Properties

Label 980.2.k.m.883.11
Level $980$
Weight $2$
Character 980.883
Analytic conductor $7.825$
Analytic rank $0$
Dimension $56$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [980,2,Mod(687,980)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("980.687"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(980, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56,-4,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 883.11
Character \(\chi\) \(=\) 980.883
Dual form 980.2.k.m.687.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.405491 + 1.35483i) q^{2} +(-1.41506 + 1.41506i) q^{3} +(-1.67115 - 1.09875i) q^{4} +(-1.52518 - 1.63518i) q^{5} +(-1.34338 - 2.49096i) q^{6} +(2.16626 - 1.81861i) q^{8} -1.00477i q^{9} +(2.83385 - 1.40332i) q^{10} -5.68305i q^{11} +(3.91957 - 0.809992i) q^{12} +(4.82411 + 4.82411i) q^{13} +(4.47209 + 0.155660i) q^{15} +(1.58552 + 3.67235i) q^{16} +(-2.67652 + 2.67652i) q^{17} +(1.36130 + 0.407425i) q^{18} -1.12884 q^{19} +(0.752163 + 4.40843i) q^{20} +(7.69959 + 2.30442i) q^{22} +(3.44481 - 3.44481i) q^{23} +(-0.491941 + 5.63881i) q^{24} +(-0.347648 + 4.98790i) q^{25} +(-8.49200 + 4.57974i) q^{26} +(-2.82336 - 2.82336i) q^{27} +0.781186i q^{29} +(-2.02428 + 5.99583i) q^{30} +3.69737i q^{31} +(-5.61834 + 0.659012i) q^{32} +(8.04183 + 8.04183i) q^{33} +(-2.54094 - 4.71154i) q^{34} +(-1.10399 + 1.67913i) q^{36} +(-2.43078 + 2.43078i) q^{37} +(0.457736 - 1.52940i) q^{38} -13.6528 q^{39} +(-6.27769 - 0.768519i) q^{40} +0.451387 q^{41} +(0.613245 - 0.613245i) q^{43} +(-6.24422 + 9.49725i) q^{44} +(-1.64298 + 1.53246i) q^{45} +(3.27031 + 6.06399i) q^{46} +(3.03222 + 3.03222i) q^{47} +(-7.44018 - 2.95298i) q^{48} +(-6.61681 - 2.49355i) q^{50} -7.57485i q^{51} +(-2.76137 - 13.3623i) q^{52} +(1.48677 + 1.48677i) q^{53} +(4.97004 - 2.68034i) q^{54} +(-9.29282 + 8.66767i) q^{55} +(1.59738 - 1.59738i) q^{57} +(-1.05838 - 0.316763i) q^{58} -9.27479 q^{59} +(-7.30253 - 5.17382i) q^{60} -1.51948 q^{61} +(-5.00933 - 1.49925i) q^{62} +(1.38533 - 7.87914i) q^{64} +(0.530664 - 15.2459i) q^{65} +(-14.1562 + 7.63447i) q^{66} +(9.65994 + 9.65994i) q^{67} +(7.41369 - 1.53206i) q^{68} +9.74921i q^{69} +11.8314i q^{71} +(-1.82728 - 2.17659i) q^{72} +(1.21746 + 1.21746i) q^{73} +(-2.30765 - 4.27896i) q^{74} +(-6.56622 - 7.55010i) q^{75} +(1.88647 + 1.24031i) q^{76} +(5.53607 - 18.4973i) q^{78} -5.46209 q^{79} +(3.58676 - 8.19360i) q^{80} +11.0047 q^{81} +(-0.183033 + 0.611555i) q^{82} +(0.968508 - 0.968508i) q^{83} +(8.45877 + 0.294423i) q^{85} +(0.582180 + 1.07951i) q^{86} +(-1.10542 - 1.10542i) q^{87} +(-10.3352 - 12.3109i) q^{88} +9.42358i q^{89} +(-1.41001 - 2.84737i) q^{90} +(-9.54179 + 1.97184i) q^{92} +(-5.23199 - 5.23199i) q^{93} +(-5.33770 + 2.87862i) q^{94} +(1.72169 + 1.84587i) q^{95} +(7.01772 - 8.88280i) q^{96} +(-6.77428 + 6.77428i) q^{97} -5.71016 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 4 q^{2} - 16 q^{8} + 32 q^{16} + 20 q^{22} + 32 q^{25} - 28 q^{30} - 64 q^{32} + 16 q^{36} - 8 q^{37} - 184 q^{46} - 12 q^{50} + 96 q^{53} - 8 q^{57} + 124 q^{58} + 8 q^{60} - 120 q^{65} - 80 q^{72}+ \cdots - 176 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.405491 + 1.35483i −0.286725 + 0.958013i
\(3\) −1.41506 + 1.41506i −0.816983 + 0.816983i −0.985670 0.168686i \(-0.946047\pi\)
0.168686 + 0.985670i \(0.446047\pi\)
\(4\) −1.67115 1.09875i −0.835577 0.549373i
\(5\) −1.52518 1.63518i −0.682082 0.731276i
\(6\) −1.34338 2.49096i −0.548431 1.01693i
\(7\) 0 0
\(8\) 2.16626 1.81861i 0.765887 0.642975i
\(9\) 1.00477i 0.334924i
\(10\) 2.83385 1.40332i 0.896142 0.443768i
\(11\) 5.68305i 1.71350i −0.515730 0.856751i \(-0.672479\pi\)
0.515730 0.856751i \(-0.327521\pi\)
\(12\) 3.91957 0.809992i 1.13148 0.233825i
\(13\) 4.82411 + 4.82411i 1.33797 + 1.33797i 0.898027 + 0.439939i \(0.145000\pi\)
0.439939 + 0.898027i \(0.355000\pi\)
\(14\) 0 0
\(15\) 4.47209 + 0.155660i 1.15469 + 0.0401912i
\(16\) 1.58552 + 3.67235i 0.396379 + 0.918087i
\(17\) −2.67652 + 2.67652i −0.649151 + 0.649151i −0.952788 0.303637i \(-0.901799\pi\)
0.303637 + 0.952788i \(0.401799\pi\)
\(18\) 1.36130 + 0.407425i 0.320861 + 0.0960310i
\(19\) −1.12884 −0.258975 −0.129487 0.991581i \(-0.541333\pi\)
−0.129487 + 0.991581i \(0.541333\pi\)
\(20\) 0.752163 + 4.40843i 0.168189 + 0.985755i
\(21\) 0 0
\(22\) 7.69959 + 2.30442i 1.64156 + 0.491304i
\(23\) 3.44481 3.44481i 0.718293 0.718293i −0.249962 0.968256i \(-0.580418\pi\)
0.968256 + 0.249962i \(0.0804182\pi\)
\(24\) −0.491941 + 5.63881i −0.100417 + 1.15102i
\(25\) −0.347648 + 4.98790i −0.0695296 + 0.997580i
\(26\) −8.49200 + 4.57974i −1.66542 + 0.898161i
\(27\) −2.82336 2.82336i −0.543356 0.543356i
\(28\) 0 0
\(29\) 0.781186i 0.145063i 0.997366 + 0.0725313i \(0.0231077\pi\)
−0.997366 + 0.0725313i \(0.976892\pi\)
\(30\) −2.02428 + 5.99583i −0.369582 + 1.09468i
\(31\) 3.69737i 0.664068i 0.943267 + 0.332034i \(0.107735\pi\)
−0.943267 + 0.332034i \(0.892265\pi\)
\(32\) −5.61834 + 0.659012i −0.993191 + 0.116498i
\(33\) 8.04183 + 8.04183i 1.39990 + 1.39990i
\(34\) −2.54094 4.71154i −0.435767 0.808023i
\(35\) 0 0
\(36\) −1.10399 + 1.67913i −0.183998 + 0.279855i
\(37\) −2.43078 + 2.43078i −0.399618 + 0.399618i −0.878098 0.478480i \(-0.841188\pi\)
0.478480 + 0.878098i \(0.341188\pi\)
\(38\) 0.457736 1.52940i 0.0742546 0.248101i
\(39\) −13.6528 −2.18619
\(40\) −6.27769 0.768519i −0.992590 0.121514i
\(41\) 0.451387 0.0704948 0.0352474 0.999379i \(-0.488778\pi\)
0.0352474 + 0.999379i \(0.488778\pi\)
\(42\) 0 0
\(43\) 0.613245 0.613245i 0.0935189 0.0935189i −0.658800 0.752319i \(-0.728935\pi\)
0.752319 + 0.658800i \(0.228935\pi\)
\(44\) −6.24422 + 9.49725i −0.941352 + 1.43176i
\(45\) −1.64298 + 1.53246i −0.244922 + 0.228445i
\(46\) 3.27031 + 6.06399i 0.482182 + 0.894087i
\(47\) 3.03222 + 3.03222i 0.442295 + 0.442295i 0.892783 0.450488i \(-0.148750\pi\)
−0.450488 + 0.892783i \(0.648750\pi\)
\(48\) −7.44018 2.95298i −1.07390 0.426226i
\(49\) 0 0
\(50\) −6.61681 2.49355i −0.935759 0.352641i
\(51\) 7.57485i 1.06069i
\(52\) −2.76137 13.3623i −0.382933 1.85302i
\(53\) 1.48677 + 1.48677i 0.204224 + 0.204224i 0.801807 0.597583i \(-0.203872\pi\)
−0.597583 + 0.801807i \(0.703872\pi\)
\(54\) 4.97004 2.68034i 0.676336 0.364748i
\(55\) −9.29282 + 8.66767i −1.25304 + 1.16875i
\(56\) 0 0
\(57\) 1.59738 1.59738i 0.211578 0.211578i
\(58\) −1.05838 0.316763i −0.138972 0.0415931i
\(59\) −9.27479 −1.20748 −0.603738 0.797183i \(-0.706323\pi\)
−0.603738 + 0.797183i \(0.706323\pi\)
\(60\) −7.30253 5.17382i −0.942753 0.667938i
\(61\) −1.51948 −0.194550 −0.0972751 0.995258i \(-0.531013\pi\)
−0.0972751 + 0.995258i \(0.531013\pi\)
\(62\) −5.00933 1.49925i −0.636185 0.190405i
\(63\) 0 0
\(64\) 1.38533 7.87914i 0.173166 0.984893i
\(65\) 0.530664 15.2459i 0.0658207 1.89103i
\(66\) −14.1562 + 7.63447i −1.74251 + 0.939738i
\(67\) 9.65994 + 9.65994i 1.18015 + 1.18015i 0.979705 + 0.200444i \(0.0642384\pi\)
0.200444 + 0.979705i \(0.435762\pi\)
\(68\) 7.41369 1.53206i 0.899041 0.185790i
\(69\) 9.74921i 1.17367i
\(70\) 0 0
\(71\) 11.8314i 1.40413i 0.712112 + 0.702066i \(0.247739\pi\)
−0.712112 + 0.702066i \(0.752261\pi\)
\(72\) −1.82728 2.17659i −0.215348 0.256514i
\(73\) 1.21746 + 1.21746i 0.142493 + 0.142493i 0.774755 0.632262i \(-0.217873\pi\)
−0.632262 + 0.774755i \(0.717873\pi\)
\(74\) −2.30765 4.27896i −0.268259 0.497419i
\(75\) −6.56622 7.55010i −0.758202 0.871811i
\(76\) 1.88647 + 1.24031i 0.216393 + 0.142274i
\(77\) 0 0
\(78\) 5.53607 18.4973i 0.626837 2.09440i
\(79\) −5.46209 −0.614533 −0.307267 0.951623i \(-0.599414\pi\)
−0.307267 + 0.951623i \(0.599414\pi\)
\(80\) 3.58676 8.19360i 0.401012 0.916073i
\(81\) 11.0047 1.22275
\(82\) −0.183033 + 0.611555i −0.0202126 + 0.0675350i
\(83\) 0.968508 0.968508i 0.106308 0.106308i −0.651952 0.758260i \(-0.726050\pi\)
0.758260 + 0.651952i \(0.226050\pi\)
\(84\) 0 0
\(85\) 8.45877 + 0.294423i 0.917482 + 0.0319347i
\(86\) 0.582180 + 1.07951i 0.0627781 + 0.116407i
\(87\) −1.10542 1.10542i −0.118514 0.118514i
\(88\) −10.3352 12.3109i −1.10174 1.31235i
\(89\) 9.42358i 0.998898i 0.866343 + 0.499449i \(0.166464\pi\)
−0.866343 + 0.499449i \(0.833536\pi\)
\(90\) −1.41001 2.84737i −0.148628 0.300139i
\(91\) 0 0
\(92\) −9.54179 + 1.97184i −0.994800 + 0.205579i
\(93\) −5.23199 5.23199i −0.542532 0.542532i
\(94\) −5.33770 + 2.87862i −0.550542 + 0.296907i
\(95\) 1.72169 + 1.84587i 0.176642 + 0.189382i
\(96\) 7.01772 8.88280i 0.716244 0.906597i
\(97\) −6.77428 + 6.77428i −0.687824 + 0.687824i −0.961751 0.273927i \(-0.911677\pi\)
0.273927 + 0.961751i \(0.411677\pi\)
\(98\) 0 0
\(99\) −5.71016 −0.573893
\(100\) 6.06140 7.95358i 0.606140 0.795358i
\(101\) 12.0610 1.20012 0.600059 0.799956i \(-0.295144\pi\)
0.600059 + 0.799956i \(0.295144\pi\)
\(102\) 10.2627 + 3.07153i 1.01616 + 0.304127i
\(103\) −7.75896 + 7.75896i −0.764513 + 0.764513i −0.977135 0.212621i \(-0.931800\pi\)
0.212621 + 0.977135i \(0.431800\pi\)
\(104\) 19.2234 + 1.67709i 1.88501 + 0.164452i
\(105\) 0 0
\(106\) −2.61720 + 1.41146i −0.254205 + 0.137093i
\(107\) 6.96815 + 6.96815i 0.673637 + 0.673637i 0.958553 0.284916i \(-0.0919656\pi\)
−0.284916 + 0.958553i \(0.591966\pi\)
\(108\) 1.61612 + 7.82043i 0.155511 + 0.752521i
\(109\) 5.11637i 0.490060i 0.969516 + 0.245030i \(0.0787977\pi\)
−0.969516 + 0.245030i \(0.921202\pi\)
\(110\) −7.97511 16.1049i −0.760397 1.53554i
\(111\) 6.87938i 0.652962i
\(112\) 0 0
\(113\) 1.98553 + 1.98553i 0.186783 + 0.186783i 0.794304 0.607521i \(-0.207836\pi\)
−0.607521 + 0.794304i \(0.707836\pi\)
\(114\) 1.51646 + 2.81191i 0.142030 + 0.263359i
\(115\) −10.8869 0.378938i −1.01521 0.0353362i
\(116\) 0.858324 1.30548i 0.0796934 0.121211i
\(117\) 4.84712 4.84712i 0.448117 0.448117i
\(118\) 3.76084 12.5658i 0.346213 1.15678i
\(119\) 0 0
\(120\) 9.97078 7.79579i 0.910204 0.711655i
\(121\) −21.2970 −1.93609
\(122\) 0.616137 2.05865i 0.0557824 0.186382i
\(123\) −0.638739 + 0.638739i −0.0575931 + 0.0575931i
\(124\) 4.06247 6.17888i 0.364821 0.554880i
\(125\) 8.68635 7.03898i 0.776931 0.629586i
\(126\) 0 0
\(127\) −12.1710 12.1710i −1.08000 1.08000i −0.996509 0.0834907i \(-0.973393\pi\)
−0.0834907 0.996509i \(-0.526607\pi\)
\(128\) 10.1132 + 5.07181i 0.893889 + 0.448289i
\(129\) 1.73555i 0.152807i
\(130\) 20.4405 + 6.90104i 1.79275 + 0.605262i
\(131\) 3.22924i 0.282140i −0.990000 0.141070i \(-0.954946\pi\)
0.990000 0.141070i \(-0.0450542\pi\)
\(132\) −4.60322 22.2751i −0.400659 1.93880i
\(133\) 0 0
\(134\) −17.0046 + 9.17061i −1.46898 + 0.792220i
\(135\) −0.310577 + 8.92285i −0.0267302 + 0.767957i
\(136\) −0.930485 + 10.6656i −0.0797885 + 0.914564i
\(137\) −10.6422 + 10.6422i −0.909221 + 0.909221i −0.996209 0.0869887i \(-0.972276\pi\)
0.0869887 + 0.996209i \(0.472276\pi\)
\(138\) −13.2086 3.95321i −1.12439 0.336520i
\(139\) −7.49343 −0.635584 −0.317792 0.948160i \(-0.602941\pi\)
−0.317792 + 0.948160i \(0.602941\pi\)
\(140\) 0 0
\(141\) −8.58153 −0.722696
\(142\) −16.0296 4.79753i −1.34518 0.402600i
\(143\) 27.4156 27.4156i 2.29261 2.29261i
\(144\) 3.68987 1.59308i 0.307489 0.132757i
\(145\) 1.27738 1.19145i 0.106081 0.0989445i
\(146\) −2.14313 + 1.15579i −0.177367 + 0.0956539i
\(147\) 0 0
\(148\) 6.73302 1.39140i 0.553451 0.114373i
\(149\) 4.33552i 0.355180i 0.984105 + 0.177590i \(0.0568300\pi\)
−0.984105 + 0.177590i \(0.943170\pi\)
\(150\) 12.8917 5.83465i 1.05260 0.476397i
\(151\) 14.1691i 1.15307i 0.817074 + 0.576533i \(0.195595\pi\)
−0.817074 + 0.576533i \(0.804405\pi\)
\(152\) −2.44537 + 2.05293i −0.198345 + 0.166514i
\(153\) 2.68929 + 2.68929i 0.217416 + 0.217416i
\(154\) 0 0
\(155\) 6.04588 5.63916i 0.485617 0.452948i
\(156\) 22.8159 + 15.0009i 1.82673 + 1.20103i
\(157\) −3.53257 + 3.53257i −0.281929 + 0.281929i −0.833878 0.551949i \(-0.813884\pi\)
0.551949 + 0.833878i \(0.313884\pi\)
\(158\) 2.21483 7.40023i 0.176202 0.588731i
\(159\) −4.20773 −0.333695
\(160\) 9.64658 + 8.18190i 0.762629 + 0.646836i
\(161\) 0 0
\(162\) −4.46232 + 14.9096i −0.350593 + 1.17141i
\(163\) 11.4267 11.4267i 0.895006 0.895006i −0.0999836 0.994989i \(-0.531879\pi\)
0.994989 + 0.0999836i \(0.0318790\pi\)
\(164\) −0.754338 0.495960i −0.0589039 0.0387279i
\(165\) 0.884621 25.4151i 0.0688677 1.97856i
\(166\) 0.919447 + 1.70489i 0.0713630 + 0.132325i
\(167\) 5.33030 + 5.33030i 0.412471 + 0.412471i 0.882599 0.470127i \(-0.155792\pi\)
−0.470127 + 0.882599i \(0.655792\pi\)
\(168\) 0 0
\(169\) 33.5440i 2.58031i
\(170\) −3.82885 + 11.3408i −0.293659 + 0.869803i
\(171\) 1.13423i 0.0867368i
\(172\) −1.69863 + 0.351027i −0.129519 + 0.0267656i
\(173\) 3.10667 + 3.10667i 0.236196 + 0.236196i 0.815273 0.579077i \(-0.196587\pi\)
−0.579077 + 0.815273i \(0.696587\pi\)
\(174\) 1.94590 1.04943i 0.147518 0.0795568i
\(175\) 0 0
\(176\) 20.8701 9.01057i 1.57314 0.679197i
\(177\) 13.1244 13.1244i 0.986487 0.986487i
\(178\) −12.7674 3.82117i −0.956957 0.286409i
\(179\) 0.679087 0.0507573 0.0253787 0.999678i \(-0.491921\pi\)
0.0253787 + 0.999678i \(0.491921\pi\)
\(180\) 4.42946 0.755752i 0.330153 0.0563304i
\(181\) 7.86696 0.584746 0.292373 0.956304i \(-0.405555\pi\)
0.292373 + 0.956304i \(0.405555\pi\)
\(182\) 0 0
\(183\) 2.15016 2.15016i 0.158944 0.158944i
\(184\) 1.19758 13.7271i 0.0882869 1.01198i
\(185\) 7.68215 + 0.267392i 0.564803 + 0.0196590i
\(186\) 9.21001 4.96696i 0.675311 0.364195i
\(187\) 15.2108 + 15.2108i 1.11232 + 1.11232i
\(188\) −1.73567 8.39895i −0.126587 0.612557i
\(189\) 0 0
\(190\) −3.19898 + 1.58413i −0.232078 + 0.114925i
\(191\) 10.6830i 0.772998i 0.922290 + 0.386499i \(0.126316\pi\)
−0.922290 + 0.386499i \(0.873684\pi\)
\(192\) 9.18911 + 13.1098i 0.663167 + 0.946115i
\(193\) 7.97938 + 7.97938i 0.574369 + 0.574369i 0.933346 0.358978i \(-0.116875\pi\)
−0.358978 + 0.933346i \(0.616875\pi\)
\(194\) −6.43113 11.9249i −0.461728 0.856161i
\(195\) 20.8229 + 22.3248i 1.49116 + 1.59871i
\(196\) 0 0
\(197\) 3.29596 3.29596i 0.234827 0.234827i −0.579877 0.814704i \(-0.696899\pi\)
0.814704 + 0.579877i \(0.196899\pi\)
\(198\) 2.31542 7.73632i 0.164549 0.549797i
\(199\) 9.57804 0.678969 0.339484 0.940612i \(-0.389747\pi\)
0.339484 + 0.940612i \(0.389747\pi\)
\(200\) 8.31794 + 11.4373i 0.588167 + 0.808739i
\(201\) −27.3387 −1.92832
\(202\) −4.89064 + 16.3407i −0.344104 + 1.14973i
\(203\) 0 0
\(204\) −8.32283 + 12.6587i −0.582714 + 0.886289i
\(205\) −0.688447 0.738101i −0.0480832 0.0515512i
\(206\) −7.36593 13.6583i −0.513208 0.951619i
\(207\) −3.46125 3.46125i −0.240573 0.240573i
\(208\) −10.0671 + 25.3645i −0.698027 + 1.75871i
\(209\) 6.41528i 0.443754i
\(210\) 0 0
\(211\) 19.2356i 1.32424i 0.749400 + 0.662118i \(0.230342\pi\)
−0.749400 + 0.662118i \(0.769658\pi\)
\(212\) −0.851043 4.11821i −0.0584498 0.282840i
\(213\) −16.7421 16.7421i −1.14715 1.14715i
\(214\) −12.2662 + 6.61518i −0.838501 + 0.452204i
\(215\) −1.93808 0.0674584i −0.132176 0.00460063i
\(216\) −11.2507 0.981536i −0.765514 0.0667850i
\(217\) 0 0
\(218\) −6.93184 2.07464i −0.469483 0.140512i
\(219\) −3.44556 −0.232829
\(220\) 25.0533 4.27458i 1.68909 0.288192i
\(221\) −25.8236 −1.73708
\(222\) 9.32043 + 2.78952i 0.625546 + 0.187221i
\(223\) −6.67775 + 6.67775i −0.447175 + 0.447175i −0.894414 0.447239i \(-0.852407\pi\)
0.447239 + 0.894414i \(0.352407\pi\)
\(224\) 0 0
\(225\) 5.01170 + 0.349306i 0.334113 + 0.0232871i
\(226\) −3.49517 + 1.88495i −0.232495 + 0.125385i
\(227\) 19.3121 + 19.3121i 1.28179 + 1.28179i 0.939648 + 0.342143i \(0.111153\pi\)
0.342143 + 0.939648i \(0.388847\pi\)
\(228\) −4.42458 + 0.914355i −0.293025 + 0.0605547i
\(229\) 12.6547i 0.836246i −0.908390 0.418123i \(-0.862688\pi\)
0.908390 0.418123i \(-0.137312\pi\)
\(230\) 4.92792 14.5962i 0.324937 0.962448i
\(231\) 0 0
\(232\) 1.42067 + 1.69225i 0.0932716 + 0.111102i
\(233\) 12.2544 + 12.2544i 0.802814 + 0.802814i 0.983535 0.180720i \(-0.0578429\pi\)
−0.180720 + 0.983535i \(0.557843\pi\)
\(234\) 4.60159 + 8.53252i 0.300815 + 0.557788i
\(235\) 0.333552 9.58293i 0.0217585 0.625121i
\(236\) 15.4996 + 10.1906i 1.00894 + 0.663354i
\(237\) 7.72917 7.72917i 0.502064 0.502064i
\(238\) 0 0
\(239\) −21.7639 −1.40779 −0.703893 0.710306i \(-0.748557\pi\)
−0.703893 + 0.710306i \(0.748557\pi\)
\(240\) 6.51895 + 16.6699i 0.420796 + 1.07604i
\(241\) 20.8514 1.34316 0.671579 0.740933i \(-0.265616\pi\)
0.671579 + 0.740933i \(0.265616\pi\)
\(242\) 8.63573 28.8539i 0.555126 1.85480i
\(243\) −7.10226 + 7.10226i −0.455610 + 0.455610i
\(244\) 2.53929 + 1.66953i 0.162562 + 0.106881i
\(245\) 0 0
\(246\) −0.606383 1.12439i −0.0386616 0.0716883i
\(247\) −5.44567 5.44567i −0.346500 0.346500i
\(248\) 6.72407 + 8.00945i 0.426979 + 0.508601i
\(249\) 2.74099i 0.173703i
\(250\) 6.01442 + 14.6228i 0.380385 + 0.924828i
\(251\) 14.6586i 0.925243i −0.886556 0.462621i \(-0.846909\pi\)
0.886556 0.462621i \(-0.153091\pi\)
\(252\) 0 0
\(253\) −19.5770 19.5770i −1.23080 1.23080i
\(254\) 21.4249 11.5544i 1.34432 0.724990i
\(255\) −12.3863 + 11.5530i −0.775658 + 0.723478i
\(256\) −10.9723 + 11.6451i −0.685767 + 0.727821i
\(257\) 9.69389 9.69389i 0.604688 0.604688i −0.336865 0.941553i \(-0.609367\pi\)
0.941553 + 0.336865i \(0.109367\pi\)
\(258\) −2.35139 0.703750i −0.146391 0.0438136i
\(259\) 0 0
\(260\) −17.6382 + 24.8953i −1.09388 + 1.54394i
\(261\) 0.784913 0.0485849
\(262\) 4.37508 + 1.30942i 0.270293 + 0.0808965i
\(263\) 16.2797 16.2797i 1.00385 1.00385i 0.00385576 0.999993i \(-0.498773\pi\)
0.999993 0.00385576i \(-0.00122733\pi\)
\(264\) 32.0456 + 2.79573i 1.97227 + 0.172065i
\(265\) 0.163549 4.69874i 0.0100467 0.288641i
\(266\) 0 0
\(267\) −13.3349 13.3349i −0.816083 0.816083i
\(268\) −5.52944 26.7571i −0.337764 1.63445i
\(269\) 30.2134i 1.84214i −0.389396 0.921070i \(-0.627316\pi\)
0.389396 0.921070i \(-0.372684\pi\)
\(270\) −11.9631 4.03891i −0.728048 0.245800i
\(271\) 10.7605i 0.653656i −0.945084 0.326828i \(-0.894020\pi\)
0.945084 0.326828i \(-0.105980\pi\)
\(272\) −14.0728 5.58544i −0.853287 0.338667i
\(273\) 0 0
\(274\) −10.1031 18.7337i −0.610349 1.13174i
\(275\) 28.3465 + 1.97570i 1.70936 + 0.119139i
\(276\) 10.7119 16.2924i 0.644781 0.980690i
\(277\) 22.8225 22.8225i 1.37127 1.37127i 0.512709 0.858562i \(-0.328642\pi\)
0.858562 0.512709i \(-0.171358\pi\)
\(278\) 3.03851 10.1524i 0.182238 0.608898i
\(279\) 3.71501 0.222412
\(280\) 0 0
\(281\) 1.05159 0.0627325 0.0313663 0.999508i \(-0.490014\pi\)
0.0313663 + 0.999508i \(0.490014\pi\)
\(282\) 3.47973 11.6266i 0.207215 0.692352i
\(283\) −7.60096 + 7.60096i −0.451830 + 0.451830i −0.895962 0.444132i \(-0.853512\pi\)
0.444132 + 0.895962i \(0.353512\pi\)
\(284\) 12.9997 19.7722i 0.771392 1.17326i
\(285\) −5.04830 0.175716i −0.299036 0.0104085i
\(286\) 26.0269 + 48.2604i 1.53900 + 2.85370i
\(287\) 0 0
\(288\) 0.662156 + 5.64514i 0.0390179 + 0.332643i
\(289\) 2.67251i 0.157207i
\(290\) 1.09625 + 2.21376i 0.0643741 + 0.129997i
\(291\) 19.1720i 1.12388i
\(292\) −0.696887 3.37225i −0.0407822 0.197346i
\(293\) −19.1160 19.1160i −1.11677 1.11677i −0.992213 0.124555i \(-0.960250\pi\)
−0.124555 0.992213i \(-0.539750\pi\)
\(294\) 0 0
\(295\) 14.1457 + 15.1660i 0.823597 + 0.882998i
\(296\) −0.845055 + 9.68633i −0.0491178 + 0.563006i
\(297\) −16.0453 + 16.0453i −0.931043 + 0.931043i
\(298\) −5.87392 1.75801i −0.340267 0.101839i
\(299\) 33.2363 1.92211
\(300\) 2.67753 + 19.8320i 0.154587 + 1.14500i
\(301\) 0 0
\(302\) −19.1968 5.74544i −1.10465 0.330613i
\(303\) −17.0671 + 17.0671i −0.980477 + 0.980477i
\(304\) −1.78980 4.14551i −0.102652 0.237761i
\(305\) 2.31749 + 2.48464i 0.132699 + 0.142270i
\(306\) −4.73402 + 2.55306i −0.270626 + 0.145949i
\(307\) −0.726484 0.726484i −0.0414626 0.0414626i 0.686071 0.727534i \(-0.259334\pi\)
−0.727534 + 0.686071i \(0.759334\pi\)
\(308\) 0 0
\(309\) 21.9587i 1.24919i
\(310\) 5.18858 + 10.4778i 0.294692 + 0.595099i
\(311\) 13.3115i 0.754824i 0.926045 + 0.377412i \(0.123186\pi\)
−0.926045 + 0.377412i \(0.876814\pi\)
\(312\) −29.5754 + 24.8290i −1.67438 + 1.40567i
\(313\) 15.3769 + 15.3769i 0.869155 + 0.869155i 0.992379 0.123224i \(-0.0393234\pi\)
−0.123224 + 0.992379i \(0.539323\pi\)
\(314\) −3.35362 6.21847i −0.189256 0.350928i
\(315\) 0 0
\(316\) 9.12800 + 6.00145i 0.513490 + 0.337608i
\(317\) −10.9153 + 10.9153i −0.613063 + 0.613063i −0.943743 0.330680i \(-0.892722\pi\)
0.330680 + 0.943743i \(0.392722\pi\)
\(318\) 1.70620 5.70078i 0.0956787 0.319684i
\(319\) 4.43951 0.248565
\(320\) −14.9967 + 9.75185i −0.838342 + 0.545145i
\(321\) −19.7207 −1.10070
\(322\) 0 0
\(323\) 3.02137 3.02137i 0.168114 0.168114i
\(324\) −18.3906 12.0914i −1.02170 0.671745i
\(325\) −25.7393 + 22.3851i −1.42776 + 1.24170i
\(326\) 10.8478 + 20.1146i 0.600806 + 1.11405i
\(327\) −7.23996 7.23996i −0.400370 0.400370i
\(328\) 0.977820 0.820897i 0.0539911 0.0453264i
\(329\) 0 0
\(330\) 34.0746 + 11.5041i 1.87574 + 0.633280i
\(331\) 26.4652i 1.45466i −0.686287 0.727330i \(-0.740761\pi\)
0.686287 0.727330i \(-0.259239\pi\)
\(332\) −2.68267 + 0.554383i −0.147231 + 0.0304257i
\(333\) 2.44238 + 2.44238i 0.133841 + 0.133841i
\(334\) −9.38307 + 5.06029i −0.513418 + 0.276887i
\(335\) 1.06262 30.5289i 0.0580570 1.66797i
\(336\) 0 0
\(337\) −10.6349 + 10.6349i −0.579322 + 0.579322i −0.934717 0.355394i \(-0.884347\pi\)
0.355394 + 0.934717i \(0.384347\pi\)
\(338\) −45.4466 13.6018i −2.47197 0.739840i
\(339\) −5.61926 −0.305196
\(340\) −13.8124 9.78606i −0.749083 0.530724i
\(341\) 21.0123 1.13788
\(342\) −1.53670 0.459920i −0.0830950 0.0248696i
\(343\) 0 0
\(344\) 0.213193 2.44370i 0.0114946 0.131755i
\(345\) 15.9417 14.8693i 0.858275 0.800537i
\(346\) −5.46874 + 2.94930i −0.294002 + 0.158555i
\(347\) −3.70208 3.70208i −0.198738 0.198738i 0.600721 0.799459i \(-0.294880\pi\)
−0.799459 + 0.600721i \(0.794880\pi\)
\(348\) 0.632754 + 3.06191i 0.0339192 + 0.164136i
\(349\) 27.3545i 1.46426i −0.681168 0.732128i \(-0.738527\pi\)
0.681168 0.732128i \(-0.261473\pi\)
\(350\) 0 0
\(351\) 27.2404i 1.45399i
\(352\) 3.74520 + 31.9293i 0.199620 + 1.70184i
\(353\) −10.5919 10.5919i −0.563748 0.563748i 0.366622 0.930370i \(-0.380514\pi\)
−0.930370 + 0.366622i \(0.880514\pi\)
\(354\) 12.4595 + 23.1031i 0.662217 + 1.22792i
\(355\) 19.3466 18.0451i 1.02681 0.957733i
\(356\) 10.3541 15.7483i 0.548767 0.834656i
\(357\) 0 0
\(358\) −0.275363 + 0.920050i −0.0145534 + 0.0486262i
\(359\) −23.9822 −1.26573 −0.632867 0.774260i \(-0.718122\pi\)
−0.632867 + 0.774260i \(0.718122\pi\)
\(360\) −0.772186 + 6.30764i −0.0406978 + 0.332442i
\(361\) −17.7257 −0.932932
\(362\) −3.18998 + 10.6584i −0.167661 + 0.560194i
\(363\) 30.1365 30.1365i 1.58175 1.58175i
\(364\) 0 0
\(365\) 0.133924 3.84762i 0.00700989 0.201394i
\(366\) 2.04124 + 3.78498i 0.106697 + 0.197844i
\(367\) −9.57685 9.57685i −0.499908 0.499908i 0.411501 0.911409i \(-0.365005\pi\)
−0.911409 + 0.411501i \(0.865005\pi\)
\(368\) 18.1124 + 7.18874i 0.944172 + 0.374739i
\(369\) 0.453541i 0.0236104i
\(370\) −3.47731 + 10.2996i −0.180777 + 0.535452i
\(371\) 0 0
\(372\) 2.99484 + 14.4921i 0.155275 + 0.751380i
\(373\) 13.0073 + 13.0073i 0.673494 + 0.673494i 0.958520 0.285026i \(-0.0920022\pi\)
−0.285026 + 0.958520i \(0.592002\pi\)
\(374\) −26.7759 + 14.4403i −1.38455 + 0.746688i
\(375\) −2.33113 + 22.2522i −0.120379 + 1.14910i
\(376\) 12.0830 + 1.05415i 0.623133 + 0.0543634i
\(377\) −3.76852 + 3.76852i −0.194089 + 0.194089i
\(378\) 0 0
\(379\) 27.8562 1.43088 0.715440 0.698675i \(-0.246226\pi\)
0.715440 + 0.698675i \(0.246226\pi\)
\(380\) −0.849076 4.97643i −0.0435567 0.255286i
\(381\) 34.4452 1.76468
\(382\) −14.4738 4.33187i −0.740542 0.221638i
\(383\) −9.34843 + 9.34843i −0.477683 + 0.477683i −0.904390 0.426707i \(-0.859673\pi\)
0.426707 + 0.904390i \(0.359673\pi\)
\(384\) −21.4876 + 7.13385i −1.09654 + 0.364048i
\(385\) 0 0
\(386\) −14.0463 + 7.57518i −0.714938 + 0.385567i
\(387\) −0.616170 0.616170i −0.0313217 0.0313217i
\(388\) 18.7641 3.87766i 0.952602 0.196859i
\(389\) 16.8299i 0.853308i 0.904415 + 0.426654i \(0.140308\pi\)
−0.904415 + 0.426654i \(0.859692\pi\)
\(390\) −38.6899 + 19.1592i −1.95914 + 0.970162i
\(391\) 18.4402i 0.932561i
\(392\) 0 0
\(393\) 4.56955 + 4.56955i 0.230503 + 0.230503i
\(394\) 3.12900 + 5.80195i 0.157637 + 0.292298i
\(395\) 8.33068 + 8.93152i 0.419162 + 0.449394i
\(396\) 9.54256 + 6.27401i 0.479532 + 0.315281i
\(397\) −7.34767 + 7.34767i −0.368769 + 0.368769i −0.867028 0.498259i \(-0.833973\pi\)
0.498259 + 0.867028i \(0.333973\pi\)
\(398\) −3.88380 + 12.9767i −0.194677 + 0.650461i
\(399\) 0 0
\(400\) −18.8685 + 6.63172i −0.943425 + 0.331586i
\(401\) 22.1972 1.10848 0.554239 0.832358i \(-0.313009\pi\)
0.554239 + 0.832358i \(0.313009\pi\)
\(402\) 11.0856 37.0394i 0.552899 1.84736i
\(403\) −17.8365 + 17.8365i −0.888501 + 0.888501i
\(404\) −20.1559 13.2520i −1.00279 0.659312i
\(405\) −16.7842 17.9948i −0.834015 0.894168i
\(406\) 0 0
\(407\) 13.8142 + 13.8142i 0.684746 + 0.684746i
\(408\) −13.7757 16.4091i −0.681998 0.812369i
\(409\) 9.21458i 0.455632i −0.973704 0.227816i \(-0.926842\pi\)
0.973704 0.227816i \(-0.0731585\pi\)
\(410\) 1.27916 0.633439i 0.0631734 0.0312833i
\(411\) 30.1185i 1.48564i
\(412\) 21.4916 4.44130i 1.05881 0.218807i
\(413\) 0 0
\(414\) 6.09292 3.28592i 0.299451 0.161494i
\(415\) −3.06084 0.106538i −0.150251 0.00522976i
\(416\) −30.2826 23.9243i −1.48473 1.17299i
\(417\) 10.6036 10.6036i 0.519262 0.519262i
\(418\) −8.69164 2.60133i −0.425122 0.127235i
\(419\) −18.5156 −0.904546 −0.452273 0.891880i \(-0.649387\pi\)
−0.452273 + 0.891880i \(0.649387\pi\)
\(420\) 0 0
\(421\) 25.5501 1.24524 0.622619 0.782525i \(-0.286069\pi\)
0.622619 + 0.782525i \(0.286069\pi\)
\(422\) −26.0611 7.79987i −1.26864 0.379692i
\(423\) 3.04669 3.04669i 0.148135 0.148135i
\(424\) 5.92458 + 0.516873i 0.287723 + 0.0251016i
\(425\) −12.4197 14.2807i −0.602445 0.692715i
\(426\) 29.4716 15.8941i 1.42790 0.770070i
\(427\) 0 0
\(428\) −3.98864 19.3011i −0.192798 0.932953i
\(429\) 77.5893i 3.74605i
\(430\) 0.877267 2.59842i 0.0423056 0.125307i
\(431\) 10.4213i 0.501978i −0.967990 0.250989i \(-0.919244\pi\)
0.967990 0.250989i \(-0.0807559\pi\)
\(432\) 5.89188 14.8449i 0.283473 0.714223i
\(433\) 20.3802 + 20.3802i 0.979412 + 0.979412i 0.999792 0.0203805i \(-0.00648777\pi\)
−0.0203805 + 0.999792i \(0.506488\pi\)
\(434\) 0 0
\(435\) −0.121599 + 3.49354i −0.00583023 + 0.167502i
\(436\) 5.62159 8.55025i 0.269225 0.409483i
\(437\) −3.88866 + 3.88866i −0.186020 + 0.186020i
\(438\) 1.39714 4.66816i 0.0667579 0.223053i
\(439\) −20.8364 −0.994466 −0.497233 0.867617i \(-0.665651\pi\)
−0.497233 + 0.867617i \(0.665651\pi\)
\(440\) −4.36753 + 35.6764i −0.208214 + 1.70081i
\(441\) 0 0
\(442\) 10.4712 34.9867i 0.498066 1.66415i
\(443\) −18.8907 + 18.8907i −0.897525 + 0.897525i −0.995217 0.0976921i \(-0.968854\pi\)
0.0976921 + 0.995217i \(0.468854\pi\)
\(444\) −7.55869 + 11.4965i −0.358720 + 0.545600i
\(445\) 15.4093 14.3727i 0.730470 0.681330i
\(446\) −6.33948 11.7550i −0.300183 0.556616i
\(447\) −6.13501 6.13501i −0.290176 0.290176i
\(448\) 0 0
\(449\) 27.5815i 1.30165i −0.759227 0.650826i \(-0.774423\pi\)
0.759227 0.650826i \(-0.225577\pi\)
\(450\) −2.50545 + 6.64838i −0.118108 + 0.313408i
\(451\) 2.56525i 0.120793i
\(452\) −1.13653 5.49971i −0.0534580 0.258684i
\(453\) −20.0501 20.0501i −0.942035 0.942035i
\(454\) −33.9956 + 18.3339i −1.59549 + 0.860451i
\(455\) 0 0
\(456\) 0.555326 6.36534i 0.0260055 0.298084i
\(457\) 0.972763 0.972763i 0.0455040 0.0455040i −0.683989 0.729493i \(-0.739756\pi\)
0.729493 + 0.683989i \(0.239756\pi\)
\(458\) 17.1450 + 5.13136i 0.801134 + 0.239773i
\(459\) 15.1136 0.705440
\(460\) 17.7773 + 12.5952i 0.828870 + 0.587252i
\(461\) −17.6688 −0.822918 −0.411459 0.911428i \(-0.634981\pi\)
−0.411459 + 0.911428i \(0.634981\pi\)
\(462\) 0 0
\(463\) 5.55471 5.55471i 0.258149 0.258149i −0.566152 0.824301i \(-0.691568\pi\)
0.824301 + 0.566152i \(0.191568\pi\)
\(464\) −2.86878 + 1.23858i −0.133180 + 0.0574998i
\(465\) −0.575532 + 16.5350i −0.0266897 + 0.766792i
\(466\) −21.5718 + 11.6337i −0.999293 + 0.538919i
\(467\) −9.27108 9.27108i −0.429014 0.429014i 0.459278 0.888293i \(-0.348108\pi\)
−0.888293 + 0.459278i \(0.848108\pi\)
\(468\) −13.4261 + 2.77454i −0.620619 + 0.128253i
\(469\) 0 0
\(470\) 12.8480 + 4.33769i 0.592635 + 0.200083i
\(471\) 9.99756i 0.460663i
\(472\) −20.0916 + 16.8672i −0.924790 + 0.776376i
\(473\) −3.48510 3.48510i −0.160245 0.160245i
\(474\) 7.33764 + 13.6059i 0.337029 + 0.624938i
\(475\) 0.392441 5.63057i 0.0180064 0.258348i
\(476\) 0 0
\(477\) 1.49387 1.49387i 0.0683994 0.0683994i
\(478\) 8.82504 29.4864i 0.403648 1.34868i
\(479\) 2.54348 0.116214 0.0581072 0.998310i \(-0.481493\pi\)
0.0581072 + 0.998310i \(0.481493\pi\)
\(480\) −25.2283 + 2.07262i −1.15151 + 0.0946015i
\(481\) −23.4527 −1.06935
\(482\) −8.45506 + 28.2502i −0.385117 + 1.28676i
\(483\) 0 0
\(484\) 35.5906 + 23.4000i 1.61775 + 1.06364i
\(485\) 21.4092 + 0.745188i 0.972141 + 0.0338372i
\(486\) −6.74249 12.5023i −0.305845 0.567115i
\(487\) 2.60265 + 2.60265i 0.117937 + 0.117937i 0.763612 0.645675i \(-0.223424\pi\)
−0.645675 + 0.763612i \(0.723424\pi\)
\(488\) −3.29159 + 2.76335i −0.149003 + 0.125091i
\(489\) 32.3388i 1.46241i
\(490\) 0 0
\(491\) 22.3410i 1.00823i −0.863635 0.504117i \(-0.831818\pi\)
0.863635 0.504117i \(-0.168182\pi\)
\(492\) 1.76924 0.365620i 0.0797636 0.0164834i
\(493\) −2.09086 2.09086i −0.0941674 0.0941674i
\(494\) 9.58615 5.16982i 0.431301 0.232601i
\(495\) 8.70902 + 9.33716i 0.391442 + 0.419674i
\(496\) −13.5780 + 5.86225i −0.609672 + 0.263223i
\(497\) 0 0
\(498\) −3.71358 1.11144i −0.166410 0.0498050i
\(499\) −9.95656 −0.445717 −0.222858 0.974851i \(-0.571539\pi\)
−0.222858 + 0.974851i \(0.571539\pi\)
\(500\) −22.2503 + 2.21913i −0.995063 + 0.0992427i
\(501\) −15.0854 −0.673964
\(502\) 19.8600 + 5.94392i 0.886394 + 0.265290i
\(503\) −8.22634 + 8.22634i −0.366794 + 0.366794i −0.866307 0.499512i \(-0.833513\pi\)
0.499512 + 0.866307i \(0.333513\pi\)
\(504\) 0 0
\(505\) −18.3953 19.7220i −0.818579 0.877618i
\(506\) 34.4619 18.5853i 1.53202 0.826219i
\(507\) −47.4667 47.4667i −2.10807 2.10807i
\(508\) 6.96678 + 33.7124i 0.309101 + 1.49575i
\(509\) 32.8461i 1.45588i −0.685643 0.727938i \(-0.740479\pi\)
0.685643 0.727938i \(-0.259521\pi\)
\(510\) −10.6299 21.4660i −0.470700 0.950529i
\(511\) 0 0
\(512\) −11.3281 19.5876i −0.500636 0.865658i
\(513\) 3.18714 + 3.18714i 0.140716 + 0.140716i
\(514\) 9.20284 + 17.0644i 0.405920 + 0.752678i
\(515\) 24.5211 + 0.853505i 1.08053 + 0.0376099i
\(516\) 1.90693 2.90038i 0.0839479 0.127682i
\(517\) 17.2323 17.2323i 0.757874 0.757874i
\(518\) 0 0
\(519\) −8.79222 −0.385936
\(520\) −26.5768 33.9917i −1.16547 1.49063i
\(521\) −1.79803 −0.0787730 −0.0393865 0.999224i \(-0.512540\pi\)
−0.0393865 + 0.999224i \(0.512540\pi\)
\(522\) −0.318275 + 1.06343i −0.0139305 + 0.0465449i
\(523\) −18.1484 + 18.1484i −0.793574 + 0.793574i −0.982073 0.188499i \(-0.939638\pi\)
0.188499 + 0.982073i \(0.439638\pi\)
\(524\) −3.54811 + 5.39655i −0.155000 + 0.235750i
\(525\) 0 0
\(526\) 15.4550 + 28.6575i 0.673871 + 1.24953i
\(527\) −9.89608 9.89608i −0.431080 0.431080i
\(528\) −16.7819 + 42.2829i −0.730340 + 1.84013i
\(529\) 0.733480i 0.0318905i
\(530\) 6.29970 + 2.12688i 0.273641 + 0.0923856i
\(531\) 9.31904i 0.404412i
\(532\) 0 0
\(533\) 2.17754 + 2.17754i 0.0943198 + 0.0943198i
\(534\) 23.4738 12.6594i 1.01581 0.547826i
\(535\) 0.766514 22.0219i 0.0331393 0.952090i
\(536\) 38.4935 + 3.35826i 1.66267 + 0.145055i
\(537\) −0.960946 + 0.960946i −0.0414679 + 0.0414679i
\(538\) 40.9341 + 12.2512i 1.76479 + 0.528188i
\(539\) 0 0
\(540\) 10.3230 14.5702i 0.444230 0.627003i
\(541\) −25.3319 −1.08910 −0.544552 0.838727i \(-0.683300\pi\)
−0.544552 + 0.838727i \(0.683300\pi\)
\(542\) 14.5787 + 4.36330i 0.626211 + 0.187420i
\(543\) −11.1322 + 11.1322i −0.477728 + 0.477728i
\(544\) 13.2737 16.8014i 0.569106 0.720355i
\(545\) 8.36620 7.80339i 0.358369 0.334261i
\(546\) 0 0
\(547\) 17.3594 + 17.3594i 0.742233 + 0.742233i 0.973007 0.230774i \(-0.0741260\pi\)
−0.230774 + 0.973007i \(0.574126\pi\)
\(548\) 29.4777 6.09167i 1.25923 0.260223i
\(549\) 1.52673i 0.0651594i
\(550\) −14.1710 + 37.6036i −0.604252 + 1.60342i
\(551\) 0.881837i 0.0375675i
\(552\) 17.7300 + 21.1193i 0.754639 + 0.898897i
\(553\) 0 0
\(554\) 21.6664 + 40.1750i 0.920518 + 1.70687i
\(555\) −11.2490 + 10.4923i −0.477496 + 0.445373i
\(556\) 12.5227 + 8.23337i 0.531080 + 0.349173i
\(557\) −19.9014 + 19.9014i −0.843247 + 0.843247i −0.989280 0.146032i \(-0.953350\pi\)
0.146032 + 0.989280i \(0.453350\pi\)
\(558\) −1.50640 + 5.03323i −0.0637711 + 0.213074i
\(559\) 5.91672 0.250250
\(560\) 0 0
\(561\) −43.0482 −1.81750
\(562\) −0.426409 + 1.42473i −0.0179870 + 0.0600986i
\(563\) −17.2935 + 17.2935i −0.728833 + 0.728833i −0.970387 0.241554i \(-0.922343\pi\)
0.241554 + 0.970387i \(0.422343\pi\)
\(564\) 14.3411 + 9.42892i 0.603868 + 0.397029i
\(565\) 0.218413 6.27498i 0.00918869 0.263990i
\(566\) −7.21592 13.3802i −0.303308 0.562410i
\(567\) 0 0
\(568\) 21.5167 + 25.6299i 0.902822 + 1.07541i
\(569\) 40.4108i 1.69411i −0.531505 0.847055i \(-0.678373\pi\)
0.531505 0.847055i \(-0.321627\pi\)
\(570\) 2.28510 6.76836i 0.0957125 0.283496i
\(571\) 15.6638i 0.655512i −0.944762 0.327756i \(-0.893708\pi\)
0.944762 0.327756i \(-0.106292\pi\)
\(572\) −75.9386 + 15.6930i −3.17515 + 0.656156i
\(573\) −15.1171 15.1171i −0.631526 0.631526i
\(574\) 0 0
\(575\) 15.9848 + 18.3800i 0.666612 + 0.766498i
\(576\) −7.91673 1.39194i −0.329864 0.0579974i
\(577\) −8.05576 + 8.05576i −0.335365 + 0.335365i −0.854620 0.519254i \(-0.826210\pi\)
0.519254 + 0.854620i \(0.326210\pi\)
\(578\) −3.62081 1.08368i −0.150606 0.0450751i
\(579\) −22.5826 −0.938499
\(580\) −3.44380 + 0.587579i −0.142996 + 0.0243979i
\(581\) 0 0
\(582\) 25.9749 + 7.77406i 1.07669 + 0.322245i
\(583\) 8.44939 8.44939i 0.349938 0.349938i
\(584\) 4.85142 + 0.423248i 0.200753 + 0.0175141i
\(585\) −15.3187 0.533196i −0.633349 0.0220449i
\(586\) 33.6503 18.1476i 1.39008 0.749672i
\(587\) 10.0769 + 10.0769i 0.415916 + 0.415916i 0.883794 0.467877i \(-0.154981\pi\)
−0.467877 + 0.883794i \(0.654981\pi\)
\(588\) 0 0
\(589\) 4.17376i 0.171977i
\(590\) −26.2834 + 13.0155i −1.08207 + 0.535839i
\(591\) 9.32793i 0.383700i
\(592\) −12.7807 5.07262i −0.525284 0.208484i
\(593\) 7.85987 + 7.85987i 0.322766 + 0.322766i 0.849827 0.527061i \(-0.176706\pi\)
−0.527061 + 0.849827i \(0.676706\pi\)
\(594\) −15.2325 28.2449i −0.624997 1.15890i
\(595\) 0 0
\(596\) 4.76363 7.24533i 0.195126 0.296780i
\(597\) −13.5535 + 13.5535i −0.554706 + 0.554706i
\(598\) −13.4770 + 45.0297i −0.551116 + 1.84140i
\(599\) −11.3067 −0.461978 −0.230989 0.972956i \(-0.574196\pi\)
−0.230989 + 0.972956i \(0.574196\pi\)
\(600\) −27.9548 4.41407i −1.14125 0.180204i
\(601\) −37.1086 −1.51369 −0.756846 0.653593i \(-0.773261\pi\)
−0.756846 + 0.653593i \(0.773261\pi\)
\(602\) 0 0
\(603\) 9.70602 9.70602i 0.395260 0.395260i
\(604\) 15.5682 23.6788i 0.633462 0.963475i
\(605\) 32.4818 + 34.8245i 1.32057 + 1.41582i
\(606\) −16.2025 30.0436i −0.658182 1.22044i
\(607\) 20.9421 + 20.9421i 0.850015 + 0.850015i 0.990135 0.140120i \(-0.0447487\pi\)
−0.140120 + 0.990135i \(0.544749\pi\)
\(608\) 6.34223 0.743923i 0.257211 0.0301700i
\(609\) 0 0
\(610\) −4.30599 + 2.13232i −0.174345 + 0.0863351i
\(611\) 29.2555i 1.18355i
\(612\) −1.53937 7.44906i −0.0622255 0.301110i
\(613\) −3.30886 3.30886i −0.133643 0.133643i 0.637121 0.770764i \(-0.280125\pi\)
−0.770764 + 0.637121i \(0.780125\pi\)
\(614\) 1.27885 0.689683i 0.0516101 0.0278334i
\(615\) 2.01865 + 0.0702628i 0.0813997 + 0.00283327i
\(616\) 0 0
\(617\) 7.18275 7.18275i 0.289167 0.289167i −0.547584 0.836751i \(-0.684452\pi\)
0.836751 + 0.547584i \(0.184452\pi\)
\(618\) 29.7505 + 8.90406i 1.19674 + 0.358174i
\(619\) 32.0811 1.28945 0.644725 0.764415i \(-0.276972\pi\)
0.644725 + 0.764415i \(0.276972\pi\)
\(620\) −16.2996 + 2.78103i −0.654608 + 0.111689i
\(621\) −19.4519 −0.780578
\(622\) −18.0348 5.39767i −0.723131 0.216427i
\(623\) 0 0
\(624\) −21.6467 50.1377i −0.866562 2.00712i
\(625\) −24.7583 3.46806i −0.990331 0.138723i
\(626\) −27.0684 + 14.5980i −1.08187 + 0.583453i
\(627\) −9.07798 9.07798i −0.362540 0.362540i
\(628\) 9.78486 2.02207i 0.390458 0.0806896i
\(629\) 13.0120i 0.518824i
\(630\) 0 0
\(631\) 18.7069i 0.744710i −0.928090 0.372355i \(-0.878550\pi\)
0.928090 0.372355i \(-0.121450\pi\)
\(632\) −11.8323 + 9.93340i −0.470663 + 0.395130i
\(633\) −27.2195 27.2195i −1.08188 1.08188i
\(634\) −10.3624 19.2144i −0.411542 0.763103i
\(635\) −1.33884 + 38.4647i −0.0531301 + 1.52643i
\(636\) 7.03177 + 4.62323i 0.278828 + 0.183323i
\(637\) 0 0
\(638\) −1.80018 + 6.01481i −0.0712698 + 0.238129i
\(639\) 11.8879 0.470277
\(640\) −7.13112 24.2724i −0.281882 0.959449i
\(641\) −29.6087 −1.16947 −0.584736 0.811224i \(-0.698802\pi\)
−0.584736 + 0.811224i \(0.698802\pi\)
\(642\) 7.99654 26.7182i 0.315598 1.05449i
\(643\) −15.8819 + 15.8819i −0.626323 + 0.626323i −0.947141 0.320818i \(-0.896042\pi\)
0.320818 + 0.947141i \(0.396042\pi\)
\(644\) 0 0
\(645\) 2.83795 2.64703i 0.111744 0.104227i
\(646\) 2.86832 + 5.31860i 0.112853 + 0.209257i
\(647\) −17.6813 17.6813i −0.695124 0.695124i 0.268231 0.963355i \(-0.413561\pi\)
−0.963355 + 0.268231i \(0.913561\pi\)
\(648\) 23.8391 20.0133i 0.936488 0.786198i
\(649\) 52.7091i 2.06901i
\(650\) −19.8911 43.9494i −0.780191 1.72384i
\(651\) 0 0
\(652\) −31.6507 + 6.54073i −1.23954 + 0.256155i
\(653\) 29.2577 + 29.2577i 1.14494 + 1.14494i 0.987533 + 0.157411i \(0.0503147\pi\)
0.157411 + 0.987533i \(0.449685\pi\)
\(654\) 12.7447 6.87321i 0.498356 0.268764i
\(655\) −5.28039 + 4.92517i −0.206322 + 0.192442i
\(656\) 0.715682 + 1.65765i 0.0279427 + 0.0647204i
\(657\) 1.22327 1.22327i 0.0477243 0.0477243i
\(658\) 0 0
\(659\) 32.9086 1.28194 0.640968 0.767568i \(-0.278533\pi\)
0.640968 + 0.767568i \(0.278533\pi\)
\(660\) −29.4031 + 41.5006i −1.14451 + 1.61541i
\(661\) −17.9700 −0.698953 −0.349477 0.936945i \(-0.613641\pi\)
−0.349477 + 0.936945i \(0.613641\pi\)
\(662\) 35.8560 + 10.7314i 1.39358 + 0.417088i
\(663\) 36.5419 36.5419i 1.41917 1.41917i
\(664\) 0.336700 3.85937i 0.0130665 0.149773i
\(665\) 0 0
\(666\) −4.29938 + 2.31866i −0.166598 + 0.0898461i
\(667\) 2.69104 + 2.69104i 0.104197 + 0.104197i
\(668\) −3.05112 14.7644i −0.118051 0.571252i
\(669\) 18.8988i 0.730669i
\(670\) 40.9308 + 13.8189i 1.58129 + 0.533869i
\(671\) 8.63530i 0.333362i
\(672\) 0 0
\(673\) 6.28219 + 6.28219i 0.242161 + 0.242161i 0.817744 0.575583i \(-0.195225\pi\)
−0.575583 + 0.817744i \(0.695225\pi\)
\(674\) −10.0962 18.7210i −0.388892 0.721105i
\(675\) 15.0642 13.1011i 0.579821 0.504262i
\(676\) 36.8564 56.0573i 1.41755 2.15605i
\(677\) 19.2113 19.2113i 0.738351 0.738351i −0.233908 0.972259i \(-0.575151\pi\)
0.972259 + 0.233908i \(0.0751513\pi\)
\(678\) 2.27856 7.61317i 0.0875075 0.292382i
\(679\) 0 0
\(680\) 18.8593 14.7454i 0.723221 0.565460i
\(681\) −54.6555 −2.09440
\(682\) −8.52030 + 28.4682i −0.326259 + 1.09011i
\(683\) −15.9151 + 15.9151i −0.608975 + 0.608975i −0.942678 0.333703i \(-0.891702\pi\)
0.333703 + 0.942678i \(0.391702\pi\)
\(684\) 1.24623 1.89548i 0.0476508 0.0724753i
\(685\) 33.6331 + 1.17066i 1.28505 + 0.0447287i
\(686\) 0 0
\(687\) 17.9071 + 17.9071i 0.683199 + 0.683199i
\(688\) 3.22436 + 1.27974i 0.122927 + 0.0487895i
\(689\) 14.3447i 0.546489i
\(690\) 13.6812 + 27.6278i 0.520836 + 1.05177i
\(691\) 11.4960i 0.437327i −0.975800 0.218663i \(-0.929830\pi\)
0.975800 0.218663i \(-0.0701697\pi\)
\(692\) −1.77829 8.60516i −0.0676003 0.327119i
\(693\) 0 0
\(694\) 6.51686 3.51455i 0.247377 0.133410i
\(695\) 11.4288 + 12.2531i 0.433520 + 0.464788i
\(696\) −4.40496 0.384298i −0.166969 0.0145668i
\(697\) −1.20815 + 1.20815i −0.0457618 + 0.0457618i
\(698\) 37.0609 + 11.0920i 1.40278 + 0.419839i
\(699\) −34.6814 −1.31177
\(700\) 0 0
\(701\) −2.54230 −0.0960214 −0.0480107 0.998847i \(-0.515288\pi\)
−0.0480107 + 0.998847i \(0.515288\pi\)
\(702\) 36.9063 + 11.0457i 1.39294 + 0.416894i
\(703\) 2.74397 2.74397i 0.103491 0.103491i
\(704\) −44.7775 7.87289i −1.68762 0.296721i
\(705\) 13.0884 + 14.0324i 0.492937 + 0.528490i
\(706\) 18.6451 10.0553i 0.701719 0.378437i
\(707\) 0 0
\(708\) −36.3532 + 7.51251i −1.36624 + 0.282337i
\(709\) 10.1545i 0.381362i 0.981652 + 0.190681i \(0.0610696\pi\)
−0.981652 + 0.190681i \(0.938930\pi\)
\(710\) 16.6032 + 33.5285i 0.623109 + 1.25830i
\(711\) 5.48815i 0.205822i
\(712\) 17.1378 + 20.4139i 0.642266 + 0.765043i
\(713\) 12.7368 + 12.7368i 0.476995 + 0.476995i
\(714\) 0 0
\(715\) −86.6434 3.01579i −3.24028 0.112784i
\(716\) −1.13486 0.746143i −0.0424117 0.0278847i
\(717\) 30.7971 30.7971i 1.15014 1.15014i
\(718\) 9.72457 32.4920i 0.362918 1.21259i
\(719\) 37.4085 1.39510 0.697550 0.716536i \(-0.254273\pi\)
0.697550 + 0.716536i \(0.254273\pi\)
\(720\) −8.23270 3.60387i −0.306814 0.134308i
\(721\) 0 0
\(722\) 7.18761 24.0154i 0.267495 0.893761i
\(723\) −29.5060 + 29.5060i −1.09734 + 1.09734i
\(724\) −13.1469 8.64378i −0.488601 0.321244i
\(725\) −3.89648 0.271577i −0.144711 0.0100861i
\(726\) 28.6099 + 53.0500i 1.06181 + 1.96887i
\(727\) 8.42845 + 8.42845i 0.312594 + 0.312594i 0.845914 0.533320i \(-0.179056\pi\)
−0.533320 + 0.845914i \(0.679056\pi\)
\(728\) 0 0
\(729\) 12.9141i 0.478298i
\(730\) 5.15859 + 1.74162i 0.190928 + 0.0644602i
\(731\) 3.28272i 0.121416i
\(732\) −5.95572 + 1.23077i −0.220130 + 0.0454906i
\(733\) −5.28196 5.28196i −0.195093 0.195093i 0.602799 0.797893i \(-0.294052\pi\)
−0.797893 + 0.602799i \(0.794052\pi\)
\(734\) 16.8584 9.09173i 0.622254 0.335582i
\(735\) 0 0
\(736\) −17.0839 + 21.6243i −0.629723 + 0.797082i
\(737\) 54.8979 54.8979i 2.02219 2.02219i
\(738\) 0.614473 + 0.183907i 0.0226191 + 0.00676969i
\(739\) 2.38865 0.0878677 0.0439339 0.999034i \(-0.486011\pi\)
0.0439339 + 0.999034i \(0.486011\pi\)
\(740\) −12.5443 8.88758i −0.461136 0.326714i
\(741\) 15.4119 0.566169
\(742\) 0 0
\(743\) −14.6605 + 14.6605i −0.537841 + 0.537841i −0.922894 0.385053i \(-0.874183\pi\)
0.385053 + 0.922894i \(0.374183\pi\)
\(744\) −20.8488 1.81889i −0.764353 0.0666838i
\(745\) 7.08937 6.61245i 0.259734 0.242262i
\(746\) −22.8971 + 12.3484i −0.838324 + 0.452108i
\(747\) −0.973129 0.973129i −0.0356049 0.0356049i
\(748\) −8.70679 42.1323i −0.318352 1.54051i
\(749\) 0 0
\(750\) −29.2029 12.1814i −1.06634 0.444801i
\(751\) 0.813636i 0.0296900i 0.999890 + 0.0148450i \(0.00472549\pi\)
−0.999890 + 0.0148450i \(0.995275\pi\)
\(752\) −6.32773 + 15.9430i −0.230749 + 0.581382i
\(753\) 20.7427 + 20.7427i 0.755908 + 0.755908i
\(754\) −3.57763 6.63383i −0.130289 0.241590i
\(755\) 23.1691 21.6104i 0.843209 0.786484i
\(756\) 0 0
\(757\) 11.0046 11.0046i 0.399968 0.399968i −0.478254 0.878222i \(-0.658730\pi\)
0.878222 + 0.478254i \(0.158730\pi\)
\(758\) −11.2954 + 37.7406i −0.410269 + 1.37080i
\(759\) 55.4052 2.01108
\(760\) 7.08654 + 0.867539i 0.257056 + 0.0314690i
\(761\) −2.31392 −0.0838795 −0.0419397 0.999120i \(-0.513354\pi\)
−0.0419397 + 0.999120i \(0.513354\pi\)
\(762\) −13.9672 + 46.6676i −0.505979 + 1.69059i
\(763\) 0 0
\(764\) 11.7379 17.8530i 0.424664 0.645900i
\(765\) 0.295828 8.49912i 0.0106957 0.307286i
\(766\) −8.87488 16.4563i −0.320662 0.594590i
\(767\) −44.7426 44.7426i −1.61556 1.61556i
\(768\) −0.952151 32.0049i −0.0343578 1.15488i
\(769\) 18.4165i 0.664117i 0.943259 + 0.332059i \(0.107743\pi\)
−0.943259 + 0.332059i \(0.892257\pi\)
\(770\) 0 0
\(771\) 27.4348i 0.988040i
\(772\) −4.56748 22.1021i −0.164387 0.795472i
\(773\) 12.3700 + 12.3700i 0.444919 + 0.444919i 0.893661 0.448743i \(-0.148128\pi\)
−0.448743 + 0.893661i \(0.648128\pi\)
\(774\) 1.08466 0.584958i 0.0389873 0.0210259i
\(775\) −18.4421 1.28538i −0.662461 0.0461723i
\(776\) −2.35506 + 26.9946i −0.0845419 + 0.969049i
\(777\) 0 0
\(778\) −22.8017 6.82435i −0.817480 0.244665i
\(779\) −0.509546 −0.0182564
\(780\) −10.2691 60.1873i −0.367693 2.15505i
\(781\) 67.2386 2.40598
\(782\) −24.9834 7.47733i −0.893406 0.267389i
\(783\) 2.20557 2.20557i 0.0788206 0.0788206i
\(784\) 0 0
\(785\) 11.1642 + 0.388591i 0.398467 + 0.0138694i
\(786\) −8.04390 + 4.33808i −0.286916 + 0.154734i
\(787\) 16.2361 + 16.2361i 0.578754 + 0.578754i 0.934560 0.355806i \(-0.115794\pi\)
−0.355806 + 0.934560i \(0.615794\pi\)
\(788\) −9.12947 + 1.88664i −0.325224 + 0.0672086i
\(789\) 46.0734i 1.64025i
\(790\) −15.4787 + 7.66504i −0.550709 + 0.272710i
\(791\) 0 0
\(792\) −12.3697 + 10.3845i −0.439537 + 0.368999i
\(793\) −7.33016 7.33016i −0.260302 0.260302i
\(794\) −6.97547 12.9343i −0.247550 0.459021i
\(795\) 6.41755 + 6.88041i 0.227607 + 0.244023i
\(796\) −16.0064 10.5238i −0.567331 0.373007i
\(797\) −2.27256 + 2.27256i −0.0804981 + 0.0804981i −0.746209 0.665711i \(-0.768128\pi\)
0.665711 + 0.746209i \(0.268128\pi\)
\(798\) 0 0
\(799\) −16.2316 −0.574232
\(800\) −1.33388 28.2528i −0.0471599 0.998887i
\(801\) 9.46854 0.334554
\(802\) −9.00077 + 30.0736i −0.317828 + 1.06194i
\(803\) 6.91889 6.91889i 0.244162 0.244162i
\(804\) 45.6872 + 30.0383i 1.61126 + 1.05937i
\(805\) 0 0
\(806\) −16.9330 31.3981i −0.596440 1.10595i
\(807\) 42.7536 + 42.7536i 1.50500 + 1.50500i
\(808\) 26.1273 21.9343i 0.919155 0.771646i
\(809\) 10.4295i 0.366680i 0.983050 + 0.183340i \(0.0586910\pi\)
−0.983050 + 0.183340i \(0.941309\pi\)
\(810\) 31.1858 15.4431i 1.09576 0.542617i
\(811\) 13.6718i 0.480081i −0.970763 0.240040i \(-0.922839\pi\)
0.970763 0.240040i \(-0.0771607\pi\)
\(812\) 0 0
\(813\) 15.2268 + 15.2268i 0.534026 + 0.534026i
\(814\) −24.3175 + 13.1145i −0.852329 + 0.459662i
\(815\) −36.1124 1.25696i −1.26496 0.0440294i
\(816\) 27.8175 12.0101i 0.973806 0.420436i
\(817\) −0.692258 + 0.692258i −0.0242190 + 0.0242190i
\(818\) 12.4842 + 3.73643i 0.436501 + 0.130641i
\(819\) 0 0
\(820\) 0.339517 + 1.98991i 0.0118564 + 0.0694906i
\(821\) −31.4980 −1.09929 −0.549645 0.835399i \(-0.685237\pi\)
−0.549645 + 0.835399i \(0.685237\pi\)
\(822\) 40.8056 + 12.2128i 1.42326 + 0.425969i
\(823\) 5.62138 5.62138i 0.195949 0.195949i −0.602312 0.798261i \(-0.705754\pi\)
0.798261 + 0.602312i \(0.205754\pi\)
\(824\) −2.69739 + 30.9184i −0.0939679 + 1.07709i
\(825\) −42.9076 + 37.3161i −1.49385 + 1.29918i
\(826\) 0 0
\(827\) −4.54203 4.54203i −0.157942 0.157942i 0.623712 0.781654i \(-0.285624\pi\)
−0.781654 + 0.623712i \(0.785624\pi\)
\(828\) 1.98125 + 9.58731i 0.0688533 + 0.333182i
\(829\) 11.9204i 0.414012i −0.978340 0.207006i \(-0.933628\pi\)
0.978340 0.207006i \(-0.0663720\pi\)
\(830\) 1.38548 4.10373i 0.0480908 0.142442i
\(831\) 64.5903i 2.24061i
\(832\) 44.6928 31.3269i 1.54944 1.08606i
\(833\) 0 0
\(834\) 10.0665 + 18.6658i 0.348574 + 0.646345i
\(835\) 0.586346 16.8457i 0.0202914 0.582969i
\(836\) 7.04876 10.7209i 0.243786 0.370791i
\(837\) 10.4390 10.4390i 0.360825 0.360825i
\(838\) 7.50789 25.0856i 0.259356 0.866566i
\(839\) 26.9117 0.929095 0.464548 0.885548i \(-0.346217\pi\)
0.464548 + 0.885548i \(0.346217\pi\)
\(840\) 0 0
\(841\) 28.3897 0.978957
\(842\) −10.3603 + 34.6162i −0.357041 + 1.19295i
\(843\) −1.48806 + 1.48806i −0.0512514 + 0.0512514i
\(844\) 21.1351 32.1457i 0.727499 1.10650i
\(845\) 54.8507 51.1607i 1.88692 1.75998i
\(846\) 2.89236 + 5.36316i 0.0994413 + 0.184389i
\(847\) 0 0
\(848\) −3.10264 + 7.81725i −0.106545 + 0.268445i
\(849\) 21.5116i 0.738275i
\(850\) 24.3840 11.0360i 0.836366 0.378531i
\(851\) 16.7472i 0.574085i
\(852\) 9.58336 + 46.3741i 0.328321 + 1.58875i
\(853\) −17.1543 17.1543i −0.587353 0.587353i 0.349561 0.936914i \(-0.386331\pi\)
−0.936914 + 0.349561i \(0.886331\pi\)
\(854\) 0 0
\(855\) 1.85467 1.72991i 0.0634285 0.0591616i
\(856\) 27.7671 + 2.42246i 0.949062 + 0.0827981i
\(857\) 25.9527 25.9527i 0.886526 0.886526i −0.107662 0.994188i \(-0.534336\pi\)
0.994188 + 0.107662i \(0.0343363\pi\)
\(858\) −105.121 31.4617i −3.58876 1.07409i
\(859\) −33.8055 −1.15343 −0.576714 0.816946i \(-0.695665\pi\)
−0.576714 + 0.816946i \(0.695665\pi\)
\(860\) 3.16471 + 2.24219i 0.107916 + 0.0764579i
\(861\) 0 0
\(862\) 14.1192 + 4.22576i 0.480902 + 0.143930i
\(863\) 22.7989 22.7989i 0.776084 0.776084i −0.203078 0.979163i \(-0.565095\pi\)
0.979163 + 0.203078i \(0.0650946\pi\)
\(864\) 17.7232 + 14.0020i 0.602956 + 0.476357i
\(865\) 0.341741 9.81820i 0.0116195 0.333829i
\(866\) −35.8759 + 19.3479i −1.21911 + 0.657467i
\(867\) −3.78176 3.78176i −0.128435 0.128435i
\(868\) 0 0
\(869\) 31.0413i 1.05300i
\(870\) −4.68386 1.58134i −0.158798 0.0536125i
\(871\) 93.2012i 3.15800i
\(872\) 9.30467 + 11.0834i 0.315096 + 0.375330i
\(873\) 6.80660 + 6.80660i 0.230369 + 0.230369i
\(874\) −3.69168 6.84531i −0.124873 0.231546i
\(875\) 0 0
\(876\) 5.75806 + 3.78579i 0.194547 + 0.127910i
\(877\) 11.3149 11.3149i 0.382078 0.382078i −0.489772 0.871850i \(-0.662920\pi\)
0.871850 + 0.489772i \(0.162920\pi\)
\(878\) 8.44895 28.2299i 0.285138 0.952711i
\(879\) 54.1004 1.82476
\(880\) −46.5646 20.3837i −1.56969 0.687135i
\(881\) 52.7104 1.77586 0.887929 0.459981i \(-0.152144\pi\)
0.887929 + 0.459981i \(0.152144\pi\)
\(882\) 0 0
\(883\) 5.34754 5.34754i 0.179959 0.179959i −0.611379 0.791338i \(-0.709385\pi\)
0.791338 + 0.611379i \(0.209385\pi\)
\(884\) 43.1553 + 28.3736i 1.45147 + 0.954307i
\(885\) −41.4777 1.44371i −1.39426 0.0485298i
\(886\) −17.9338 33.2538i −0.602497 1.11718i
\(887\) −32.6754 32.6754i −1.09713 1.09713i −0.994745 0.102387i \(-0.967352\pi\)
−0.102387 0.994745i \(-0.532648\pi\)
\(888\) −12.5109 14.9025i −0.419838 0.500095i
\(889\) 0 0
\(890\) 13.2243 + 26.7050i 0.443279 + 0.895154i
\(891\) 62.5405i 2.09519i
\(892\) 18.4967 3.82241i 0.619315 0.127984i
\(893\) −3.42291 3.42291i −0.114543 0.114543i
\(894\) 10.7996 5.82424i 0.361193 0.194792i
\(895\) −1.03573 1.11043i −0.0346206 0.0371176i
\(896\) 0 0
\(897\) −47.0313 + 47.0313i −1.57033 + 1.57033i
\(898\) 37.3684 + 11.1840i 1.24700 + 0.373216i
\(899\) −2.88833 −0.0963313
\(900\) −7.99152 6.09032i −0.266384 0.203011i
\(901\) −7.95874 −0.265144
\(902\) 3.47550 + 1.04019i 0.115721 + 0.0346344i
\(903\) 0 0
\(904\) 7.91205 + 0.690264i 0.263151 + 0.0229578i
\(905\) −11.9985 12.8639i −0.398845 0.427611i
\(906\) 35.2947 19.0344i 1.17259 0.632377i
\(907\) 42.1199 + 42.1199i 1.39857 + 1.39857i 0.804177 + 0.594390i \(0.202606\pi\)
0.594390 + 0.804177i \(0.297394\pi\)
\(908\) −11.0544 53.4927i −0.366855 1.77522i
\(909\) 12.1186i 0.401948i
\(910\) 0 0
\(911\) 45.5865i 1.51035i −0.655524 0.755174i \(-0.727552\pi\)
0.655524 0.755174i \(-0.272448\pi\)
\(912\) 8.39881 + 3.33346i 0.278112 + 0.110382i
\(913\) −5.50407 5.50407i −0.182158 0.182158i
\(914\) 0.923488 + 1.71238i 0.0305463 + 0.0566405i
\(915\) −6.79528 0.236523i −0.224645 0.00781920i
\(916\) −13.9043 + 21.1480i −0.459411 + 0.698748i
\(917\) 0 0
\(918\) −6.12840 + 20.4764i −0.202267 + 0.675821i
\(919\) 48.7511 1.60815 0.804076 0.594527i \(-0.202661\pi\)
0.804076 + 0.594527i \(0.202661\pi\)
\(920\) −24.2729 + 18.9781i −0.800253 + 0.625688i
\(921\) 2.05603 0.0677486
\(922\) 7.16453 23.9383i 0.235951 0.788366i
\(923\) −57.0761 + 57.0761i −1.87868 + 1.87868i
\(924\) 0 0
\(925\) −11.2794 12.9695i −0.370865 0.426436i
\(926\) 5.27333 + 9.77810i 0.173293 + 0.321328i
\(927\) 7.79598 + 7.79598i 0.256054 + 0.256054i
\(928\) −0.514811 4.38896i −0.0168995 0.144075i
\(929\) 14.1656i 0.464759i −0.972625 0.232379i \(-0.925349\pi\)
0.972625 0.232379i \(-0.0746511\pi\)
\(930\) −22.1688 7.48454i −0.726944 0.245428i
\(931\) 0 0
\(932\) −7.01455 33.9435i −0.229769 1.11186i
\(933\) −18.8365 18.8365i −0.616678 0.616678i
\(934\) 16.3201 8.80145i 0.534011 0.287992i
\(935\) 1.67322 48.0716i 0.0547202 1.57211i
\(936\) 1.68509 19.3151i 0.0550790 0.631335i
\(937\) −10.0190 + 10.0190i −0.327306 + 0.327306i −0.851561 0.524255i \(-0.824344\pi\)
0.524255 + 0.851561i \(0.324344\pi\)
\(938\) 0 0
\(939\) −43.5184 −1.42017
\(940\) −11.0866 + 15.6481i −0.361605 + 0.510384i
\(941\) −27.8056 −0.906437 −0.453219 0.891399i \(-0.649724\pi\)
−0.453219 + 0.891399i \(0.649724\pi\)
\(942\) 13.5450 + 4.05392i 0.441321 + 0.132084i
\(943\) 1.55494 1.55494i 0.0506360 0.0506360i
\(944\) −14.7053 34.0603i −0.478618 1.10857i
\(945\) 0 0
\(946\) 6.13491 3.30856i 0.199463 0.107570i
\(947\) −20.5281 20.5281i −0.667073 0.667073i 0.289964 0.957038i \(-0.406357\pi\)
−0.957038 + 0.289964i \(0.906357\pi\)
\(948\) −21.4090 + 4.42425i −0.695333 + 0.143693i
\(949\) 11.7463i 0.381302i
\(950\) 7.46935 + 2.81483i 0.242338 + 0.0913252i
\(951\) 30.8915i 1.00172i
\(952\) 0 0
\(953\) 33.2622 + 33.2622i 1.07747 + 1.07747i 0.996736 + 0.0807336i \(0.0257263\pi\)
0.0807336 + 0.996736i \(0.474274\pi\)
\(954\) 1.41819 + 2.62969i 0.0459157 + 0.0851393i
\(955\) 17.4687 16.2936i 0.565275 0.527248i
\(956\) 36.3708 + 23.9129i 1.17631 + 0.773400i
\(957\) −6.28216 + 6.28216i −0.203074 + 0.203074i
\(958\) −1.03136 + 3.44599i −0.0333216 + 0.111335i
\(959\) 0 0
\(960\) 7.42179 35.0206i 0.239537 1.13029i
\(961\) 17.3294 0.559014
\(962\) 9.50984 31.7745i 0.306610 1.02445i
\(963\) 7.00140 7.00140i 0.225617 0.225617i
\(964\) −34.8460 22.9104i −1.12231 0.737895i
\(965\) 0.877752 25.2178i 0.0282558 0.811788i
\(966\) 0 0
\(967\) 8.70456 + 8.70456i 0.279920 + 0.279920i 0.833077 0.553157i \(-0.186577\pi\)
−0.553157 + 0.833077i \(0.686577\pi\)
\(968\) −46.1348 + 38.7309i −1.48283 + 1.24486i
\(969\) 8.55083i 0.274692i
\(970\) −9.69083 + 28.7038i −0.311154 + 0.921622i
\(971\) 50.7450i 1.62849i 0.580525 + 0.814243i \(0.302848\pi\)
−0.580525 + 0.814243i \(0.697152\pi\)
\(972\) 19.6725 4.06540i 0.630997 0.130398i
\(973\) 0 0
\(974\) −4.58151 + 2.47081i −0.146801 + 0.0791698i
\(975\) 4.74636 68.0987i 0.152005 2.18090i
\(976\) −2.40917 5.58008i −0.0771156 0.178614i
\(977\) −0.120416 + 0.120416i −0.00385245 + 0.00385245i −0.709030 0.705178i \(-0.750867\pi\)
0.705178 + 0.709030i \(0.250867\pi\)
\(978\) −43.8137 13.1131i −1.40101 0.419309i
\(979\) 53.5546 1.71161
\(980\) 0 0
\(981\) 5.14078 0.164133
\(982\) 30.2683 + 9.05905i 0.965901 + 0.289086i
\(983\) −15.8935 + 15.8935i −0.506922 + 0.506922i −0.913580 0.406658i \(-0.866694\pi\)
0.406658 + 0.913580i \(0.366694\pi\)
\(984\) −0.222056 + 2.54529i −0.00707889 + 0.0811408i
\(985\) −10.4164 0.362563i −0.331895 0.0115522i
\(986\) 3.68059 1.98494i 0.117214 0.0632135i
\(987\) 0 0
\(988\) 3.11715 + 15.0840i 0.0991699 + 0.479885i
\(989\) 4.22503i 0.134348i
\(990\) −16.1817 + 8.01316i −0.514289 + 0.254675i
\(991\) 13.8742i 0.440727i 0.975418 + 0.220364i \(0.0707244\pi\)
−0.975418 + 0.220364i \(0.929276\pi\)
\(992\) −2.43661 20.7731i −0.0773626 0.659546i
\(993\) 37.4498 + 37.4498i 1.18843 + 1.18843i
\(994\) 0 0
\(995\) −14.6082 15.6618i −0.463112 0.496514i
\(996\) 3.01165 4.58061i 0.0954277 0.145142i
\(997\) −11.1566 + 11.1566i −0.353334 + 0.353334i −0.861348 0.508015i \(-0.830380\pi\)
0.508015 + 0.861348i \(0.330380\pi\)
\(998\) 4.03729 13.4895i 0.127798 0.427002i
\(999\) 13.7259 0.434270
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 980.2.k.m.883.11 yes 56
4.3 odd 2 inner 980.2.k.m.883.6 yes 56
5.2 odd 4 inner 980.2.k.m.687.6 yes 56
7.2 even 3 980.2.x.n.263.27 112
7.3 odd 6 980.2.x.n.863.9 112
7.4 even 3 980.2.x.n.863.10 112
7.5 odd 6 980.2.x.n.263.28 112
7.6 odd 2 inner 980.2.k.m.883.12 yes 56
20.7 even 4 inner 980.2.k.m.687.11 yes 56
28.3 even 6 980.2.x.n.863.16 112
28.11 odd 6 980.2.x.n.863.15 112
28.19 even 6 980.2.x.n.263.21 112
28.23 odd 6 980.2.x.n.263.22 112
28.27 even 2 inner 980.2.k.m.883.5 yes 56
35.2 odd 12 980.2.x.n.67.15 112
35.12 even 12 980.2.x.n.67.16 112
35.17 even 12 980.2.x.n.667.21 112
35.27 even 4 inner 980.2.k.m.687.5 56
35.32 odd 12 980.2.x.n.667.22 112
140.27 odd 4 inner 980.2.k.m.687.12 yes 56
140.47 odd 12 980.2.x.n.67.9 112
140.67 even 12 980.2.x.n.667.27 112
140.87 odd 12 980.2.x.n.667.28 112
140.107 even 12 980.2.x.n.67.10 112
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
980.2.k.m.687.5 56 35.27 even 4 inner
980.2.k.m.687.6 yes 56 5.2 odd 4 inner
980.2.k.m.687.11 yes 56 20.7 even 4 inner
980.2.k.m.687.12 yes 56 140.27 odd 4 inner
980.2.k.m.883.5 yes 56 28.27 even 2 inner
980.2.k.m.883.6 yes 56 4.3 odd 2 inner
980.2.k.m.883.11 yes 56 1.1 even 1 trivial
980.2.k.m.883.12 yes 56 7.6 odd 2 inner
980.2.x.n.67.9 112 140.47 odd 12
980.2.x.n.67.10 112 140.107 even 12
980.2.x.n.67.15 112 35.2 odd 12
980.2.x.n.67.16 112 35.12 even 12
980.2.x.n.263.21 112 28.19 even 6
980.2.x.n.263.22 112 28.23 odd 6
980.2.x.n.263.27 112 7.2 even 3
980.2.x.n.263.28 112 7.5 odd 6
980.2.x.n.667.21 112 35.17 even 12
980.2.x.n.667.22 112 35.32 odd 12
980.2.x.n.667.27 112 140.67 even 12
980.2.x.n.667.28 112 140.87 odd 12
980.2.x.n.863.9 112 7.3 odd 6
980.2.x.n.863.10 112 7.4 even 3
980.2.x.n.863.15 112 28.11 odd 6
980.2.x.n.863.16 112 28.3 even 6