) q^{61} +(-2.17278 + 8.22233i) q^{62} +(0.165668 + 7.99828i) q^{64} +(-6.55110 - 6.25712i) q^{65} +(0.0184674 + 5.35025i) q^{66} +(-2.95071 - 11.0122i) q^{67} +(-8.87876 + 9.00220i) q^{68} -9.98301i q^{69} +0.610925i q^{71} +(-0.561302 - 0.144188i) q^{72} +(-1.18312 - 4.41548i) q^{73} +(7.82883 - 0.0270227i) q^{74} +(-8.53071 + 2.71097i) q^{75} +(5.13407 + 2.91709i) q^{76} +(9.91671 + 2.62052i) q^{78} +(7.12694 + 12.3442i) q^{79} +(-7.90507 - 4.18448i) q^{80} +(-4.78635 + 8.29020i) q^{81} +(-2.96214 - 10.9042i) q^{82} +(5.51624 + 5.51624i) q^{83} +(-3.97115 - 13.5672i) q^{85} +(-5.61586 + 9.80496i) q^{86} +(1.32895 + 4.95971i) q^{87} +(-1.60672 - 5.75723i) q^{88} +(1.80030 - 1.03940i) q^{89} +(0.445902 - 0.470090i) q^{90} +(2.96086 + 10.7526i) q^{92} +(10.3989 + 2.78638i) q^{93} +(0.0297077 + 8.60672i) q^{94} +(-5.64017 + 3.43128i) q^{95} +(10.1255 - 0.174767i) q^{96} +(-1.95542 - 1.95542i) q^{97} +0.432994 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 16 q^{6} + 16 q^{10} + 16 q^{12} - 8 q^{13} + 8 q^{16} + 20 q^{17} - 28 q^{18} + 40 q^{20} + 8 q^{22} + 20 q^{25} + 32 q^{26} + 4 q^{30} - 20 q^{37} + 36 q^{40} - 20 q^{45} - 16 q^{46} - 48 q^{48}+ \cdots + 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.370738 + 1.36475i 0.262152 + 0.965027i
\(3\) 1.72922 0.463343i 0.998366 0.267511i 0.277605 0.960695i \(-0.410459\pi\)
0.720761 + 0.693184i \(0.243793\pi\)
\(4\) −1.72511 + 1.01193i −0.862553 + 0.505967i
\(5\) −0.0513098 2.23548i −0.0229464 0.999737i
\(6\) 1.27344 + 2.18818i 0.519879 + 0.893322i
\(7\) 0 0
\(8\) −2.02060 1.97918i −0.714391 0.699747i
\(9\) 0.177443 0.102447i 0.0591476 0.0341489i
\(10\) 3.03186 0.898803i 0.958757 0.284226i
\(11\) 1.83014 + 1.05663i 0.551809 + 0.318587i 0.749851 0.661606i \(-0.230125\pi\)
−0.198042 + 0.980193i \(0.563458\pi\)
\(12\) −2.51422 + 2.54917i −0.725792 + 0.735883i
\(13\) 2.86476 2.86476i 0.794542 0.794542i −0.187687 0.982229i \(-0.560099\pi\)
0.982229 + 0.187687i \(0.0600992\pi\)
\(14\) 0 0
\(15\) −1.12452 3.84186i −0.290350 0.991965i
\(16\) 1.95198 3.49138i 0.487996 0.872846i
\(17\) 6.10660 1.63626i 1.48107 0.396851i 0.574358 0.818604i \(-0.305252\pi\)
0.906711 + 0.421753i \(0.138585\pi\)
\(18\) 0.205599 + 0.204185i 0.0484602 + 0.0481268i
\(19\) −1.47623 2.55691i −0.338671 0.586595i 0.645512 0.763750i \(-0.276644\pi\)
−0.984183 + 0.177155i \(0.943311\pi\)
\(20\) 2.35067 + 3.80452i 0.525626 + 0.850716i
\(21\) 0 0
\(22\) −0.763541 + 2.88943i −0.162788 + 0.616029i
\(23\) 1.44328 5.38640i 0.300945 1.12314i −0.635435 0.772154i \(-0.719179\pi\)
0.936380 0.350988i \(-0.114154\pi\)
\(24\) −4.41111 2.48621i −0.900414 0.507496i
\(25\) −4.99473 + 0.229404i −0.998947 + 0.0458808i
\(26\) 4.97177 + 2.84762i 0.975044 + 0.558464i
\(27\) −3.53826 + 3.53826i −0.680939 + 0.680939i
\(28\) 0 0
\(29\) 2.86818i 0.532607i 0.963889 + 0.266303i \(0.0858023\pi\)
−0.963889 + 0.266303i \(0.914198\pi\)
\(30\) 4.82630 2.95902i 0.881157 0.540241i
\(31\) 5.20796 + 3.00682i 0.935378 + 0.540041i 0.888508 0.458860i \(-0.151742\pi\)
0.0468695 + 0.998901i \(0.485076\pi\)
\(32\) 5.48855 + 1.36959i 0.970249 + 0.242111i
\(33\) 3.65431 + 0.979169i 0.636133 + 0.170451i
\(34\) 4.49704 + 7.72739i 0.771237 + 1.32524i
\(35\) 0 0
\(36\) −0.202439 + 0.356292i −0.0337398 + 0.0593819i
\(37\) 1.43278 5.34722i 0.235548 0.879078i −0.742353 0.670009i \(-0.766290\pi\)
0.977901 0.209069i \(-0.0670432\pi\)
\(38\) 2.94225 2.96264i 0.477297 0.480603i
\(39\) 3.62644 6.28117i 0.580695 1.00579i
\(40\) −4.32075 + 4.61857i −0.683170 + 0.730259i
\(41\) −7.98984 −1.24780 −0.623902 0.781503i \(-0.714453\pi\)
−0.623902 + 0.781503i \(0.714453\pi\)
\(42\) 0 0
\(43\) 5.64967 + 5.64967i 0.861567 + 0.861567i 0.991520 0.129954i \(-0.0414828\pi\)
−0.129954 + 0.991520i \(0.541483\pi\)
\(44\) −4.22644 + 0.0291770i −0.637159 + 0.00439860i
\(45\) −0.238122 0.391413i −0.0354971 0.0583484i
\(46\) 7.88619 0.0272206i 1.16275 0.00401346i
\(47\) 5.87853 + 1.57515i 0.857472 + 0.229759i 0.660663 0.750683i \(-0.270275\pi\)
0.196810 + 0.980442i \(0.436942\pi\)
\(48\) 1.75770 6.94181i 0.253702 1.00196i
\(49\) 0 0
\(50\) −2.16482 6.73153i −0.306152 0.951983i
\(51\) 9.80152 5.65891i 1.37249 0.792406i
\(52\) −2.04307 + 7.84096i −0.283323 + 1.08735i
\(53\) −0.205406 0.766587i −0.0282147 0.105299i 0.950383 0.311084i \(-0.100692\pi\)
−0.978597 + 0.205785i \(0.934025\pi\)
\(54\) −6.14063 3.51709i −0.835634 0.478615i
\(55\) 2.26818 4.14546i 0.305841 0.558974i
\(56\) 0 0
\(57\) −3.73746 3.73746i −0.495038 0.495038i
\(58\) −3.91435 + 1.06334i −0.513980 + 0.139624i
\(59\) −2.48910 + 4.31124i −0.324053 + 0.561276i −0.981320 0.192382i \(-0.938379\pi\)
0.657268 + 0.753657i \(0.271712\pi\)
\(60\) 5.82763 + 5.48968i 0.752343 + 0.708715i
\(61\) −0.843662 1.46127i −0.108020 0.187096i 0.806948 0.590622i \(-0.201118\pi\)
−0.914968 + 0.403526i \(0.867784\pi\)
\(62\) −2.17278 + 8.22233i −0.275943 + 1.04424i
\(63\) 0 0
\(64\) 0.165668 + 7.99828i 0.0207085 + 0.999786i
\(65\) −6.55110 6.25712i −0.812564 0.776100i
\(66\) 0.0184674 + 5.35025i 0.00227318 + 0.658570i
\(67\) −2.95071 11.0122i −0.360486 1.34535i −0.873438 0.486935i \(-0.838115\pi\)
0.512952 0.858417i \(-0.328552\pi\)
\(68\) −8.87876 + 9.00220i −1.07671 + 1.09168i
\(69\) 9.98301i 1.20181i
\(70\) 0 0
\(71\) 0.610925i 0.0725035i 0.999343 + 0.0362518i \(0.0115418\pi\)
−0.999343 + 0.0362518i \(0.988458\pi\)
\(72\) −0.561302 0.144188i −0.0661501 0.0169927i
\(73\) −1.18312 4.41548i −0.138474 0.516793i −0.999959 0.00901016i \(-0.997132\pi\)
0.861485 0.507783i \(-0.169535\pi\)
\(74\) 7.82883 0.0270227i 0.910083 0.00314132i
\(75\) −8.53071 + 2.71097i −0.985041 + 0.313036i
\(76\) 5.13407 + 2.91709i 0.588919 + 0.334613i
\(77\) 0 0
\(78\) 9.91671 + 2.62052i 1.12285 + 0.296716i
\(79\) 7.12694 + 12.3442i 0.801843 + 1.38883i 0.918401 + 0.395650i \(0.129481\pi\)
−0.116558 + 0.993184i \(0.537186\pi\)
\(80\) −7.90507 4.18448i −0.883814 0.467839i
\(81\) −4.78635 + 8.29020i −0.531817 + 0.921133i
\(82\) −2.96214 10.9042i −0.327114 1.20416i
\(83\) 5.51624 + 5.51624i 0.605486 + 0.605486i 0.941763 0.336277i \(-0.109168\pi\)
−0.336277 + 0.941763i \(0.609168\pi\)
\(84\) 0 0
\(85\) −3.97115 13.5672i −0.430732 1.47157i
\(86\) −5.61586 + 9.80496i −0.605574 + 1.05730i
\(87\) 1.32895 + 4.95971i 0.142478 + 0.531737i
\(88\) −1.60672 5.75723i −0.171277 0.613723i
\(89\) 1.80030 1.03940i 0.190831 0.110176i −0.401540 0.915841i \(-0.631525\pi\)
0.592372 + 0.805665i \(0.298192\pi\)
\(90\) 0.445902 0.470090i 0.0470022 0.0495518i
\(91\) 0 0
\(92\) 2.96086 + 10.7526i 0.308691 + 1.12104i
\(93\) 10.3989 + 2.78638i 1.07832 + 0.288934i
\(94\) 0.0297077 + 8.60672i 0.00306411 + 0.887715i
\(95\) −5.64017 + 3.43128i −0.578669 + 0.352042i
\(96\) 10.1255 0.174767i 1.03343 0.0178371i
\(97\) −1.95542 1.95542i −0.198543 0.198543i 0.600832 0.799375i \(-0.294836\pi\)
−0.799375 + 0.600832i \(0.794836\pi\)
\(98\) 0 0
\(99\) 0.432994 0.0435176
\(100\) 8.38431 5.45008i 0.838431 0.545008i
\(101\) −0.631568 + 1.09391i −0.0628434 + 0.108848i −0.895735 0.444588i \(-0.853350\pi\)
0.832892 + 0.553436i \(0.186684\pi\)
\(102\) 11.3568 + 11.2787i 1.12449 + 1.11676i
\(103\) −3.36344 + 12.5525i −0.331409 + 1.23684i 0.576300 + 0.817238i \(0.304496\pi\)
−0.907710 + 0.419599i \(0.862171\pi\)
\(104\) −11.4584 + 0.118656i −1.12359 + 0.0116352i
\(105\) 0 0
\(106\) 0.970051 0.564533i 0.0942197 0.0548322i
\(107\) −18.6606 5.00010i −1.80399 0.483378i −0.809402 0.587255i \(-0.800209\pi\)
−0.994590 + 0.103877i \(0.966875\pi\)
\(108\) 2.52339 9.68437i 0.242814 0.931879i
\(109\) −11.7830 6.80291i −1.12860 0.651600i −0.185021 0.982735i \(-0.559235\pi\)
−0.943584 + 0.331134i \(0.892569\pi\)
\(110\) 6.49844 + 1.55862i 0.619602 + 0.148609i
\(111\) 9.91040i 0.940654i
\(112\) 0 0
\(113\) −7.72607 + 7.72607i −0.726807 + 0.726807i −0.969982 0.243175i \(-0.921811\pi\)
0.243175 + 0.969982i \(0.421811\pi\)
\(114\) 3.71509 6.48633i 0.347950 0.607500i
\(115\) −12.1152 2.95005i −1.12975 0.275094i
\(116\) −2.90240 4.94791i −0.269481 0.459402i
\(117\) 0.214846 0.801816i 0.0198625 0.0741279i
\(118\) −6.80658 1.79866i −0.626597 0.165580i
\(119\) 0 0
\(120\) −5.33154 + 9.98851i −0.486701 + 0.911822i
\(121\) −3.26705 5.65869i −0.297004 0.514427i
\(122\) 1.68149 1.69314i 0.152235 0.153290i
\(123\) −13.8162 + 3.70204i −1.24576 + 0.333802i
\(124\) −12.0270 + 0.0830278i −1.08006 + 0.00745611i
\(125\) 0.769107 + 11.1539i 0.0687910 + 0.997631i
\(126\) 0 0
\(127\) −3.84193 + 3.84193i −0.340917 + 0.340917i −0.856712 0.515795i \(-0.827496\pi\)
0.515795 + 0.856712i \(0.327496\pi\)
\(128\) −10.8543 + 3.19137i −0.959391 + 0.282080i
\(129\) 12.3873 + 7.15179i 1.09064 + 0.629680i
\(130\) 6.11069 11.2604i 0.535943 0.987602i
\(131\) 10.0683 5.81295i 0.879674 0.507880i 0.00912320 0.999958i \(-0.497096\pi\)
0.870551 + 0.492078i \(0.163763\pi\)
\(132\) −7.29492 + 2.00874i −0.634942 + 0.174839i
\(133\) 0 0
\(134\) 13.9350 8.10963i 1.20380 0.700565i
\(135\) 8.09126 + 7.72817i 0.696385 + 0.665135i
\(136\) −15.5775 8.77986i −1.33576 0.752867i
\(137\) −20.6120 + 5.52298i −1.76101 + 0.471860i −0.986919 0.161219i \(-0.948457\pi\)
−0.774087 + 0.633079i \(0.781791\pi\)
\(138\) 13.6244 3.70108i 1.15978 0.315057i
\(139\) 5.05787 0.429003 0.214501 0.976724i \(-0.431187\pi\)
0.214501 + 0.976724i \(0.431187\pi\)
\(140\) 0 0
\(141\) 10.8951 0.917535
\(142\) −0.833763 + 0.226493i −0.0699678 + 0.0190069i
\(143\) 8.26993 2.21592i 0.691566 0.185305i
\(144\) −0.0113152 0.819495i −0.000942936 0.0682912i
\(145\) 6.41175 0.147165i 0.532466 0.0122214i
\(146\) 5.58741 3.25166i 0.462418 0.269109i
\(147\) 0 0
\(148\) 2.93933 + 10.6744i 0.241611 + 0.877431i
\(149\) −6.53199 + 3.77124i −0.535121 + 0.308952i −0.743099 0.669181i \(-0.766645\pi\)
0.207978 + 0.978133i \(0.433312\pi\)
\(150\) −6.86246 10.6373i −0.560318 0.868528i
\(151\) 12.0674 + 6.96711i 0.982030 + 0.566975i 0.902883 0.429887i \(-0.141447\pi\)
0.0791478 + 0.996863i \(0.474780\pi\)
\(152\) −2.07771 + 8.08822i −0.168525 + 0.656042i
\(153\) 0.915944 0.915944i 0.0740496 0.0740496i
\(154\) 0 0
\(155\) 6.45446 11.7966i 0.518435 0.947524i
\(156\) 0.100137 + 14.5054i 0.00801740 + 1.16136i
\(157\) 7.70790 2.06532i 0.615157 0.164831i 0.0622318 0.998062i \(-0.480178\pi\)
0.552925 + 0.833231i \(0.313512\pi\)
\(158\) −14.2046 + 14.3030i −1.13006 + 1.13789i
\(159\) −0.710386 1.23043i −0.0563373 0.0975791i
\(160\) 2.78007 12.3398i 0.219784 0.975549i
\(161\) 0 0
\(162\) −13.0886 3.45869i −1.02833 0.271741i
\(163\) −3.60545 + 13.4557i −0.282400 + 1.05393i 0.668318 + 0.743876i \(0.267015\pi\)
−0.950718 + 0.310057i \(0.899652\pi\)
\(164\) 13.7833 8.08518i 1.07630 0.631347i
\(165\) 2.00141 8.21937i 0.155810 0.639877i
\(166\) −5.48323 + 9.57339i −0.425581 + 0.743039i
\(167\) 14.0288 14.0288i 1.08558 1.08558i 0.0896054 0.995977i \(-0.471439\pi\)
0.995977 0.0896054i \(-0.0285606\pi\)
\(168\) 0 0
\(169\) 3.41370i 0.262592i
\(170\) 17.0437 10.4495i 1.30719 0.801443i
\(171\) −0.523893 0.302470i −0.0400631 0.0231304i
\(172\) −15.4634 4.02919i −1.17907 0.307223i
\(173\) −12.1268 3.24936i −0.921982 0.247044i −0.233550 0.972345i \(-0.575034\pi\)
−0.688432 + 0.725300i \(0.741701\pi\)
\(174\) −6.27609 + 3.65244i −0.475789 + 0.276891i
\(175\) 0 0
\(176\) 7.26153 4.32720i 0.547358 0.326175i
\(177\) −2.30661 + 8.60839i −0.173376 + 0.647046i
\(178\) 2.08597 + 2.07162i 0.156350 + 0.155274i
\(179\) 1.72867 2.99414i 0.129207 0.223792i −0.794163 0.607705i \(-0.792090\pi\)
0.923369 + 0.383913i \(0.125424\pi\)
\(180\) 0.806869 + 0.434266i 0.0601405 + 0.0323683i
\(181\) −16.0960 −1.19640 −0.598202 0.801345i \(-0.704118\pi\)
−0.598202 + 0.801345i \(0.704118\pi\)
\(182\) 0 0
\(183\) −2.13595 2.13595i −0.157894 0.157894i
\(184\) −13.5770 + 8.02725i −1.00091 + 0.591777i
\(185\) −12.0271 2.92859i −0.884251 0.215314i
\(186\) 0.0525518 + 15.2250i 0.00385329 + 1.11635i
\(187\) 12.9049 + 3.45786i 0.943699 + 0.252863i
\(188\) −11.7350 + 3.23138i −0.855866 + 0.235673i
\(189\) 0 0
\(190\) −6.77388 6.42533i −0.491429 0.466143i
\(191\) −4.59262 + 2.65155i −0.332310 + 0.191860i −0.656866 0.754007i \(-0.728118\pi\)
0.324556 + 0.945866i \(0.394785\pi\)
\(192\) 3.99243 + 13.7540i 0.288129 + 0.992612i
\(193\) 5.79200 + 21.6160i 0.416917 + 1.55596i 0.780964 + 0.624576i \(0.214728\pi\)
−0.364047 + 0.931381i \(0.618605\pi\)
\(194\) 1.94372 3.39361i 0.139551 0.243647i
\(195\) −14.2275 7.78454i −1.01885 0.557462i
\(196\) 0 0
\(197\) 5.33556 + 5.33556i 0.380143 + 0.380143i 0.871154 0.491011i \(-0.163372\pi\)
−0.491011 + 0.871154i \(0.663372\pi\)
\(198\) 0.160528 + 0.590931i 0.0114082 + 0.0419956i
\(199\) −5.94289 + 10.2934i −0.421280 + 0.729679i −0.996065 0.0886258i \(-0.971752\pi\)
0.574785 + 0.818305i \(0.305086\pi\)
\(200\) 10.5464 + 9.42196i 0.745743 + 0.666233i
\(201\) −10.2048 17.6753i −0.719795 1.24672i
\(202\) −1.72706 0.456381i −0.121516 0.0321109i
\(203\) 0 0
\(204\) −11.1822 + 19.6807i −0.782912 + 1.37792i
\(205\) 0.409957 + 17.8611i 0.0286326 + 1.24747i
\(206\) −18.3781 + 0.0634353i −1.28046 + 0.00441974i
\(207\) −0.295719 1.10364i −0.0205539 0.0767081i
\(208\) −4.41001 15.5939i −0.305779 1.08125i
\(209\) 6.23934i 0.431584i
\(210\) 0 0
\(211\) 2.04430i 0.140735i −0.997521 0.0703677i \(-0.977583\pi\)
0.997521 0.0703677i \(-0.0224173\pi\)
\(212\) 1.13008 + 1.11459i 0.0776144 + 0.0765502i
\(213\) 0.283068 + 1.05643i 0.0193955 + 0.0723851i
\(214\) −0.0943032 27.3209i −0.00644643 1.86762i
\(215\) 12.3398 12.9196i 0.841570 0.881110i
\(216\) 14.1523 0.146552i 0.962942 0.00997163i
\(217\) 0 0
\(218\) 4.91589 18.6030i 0.332946 1.25995i
\(219\) −4.09177 7.08715i −0.276496 0.478905i
\(220\) 0.282082 + 9.44661i 0.0190180 + 0.636890i
\(221\) 12.8065 22.1815i 0.861456 1.49209i
\(222\) 13.5253 3.67416i 0.907756 0.246594i
\(223\) 13.1600 + 13.1600i 0.881261 + 0.881261i 0.993663 0.112402i \(-0.0358544\pi\)
−0.112402 + 0.993663i \(0.535854\pi\)
\(224\) 0 0
\(225\) −0.862778 + 0.552400i −0.0575185 + 0.0368267i
\(226\) −13.4085 7.67983i −0.891922 0.510855i
\(227\) −1.44049 5.37597i −0.0956085 0.356816i 0.901502 0.432774i \(-0.142465\pi\)
−0.997111 + 0.0759580i \(0.975798\pi\)
\(228\) 10.2296 + 2.66545i 0.677469 + 0.176524i
\(229\) 7.11068 4.10535i 0.469887 0.271289i −0.246305 0.969192i \(-0.579217\pi\)
0.716192 + 0.697903i \(0.245883\pi\)
\(230\) −0.465490 17.6280i −0.0306935 1.16236i
\(231\) 0 0
\(232\) 5.67664 5.79544i 0.372690 0.380489i
\(233\) 11.5815 + 3.10326i 0.758732 + 0.203302i 0.617388 0.786659i \(-0.288191\pi\)
0.141344 + 0.989961i \(0.454858\pi\)
\(234\) 1.17393 0.00405205i 0.0767424 0.000264891i
\(235\) 3.21959 13.2222i 0.210023 0.862519i
\(236\) −0.0687318 9.95614i −0.00447406 0.648090i
\(237\) 18.0437 + 18.0437i 1.17206 + 1.17206i
\(238\) 0 0
\(239\) −18.5038 −1.19691 −0.598456 0.801155i \(-0.704219\pi\)
−0.598456 + 0.801155i \(0.704219\pi\)
\(240\) −15.6085 3.57312i −1.00752 0.230644i
\(241\) −0.0411841 + 0.0713330i −0.00265290 + 0.00459496i −0.867349 0.497701i \(-0.834178\pi\)
0.864696 + 0.502296i \(0.167511\pi\)
\(242\) 6.51150 6.55661i 0.418575 0.421475i
\(243\) −0.550164 + 2.05324i −0.0352930 + 0.131715i
\(244\) 2.93411 + 1.66711i 0.187837 + 0.106726i
\(245\) 0 0
\(246\) −10.1746 17.4832i −0.648707 1.11469i
\(247\) −11.5540 3.09588i −0.735162 0.196986i
\(248\) −4.57218 16.3831i −0.290334 1.04033i
\(249\) 12.0947 + 6.98289i 0.766471 + 0.442522i
\(250\) −14.9371 + 5.18480i −0.944707 + 0.327916i
\(251\) 9.07743i 0.572963i 0.958086 + 0.286481i \(0.0924856\pi\)
−0.958086 + 0.286481i \(0.907514\pi\)
\(252\) 0 0
\(253\) 8.33287 8.33287i 0.523883 0.523883i
\(254\) −6.66765 3.81894i −0.418365 0.239622i
\(255\) −13.1533 21.6207i −0.823691 1.35394i
\(256\) −8.37952 13.6302i −0.523720 0.851890i
\(257\) −1.88616 + 7.03925i −0.117656 + 0.439097i −0.999472 0.0324965i \(-0.989654\pi\)
0.881816 + 0.471593i \(0.156321\pi\)
\(258\) −5.16800 + 19.5570i −0.321746 + 1.21757i
\(259\) 0 0
\(260\) 17.6331 + 4.16492i 1.09356 + 0.258298i
\(261\) 0.293835 + 0.508937i 0.0181879 + 0.0315024i
\(262\) 11.6660 + 11.5857i 0.720726 + 0.715768i
\(263\) −5.18349 + 1.38891i −0.319628 + 0.0856441i −0.415066 0.909791i \(-0.636241\pi\)
0.0954380 + 0.995435i \(0.469575\pi\)
\(264\) −5.44595 9.21106i −0.335175 0.566901i
\(265\) −1.70315 + 0.498515i −0.104624 + 0.0306236i
\(266\) 0 0
\(267\) 2.63151 2.63151i 0.161046 0.161046i
\(268\) 16.2339 + 16.0113i 0.991642 + 0.978044i
\(269\) −4.69186 2.70885i −0.286068 0.165161i 0.350099 0.936713i \(-0.386148\pi\)
−0.636167 + 0.771551i \(0.719481\pi\)
\(270\) −7.54731 + 13.9077i −0.459314 + 0.846396i
\(271\) 7.10365 4.10129i 0.431516 0.249136i −0.268476 0.963286i \(-0.586520\pi\)
0.699992 + 0.714151i \(0.253187\pi\)
\(272\) 6.20718 24.5145i 0.376365 1.48641i
\(273\) 0 0
\(274\) −15.1792 26.0828i −0.917008 1.57572i
\(275\) −9.38348 4.85776i −0.565845 0.292934i
\(276\) 10.1021 + 17.2218i 0.608077 + 1.03663i
\(277\) 14.6458 3.92432i 0.879979 0.235790i 0.209581 0.977791i \(-0.432790\pi\)
0.670398 + 0.742002i \(0.266123\pi\)
\(278\) 1.87515 + 6.90275i 0.112464 + 0.413999i
\(279\) 1.23215 0.0737671
\(280\) 0 0
\(281\) −23.7586 −1.41732 −0.708659 0.705551i \(-0.750700\pi\)
−0.708659 + 0.705551i \(0.750700\pi\)
\(282\) 4.03924 + 14.8692i 0.240533 + 0.885446i
\(283\) 22.8818 6.13117i 1.36018 0.364460i 0.496300 0.868151i \(-0.334692\pi\)
0.863884 + 0.503691i \(0.168025\pi\)
\(284\) −0.618216 1.05391i −0.0366843 0.0625381i
\(285\) −8.16324 + 8.54677i −0.483548 + 0.506267i
\(286\) 6.09016 + 10.4649i 0.360119 + 0.618802i
\(287\) 0 0
\(288\) 1.11421 0.319261i 0.0656557 0.0188126i
\(289\) 19.8908 11.4840i 1.17005 0.675528i
\(290\) 2.57792 + 8.69589i 0.151381 + 0.510641i
\(291\) −4.28738 2.47532i −0.251331 0.145106i
\(292\) 6.50919 + 6.41993i 0.380921 + 0.375698i
\(293\) 18.6078 18.6078i 1.08708 1.08708i 0.0912527 0.995828i \(-0.470913\pi\)
0.995828 0.0912527i \(-0.0290871\pi\)
\(294\) 0 0
\(295\) 9.76540 + 5.34311i 0.568564 + 0.311088i
\(296\) −13.4782 + 7.96887i −0.783405 + 0.463181i
\(297\) −10.2142 + 2.73688i −0.592687 + 0.158810i
\(298\) −7.56848 7.51641i −0.438430 0.435414i
\(299\) −11.2961 19.5654i −0.653270 1.13150i
\(300\) 11.9731 13.3092i 0.691265 0.768408i
\(301\) 0 0
\(302\) −5.03455 + 19.0520i −0.289706 + 1.09632i
\(303\) −0.585266 + 2.18424i −0.0336226 + 0.125481i
\(304\) −11.8087 + 0.163050i −0.677277 + 0.00935154i
\(305\) −3.22334 + 1.96097i −0.184568 + 0.112285i
\(306\) 1.58961 + 0.910462i 0.0908721 + 0.0520477i
\(307\) −19.1930 + 19.1930i −1.09540 + 1.09540i −0.100459 + 0.994941i \(0.532031\pi\)
−0.994941 + 0.100459i \(0.967969\pi\)
\(308\) 0 0
\(309\) 23.2645i 1.32347i
\(310\) 18.4923 + 4.43531i 1.05029 + 0.251909i
\(311\) −11.9923 6.92373i −0.680018 0.392609i 0.119844 0.992793i \(-0.461761\pi\)
−0.799862 + 0.600184i \(0.795094\pi\)
\(312\) −19.7592 + 5.51437i −1.11864 + 0.312190i
\(313\) 22.7192 + 6.08759i 1.28417 + 0.344091i 0.835441 0.549579i \(-0.185212\pi\)
0.448724 + 0.893670i \(0.351879\pi\)
\(314\) 5.67627 + 9.75368i 0.320331 + 0.550432i
\(315\) 0 0
\(316\) −24.7863 14.0831i −1.39434 0.792237i
\(317\) −0.213444 + 0.796585i −0.0119882 + 0.0447407i −0.971661 0.236379i \(-0.924039\pi\)
0.959673 + 0.281120i \(0.0907059\pi\)
\(318\) 1.41586 1.42567i 0.0793975 0.0799475i
\(319\) −3.03061 + 5.24917i −0.169682 + 0.293897i
\(320\) 17.8715 0.780739i 0.999047 0.0436446i
\(321\) −34.5851 −1.93035
\(322\) 0 0
\(323\) −13.1985 13.1985i −0.734386 0.734386i
\(324\) −0.132166 19.1449i −0.00734257 1.06361i
\(325\) −13.6515 + 14.9659i −0.757251 + 0.830159i
\(326\) −19.7004 + 0.0679996i −1.09110 + 0.00376615i
\(327\) −23.5275 6.30416i −1.30107 0.348621i
\(328\) 16.1443 + 15.8134i 0.891419 + 0.873146i
\(329\) 0 0
\(330\) 11.9594 0.315804i 0.658344 0.0173844i
\(331\) 12.4271 7.17480i 0.683056 0.394363i −0.117949 0.993020i \(-0.537632\pi\)
0.801006 + 0.598657i \(0.204299\pi\)
\(332\) −15.0982 3.93404i −0.828620 0.215908i
\(333\) −0.293568 1.09561i −0.0160874 0.0600390i
\(334\) 24.3469 + 13.9449i 1.33220 + 0.763029i
\(335\) −24.4661 + 7.16128i −1.33673 + 0.391262i
\(336\) 0 0
\(337\) 0.0624771 + 0.0624771i 0.00340335 + 0.00340335i 0.708806 0.705403i \(-0.249234\pi\)
−0.705403 + 0.708806i \(0.749234\pi\)
\(338\) 4.65886 1.26559i 0.253409 0.0688390i
\(339\) −9.78026 + 16.9399i −0.531191 + 0.920049i
\(340\) 20.5798 + 19.3864i 1.11610 + 1.05137i
\(341\) 6.35422 + 11.0058i 0.344100 + 0.595999i
\(342\) 0.218570 0.827122i 0.0118189 0.0447256i
\(343\) 0 0
\(344\) −0.234005 22.5975i −0.0126167 1.21837i
\(345\) −22.3168 + 0.512226i −1.20150 + 0.0275773i
\(346\) −0.0612838 17.7547i −0.00329464 0.954501i
\(347\) 2.28336 + 8.52161i 0.122577 + 0.457464i 0.999742 0.0227259i \(-0.00723449\pi\)
−0.877165 + 0.480190i \(0.840568\pi\)
\(348\) −7.31147 7.21122i −0.391936 0.386562i
\(349\) 3.77799i 0.202231i −0.994875 0.101116i \(-0.967759\pi\)
0.994875 0.101116i \(-0.0322412\pi\)
\(350\) 0 0
\(351\) 20.2726i 1.08207i
\(352\) 8.59769 + 8.30594i 0.458259 + 0.442708i
\(353\) −0.321686 1.20055i −0.0171216 0.0638987i 0.956836 0.290627i \(-0.0938638\pi\)
−0.973958 + 0.226728i \(0.927197\pi\)
\(354\) −12.6035 + 0.0435033i −0.669868 + 0.00231217i
\(355\) 1.36571 0.0313465i 0.0724844 0.00166370i
\(356\) −2.05390 + 3.61486i −0.108856 + 0.191587i
\(357\) 0 0
\(358\) 4.72714 + 1.24916i 0.249837 + 0.0660203i
\(359\) −8.75216 15.1592i −0.461922 0.800072i 0.537135 0.843496i \(-0.319507\pi\)
−0.999057 + 0.0434246i \(0.986173\pi\)
\(360\) −0.293529 + 1.26218i −0.0154703 + 0.0665226i
\(361\) 5.14148 8.90531i 0.270604 0.468701i
\(362\) −5.96740 21.9671i −0.313639 1.15456i
\(363\) −8.27137 8.27137i −0.434134 0.434134i
\(364\) 0 0
\(365\) −9.81001 + 2.87141i −0.513479 + 0.150296i
\(366\) 2.12316 3.70692i 0.110980 0.193764i
\(367\) 4.02948 + 15.0382i 0.210337 + 0.784988i 0.987756 + 0.156006i \(0.0498618\pi\)
−0.777419 + 0.628983i \(0.783472\pi\)
\(368\) −15.9887 15.5532i −0.833470 0.810767i
\(369\) −1.41774 + 0.818532i −0.0738046 + 0.0426111i
\(370\) −0.462104 17.4998i −0.0240237 0.909771i
\(371\) 0 0
\(372\) −20.7589 + 5.71620i −1.07630 + 0.296371i
\(373\) −0.759994 0.203640i −0.0393510 0.0105441i 0.239090 0.970997i \(-0.423151\pi\)
−0.278441 + 0.960453i \(0.589818\pi\)
\(374\) 0.0652160 + 18.8940i 0.00337224 + 0.976984i
\(375\) 6.49802 + 18.9311i 0.335556 + 0.977599i
\(376\) −8.76067 14.8174i −0.451797 0.764151i
\(377\) 8.21663 + 8.21663i 0.423178 + 0.423178i
\(378\) 0 0
\(379\) 9.14995 0.470001 0.235001 0.971995i \(-0.424491\pi\)
0.235001 + 0.971995i \(0.424491\pi\)
\(380\) 6.25766 11.6268i 0.321011 0.596442i
\(381\) −4.86342 + 8.42369i −0.249161 + 0.431559i
\(382\) −5.32138 5.28477i −0.272265 0.270392i
\(383\) −2.18517 + 8.15515i −0.111657 + 0.416709i −0.999015 0.0443718i \(-0.985871\pi\)
0.887358 + 0.461080i \(0.152538\pi\)
\(384\) −17.2907 + 10.5478i −0.882364 + 0.538267i
\(385\) 0 0
\(386\) −27.3533 + 15.9185i −1.39224 + 0.810233i
\(387\) 1.58128 + 0.423703i 0.0803811 + 0.0215381i
\(388\) 5.35206 + 1.39455i 0.271709 + 0.0707976i
\(389\) 24.8832 + 14.3663i 1.26163 + 0.728400i 0.973389 0.229159i \(-0.0735976\pi\)
0.288237 + 0.957559i \(0.406931\pi\)
\(390\) 5.34930 22.3031i 0.270872 1.12936i
\(391\) 35.2542i 1.78288i
\(392\) 0 0
\(393\) 14.7170 14.7170i 0.742373 0.742373i
\(394\) −5.30363 + 9.25983i −0.267193 + 0.466503i
\(395\) 27.2296 16.5655i 1.37007 0.833501i
\(396\) −0.746961 + 0.438161i −0.0375362 + 0.0220184i
\(397\) −6.60652 + 24.6559i −0.331572 + 1.23744i 0.575967 + 0.817473i \(0.304626\pi\)
−0.907538 + 0.419969i \(0.862041\pi\)
\(398\) −16.2512 4.29443i −0.814599 0.215260i
\(399\) 0 0
\(400\) −8.94870 + 17.8863i −0.447435 + 0.894316i
\(401\) −13.0839 22.6620i −0.653380 1.13169i −0.982297 0.187329i \(-0.940017\pi\)
0.328917 0.944359i \(-0.393316\pi\)
\(402\) 20.3391 20.4800i 1.01442 1.02145i
\(403\) 23.5334 6.30575i 1.17228 0.314112i
\(404\) −0.0174396 2.52621i −0.000867652 0.125684i
\(405\) 18.7782 + 10.2744i 0.933094 + 0.510540i
\(406\) 0 0
\(407\) 8.27226 8.27226i 0.410041 0.410041i
\(408\) −31.0050 7.96460i −1.53498 0.394306i
\(409\) −0.853122 0.492550i −0.0421842 0.0243550i 0.478760 0.877946i \(-0.341087\pi\)
−0.520944 + 0.853591i \(0.674420\pi\)
\(410\) −24.2240 + 7.18129i −1.19634 + 0.354659i
\(411\) −33.0837 + 19.1009i −1.63190 + 0.942178i
\(412\) −6.90002 25.0580i −0.339940 1.23452i
\(413\) 0 0
\(414\) 1.39656 0.812743i 0.0686371 0.0399442i
\(415\) 12.0484 12.6145i 0.591433 0.619220i
\(416\) 19.6469 11.7999i 0.963270 0.578535i
\(417\) 8.74617 2.34353i 0.428302 0.114763i
\(418\) 8.51517 2.31316i 0.416491 0.113141i
\(419\) −16.7317 −0.817399 −0.408699 0.912669i \(-0.634018\pi\)
−0.408699 + 0.912669i \(0.634018\pi\)
\(420\) 0 0
\(421\) 35.5024 1.73028 0.865140 0.501530i \(-0.167229\pi\)
0.865140 + 0.501530i \(0.167229\pi\)
\(422\) 2.78996 0.757900i 0.135813 0.0368940i
\(423\) 1.20447 0.322737i 0.0585634 0.0156920i
\(424\) −1.10217 + 1.95551i −0.0535262 + 0.0949677i
\(425\) −30.1255 + 9.57356i −1.46130 + 0.464386i
\(426\) −1.33682 + 0.777976i −0.0647689 + 0.0376930i
\(427\) 0 0
\(428\) 37.2514 10.2576i 1.80061 0.495820i
\(429\) 13.2738 7.66363i 0.640865 0.370004i
\(430\) 22.2069 + 12.0510i 1.07091 + 0.581153i
\(431\) 0.906153 + 0.523167i 0.0436478 + 0.0252001i 0.521665 0.853150i \(-0.325311\pi\)
−0.478017 + 0.878350i \(0.658644\pi\)
\(432\) 5.44681 + 19.2601i 0.262060 + 0.926650i
\(433\) 9.24591 9.24591i 0.444330 0.444330i −0.449134 0.893464i \(-0.648267\pi\)
0.893464 + 0.449134i \(0.148267\pi\)
\(434\) 0 0
\(435\) 11.0191 3.22532i 0.528327 0.154642i
\(436\) 27.2110 0.187850i 1.30317 0.00899637i
\(437\) −15.9031 + 4.26123i −0.760750 + 0.203842i
\(438\) 8.15524 8.21173i 0.389672 0.392372i
\(439\) 11.3657 + 19.6860i 0.542455 + 0.939559i 0.998762 + 0.0497373i \(0.0158384\pi\)
−0.456307 + 0.889822i \(0.650828\pi\)
\(440\) −12.7877 + 3.88719i −0.609631 + 0.185315i
\(441\) 0 0
\(442\) 35.0201 + 9.25416i 1.66573 + 0.440176i
\(443\) −6.04148 + 22.5471i −0.287040 + 1.07125i 0.660296 + 0.751005i \(0.270431\pi\)
−0.947336 + 0.320241i \(0.896236\pi\)
\(444\) 10.0287 + 17.0965i 0.475939 + 0.811364i
\(445\) −2.41594 3.97120i −0.114526 0.188253i
\(446\) −13.0813 + 22.8391i −0.619416 + 1.08146i
\(447\) −9.54787 + 9.54787i −0.451599 + 0.451599i
\(448\) 0 0
\(449\) 18.0937i 0.853895i 0.904276 + 0.426947i \(0.140411\pi\)
−0.904276 + 0.426947i \(0.859589\pi\)
\(450\) −1.07375 0.972684i −0.0506173 0.0458527i
\(451\) −14.6226 8.44234i −0.688549 0.397534i
\(452\) 5.51003 21.1466i 0.259170 0.994650i
\(453\) 24.0954 + 6.45633i 1.13210 + 0.303345i
\(454\) 6.80284 3.95899i 0.319273 0.185805i
\(455\) 0 0
\(456\) 0.154803 + 14.9490i 0.00724931 + 0.700052i
\(457\) −4.70586 + 17.5625i −0.220131 + 0.821540i 0.764166 + 0.645020i \(0.223151\pi\)
−0.984297 + 0.176520i \(0.943516\pi\)
\(458\) 8.23900 + 8.18232i 0.384983 + 0.382334i
\(459\) −15.8173 + 27.3963i −0.738286 + 1.27875i
\(460\) 23.8853 7.17066i 1.11366 0.334334i
\(461\) 30.3805 1.41496 0.707481 0.706733i \(-0.249832\pi\)
0.707481 + 0.706733i \(0.249832\pi\)
\(462\) 0 0
\(463\) 20.1652 + 20.1652i 0.937156 + 0.937156i 0.998139 0.0609833i \(-0.0194236\pi\)
−0.0609833 + 0.998139i \(0.519424\pi\)
\(464\) 10.0139 + 5.59863i 0.464884 + 0.259910i
\(465\) 5.69533 23.3895i 0.264115 1.08466i
\(466\) 0.0585283 + 16.9564i 0.00271127 + 0.785492i
\(467\) −20.2575 5.42798i −0.937405 0.251177i −0.242396 0.970177i \(-0.577933\pi\)
−0.695009 + 0.719001i \(0.744600\pi\)
\(468\) 0.440752 + 1.60063i 0.0203738 + 0.0739890i
\(469\) 0 0
\(470\) 19.2386 0.508020i 0.887411 0.0234332i
\(471\) 12.3717 7.14281i 0.570058 0.329123i
\(472\) 13.5622 3.78493i 0.624251 0.174215i
\(473\) 4.37008 + 16.3093i 0.200936 + 0.749904i
\(474\) −17.9357 + 31.3147i −0.823814 + 1.43833i
\(475\) 7.95995 + 12.4324i 0.365227 + 0.570439i
\(476\) 0 0
\(477\) −0.114982 0.114982i −0.00526467 0.00526467i
\(478\) −6.86007 25.2532i −0.313773 1.15505i
\(479\) 13.9452 24.1538i 0.637172 1.10361i −0.348879 0.937168i \(-0.613438\pi\)
0.986051 0.166446i \(-0.0532292\pi\)
\(480\) −0.910226 22.6264i −0.0415460 1.03275i
\(481\) −11.2139 19.4231i −0.511311 0.885617i
\(482\) −0.112621 0.0297603i −0.00512972 0.00135555i
\(483\) 0 0
\(484\) 11.3622 + 6.45581i 0.516465 + 0.293446i
\(485\) −4.27096 + 4.47163i −0.193934 + 0.203046i
\(486\) −3.00613 + 0.0103762i −0.136361 + 0.000470675i
\(487\) 1.00721 + 3.75898i 0.0456412 + 0.170335i 0.984984 0.172643i \(-0.0552308\pi\)
−0.939343 + 0.342979i \(0.888564\pi\)
\(488\) −1.18741 + 4.62240i −0.0537514 + 0.209246i
\(489\) 24.9385i 1.12776i
\(490\) 0 0
\(491\) 14.4151i 0.650544i 0.945620 + 0.325272i \(0.105456\pi\)
−0.945620 + 0.325272i \(0.894544\pi\)
\(492\) 20.0882 20.3675i 0.905646 0.918237i
\(493\) 4.69308 + 17.5148i 0.211366 + 0.788827i
\(494\) −0.0583890 16.9161i −0.00262705 0.761091i
\(495\) −0.0222169 0.967950i −0.000998573 0.0435061i
\(496\) 20.6638 12.3137i 0.927833 0.552903i
\(497\) 0 0
\(498\) −5.04595 + 19.0951i −0.226114 + 0.855673i
\(499\) 1.47517 + 2.55507i 0.0660377 + 0.114381i 0.897154 0.441718i \(-0.145631\pi\)
−0.831116 + 0.556099i \(0.812298\pi\)
\(500\) −12.6137 18.4633i −0.564104 0.825704i
\(501\) 17.7588 30.7591i 0.793403 1.37422i
\(502\) −12.3885 + 3.36535i −0.552924 + 0.150203i
\(503\) 17.2036 + 17.2036i 0.767071 + 0.767071i 0.977590 0.210518i \(-0.0675152\pi\)
−0.210518 + 0.977590i \(0.567515\pi\)
\(504\) 0 0
\(505\) 2.47781 + 1.35573i 0.110261 + 0.0603291i
\(506\) 14.4616 + 8.28300i 0.642898 + 0.368224i
\(507\) −1.58172 5.90305i −0.0702465 0.262163i
\(508\) 2.73996 10.5155i 0.121566 0.466551i
\(509\) 2.32094 1.34000i 0.102874 0.0593944i −0.447680 0.894194i \(-0.647750\pi\)
0.550554 + 0.834799i \(0.314416\pi\)
\(510\) 24.6306 25.9666i 1.09066 1.14982i
\(511\) 0 0
\(512\) 15.4953 16.4892i 0.684803 0.728728i
\(513\) 14.2703 + 3.82372i 0.630049 + 0.168821i
\(514\) −10.3061 + 0.0355735i −0.454584 + 0.00156908i
\(515\) 28.2335 + 6.87483i 1.24412 + 0.302941i
\(516\) −28.6065 + 0.197484i −1.25933 + 0.00869373i
\(517\) 9.09421 + 9.09421i 0.399963 + 0.399963i
\(518\) 0 0
\(519\) −22.4755 −0.986563
\(520\) 0.853183 + 25.6090i 0.0374146 + 1.12303i
\(521\) 22.5104 38.9891i 0.986196 1.70814i 0.349702 0.936861i \(-0.386283\pi\)
0.636495 0.771281i \(-0.280384\pi\)
\(522\) −0.585638 + 0.589695i −0.0256327 + 0.0258102i
\(523\) 1.63883 6.11620i 0.0716610 0.267443i −0.920794 0.390048i \(-0.872458\pi\)
0.992455 + 0.122606i \(0.0391250\pi\)
\(524\) −11.4866 + 20.2164i −0.501795 + 0.883159i
\(525\) 0 0
\(526\) −3.81724 6.55927i −0.166440 0.285998i
\(527\) 36.7229 + 9.83987i 1.59968 + 0.428632i
\(528\) 10.5518 10.8473i 0.459208 0.472067i
\(529\) −7.01165 4.04818i −0.304854 0.176008i
\(530\) −1.31177 2.13956i −0.0569798 0.0929367i
\(531\) 1.02000i 0.0442641i
\(532\) 0 0
\(533\) −22.8890 + 22.8890i −0.991432 + 0.991432i
\(534\) 4.56697 + 2.61577i 0.197632 + 0.113195i
\(535\) −10.2202 + 41.9720i −0.441856 + 1.81461i
\(536\) −15.8329 + 28.0912i −0.683878 + 1.21336i
\(537\) 1.60193 5.97849i 0.0691285 0.257991i
\(538\) 1.95746 7.40751i 0.0843919 0.319360i
\(539\) 0 0
\(540\) −21.7787 5.14409i −0.937205 0.221367i
\(541\) −8.37685 14.5091i −0.360149 0.623796i 0.627836 0.778345i \(-0.283941\pi\)
−0.987985 + 0.154549i \(0.950607\pi\)
\(542\) 8.23085 + 8.17422i 0.353545 + 0.351113i
\(543\) −27.8335 + 7.45797i −1.19445 + 0.320052i
\(544\) 35.7574 0.617176i 1.53309 0.0264612i
\(545\) −14.6032 + 26.6897i −0.625531 + 1.14326i
\(546\) 0 0
\(547\) −12.5910 + 12.5910i −0.538352 + 0.538352i −0.923045 0.384693i \(-0.874307\pi\)
0.384693 + 0.923045i \(0.374307\pi\)
\(548\) 29.9691 30.3857i 1.28022 1.29801i
\(549\) −0.299404 0.172861i −0.0127782 0.00737752i
\(550\) 3.15084 14.6071i 0.134352 0.622849i
\(551\) 7.33366 4.23409i 0.312424 0.180378i
\(552\) −19.7582 + 20.1717i −0.840965 + 0.858564i
\(553\) 0 0
\(554\) 10.7855 + 18.5330i 0.458231 + 0.787391i
\(555\) −22.1545 + 0.508501i −0.940406 + 0.0215847i
\(556\) −8.72536 + 5.11822i −0.370038 + 0.217061i
\(557\) 31.9653 8.56509i 1.35441 0.362914i 0.492652 0.870226i \(-0.336027\pi\)
0.861763 + 0.507312i \(0.169361\pi\)
\(558\) 0.456807 + 1.68159i 0.0193382 + 0.0711872i
\(559\) 32.3699 1.36910
\(560\) 0 0
\(561\) 23.9176 1.00980
\(562\) −8.80822 32.4246i −0.371552 1.36775i
\(563\) −18.8737 + 5.05720i −0.795433 + 0.213136i −0.633578 0.773679i \(-0.718414\pi\)
−0.161855 + 0.986815i \(0.551748\pi\)
\(564\) −18.7952 + 11.0251i −0.791422 + 0.464242i
\(565\) 17.6679 + 16.8750i 0.743294 + 0.709938i
\(566\) 16.8507 + 28.9550i 0.708288 + 1.21707i
\(567\) 0 0
\(568\) 1.20913 1.23444i 0.0507341 0.0517958i
\(569\) −33.7127 + 19.4640i −1.41331 + 0.815974i −0.995699 0.0926518i \(-0.970466\pi\)
−0.417610 + 0.908626i \(0.637132\pi\)
\(570\) −14.6907 7.97219i −0.615324 0.333918i
\(571\) 17.7481 + 10.2468i 0.742733 + 0.428817i 0.823062 0.567951i \(-0.192264\pi\)
−0.0803293 + 0.996768i \(0.525597\pi\)
\(572\) −12.0241 + 12.1913i −0.502755 + 0.509744i
\(573\) −6.71308 + 6.71308i −0.280443 + 0.280443i
\(574\) 0 0
\(575\) −5.97315 + 27.2347i −0.249097 + 1.13577i
\(576\) 0.848794 + 1.40227i 0.0353664 + 0.0584277i
\(577\) 6.79196 1.81990i 0.282753 0.0757634i −0.114655 0.993405i \(-0.536576\pi\)
0.397408 + 0.917642i \(0.369910\pi\)
\(578\) 23.0471 + 22.8886i 0.958633 + 0.952038i
\(579\) 20.0313 + 34.6952i 0.832472 + 1.44188i
\(580\) −10.9120 + 6.74213i −0.453097 + 0.279952i
\(581\) 0 0
\(582\) 1.78871 6.76892i 0.0741443 0.280581i
\(583\) 0.434079 1.62000i 0.0179777 0.0670937i
\(584\) −6.34842 + 11.2636i −0.262699 + 0.466089i
\(585\) −1.80347 0.439143i −0.0745642 0.0181563i
\(586\) 32.2937 + 18.4965i 1.33404 + 0.764082i
\(587\) −4.00401 + 4.00401i −0.165263 + 0.165263i −0.784894 0.619631i \(-0.787282\pi\)
0.619631 + 0.784894i \(0.287282\pi\)
\(588\) 0 0
\(589\) 17.7550i 0.731584i
\(590\) −3.67162 + 15.3083i −0.151158 + 0.630231i
\(591\) 11.6986 + 6.75417i 0.481215 + 0.277829i
\(592\) −15.8724 15.4401i −0.652353 0.634584i
\(593\) −33.9171 9.08806i −1.39281 0.373202i −0.517051 0.855954i \(-0.672970\pi\)
−0.875757 + 0.482753i \(0.839637\pi\)
\(594\) −7.52196 12.9252i −0.308630 0.530326i
\(595\) 0 0
\(596\) 7.45212 13.1157i 0.305251 0.537241i
\(597\) −5.50720 + 20.5531i −0.225395 + 0.841184i
\(598\) 22.5141 22.6700i 0.920668 0.927046i
\(599\) −0.687491 + 1.19077i −0.0280901 + 0.0486535i −0.879729 0.475476i \(-0.842276\pi\)
0.851639 + 0.524129i \(0.175609\pi\)
\(600\) 22.6027 + 11.4060i 0.922750 + 0.465650i
\(601\) −8.86739 −0.361708 −0.180854 0.983510i \(-0.557886\pi\)
−0.180854 + 0.983510i \(0.557886\pi\)
\(602\) 0 0
\(603\) −1.65174 1.65174i −0.0672642 0.0672642i
\(604\) −27.8678 + 0.192384i −1.13392 + 0.00782799i
\(605\) −12.4823 + 7.59377i −0.507476 + 0.308730i
\(606\) −3.19793 + 0.0110383i −0.129907 + 0.000448398i
\(607\) −16.4539 4.40882i −0.667845 0.178948i −0.0910609 0.995845i \(-0.529026\pi\)
−0.576784 + 0.816897i \(0.695692\pi\)
\(608\) −4.60047 16.0556i −0.186574 0.651139i
\(609\) 0 0
\(610\) −3.87125 3.67206i −0.156742 0.148677i
\(611\) 21.3530 12.3282i 0.863851 0.498744i
\(612\) −0.653226 + 2.50697i −0.0264051 + 0.101338i
\(613\) −7.36973 27.5042i −0.297661 1.11088i −0.939081 0.343695i \(-0.888321\pi\)
0.641421 0.767189i \(-0.278345\pi\)
\(614\) −33.3092 19.0781i −1.34425 0.769930i
\(615\) 8.98474 + 30.6959i 0.362300 + 1.23778i
\(616\) 0 0
\(617\) 0.247352 + 0.247352i 0.00995801 + 0.00995801i 0.712068 0.702110i \(-0.247759\pi\)
−0.702110 + 0.712068i \(0.747759\pi\)
\(618\) −31.7503 + 8.62504i −1.27719 + 0.346950i
\(619\) −4.44950 + 7.70677i −0.178841 + 0.309761i −0.941484 0.337059i \(-0.890568\pi\)
0.762643 + 0.646820i \(0.223901\pi\)
\(620\) 0.802709 + 26.8818i 0.0322376 + 1.07960i
\(621\) 13.9518 + 24.1652i 0.559866 + 0.969716i
\(622\) 5.00320 18.9334i 0.200610 0.759159i
\(623\) 0 0
\(624\) −14.8512 24.9220i −0.594525 0.997679i
\(625\) 24.8947 2.29162i 0.995790 0.0916650i
\(626\) 0.114813 + 33.2630i 0.00458887 + 1.32946i
\(627\) −2.89096 10.7892i −0.115454 0.430879i
\(628\) −11.2070 + 11.3628i −0.447207 + 0.453424i
\(629\) 34.9978i 1.39545i
\(630\) 0 0
\(631\) 30.9594i 1.23248i −0.787560 0.616238i \(-0.788656\pi\)
0.787560 0.616238i \(-0.211344\pi\)
\(632\) 10.0308 39.0483i 0.399002 1.55326i
\(633\) −0.947212 3.53505i −0.0376483 0.140505i
\(634\) −1.16628 + 0.00402561i −0.0463187 + 0.000159878i
\(635\) 8.78569 + 8.39143i 0.348650 + 0.333004i
\(636\) 2.47060 + 1.40375i 0.0979657 + 0.0556624i
\(637\) 0 0
\(638\) −8.28739 2.18997i −0.328101 0.0867017i
\(639\) 0.0625872 + 0.108404i 0.00247591 + 0.00428841i
\(640\) 7.69116 + 24.1007i 0.304020 + 0.952666i
\(641\) −6.18079 + 10.7055i −0.244127 + 0.422840i −0.961886 0.273452i \(-0.911835\pi\)
0.717759 + 0.696292i \(0.245168\pi\)
\(642\) −12.8220 47.2002i −0.506045 1.86284i
\(643\) 2.95024 + 2.95024i 0.116346 + 0.116346i 0.762883 0.646537i \(-0.223783\pi\)
−0.646537 + 0.762883i \(0.723783\pi\)
\(644\) 0 0
\(645\) 15.3521 28.0584i 0.604488 1.10480i
\(646\) 13.1195 22.9059i 0.516181 0.901222i
\(647\) −1.23483 4.60847i −0.0485464 0.181178i 0.937395 0.348267i \(-0.113230\pi\)
−0.985942 + 0.167090i \(0.946563\pi\)
\(648\) 26.0791 7.27814i 1.02449 0.285912i
\(649\) −9.11081 + 5.26013i −0.357630 + 0.206478i
\(650\) −25.4859 13.0825i −0.999640 0.513140i
\(651\) 0 0
\(652\) −7.39650 26.8610i −0.289669 1.05196i
\(653\) −8.09326 2.16858i −0.316714 0.0848632i 0.0969603 0.995288i \(-0.469088\pi\)
−0.413674 + 0.910425i \(0.635755\pi\)
\(654\) −0.118898 34.4464i −0.00464928 1.34696i
\(655\) −13.5113 22.2093i −0.527932 0.867788i
\(656\) −15.5960 + 27.8956i −0.608923 + 1.08914i
\(657\) −0.662288 0.662288i −0.0258383 0.0258383i
\(658\) 0 0
\(659\) −35.0426 −1.36507 −0.682534 0.730854i \(-0.739122\pi\)
−0.682534 + 0.730854i \(0.739122\pi\)
\(660\) 4.86481 + 16.2046i 0.189362 + 0.630762i
\(661\) −9.52109 + 16.4910i −0.370328 + 0.641426i −0.989616 0.143737i \(-0.954088\pi\)
0.619288 + 0.785164i \(0.287421\pi\)
\(662\) 14.3990 + 14.3000i 0.559635 + 0.555785i
\(663\) 11.8676 44.2904i 0.460899 1.72010i
\(664\) −0.228479 22.0638i −0.00886670 0.856241i
\(665\) 0 0
\(666\) 1.38640 0.806832i 0.0537219 0.0312641i
\(667\) 15.4491 + 4.13958i 0.598193 + 0.160285i
\(668\) −10.0050 + 38.3974i −0.387104 + 1.48564i
\(669\) 28.8542 + 16.6590i 1.11557 + 0.644074i
\(670\) −18.8439 30.7353i −0.728004 1.18741i
\(671\) 3.56577i 0.137655i
\(672\) 0 0
\(673\) −25.9196 + 25.9196i −0.999127 + 0.999127i −1.00000 0.000872915i \(-0.999722\pi\)
0.000872915 1.00000i \(0.499722\pi\)
\(674\) −0.0621032 + 0.108429i −0.00239213 + 0.00417651i
\(675\) 16.8610 18.4844i 0.648980 0.711464i
\(676\) 3.45444 + 5.88900i 0.132863 + 0.226500i
\(677\) 3.56148 13.2916i 0.136879 0.510838i −0.863104 0.505026i \(-0.831483\pi\)
0.999983 0.00581271i \(-0.00185025\pi\)
\(678\) −26.7447 7.06737i −1.02712 0.271421i
\(679\) 0 0
\(680\) −18.8279 + 35.2736i −0.722018 + 1.35268i
\(681\) −4.98184 8.62881i −0.190905 0.330657i
\(682\) −12.6645 + 12.7522i −0.484948 + 0.488308i
\(683\) −8.02293 + 2.14974i −0.306989 + 0.0822574i −0.409025 0.912523i \(-0.634131\pi\)
0.102036 + 0.994781i \(0.467464\pi\)
\(684\) 1.20985 0.00835214i 0.0462598 0.000319352i
\(685\) 13.4041 + 45.7944i 0.512145 + 1.74971i
\(686\) 0 0
\(687\) 10.3937 10.3937i 0.396546 0.396546i
\(688\) 30.7532 8.69711i 1.17246 0.331574i
\(689\) −2.78453 1.60765i −0.106082 0.0612465i
\(690\) −8.97276 30.2671i −0.341587 1.15225i
\(691\) 7.15943 4.13350i 0.272357 0.157246i −0.357601 0.933874i \(-0.616405\pi\)
0.629958 + 0.776629i \(0.283072\pi\)
\(692\) 24.2081 6.66600i 0.920255 0.253403i
\(693\) 0 0
\(694\) −10.7834 + 6.27551i −0.409331 + 0.238215i
\(695\) −0.259518 11.3068i −0.00984409 0.428890i
\(696\) 7.13089 12.6518i 0.270296 0.479567i
\(697\) −48.7908 + 13.0735i −1.84808 + 0.495192i
\(698\) 5.15603 1.40065i 0.195159 0.0530153i
\(699\) 21.4649 0.811878
\(700\) 0 0
\(701\) −14.1462 −0.534296 −0.267148 0.963656i \(-0.586081\pi\)
−0.267148 + 0.963656i \(0.586081\pi\)
\(702\) −27.6670 + 7.51581i −1.04423 + 0.283666i
\(703\) −15.7875 + 4.23024i −0.595436 + 0.159547i
\(704\) −8.14806 + 14.8131i −0.307092 + 0.558288i
\(705\) −0.559026 24.3558i −0.0210542 0.917293i
\(706\) 1.51919 0.884111i 0.0571755 0.0332740i
\(707\) 0 0
\(708\) −4.73197 17.1845i −0.177838 0.645834i
\(709\) 10.2057 5.89228i 0.383284 0.221289i −0.295962 0.955200i \(-0.595640\pi\)
0.679246 + 0.733910i \(0.262307\pi\)
\(710\) 0.549102 + 1.85224i 0.0206074 + 0.0695133i
\(711\) 2.52925 + 1.46026i 0.0948542 + 0.0547641i
\(712\) −5.69486 1.46290i −0.213424 0.0548245i
\(713\) 23.7125 23.7125i 0.888039 0.888039i
\(714\) 0 0
\(715\) −5.37797 18.3736i −0.201125 0.687132i
\(716\) 0.0477339 + 6.91450i 0.00178390 + 0.258407i
\(717\) −31.9972 + 8.57362i −1.19496 + 0.320188i
\(718\) 17.4438 17.5646i 0.650997 0.655507i
\(719\) 9.74435 + 16.8777i 0.363403 + 0.629433i 0.988519 0.151100i \(-0.0482815\pi\)
−0.625115 + 0.780532i \(0.714948\pi\)
\(720\) −1.83138 + 0.0673431i −0.0682516 + 0.00250973i
\(721\) 0 0
\(722\) 14.0597 + 3.71532i 0.523248 + 0.138270i
\(723\) −0.0381648 + 0.142433i −0.00141936 + 0.00529714i
\(724\) 27.7673 16.2881i 1.03196 0.605341i
\(725\) −0.657971 14.3258i −0.0244364 0.532046i
\(726\) 8.22187 14.3549i 0.305142 0.532760i
\(727\) −21.7062 + 21.7062i −0.805039 + 0.805039i −0.983878 0.178839i \(-0.942766\pi\)
0.178839 + 0.983878i \(0.442766\pi\)
\(728\) 0 0
\(729\) 24.9127i 0.922692i
\(730\) −7.55571 12.3237i −0.279649 0.456121i
\(731\) 43.7446 + 25.2560i 1.61795 + 0.934126i
\(732\) 5.84617 + 1.52330i 0.216081 + 0.0563028i
\(733\) 22.5783 + 6.04984i 0.833949 + 0.223456i 0.650436 0.759561i \(-0.274586\pi\)
0.183513 + 0.983017i \(0.441253\pi\)
\(734\) −19.0296 + 11.0745i −0.702395 + 0.408767i
\(735\) 0 0
\(736\) 15.2987 27.5868i 0.563916 1.01686i
\(737\) 6.23563 23.2717i 0.229693 0.857224i
\(738\) −1.64271 1.63140i −0.0604688 0.0600528i
\(739\) −4.82260 + 8.35299i −0.177402 + 0.307270i −0.940990 0.338434i \(-0.890103\pi\)
0.763588 + 0.645704i \(0.223436\pi\)
\(740\) 23.7116 7.11850i 0.871656 0.261681i
\(741\) −21.4138 −0.786657
\(742\) 0 0
\(743\) −24.5711 24.5711i −0.901426 0.901426i 0.0941337 0.995560i \(-0.469992\pi\)
−0.995560 + 0.0941337i \(0.969992\pi\)
\(744\) −15.4973 26.2115i −0.568159 0.960961i
\(745\) 8.76569 + 14.4086i 0.321150 + 0.527891i
\(746\) −0.00384070 1.11270i −0.000140618 0.0407389i
\(747\) 1.54394 + 0.413697i 0.0564897 + 0.0151364i
\(748\) −25.7614 + 7.09372i −0.941931 + 0.259372i
\(749\) 0 0
\(750\) −23.4273 + 15.8867i −0.855442 + 0.580100i
\(751\) −45.6939 + 26.3814i −1.66739 + 0.962671i −0.698359 + 0.715747i \(0.746086\pi\)
−0.969035 + 0.246923i \(0.920581\pi\)
\(752\) 16.9742 17.4496i 0.618987 0.636320i
\(753\) 4.20597 + 15.6969i 0.153274 + 0.572027i
\(754\) −8.16746 + 14.2599i −0.297441 + 0.519315i
\(755\) 14.9557 27.3339i 0.544292 0.994782i
\(756\) 0 0
\(757\) −4.54052 4.54052i −0.165028 0.165028i 0.619762 0.784790i \(-0.287229\pi\)
−0.784790 + 0.619762i \(0.787229\pi\)
\(758\) 3.39224 + 12.4874i 0.123212 + 0.453564i
\(759\) 10.5484 18.2703i 0.382882 0.663172i
\(760\) 18.1877 + 4.22968i 0.659736 + 0.153426i
\(761\) −5.96614 10.3337i −0.216272 0.374595i 0.737393 0.675464i \(-0.236057\pi\)
−0.953665 + 0.300869i \(0.902723\pi\)
\(762\) −13.2993 3.51439i −0.481783 0.127313i
\(763\) 0 0
\(764\) 5.23957 9.22163i 0.189561 0.333627i
\(765\) −2.09457 2.00058i −0.0757293 0.0723310i
\(766\) −11.9399 + 0.0412128i −0.431406 + 0.00148908i
\(767\) 5.22001 + 19.4813i 0.188484 + 0.703430i
\(768\) −20.8055 19.6871i −0.750755 0.710397i
\(769\) 29.2063i 1.05321i −0.850111 0.526603i \(-0.823465\pi\)
0.850111 0.526603i \(-0.176535\pi\)
\(770\) 0 0
\(771\) 13.0464i 0.469854i
\(772\) −31.8658 31.4288i −1.14688 1.13115i
\(773\) −9.31348 34.7584i −0.334982 1.25017i −0.903888 0.427769i \(-0.859300\pi\)
0.568906 0.822403i \(-0.307367\pi\)
\(774\) 0.00799115 + 2.31514i 0.000287236 + 0.0832162i
\(775\) −26.7022 13.8235i −0.959170 0.496556i
\(776\) 0.0809921 + 7.82125i 0.00290745 + 0.280767i
\(777\) 0 0
\(778\) −10.3813 + 39.2855i −0.372188 + 1.40845i
\(779\) 11.7948 + 20.4293i 0.422594 + 0.731955i
\(780\) 32.4214 0.968124i 1.16087 0.0346644i
\(781\) −0.645525 + 1.11808i −0.0230987 + 0.0400081i
\(782\) 48.1133 13.0701i 1.72053 0.467385i
\(783\) −10.1484 10.1484i −0.362673 0.362673i
\(784\) 0 0
\(785\) −5.01248 17.1249i −0.178903 0.611213i
\(786\) 25.5412 + 14.6289i 0.911024 + 0.521796i
\(787\) −4.65805 17.3841i −0.166042 0.619675i −0.997905 0.0646952i \(-0.979392\pi\)
0.831864 0.554980i \(-0.187274\pi\)
\(788\) −14.6036 3.80518i −0.520233 0.135554i
\(789\) −8.31986 + 4.80348i −0.296195 + 0.171008i
\(790\) 32.7029 + 31.0202i 1.16352 + 1.10365i
\(791\) 0 0
\(792\) −0.874910 0.856975i −0.0310886 0.0304513i
\(793\) −6.60307 1.76929i −0.234482 0.0628292i
\(794\) −36.0985 + 0.124601i −1.28109 + 0.00442191i
\(795\) −2.71414 + 1.65119i −0.0962607 + 0.0585616i
\(796\) −0.164102 23.7710i −0.00581644 0.842541i
\(797\) −26.2293 26.2293i −0.929091 0.929091i 0.0685567 0.997647i \(-0.478161\pi\)
−0.997647 + 0.0685567i \(0.978161\pi\)
\(798\) 0 0
\(799\) 38.4752 1.36116
\(800\) −27.7281 5.58163i −0.980335 0.197340i
\(801\) 0.212967 0.368869i 0.00752481 0.0130333i
\(802\) 26.0774 26.2580i 0.920824 0.927203i
\(803\) 2.50026 9.33109i 0.0882322 0.329287i
\(804\) 35.4907 + 20.1652i 1.25166 + 0.711171i
\(805\) 0 0
\(806\) 17.3305 + 29.7795i 0.610442 + 1.04894i
\(807\) −9.36839 2.51025i −0.329783 0.0883651i
\(808\) 3.44119 0.960364i 0.121061 0.0337855i
\(809\) −28.7418 16.5941i −1.01051 0.583418i −0.0991688 0.995071i \(-0.531618\pi\)
−0.911341 + 0.411653i \(0.864952\pi\)
\(810\) −7.06027 + 29.4367i −0.248073 + 1.03430i
\(811\) 44.6901i 1.56928i −0.619950 0.784641i \(-0.712847\pi\)
0.619950 0.784641i \(-0.287153\pi\)
\(812\) 0 0
\(813\) 10.3835 10.3835i 0.364164 0.364164i
\(814\) 14.3564 + 8.22275i 0.503193 + 0.288207i
\(815\) 30.2650 + 7.36949i 1.06014 + 0.258142i
\(816\) −0.625027 45.2670i −0.0218803 1.58466i
\(817\) 6.10546 22.7859i 0.213603 0.797178i
\(818\) 0.355925 1.34691i 0.0124446 0.0470936i
\(819\) 0 0
\(820\) −18.7815 30.3975i −0.655878 1.06153i
\(821\) 3.13055 + 5.42227i 0.109257 + 0.189238i 0.915469 0.402388i \(-0.131820\pi\)
−0.806213 + 0.591626i \(0.798486\pi\)
\(822\) −38.3334 38.0697i −1.33703 1.32783i
\(823\) 20.8940 5.59854i 0.728320 0.195153i 0.124439 0.992227i \(-0.460287\pi\)
0.603881 + 0.797074i \(0.293620\pi\)
\(824\) 31.6399 18.7068i 1.10223 0.651682i
\(825\) −18.4769 4.05238i −0.643284 0.141086i
\(826\) 0 0
\(827\) −2.73070 + 2.73070i −0.0949558 + 0.0949558i −0.752989 0.658033i \(-0.771389\pi\)
0.658033 + 0.752989i \(0.271389\pi\)
\(828\) 1.62695 + 1.60464i 0.0565405 + 0.0557652i
\(829\) 36.5986 + 21.1302i 1.27112 + 0.733883i 0.975199 0.221328i \(-0.0710392\pi\)
0.295924 + 0.955212i \(0.404373\pi\)
\(830\) 21.6825 + 11.7664i 0.752609 + 0.408419i
\(831\) 23.5075 13.5720i 0.815465 0.470809i
\(832\) 23.3878 + 22.4386i 0.810825 + 0.777917i
\(833\) 0 0
\(834\) 6.44088 + 11.0675i 0.223030 + 0.383238i
\(835\) −32.0810 30.6413i −1.11021 1.06039i
\(836\) 6.31380 + 10.7635i 0.218367 + 0.372265i
\(837\) −29.0661 + 7.78823i −1.00467 + 0.269201i
\(838\) −6.20310 22.8347i −0.214282 0.788812i
\(839\) −27.3666 −0.944801 −0.472400 0.881384i \(-0.656612\pi\)
−0.472400 + 0.881384i \(0.656612\pi\)
\(840\) 0 0
\(841\) 20.7736 0.716330
\(842\) 13.1621 + 48.4520i 0.453596 + 1.66977i
\(843\) −41.0838 + 11.0084i −1.41500 + 0.379149i
\(844\) 2.06869 + 3.52663i 0.0712074 + 0.121392i
\(845\) −7.63126 + 0.175156i −0.262523 + 0.00602556i
\(846\) 0.887001 + 1.52416i 0.0304957 + 0.0524016i
\(847\) 0 0
\(848\) −3.07740 0.779213i −0.105678 0.0267583i
\(849\) 36.7269 21.2043i 1.26046 0.727729i
\(850\) −24.2342 37.5646i −0.831227 1.28846i
\(851\) −26.7344 15.4351i −0.916442 0.529108i
\(852\) −1.55735 1.53600i −0.0533541 0.0526225i
\(853\) −15.4514 + 15.4514i −0.529044 + 0.529044i −0.920287 0.391243i \(-0.872045\pi\)
0.391243 + 0.920287i \(0.372045\pi\)
\(854\) 0 0
\(855\) −0.649284 + 1.18667i −0.0222050 + 0.0405833i
\(856\) 27.8096 + 47.0360i 0.950513 + 1.60766i
\(857\) 17.1024 4.58257i 0.584206 0.156537i 0.0454021 0.998969i \(-0.485543\pi\)
0.538804 + 0.842431i \(0.318876\pi\)
\(858\) 15.3801 + 15.2743i 0.525067 + 0.521455i
\(859\) −4.41256 7.64278i −0.150555 0.260768i 0.780877 0.624685i \(-0.214773\pi\)
−0.931432 + 0.363917i \(0.881439\pi\)
\(860\) −8.21376 + 34.7748i −0.280087 + 1.18581i
\(861\) 0 0
\(862\) −0.378049 + 1.43063i −0.0128764 + 0.0487276i
\(863\) 8.17206 30.4985i 0.278180 1.03818i −0.675500 0.737360i \(-0.736072\pi\)
0.953680 0.300822i \(-0.0972611\pi\)
\(864\) −24.2659 + 14.5740i −0.825543 + 0.495817i
\(865\) −6.64166 + 27.2759i −0.225823 + 0.927408i
\(866\) 16.0462 + 9.19058i 0.545272 + 0.312309i
\(867\) 29.0746 29.0746i 0.987427 0.987427i
\(868\) 0 0
\(869\) 30.1223i 1.02183i
\(870\) 8.48699 + 13.8427i 0.287736 + 0.469310i
\(871\) −40.0003 23.0942i −1.35536 0.782517i
\(872\) 10.3445 + 37.0666i 0.350310 + 1.25523i
\(873\) −0.547301 0.146649i −0.0185233 0.00496331i
\(874\) −11.7114 20.1241i −0.396145 0.680707i
\(875\) 0 0
\(876\) 14.2305 + 8.08549i 0.480803 + 0.273183i
\(877\) −4.12581 + 15.3977i −0.139319 + 0.519945i 0.860624 + 0.509241i \(0.170074\pi\)
−0.999943 + 0.0107038i \(0.996593\pi\)
\(878\) −22.6528 + 22.8097i −0.764495 + 0.769790i
\(879\) 23.5552 40.7988i 0.794498 1.37611i
\(880\) −10.0460 16.0110i −0.338649 0.539729i
\(881\) −33.9704 −1.14449 −0.572245 0.820082i \(-0.693927\pi\)
−0.572245 + 0.820082i \(0.693927\pi\)
\(882\) 0 0
\(883\) −5.75604 5.75604i −0.193706 0.193706i 0.603589 0.797295i \(-0.293737\pi\)
−0.797295 + 0.603589i \(0.793737\pi\)
\(884\) 0.353627 + 51.2246i 0.0118938 + 1.72287i
\(885\) 19.3622 + 4.71469i 0.650854 + 0.158483i
\(886\) −33.0111 + 0.113944i −1.10903 + 0.00382802i
\(887\) −17.5583 4.70474i −0.589551 0.157970i −0.0483029 0.998833i \(-0.515381\pi\)
−0.541248 + 0.840863i \(0.682048\pi\)
\(888\) −19.6145 + 20.0250i −0.658219 + 0.671994i
\(889\) 0 0
\(890\) 4.52403 4.76943i 0.151646 0.159872i
\(891\) −17.5194 + 10.1148i −0.586923 + 0.338860i
\(892\) −36.0195 9.38538i −1.20602 0.314246i
\(893\) −4.65057 17.3562i −0.155625 0.580801i
\(894\) −16.5703 9.49073i −0.554192 0.317418i
\(895\) −6.78203 3.71077i −0.226698 0.124037i
\(896\) 0 0
\(897\) −28.5989 28.5989i −0.954890 0.954890i
\(898\) −24.6935 + 6.70803i −0.824031 + 0.223850i
\(899\) −8.62408 + 14.9374i −0.287629 + 0.498189i
\(900\) 0.929392 1.82602i 0.0309797 0.0608674i
\(901\) −2.50867 4.34515i −0.0835760 0.144758i
\(902\) 6.10057 23.0861i 0.203127 0.768683i
\(903\) 0 0
\(904\) 30.9026 0.320008i 1.02781 0.0106433i
\(905\) 0.825881 + 35.9822i 0.0274532 + 1.19609i
\(906\) 0.121768 + 35.2778i 0.00404547 + 1.17203i
\(907\) −11.7282 43.7702i −0.389428 1.45337i −0.831067 0.556172i \(-0.812269\pi\)
0.441639 0.897193i \(-0.354397\pi\)
\(908\) 7.92512 + 7.81645i 0.263004 + 0.259398i
\(909\) 0.258808i 0.00858412i
\(910\) 0 0
\(911\) 55.7310i 1.84645i −0.384261 0.923225i \(-0.625544\pi\)
0.384261 0.923225i \(-0.374456\pi\)
\(912\) −20.3443 + 5.75344i −0.673669 + 0.190516i
\(913\) 4.26687 + 15.9242i 0.141213 + 0.527013i
\(914\) −25.7132 + 0.0887537i −0.850516 + 0.00293571i
\(915\) −4.66527 + 4.88446i −0.154229 + 0.161475i
\(916\) −8.11234 + 14.2777i −0.268039 + 0.471748i
\(917\) 0 0
\(918\) −43.2533 11.4298i −1.42757 0.377240i
\(919\) 1.00568 + 1.74189i 0.0331743 + 0.0574596i 0.882136 0.470995i \(-0.156105\pi\)
−0.848962 + 0.528455i \(0.822772\pi\)
\(920\) 18.6414 + 29.9392i 0.614588 + 0.987065i
\(921\) −24.2959 + 42.0818i −0.800579 + 1.38664i
\(922\) 11.2632 + 41.4619i 0.370934 + 1.36548i
\(923\) 1.75015 + 1.75015i 0.0576070 + 0.0576070i
\(924\) 0 0
\(925\) −5.92970 + 27.0366i −0.194967 + 0.888959i
\(926\) −20.0445 + 34.9965i −0.658703 + 1.15006i
\(927\) 0.689146 + 2.57193i 0.0226345 + 0.0844731i
\(928\) −3.92821 + 15.7421i −0.128950 + 0.516761i
\(929\) 12.0757 6.97192i 0.396192 0.228741i −0.288648 0.957435i \(-0.593206\pi\)
0.684839 + 0.728694i \(0.259872\pi\)
\(930\) 34.0324 0.898669i 1.11597 0.0294685i
\(931\) 0 0
\(932\) −23.1197 + 6.36628i −0.757310 + 0.208534i
\(933\) −23.9453 6.41613i −0.783935 0.210055i
\(934\) −0.102373 29.6589i −0.00334975 0.970467i
\(935\) 7.06782 29.0260i 0.231142 0.949253i
\(936\) −2.02106 + 1.19493i −0.0660604 + 0.0390576i
\(937\) −10.0820 10.0820i −0.329363 0.329363i 0.522981 0.852344i \(-0.324820\pi\)
−0.852344 + 0.522981i \(0.824820\pi\)
\(938\) 0 0
\(939\) 42.1072 1.37412
\(940\) 7.82582 + 26.0676i 0.255250 + 0.850233i
\(941\) −8.57804 + 14.8576i −0.279636 + 0.484344i −0.971294 0.237881i \(-0.923547\pi\)
0.691658 + 0.722225i \(0.256881\pi\)
\(942\) 14.3348 + 14.2362i 0.467054 + 0.463841i
\(943\) −11.5316 + 43.0365i −0.375520 + 1.40146i
\(944\) 10.1935 + 17.1059i 0.331771 + 0.556748i
\(945\) 0 0
\(946\) −20.6381 + 12.0106i −0.671002 + 0.390497i
\(947\) 29.3795 + 7.87222i 0.954707 + 0.255813i 0.702358 0.711824i \(-0.252130\pi\)
0.252348 + 0.967636i \(0.418797\pi\)
\(948\) −49.3862 12.8683i −1.60399 0.417942i
\(949\) −16.0387 9.25992i −0.520637 0.300590i
\(950\) −14.0161 + 15.4725i −0.454743 + 0.501996i
\(951\) 1.47637i 0.0478746i
\(952\) 0 0
\(953\) −36.7987 + 36.7987i −1.19203 + 1.19203i −0.215529 + 0.976497i \(0.569148\pi\)
−0.976497 + 0.215529i \(0.930852\pi\)
\(954\) 0.114294 0.199551i 0.00370041 0.00646069i
\(955\) 6.16314 + 10.1307i 0.199434 + 0.327820i
\(956\) 31.9211 18.7246i 1.03240 0.605598i
\(957\) −2.80843 + 10.4812i −0.0907836 + 0.338809i
\(958\) 38.1340 + 10.0770i 1.23205 + 0.325574i
\(959\) 0 0
\(960\) 30.5420 9.63071i 0.985740 0.310830i
\(961\) 2.58192 + 4.47202i 0.0832878 + 0.144259i
\(962\) 22.3503 22.5051i 0.720603 0.725595i
\(963\) −3.82344 + 1.02449i −0.123209 + 0.0330137i
\(964\) −0.00113722 0.164733i −3.66275e−5 0.00530568i
\(965\) 48.0250 14.0570i 1.54598 0.452511i
\(966\) 0 0
\(967\) 2.22247 2.22247i 0.0714698 0.0714698i −0.670468 0.741938i \(-0.733907\pi\)
0.741938 + 0.670468i \(0.233907\pi\)
\(968\) −4.59819 + 17.9001i −0.147791 + 0.575330i
\(969\) −28.9386 16.7077i −0.929642 0.536729i
\(970\) −7.68608 4.17101i −0.246785 0.133923i
\(971\) 28.5473 16.4818i 0.916127 0.528926i 0.0337295 0.999431i \(-0.489262\pi\)
0.882397 + 0.470505i \(0.155928\pi\)
\(972\) −1.12865 4.09879i −0.0362015 0.131469i
\(973\) 0 0
\(974\) −4.75666 + 2.76820i −0.152413 + 0.0886987i
\(975\) −16.6722 + 32.2047i −0.533936 + 1.03138i
\(976\) −6.74865 + 0.0931825i −0.216019 + 0.00298270i
\(977\) −6.89664 + 1.84795i −0.220643 + 0.0591211i −0.367447 0.930044i \(-0.619768\pi\)
0.146804 + 0.989166i \(0.453101\pi\)
\(978\) −34.0349 + 9.24564i −1.08831 + 0.295643i
\(979\) 4.39307 0.140403
\(980\) 0 0
\(981\) −2.78774 −0.0890057
\(982\) −19.6731 + 5.34423i −0.627793 + 0.170541i
\(983\) −33.0575 + 8.85773i −1.05437 + 0.282518i −0.744057 0.668116i \(-0.767101\pi\)
−0.310314 + 0.950634i \(0.600434\pi\)
\(984\) 35.2441 + 19.8644i 1.12354 + 0.633255i
\(985\) 11.6538 12.2013i 0.371320 0.388766i
\(986\) −22.1635 + 12.8983i −0.705830 + 0.410766i
\(987\) 0 0
\(988\) 23.0647 6.35113i 0.733784 0.202056i
\(989\) 38.5854 22.2773i 1.22695 0.708377i
\(990\) 1.31278 0.389177i 0.0417228 0.0123688i
\(991\) −27.9661 16.1462i −0.888373 0.512902i −0.0149631 0.999888i \(-0.504763\pi\)
−0.873410 + 0.486986i \(0.838096\pi\)
\(992\) 24.4661 + 23.6358i 0.776799 + 0.750439i
\(993\) 18.1648 18.1648i 0.576444 0.576444i
\(994\) 0 0
\(995\) 23.3156 + 12.7571i 0.739154 + 0.404426i
\(996\) −27.9309 + 0.192820i −0.885024 + 0.00610972i
\(997\) 25.5236 6.83904i 0.808342 0.216594i 0.169098 0.985599i \(-0.445914\pi\)
0.639243 + 0.769005i \(0.279248\pi\)
\(998\) −2.94014 + 2.96051i −0.0930685 + 0.0937132i
\(999\) 13.8503 + 23.9894i 0.438205 + 0.758993i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 980.2.x.k.67.11 72
4.3 odd 2 inner 980.2.x.k.67.6 72
5.3 odd 4 inner 980.2.x.k.263.17 72
7.2 even 3 inner 980.2.x.k.667.14 72
7.3 odd 6 980.2.k.l.687.2 36
7.4 even 3 140.2.k.a.127.2 yes 36
7.5 odd 6 980.2.x.l.667.14 72
7.6 odd 2 980.2.x.l.67.11 72
20.3 even 4 inner 980.2.x.k.263.14 72
28.3 even 6 980.2.k.l.687.9 36
28.11 odd 6 140.2.k.a.127.9 yes 36
28.19 even 6 980.2.x.l.667.17 72
28.23 odd 6 inner 980.2.x.k.667.17 72
28.27 even 2 980.2.x.l.67.6 72
35.3 even 12 980.2.k.l.883.9 36
35.4 even 6 700.2.k.b.407.17 36
35.13 even 4 980.2.x.l.263.17 72
35.18 odd 12 140.2.k.a.43.9 yes 36
35.23 odd 12 inner 980.2.x.k.863.6 72
35.32 odd 12 700.2.k.b.43.10 36
35.33 even 12 980.2.x.l.863.6 72
140.3 odd 12 980.2.k.l.883.2 36
140.23 even 12 inner 980.2.x.k.863.11 72
140.39 odd 6 700.2.k.b.407.10 36
140.67 even 12 700.2.k.b.43.17 36
140.83 odd 4 980.2.x.l.263.14 72
140.103 odd 12 980.2.x.l.863.11 72
140.123 even 12 140.2.k.a.43.2 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.k.a.43.2 36 140.123 even 12
140.2.k.a.43.9 yes 36 35.18 odd 12
140.2.k.a.127.2 yes 36 7.4 even 3
140.2.k.a.127.9 yes 36 28.11 odd 6
700.2.k.b.43.10 36 35.32 odd 12
700.2.k.b.43.17 36 140.67 even 12
700.2.k.b.407.10 36 140.39 odd 6
700.2.k.b.407.17 36 35.4 even 6
980.2.k.l.687.2 36 7.3 odd 6
980.2.k.l.687.9 36 28.3 even 6
980.2.k.l.883.2 36 140.3 odd 12
980.2.k.l.883.9 36 35.3 even 12
980.2.x.k.67.6 72 4.3 odd 2 inner
980.2.x.k.67.11 72 1.1 even 1 trivial
980.2.x.k.263.14 72 20.3 even 4 inner
980.2.x.k.263.17 72 5.3 odd 4 inner
980.2.x.k.667.14 72 7.2 even 3 inner
980.2.x.k.667.17 72 28.23 odd 6 inner
980.2.x.k.863.6 72 35.23 odd 12 inner
980.2.x.k.863.11 72 140.23 even 12 inner
980.2.x.l.67.6 72 28.27 even 2
980.2.x.l.67.11 72 7.6 odd 2
980.2.x.l.263.14 72 140.83 odd 4
980.2.x.l.263.17 72 35.13 even 4
980.2.x.l.667.14 72 7.5 odd 6
980.2.x.l.667.17 72 28.19 even 6
980.2.x.l.863.6 72 35.33 even 12
980.2.x.l.863.11 72 140.103 odd 12