Properties

Label 975.2.w.j.199.3
Level $975$
Weight $2$
Character 975.199
Analytic conductor $7.785$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [975,2,Mod(49,975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(975, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("975.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.w (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,2,0,-4,0,-6,-6,0,4,0,12,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.56070144.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 16x^{6} - 34x^{5} + 63x^{4} - 74x^{3} + 70x^{2} - 38x + 13 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 199.3
Root \(0.500000 + 1.19293i\) of defining polynomial
Character \(\chi\) \(=\) 975.199
Dual form 975.2.w.j.49.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.663454 - 1.14914i) q^{2} +(0.866025 + 0.500000i) q^{3} +(0.119657 + 0.207252i) q^{4} +(1.14914 - 0.663454i) q^{6} +(0.529480 + 0.917086i) q^{7} +2.97136 q^{8} +(0.500000 + 0.866025i) q^{9} +(2.15877 + 1.24637i) q^{11} +0.239314i q^{12} +(2.40277 - 2.68825i) q^{13} +1.40514 q^{14} +(1.73205 - 3.00000i) q^{16} +(-4.28864 + 2.47605i) q^{17} +1.32691 q^{18} +(-5.50552 + 3.17862i) q^{19} +1.05896i q^{21} +(2.86450 - 1.65382i) q^{22} +(3.13950 + 1.81259i) q^{23} +(2.57328 + 1.48568i) q^{24} +(-1.49504 - 4.54464i) q^{26} +1.00000i q^{27} +(-0.126712 + 0.219471i) q^{28} +(-0.117075 + 0.202779i) q^{29} +1.31755i q^{31} +(0.673091 + 1.16583i) q^{32} +(1.24637 + 2.15877i) q^{33} +6.57097i q^{34} +(-0.119657 + 0.207252i) q^{36} +(3.05896 - 5.29827i) q^{37} +8.43547i q^{38} +(3.42498 - 1.12671i) q^{39} +(-7.66877 - 4.42757i) q^{41} +(1.21689 + 0.702571i) q^{42} +(8.37413 - 4.83481i) q^{43} +0.596546i q^{44} +(4.16583 - 2.40514i) q^{46} +5.70173 q^{47} +(3.00000 - 1.73205i) q^{48} +(2.93930 - 5.09102i) q^{49} -4.95209 q^{51} +(0.844653 + 0.176310i) q^{52} +4.98547i q^{53} +(1.14914 + 0.663454i) q^{54} +(1.57328 + 2.72500i) q^{56} -6.35723 q^{57} +(0.155347 + 0.269069i) q^{58} +(-1.82049 + 1.05106i) q^{59} +(-1.52690 - 2.64466i) q^{61} +(1.51404 + 0.874132i) q^{62} +(-0.529480 + 0.917086i) q^{63} +8.71446 q^{64} +3.30763 q^{66} +(3.81727 - 6.61171i) q^{67} +(-1.02633 - 0.592551i) q^{68} +(1.81259 + 3.13950i) q^{69} +(7.08138 - 4.08844i) q^{71} +(1.48568 + 2.57328i) q^{72} +3.98716 q^{73} +(-4.05896 - 7.03032i) q^{74} +(-1.31755 - 0.760686i) q^{76} +2.63971i q^{77} +(0.977575 - 4.68330i) q^{78} -15.8359 q^{79} +(-0.500000 + 0.866025i) q^{81} +(-10.1758 + 5.87498i) q^{82} -15.8037 q^{83} +(-0.219471 + 0.126712i) q^{84} -12.8307i q^{86} +(-0.202779 + 0.117075i) q^{87} +(6.41450 + 3.70342i) q^{88} +(-13.7224 - 7.92261i) q^{89} +(3.73758 + 0.780169i) q^{91} +0.867556i q^{92} +(-0.658774 + 1.14103i) q^{93} +(3.78284 - 6.55206i) q^{94} +1.34618i q^{96} +(5.02795 + 8.70866i) q^{97} +(-3.90019 - 6.75532i) q^{98} +2.49274i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} - 4 q^{4} - 6 q^{6} - 6 q^{7} + 4 q^{9} + 12 q^{11} + 6 q^{13} + 4 q^{14} + 6 q^{17} + 4 q^{18} - 12 q^{19} - 24 q^{22} + 12 q^{24} - 4 q^{26} - 4 q^{28} + 6 q^{29} + 12 q^{32} + 8 q^{33}+ \cdots - 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.663454 1.14914i 0.469133 0.812562i −0.530244 0.847845i \(-0.677900\pi\)
0.999377 + 0.0352826i \(0.0112331\pi\)
\(3\) 0.866025 + 0.500000i 0.500000 + 0.288675i
\(4\) 0.119657 + 0.207252i 0.0598284 + 0.103626i
\(5\) 0 0
\(6\) 1.14914 0.663454i 0.469133 0.270854i
\(7\) 0.529480 + 0.917086i 0.200125 + 0.346626i 0.948568 0.316572i \(-0.102532\pi\)
−0.748444 + 0.663198i \(0.769199\pi\)
\(8\) 2.97136 1.05054
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) 0 0
\(11\) 2.15877 + 1.24637i 0.650895 + 0.375794i 0.788799 0.614651i \(-0.210703\pi\)
−0.137904 + 0.990446i \(0.544037\pi\)
\(12\) 0.239314i 0.0690839i
\(13\) 2.40277 2.68825i 0.666408 0.745587i
\(14\) 1.40514 0.375540
\(15\) 0 0
\(16\) 1.73205 3.00000i 0.433013 0.750000i
\(17\) −4.28864 + 2.47605i −1.04015 + 0.600529i −0.919875 0.392212i \(-0.871710\pi\)
−0.120272 + 0.992741i \(0.538377\pi\)
\(18\) 1.32691 0.312755
\(19\) −5.50552 + 3.17862i −1.26305 + 0.729225i −0.973664 0.227987i \(-0.926786\pi\)
−0.289390 + 0.957211i \(0.593452\pi\)
\(20\) 0 0
\(21\) 1.05896i 0.231084i
\(22\) 2.86450 1.65382i 0.610712 0.352595i
\(23\) 3.13950 + 1.81259i 0.654631 + 0.377951i 0.790228 0.612813i \(-0.209962\pi\)
−0.135597 + 0.990764i \(0.543295\pi\)
\(24\) 2.57328 + 1.48568i 0.525268 + 0.303264i
\(25\) 0 0
\(26\) −1.49504 4.54464i −0.293202 0.891278i
\(27\) 1.00000i 0.192450i
\(28\) −0.126712 + 0.219471i −0.0239463 + 0.0414761i
\(29\) −0.117075 + 0.202779i −0.0217402 + 0.0376551i −0.876691 0.481054i \(-0.840254\pi\)
0.854951 + 0.518709i \(0.173587\pi\)
\(30\) 0 0
\(31\) 1.31755i 0.236638i 0.992976 + 0.118319i \(0.0377506\pi\)
−0.992976 + 0.118319i \(0.962249\pi\)
\(32\) 0.673091 + 1.16583i 0.118987 + 0.206091i
\(33\) 1.24637 + 2.15877i 0.216965 + 0.375794i
\(34\) 6.57097i 1.12691i
\(35\) 0 0
\(36\) −0.119657 + 0.207252i −0.0199428 + 0.0345420i
\(37\) 3.05896 5.29827i 0.502890 0.871031i −0.497105 0.867691i \(-0.665603\pi\)
0.999994 0.00334010i \(-0.00106319\pi\)
\(38\) 8.43547i 1.36841i
\(39\) 3.42498 1.12671i 0.548436 0.180418i
\(40\) 0 0
\(41\) −7.66877 4.42757i −1.19766 0.691470i −0.237628 0.971356i \(-0.576370\pi\)
−0.960033 + 0.279886i \(0.909703\pi\)
\(42\) 1.21689 + 0.702571i 0.187770 + 0.108409i
\(43\) 8.37413 4.83481i 1.27704 0.737301i 0.300740 0.953706i \(-0.402767\pi\)
0.976304 + 0.216405i \(0.0694332\pi\)
\(44\) 0.596546i 0.0899327i
\(45\) 0 0
\(46\) 4.16583 2.40514i 0.614218 0.354619i
\(47\) 5.70173 0.831682 0.415841 0.909437i \(-0.363487\pi\)
0.415841 + 0.909437i \(0.363487\pi\)
\(48\) 3.00000 1.73205i 0.433013 0.250000i
\(49\) 2.93930 5.09102i 0.419900 0.727289i
\(50\) 0 0
\(51\) −4.95209 −0.693431
\(52\) 0.844653 + 0.176310i 0.117132 + 0.0244498i
\(53\) 4.98547i 0.684808i 0.939553 + 0.342404i \(0.111241\pi\)
−0.939553 + 0.342404i \(0.888759\pi\)
\(54\) 1.14914 + 0.663454i 0.156378 + 0.0902847i
\(55\) 0 0
\(56\) 1.57328 + 2.72500i 0.210238 + 0.364143i
\(57\) −6.35723 −0.842036
\(58\) 0.155347 + 0.269069i 0.0203981 + 0.0353305i
\(59\) −1.82049 + 1.05106i −0.237008 + 0.136836i −0.613801 0.789461i \(-0.710360\pi\)
0.376793 + 0.926297i \(0.377027\pi\)
\(60\) 0 0
\(61\) −1.52690 2.64466i −0.195499 0.338615i 0.751565 0.659659i \(-0.229299\pi\)
−0.947064 + 0.321045i \(0.895966\pi\)
\(62\) 1.51404 + 0.874132i 0.192284 + 0.111015i
\(63\) −0.529480 + 0.917086i −0.0667082 + 0.115542i
\(64\) 8.71446 1.08931
\(65\) 0 0
\(66\) 3.30763 0.407142
\(67\) 3.81727 6.61171i 0.466354 0.807749i −0.532908 0.846173i \(-0.678901\pi\)
0.999261 + 0.0384248i \(0.0122340\pi\)
\(68\) −1.02633 0.592551i −0.124461 0.0718574i
\(69\) 1.81259 + 3.13950i 0.218210 + 0.377951i
\(70\) 0 0
\(71\) 7.08138 4.08844i 0.840406 0.485208i −0.0169964 0.999856i \(-0.505410\pi\)
0.857402 + 0.514647i \(0.172077\pi\)
\(72\) 1.48568 + 2.57328i 0.175089 + 0.303264i
\(73\) 3.98716 0.466662 0.233331 0.972397i \(-0.425037\pi\)
0.233331 + 0.972397i \(0.425037\pi\)
\(74\) −4.05896 7.03032i −0.471844 0.817259i
\(75\) 0 0
\(76\) −1.31755 0.760686i −0.151133 0.0872567i
\(77\) 2.63971i 0.300823i
\(78\) 0.977575 4.68330i 0.110689 0.530279i
\(79\) −15.8359 −1.78167 −0.890837 0.454324i \(-0.849881\pi\)
−0.890837 + 0.454324i \(0.849881\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −10.1758 + 5.87498i −1.12372 + 0.648783i
\(83\) −15.8037 −1.73469 −0.867343 0.497710i \(-0.834174\pi\)
−0.867343 + 0.497710i \(0.834174\pi\)
\(84\) −0.219471 + 0.126712i −0.0239463 + 0.0138254i
\(85\) 0 0
\(86\) 12.8307i 1.38357i
\(87\) −0.202779 + 0.117075i −0.0217402 + 0.0125517i
\(88\) 6.41450 + 3.70342i 0.683788 + 0.394785i
\(89\) −13.7224 7.92261i −1.45457 0.839795i −0.455832 0.890066i \(-0.650658\pi\)
−0.998736 + 0.0502708i \(0.983992\pi\)
\(90\) 0 0
\(91\) 3.73758 + 0.780169i 0.391804 + 0.0817839i
\(92\) 0.867556i 0.0904489i
\(93\) −0.658774 + 1.14103i −0.0683116 + 0.118319i
\(94\) 3.78284 6.55206i 0.390170 0.675794i
\(95\) 0 0
\(96\) 1.34618i 0.137394i
\(97\) 5.02795 + 8.70866i 0.510511 + 0.884231i 0.999926 + 0.0121798i \(0.00387705\pi\)
−0.489415 + 0.872051i \(0.662790\pi\)
\(98\) −3.90019 6.75532i −0.393978 0.682390i
\(99\) 2.49274i 0.250530i
\(100\) 0 0
\(101\) −5.70572 + 9.88260i −0.567741 + 0.983355i 0.429048 + 0.903281i \(0.358849\pi\)
−0.996789 + 0.0800739i \(0.974484\pi\)
\(102\) −3.28549 + 5.69063i −0.325312 + 0.563456i
\(103\) 2.89788i 0.285537i 0.989756 + 0.142768i \(0.0456004\pi\)
−0.989756 + 0.142768i \(0.954400\pi\)
\(104\) 7.13950 7.98778i 0.700086 0.783266i
\(105\) 0 0
\(106\) 5.72899 + 3.30763i 0.556449 + 0.321266i
\(107\) 13.0884 + 7.55659i 1.26530 + 0.730523i 0.974095 0.226137i \(-0.0726098\pi\)
0.291207 + 0.956660i \(0.405943\pi\)
\(108\) −0.207252 + 0.119657i −0.0199428 + 0.0115140i
\(109\) 0.385868i 0.0369594i −0.999829 0.0184797i \(-0.994117\pi\)
0.999829 0.0184797i \(-0.00588261\pi\)
\(110\) 0 0
\(111\) 5.29827 3.05896i 0.502890 0.290344i
\(112\) 3.66834 0.346626
\(113\) −7.29311 + 4.21068i −0.686078 + 0.396107i −0.802141 0.597135i \(-0.796306\pi\)
0.116063 + 0.993242i \(0.462973\pi\)
\(114\) −4.21773 + 7.30533i −0.395027 + 0.684207i
\(115\) 0 0
\(116\) −0.0560351 −0.00520273
\(117\) 3.52948 + 0.736731i 0.326301 + 0.0681108i
\(118\) 2.78932i 0.256778i
\(119\) −4.54149 2.62203i −0.416318 0.240361i
\(120\) 0 0
\(121\) −2.39313 4.14502i −0.217557 0.376820i
\(122\) −4.05211 −0.366860
\(123\) −4.42757 7.66877i −0.399220 0.691470i
\(124\) −0.273064 + 0.157654i −0.0245219 + 0.0141577i
\(125\) 0 0
\(126\) 0.702571 + 1.21689i 0.0625900 + 0.108409i
\(127\) −9.86155 5.69357i −0.875071 0.505223i −0.00604114 0.999982i \(-0.501923\pi\)
−0.869030 + 0.494759i \(0.835256\pi\)
\(128\) 4.43547 7.68245i 0.392044 0.679039i
\(129\) 9.66962 0.851362
\(130\) 0 0
\(131\) −11.4948 −1.00431 −0.502154 0.864778i \(-0.667459\pi\)
−0.502154 + 0.864778i \(0.667459\pi\)
\(132\) −0.298273 + 0.516624i −0.0259613 + 0.0449664i
\(133\) −5.83013 3.36603i −0.505536 0.291871i
\(134\) −5.06517 8.77313i −0.437564 0.757883i
\(135\) 0 0
\(136\) −12.7431 + 7.35723i −1.09271 + 0.630877i
\(137\) −8.60849 14.9103i −0.735473 1.27388i −0.954516 0.298161i \(-0.903627\pi\)
0.219043 0.975715i \(-0.429707\pi\)
\(138\) 4.81028 0.409479
\(139\) 1.20342 + 2.08438i 0.102072 + 0.176795i 0.912538 0.408991i \(-0.134119\pi\)
−0.810466 + 0.585786i \(0.800786\pi\)
\(140\) 0 0
\(141\) 4.93784 + 2.85086i 0.415841 + 0.240086i
\(142\) 10.8500i 0.910509i
\(143\) 8.53759 2.80860i 0.713949 0.234867i
\(144\) 3.46410 0.288675
\(145\) 0 0
\(146\) 2.64530 4.58179i 0.218927 0.379192i
\(147\) 5.09102 2.93930i 0.419900 0.242430i
\(148\) 1.46410 0.120348
\(149\) 2.92924 1.69120i 0.239972 0.138548i −0.375192 0.926947i \(-0.622423\pi\)
0.615164 + 0.788399i \(0.289090\pi\)
\(150\) 0 0
\(151\) 1.46758i 0.119430i −0.998215 0.0597149i \(-0.980981\pi\)
0.998215 0.0597149i \(-0.0190192\pi\)
\(152\) −16.3589 + 9.44483i −1.32688 + 0.766077i
\(153\) −4.28864 2.47605i −0.346716 0.200176i
\(154\) 3.03338 + 1.75133i 0.244437 + 0.141126i
\(155\) 0 0
\(156\) 0.643336 + 0.575015i 0.0515081 + 0.0460381i
\(157\) 20.7833i 1.65869i −0.558736 0.829345i \(-0.688714\pi\)
0.558736 0.829345i \(-0.311286\pi\)
\(158\) −10.5064 + 18.1976i −0.835842 + 1.44772i
\(159\) −2.49274 + 4.31755i −0.197687 + 0.342404i
\(160\) 0 0
\(161\) 3.83892i 0.302549i
\(162\) 0.663454 + 1.14914i 0.0521259 + 0.0902847i
\(163\) −8.36365 14.4863i −0.655092 1.13465i −0.981871 0.189551i \(-0.939297\pi\)
0.326779 0.945101i \(-0.394037\pi\)
\(164\) 2.11915i 0.165478i
\(165\) 0 0
\(166\) −10.4851 + 18.1607i −0.813799 + 1.40954i
\(167\) 3.20551 5.55211i 0.248050 0.429635i −0.714935 0.699191i \(-0.753544\pi\)
0.962985 + 0.269556i \(0.0868769\pi\)
\(168\) 3.14655i 0.242762i
\(169\) −1.45341 12.9185i −0.111801 0.993731i
\(170\) 0 0
\(171\) −5.50552 3.17862i −0.421018 0.243075i
\(172\) 2.00404 + 1.15704i 0.152807 + 0.0882231i
\(173\) −19.4900 + 11.2525i −1.48179 + 0.855514i −0.999787 0.0206534i \(-0.993425\pi\)
−0.482007 + 0.876167i \(0.660092\pi\)
\(174\) 0.310694i 0.0235537i
\(175\) 0 0
\(176\) 7.47821 4.31755i 0.563691 0.325447i
\(177\) −2.10212 −0.158005
\(178\) −18.2083 + 10.5126i −1.36477 + 0.787951i
\(179\) −2.37797 + 4.11876i −0.177738 + 0.307851i −0.941105 0.338114i \(-0.890211\pi\)
0.763368 + 0.645964i \(0.223545\pi\)
\(180\) 0 0
\(181\) 11.4606 0.851862 0.425931 0.904756i \(-0.359947\pi\)
0.425931 + 0.904756i \(0.359947\pi\)
\(182\) 3.37623 3.77738i 0.250263 0.279998i
\(183\) 3.05379i 0.225743i
\(184\) 9.32860 + 5.38587i 0.687713 + 0.397051i
\(185\) 0 0
\(186\) 0.874132 + 1.51404i 0.0640945 + 0.111015i
\(187\) −12.3443 −0.902702
\(188\) 0.682251 + 1.18169i 0.0497582 + 0.0861838i
\(189\) −0.917086 + 0.529480i −0.0667082 + 0.0385140i
\(190\) 0 0
\(191\) 2.90103 + 5.02473i 0.209911 + 0.363577i 0.951686 0.307072i \(-0.0993492\pi\)
−0.741775 + 0.670649i \(0.766016\pi\)
\(192\) 7.54695 + 4.35723i 0.544654 + 0.314456i
\(193\) 1.21668 2.10735i 0.0875786 0.151691i −0.818908 0.573924i \(-0.805420\pi\)
0.906487 + 0.422234i \(0.138754\pi\)
\(194\) 13.3433 0.957990
\(195\) 0 0
\(196\) 1.40683 0.100488
\(197\) 6.69120 11.5895i 0.476728 0.825717i −0.522916 0.852384i \(-0.675156\pi\)
0.999644 + 0.0266669i \(0.00848935\pi\)
\(198\) 2.86450 + 1.65382i 0.203571 + 0.117532i
\(199\) 8.92555 + 15.4595i 0.632716 + 1.09590i 0.986994 + 0.160756i \(0.0513931\pi\)
−0.354279 + 0.935140i \(0.615274\pi\)
\(200\) 0 0
\(201\) 6.61171 3.81727i 0.466354 0.269250i
\(202\) 7.57097 + 13.1133i 0.532692 + 0.922649i
\(203\) −0.247954 −0.0174030
\(204\) −0.592551 1.02633i −0.0414869 0.0718574i
\(205\) 0 0
\(206\) 3.33006 + 1.92261i 0.232016 + 0.133955i
\(207\) 3.62518i 0.251968i
\(208\) −3.90304 11.8645i −0.270627 0.822655i
\(209\) −15.8469 −1.09615
\(210\) 0 0
\(211\) −4.99443 + 8.65060i −0.343830 + 0.595532i −0.985141 0.171750i \(-0.945058\pi\)
0.641310 + 0.767282i \(0.278391\pi\)
\(212\) −1.03325 + 0.596546i −0.0709638 + 0.0409710i
\(213\) 8.17688 0.560270
\(214\) 17.3671 10.0269i 1.18719 0.685425i
\(215\) 0 0
\(216\) 2.97136i 0.202176i
\(217\) −1.20830 + 0.697615i −0.0820250 + 0.0473572i
\(218\) −0.443415 0.256006i −0.0300318 0.0173389i
\(219\) 3.45298 + 1.99358i 0.233331 + 0.134714i
\(220\) 0 0
\(221\) −3.64836 + 17.4783i −0.245415 + 1.17572i
\(222\) 8.11792i 0.544839i
\(223\) 10.1179 17.5247i 0.677546 1.17354i −0.298172 0.954512i \(-0.596377\pi\)
0.975718 0.219032i \(-0.0702898\pi\)
\(224\) −0.712776 + 1.23457i −0.0476244 + 0.0824878i
\(225\) 0 0
\(226\) 11.1744i 0.743308i
\(227\) −1.59396 2.76083i −0.105795 0.183242i 0.808268 0.588815i \(-0.200405\pi\)
−0.914063 + 0.405573i \(0.867072\pi\)
\(228\) −0.760686 1.31755i −0.0503777 0.0872567i
\(229\) 27.3461i 1.80708i 0.428504 + 0.903540i \(0.359041\pi\)
−0.428504 + 0.903540i \(0.640959\pi\)
\(230\) 0 0
\(231\) −1.31985 + 2.28605i −0.0868400 + 0.150411i
\(232\) −0.347871 + 0.602531i −0.0228389 + 0.0395581i
\(233\) 12.8534i 0.842057i −0.907047 0.421029i \(-0.861669\pi\)
0.907047 0.421029i \(-0.138331\pi\)
\(234\) 3.18825 3.56707i 0.208423 0.233186i
\(235\) 0 0
\(236\) −0.435668 0.251533i −0.0283596 0.0163734i
\(237\) −13.7143 7.91793i −0.890837 0.514325i
\(238\) −6.02614 + 3.47920i −0.390617 + 0.225523i
\(239\) 10.3969i 0.672521i 0.941769 + 0.336260i \(0.109162\pi\)
−0.941769 + 0.336260i \(0.890838\pi\)
\(240\) 0 0
\(241\) 5.30421 3.06239i 0.341674 0.197266i −0.319338 0.947641i \(-0.603461\pi\)
0.661012 + 0.750375i \(0.270127\pi\)
\(242\) −6.35093 −0.408253
\(243\) −0.866025 + 0.500000i −0.0555556 + 0.0320750i
\(244\) 0.365407 0.632904i 0.0233928 0.0405175i
\(245\) 0 0
\(246\) −11.7500 −0.749150
\(247\) −4.68357 + 22.4377i −0.298009 + 1.42768i
\(248\) 3.91491i 0.248597i
\(249\) −13.6864 7.90187i −0.867343 0.500761i
\(250\) 0 0
\(251\) −3.87671 6.71467i −0.244696 0.423826i 0.717350 0.696713i \(-0.245355\pi\)
−0.962046 + 0.272887i \(0.912022\pi\)
\(252\) −0.253423 −0.0159642
\(253\) 4.51831 + 7.82595i 0.284064 + 0.492013i
\(254\) −13.0854 + 7.55485i −0.821050 + 0.474033i
\(255\) 0 0
\(256\) 2.82901 + 4.89998i 0.176813 + 0.306249i
\(257\) 6.96403 + 4.02069i 0.434404 + 0.250804i 0.701221 0.712944i \(-0.252639\pi\)
−0.266817 + 0.963747i \(0.585972\pi\)
\(258\) 6.41535 11.1117i 0.399402 0.691785i
\(259\) 6.47863 0.402562
\(260\) 0 0
\(261\) −0.234149 −0.0144935
\(262\) −7.62630 + 13.2091i −0.471154 + 0.816064i
\(263\) −14.7497 8.51573i −0.909504 0.525102i −0.0292325 0.999573i \(-0.509306\pi\)
−0.880272 + 0.474470i \(0.842640\pi\)
\(264\) 3.70342 + 6.41450i 0.227929 + 0.394785i
\(265\) 0 0
\(266\) −7.73605 + 4.46641i −0.474327 + 0.273853i
\(267\) −7.92261 13.7224i −0.484856 0.839795i
\(268\) 1.82705 0.111605
\(269\) −4.87587 8.44526i −0.297287 0.514916i 0.678227 0.734852i \(-0.262749\pi\)
−0.975514 + 0.219936i \(0.929415\pi\)
\(270\) 0 0
\(271\) −18.4341 10.6429i −1.11979 0.646512i −0.178444 0.983950i \(-0.557106\pi\)
−0.941348 + 0.337438i \(0.890440\pi\)
\(272\) 17.1545i 1.04015i
\(273\) 2.84675 + 2.54443i 0.172293 + 0.153996i
\(274\) −22.8454 −1.38014
\(275\) 0 0
\(276\) −0.433778 + 0.751325i −0.0261104 + 0.0452245i
\(277\) −22.2263 + 12.8324i −1.33545 + 0.771023i −0.986129 0.165979i \(-0.946921\pi\)
−0.349322 + 0.937003i \(0.613588\pi\)
\(278\) 3.19364 0.191542
\(279\) −1.14103 + 0.658774i −0.0683116 + 0.0394397i
\(280\) 0 0
\(281\) 16.8364i 1.00438i 0.864758 + 0.502188i \(0.167471\pi\)
−0.864758 + 0.502188i \(0.832529\pi\)
\(282\) 6.55206 3.78284i 0.390170 0.225265i
\(283\) 15.6573 + 9.03975i 0.930731 + 0.537358i 0.887043 0.461688i \(-0.152756\pi\)
0.0436880 + 0.999045i \(0.486089\pi\)
\(284\) 1.69467 + 0.978419i 0.100560 + 0.0580585i
\(285\) 0 0
\(286\) 2.43684 11.6742i 0.144093 0.690312i
\(287\) 9.37723i 0.553520i
\(288\) −0.673091 + 1.16583i −0.0396623 + 0.0686971i
\(289\) 3.76160 6.51528i 0.221270 0.383252i
\(290\) 0 0
\(291\) 10.0559i 0.589487i
\(292\) 0.477091 + 0.826346i 0.0279197 + 0.0483583i
\(293\) 7.27222 + 12.5959i 0.424848 + 0.735858i 0.996406 0.0847036i \(-0.0269943\pi\)
−0.571559 + 0.820561i \(0.693661\pi\)
\(294\) 7.80037i 0.454927i
\(295\) 0 0
\(296\) 9.08928 15.7431i 0.528304 0.915049i
\(297\) −1.24637 + 2.15877i −0.0723216 + 0.125265i
\(298\) 4.48812i 0.259990i
\(299\) 12.4162 4.08453i 0.718047 0.236215i
\(300\) 0 0
\(301\) 8.86787 + 5.11986i 0.511135 + 0.295104i
\(302\) −1.68645 0.973671i −0.0970441 0.0560285i
\(303\) −9.88260 + 5.70572i −0.567741 + 0.327785i
\(304\) 22.0221i 1.26305i
\(305\) 0 0
\(306\) −5.69063 + 3.28549i −0.325312 + 0.187819i
\(307\) 34.1062 1.94654 0.973272 0.229654i \(-0.0737595\pi\)
0.973272 + 0.229654i \(0.0737595\pi\)
\(308\) −0.547084 + 0.315859i −0.0311730 + 0.0179977i
\(309\) −1.44894 + 2.50964i −0.0824273 + 0.142768i
\(310\) 0 0
\(311\) −4.66962 −0.264790 −0.132395 0.991197i \(-0.542267\pi\)
−0.132395 + 0.991197i \(0.542267\pi\)
\(312\) 10.1769 3.34787i 0.576152 0.189536i
\(313\) 5.04485i 0.285152i 0.989784 + 0.142576i \(0.0455385\pi\)
−0.989784 + 0.142576i \(0.954462\pi\)
\(314\) −23.8829 13.7888i −1.34779 0.778147i
\(315\) 0 0
\(316\) −1.89487 3.28201i −0.106595 0.184627i
\(317\) −14.6107 −0.820616 −0.410308 0.911947i \(-0.634579\pi\)
−0.410308 + 0.911947i \(0.634579\pi\)
\(318\) 3.30763 + 5.72899i 0.185483 + 0.321266i
\(319\) −0.505475 + 0.291836i −0.0283012 + 0.0163397i
\(320\) 0 0
\(321\) 7.55659 + 13.0884i 0.421767 + 0.730523i
\(322\) 4.41144 + 2.54695i 0.245840 + 0.141936i
\(323\) 15.7408 27.2639i 0.875841 1.51700i
\(324\) −0.239314 −0.0132952
\(325\) 0 0
\(326\) −22.1956 −1.22930
\(327\) 0.192934 0.334171i 0.0106693 0.0184797i
\(328\) −22.7867 13.1559i −1.25819 0.726414i
\(329\) 3.01895 + 5.22897i 0.166440 + 0.288283i
\(330\) 0 0
\(331\) 13.8034 7.96942i 0.758706 0.438039i −0.0701252 0.997538i \(-0.522340\pi\)
0.828831 + 0.559499i \(0.189007\pi\)
\(332\) −1.89103 3.27535i −0.103784 0.179758i
\(333\) 6.11792 0.335260
\(334\) −4.25342 7.36715i −0.232737 0.403112i
\(335\) 0 0
\(336\) 3.17688 + 1.83417i 0.173313 + 0.100062i
\(337\) 19.8261i 1.08000i 0.841666 + 0.539998i \(0.181575\pi\)
−0.841666 + 0.539998i \(0.818425\pi\)
\(338\) −15.8094 6.90066i −0.859917 0.375347i
\(339\) −8.42136 −0.457385
\(340\) 0 0
\(341\) −1.64215 + 2.84429i −0.0889274 + 0.154027i
\(342\) −7.30533 + 4.21773i −0.395027 + 0.228069i
\(343\) 13.6379 0.736378
\(344\) 24.8826 14.3660i 1.34158 0.774561i
\(345\) 0 0
\(346\) 29.8622i 1.60540i
\(347\) 8.97484 5.18163i 0.481795 0.278164i −0.239369 0.970929i \(-0.576941\pi\)
0.721164 + 0.692764i \(0.243607\pi\)
\(348\) −0.0485278 0.0280175i −0.00260136 0.00150190i
\(349\) 27.5828 + 15.9249i 1.47647 + 0.852442i 0.999647 0.0265555i \(-0.00845388\pi\)
0.476826 + 0.878998i \(0.341787\pi\)
\(350\) 0 0
\(351\) 2.68825 + 2.40277i 0.143488 + 0.128250i
\(352\) 3.35568i 0.178858i
\(353\) −0.578026 + 1.00117i −0.0307652 + 0.0532869i −0.880998 0.473120i \(-0.843128\pi\)
0.850233 + 0.526407i \(0.176461\pi\)
\(354\) −1.39466 + 2.41562i −0.0741254 + 0.128389i
\(355\) 0 0
\(356\) 3.79198i 0.200974i
\(357\) −2.62203 4.54149i −0.138773 0.240361i
\(358\) 3.15535 + 5.46522i 0.166765 + 0.288846i
\(359\) 21.6260i 1.14138i 0.821166 + 0.570689i \(0.193324\pi\)
−0.821166 + 0.570689i \(0.806676\pi\)
\(360\) 0 0
\(361\) 10.7072 18.5454i 0.563537 0.976075i
\(362\) 7.60360 13.1698i 0.399636 0.692191i
\(363\) 4.78626i 0.251214i
\(364\) 0.285535 + 0.867971i 0.0149661 + 0.0454941i
\(365\) 0 0
\(366\) −3.50923 2.02605i −0.183430 0.105903i
\(367\) −14.5844 8.42030i −0.761299 0.439536i 0.0684628 0.997654i \(-0.478191\pi\)
−0.829762 + 0.558117i \(0.811524\pi\)
\(368\) 10.8755 6.27900i 0.566927 0.327315i
\(369\) 8.85513i 0.460980i
\(370\) 0 0
\(371\) −4.57211 + 2.63971i −0.237372 + 0.137047i
\(372\) −0.315307 −0.0163479
\(373\) −21.2184 + 12.2504i −1.09865 + 0.634303i −0.935865 0.352359i \(-0.885380\pi\)
−0.162781 + 0.986662i \(0.552046\pi\)
\(374\) −8.18985 + 14.1852i −0.423487 + 0.733501i
\(375\) 0 0
\(376\) 16.9419 0.873712
\(377\) 0.263819 + 0.801957i 0.0135873 + 0.0413029i
\(378\) 1.40514i 0.0722727i
\(379\) −28.6376 16.5339i −1.47101 0.849290i −0.471543 0.881843i \(-0.656303\pi\)
−0.999470 + 0.0325537i \(0.989636\pi\)
\(380\) 0 0
\(381\) −5.69357 9.86155i −0.291690 0.505223i
\(382\) 7.69880 0.393905
\(383\) 0.500068 + 0.866143i 0.0255523 + 0.0442578i 0.878519 0.477708i \(-0.158532\pi\)
−0.852966 + 0.521966i \(0.825199\pi\)
\(384\) 7.68245 4.43547i 0.392044 0.226346i
\(385\) 0 0
\(386\) −1.61442 2.79626i −0.0821720 0.142326i
\(387\) 8.37413 + 4.83481i 0.425681 + 0.245767i
\(388\) −1.20326 + 2.08410i −0.0610861 + 0.105804i
\(389\) 1.26193 0.0639823 0.0319912 0.999488i \(-0.489815\pi\)
0.0319912 + 0.999488i \(0.489815\pi\)
\(390\) 0 0
\(391\) −17.9522 −0.907883
\(392\) 8.73374 15.1273i 0.441120 0.764043i
\(393\) −9.95482 5.74742i −0.502154 0.289919i
\(394\) −8.87861 15.3782i −0.447298 0.774742i
\(395\) 0 0
\(396\) −0.516624 + 0.298273i −0.0259613 + 0.0149888i
\(397\) −5.57796 9.66131i −0.279950 0.484887i 0.691422 0.722451i \(-0.256984\pi\)
−0.971372 + 0.237564i \(0.923651\pi\)
\(398\) 23.6868 1.18731
\(399\) −3.36603 5.83013i −0.168512 0.291871i
\(400\) 0 0
\(401\) 28.8148 + 16.6362i 1.43894 + 0.830774i 0.997776 0.0666518i \(-0.0212317\pi\)
0.441166 + 0.897426i \(0.354565\pi\)
\(402\) 10.1303i 0.505255i
\(403\) 3.54190 + 3.16576i 0.176435 + 0.157698i
\(404\) −2.73091 −0.135868
\(405\) 0 0
\(406\) −0.164506 + 0.284933i −0.00816432 + 0.0141410i
\(407\) 13.2072 7.62518i 0.654657 0.377966i
\(408\) −14.7145 −0.728475
\(409\) −2.09367 + 1.20878i −0.103525 + 0.0597704i −0.550869 0.834592i \(-0.685704\pi\)
0.447343 + 0.894362i \(0.352370\pi\)
\(410\) 0 0
\(411\) 17.2170i 0.849251i
\(412\) −0.600590 + 0.346751i −0.0295890 + 0.0170832i
\(413\) −1.92782 1.11303i −0.0948621 0.0547686i
\(414\) 4.16583 + 2.40514i 0.204739 + 0.118206i
\(415\) 0 0
\(416\) 4.75133 + 0.991775i 0.232953 + 0.0486258i
\(417\) 2.40683i 0.117863i
\(418\) −10.5137 + 18.2103i −0.514242 + 0.890693i
\(419\) 13.3459 23.1157i 0.651988 1.12928i −0.330652 0.943753i \(-0.607269\pi\)
0.982640 0.185523i \(-0.0593980\pi\)
\(420\) 0 0
\(421\) 40.7370i 1.98540i −0.120614 0.992699i \(-0.538486\pi\)
0.120614 0.992699i \(-0.461514\pi\)
\(422\) 6.62715 + 11.4786i 0.322604 + 0.558767i
\(423\) 2.85086 + 4.93784i 0.138614 + 0.240086i
\(424\) 14.8137i 0.719415i
\(425\) 0 0
\(426\) 5.42498 9.39635i 0.262841 0.455255i
\(427\) 1.61692 2.80059i 0.0782484 0.135530i
\(428\) 3.61679i 0.174824i
\(429\) 8.79807 + 1.83648i 0.424775 + 0.0886660i
\(430\) 0 0
\(431\) −6.21354 3.58739i −0.299296 0.172798i 0.342831 0.939397i \(-0.388614\pi\)
−0.642126 + 0.766599i \(0.721948\pi\)
\(432\) 3.00000 + 1.73205i 0.144338 + 0.0833333i
\(433\) −24.8845 + 14.3671i −1.19587 + 0.690438i −0.959633 0.281257i \(-0.909249\pi\)
−0.236241 + 0.971695i \(0.575915\pi\)
\(434\) 1.85134i 0.0888672i
\(435\) 0 0
\(436\) 0.0799718 0.0461717i 0.00382995 0.00221123i
\(437\) −23.0461 −1.10245
\(438\) 4.58179 2.64530i 0.218927 0.126397i
\(439\) 19.5845 33.9213i 0.934716 1.61898i 0.159578 0.987185i \(-0.448987\pi\)
0.775139 0.631791i \(-0.217680\pi\)
\(440\) 0 0
\(441\) 5.87861 0.279934
\(442\) 17.6644 + 15.7885i 0.840211 + 0.750983i
\(443\) 12.5223i 0.594954i 0.954729 + 0.297477i \(0.0961452\pi\)
−0.954729 + 0.297477i \(0.903855\pi\)
\(444\) 1.26795 + 0.732051i 0.0601742 + 0.0347416i
\(445\) 0 0
\(446\) −13.4256 23.2537i −0.635718 1.10110i
\(447\) 3.38239 0.159982
\(448\) 4.61413 + 7.99191i 0.217997 + 0.377582i
\(449\) 9.48926 5.47863i 0.447826 0.258552i −0.259086 0.965854i \(-0.583421\pi\)
0.706912 + 0.707302i \(0.250088\pi\)
\(450\) 0 0
\(451\) −11.0368 19.1162i −0.519701 0.900148i
\(452\) −1.74534 1.00767i −0.0820939 0.0473969i
\(453\) 0.733789 1.27096i 0.0344764 0.0597149i
\(454\) −4.23009 −0.198528
\(455\) 0 0
\(456\) −18.8897 −0.884589
\(457\) 8.29242 14.3629i 0.387903 0.671868i −0.604264 0.796784i \(-0.706533\pi\)
0.992167 + 0.124916i \(0.0398662\pi\)
\(458\) 31.4244 + 18.1429i 1.46836 + 0.847761i
\(459\) −2.47605 4.28864i −0.115572 0.200176i
\(460\) 0 0
\(461\) 19.8668 11.4701i 0.925290 0.534216i 0.0399710 0.999201i \(-0.487273\pi\)
0.885319 + 0.464985i \(0.153940\pi\)
\(462\) 1.75133 + 3.03338i 0.0814790 + 0.141126i
\(463\) 41.2096 1.91517 0.957587 0.288146i \(-0.0930388\pi\)
0.957587 + 0.288146i \(0.0930388\pi\)
\(464\) 0.405558 + 0.702447i 0.0188276 + 0.0326103i
\(465\) 0 0
\(466\) −14.7704 8.52767i −0.684224 0.395037i
\(467\) 31.1867i 1.44315i 0.692337 + 0.721574i \(0.256581\pi\)
−0.692337 + 0.721574i \(0.743419\pi\)
\(468\) 0.269638 + 0.819646i 0.0124640 + 0.0378881i
\(469\) 8.08467 0.373315
\(470\) 0 0
\(471\) 10.3917 17.9989i 0.478823 0.829345i
\(472\) −5.40934 + 3.12308i −0.248985 + 0.143752i
\(473\) 24.1038 1.10829
\(474\) −18.1976 + 10.5064i −0.835842 + 0.482574i
\(475\) 0 0
\(476\) 1.25498i 0.0575217i
\(477\) −4.31755 + 2.49274i −0.197687 + 0.114135i
\(478\) 11.9475 + 6.89788i 0.546465 + 0.315502i
\(479\) 4.46852 + 2.57990i 0.204172 + 0.117879i 0.598600 0.801048i \(-0.295724\pi\)
−0.394428 + 0.918927i \(0.629057\pi\)
\(480\) 0 0
\(481\) −6.89313 20.9538i −0.314300 0.955410i
\(482\) 8.12701i 0.370175i
\(483\) −1.91946 + 3.32460i −0.0873385 + 0.151275i
\(484\) 0.572709 0.991961i 0.0260322 0.0450891i
\(485\) 0 0
\(486\) 1.32691i 0.0601898i
\(487\) −13.1780 22.8250i −0.597152 1.03430i −0.993239 0.116085i \(-0.962966\pi\)
0.396087 0.918213i \(-0.370368\pi\)
\(488\) −4.53697 7.85826i −0.205379 0.355727i
\(489\) 16.7273i 0.756435i
\(490\) 0 0
\(491\) −9.36114 + 16.2140i −0.422462 + 0.731726i −0.996180 0.0873273i \(-0.972167\pi\)
0.573717 + 0.819053i \(0.305501\pi\)
\(492\) 1.05958 1.83524i 0.0477694 0.0827391i
\(493\) 1.15953i 0.0522225i
\(494\) 22.6767 + 20.2685i 1.02027 + 0.911921i
\(495\) 0 0
\(496\) 3.95264 + 2.28206i 0.177479 + 0.102467i
\(497\) 7.49890 + 4.32949i 0.336372 + 0.194204i
\(498\) −18.1607 + 10.4851i −0.813799 + 0.469847i
\(499\) 9.31449i 0.416974i 0.978025 + 0.208487i \(0.0668538\pi\)
−0.978025 + 0.208487i \(0.933146\pi\)
\(500\) 0 0
\(501\) 5.55211 3.20551i 0.248050 0.143212i
\(502\) −10.2881 −0.459180
\(503\) −12.1687 + 7.02558i −0.542573 + 0.313255i −0.746121 0.665810i \(-0.768086\pi\)
0.203548 + 0.979065i \(0.434753\pi\)
\(504\) −1.57328 + 2.72500i −0.0700793 + 0.121381i
\(505\) 0 0
\(506\) 11.9908 0.533055
\(507\) 5.20056 11.9145i 0.230965 0.529139i
\(508\) 2.72510i 0.120907i
\(509\) −19.0832 11.0177i −0.845848 0.488350i 0.0133999 0.999910i \(-0.495735\pi\)
−0.859248 + 0.511560i \(0.829068\pi\)
\(510\) 0 0
\(511\) 2.11112 + 3.65657i 0.0933905 + 0.161757i
\(512\) 25.2495 1.11588
\(513\) −3.17862 5.50552i −0.140339 0.243075i
\(514\) 9.24064 5.33508i 0.407587 0.235320i
\(515\) 0 0
\(516\) 1.15704 + 2.00404i 0.0509357 + 0.0882231i
\(517\) 12.3087 + 7.10645i 0.541338 + 0.312541i
\(518\) 4.29827 7.44483i 0.188855 0.327107i
\(519\) −22.5051 −0.987862
\(520\) 0 0
\(521\) 29.6165 1.29752 0.648762 0.760991i \(-0.275287\pi\)
0.648762 + 0.760991i \(0.275287\pi\)
\(522\) −0.155347 + 0.269069i −0.00679936 + 0.0117768i
\(523\) 10.1044 + 5.83376i 0.441833 + 0.255092i 0.704375 0.709828i \(-0.251227\pi\)
−0.262542 + 0.964921i \(0.584561\pi\)
\(524\) −1.37544 2.38233i −0.0600862 0.104072i
\(525\) 0 0
\(526\) −19.5715 + 11.2996i −0.853357 + 0.492686i
\(527\) −3.26231 5.65048i −0.142108 0.246139i
\(528\) 8.63509 0.375794
\(529\) −4.92903 8.53733i −0.214306 0.371188i
\(530\) 0 0
\(531\) −1.82049 1.05106i −0.0790025 0.0456121i
\(532\) 1.61107i 0.0698488i
\(533\) −30.3287 + 9.97718i −1.31368 + 0.432160i
\(534\) −21.0252 −0.909848
\(535\) 0 0
\(536\) 11.3425 19.6458i 0.489922 0.848569i
\(537\) −4.11876 + 2.37797i −0.177738 + 0.102617i
\(538\) −12.9397 −0.557869
\(539\) 12.6906 7.32691i 0.546622 0.315592i
\(540\) 0 0
\(541\) 32.7583i 1.40839i 0.710006 + 0.704196i \(0.248692\pi\)
−0.710006 + 0.704196i \(0.751308\pi\)
\(542\) −24.4603 + 14.1222i −1.05066 + 0.606600i
\(543\) 9.92519 + 5.73031i 0.425931 + 0.245911i
\(544\) −5.77329 3.33321i −0.247528 0.142910i
\(545\) 0 0
\(546\) 4.81259 1.58319i 0.205960 0.0677543i
\(547\) 10.8406i 0.463511i −0.972774 0.231755i \(-0.925553\pi\)
0.972774 0.231755i \(-0.0744469\pi\)
\(548\) 2.06013 3.56825i 0.0880044 0.152428i
\(549\) 1.52690 2.64466i 0.0651664 0.112872i
\(550\) 0 0
\(551\) 1.48854i 0.0634140i
\(552\) 5.38587 + 9.32860i 0.229238 + 0.397051i
\(553\) −8.38477 14.5228i −0.356557 0.617574i
\(554\) 34.0548i 1.44685i
\(555\) 0 0
\(556\) −0.287994 + 0.498820i −0.0122137 + 0.0211547i
\(557\) 10.3566 17.9382i 0.438824 0.760065i −0.558775 0.829319i \(-0.688729\pi\)
0.997599 + 0.0692540i \(0.0220619\pi\)
\(558\) 1.74826i 0.0740100i
\(559\) 7.12391 34.1287i 0.301309 1.44349i
\(560\) 0 0
\(561\) −10.6904 6.17213i −0.451351 0.260588i
\(562\) 19.3473 + 11.1702i 0.816118 + 0.471186i
\(563\) 32.1969 18.5889i 1.35694 0.783428i 0.367727 0.929934i \(-0.380136\pi\)
0.989210 + 0.146506i \(0.0468029\pi\)
\(564\) 1.36450i 0.0574559i
\(565\) 0 0
\(566\) 20.7758 11.9949i 0.873273 0.504184i
\(567\) −1.05896 −0.0444721
\(568\) 21.0414 12.1482i 0.882876 0.509729i
\(569\) −23.0048 + 39.8455i −0.964413 + 1.67041i −0.253229 + 0.967406i \(0.581493\pi\)
−0.711184 + 0.703006i \(0.751841\pi\)
\(570\) 0 0
\(571\) 41.4861 1.73614 0.868070 0.496442i \(-0.165361\pi\)
0.868070 + 0.496442i \(0.165361\pi\)
\(572\) 1.60367 + 1.43336i 0.0670527 + 0.0599319i
\(573\) 5.80206i 0.242385i
\(574\) −10.7757 6.22136i −0.449770 0.259675i
\(575\) 0 0
\(576\) 4.35723 + 7.54695i 0.181551 + 0.314456i
\(577\) −13.0556 −0.543513 −0.271756 0.962366i \(-0.587604\pi\)
−0.271756 + 0.962366i \(0.587604\pi\)
\(578\) −4.99130 8.64518i −0.207611 0.359592i
\(579\) 2.10735 1.21668i 0.0875786 0.0505635i
\(580\) 0 0
\(581\) −8.36776 14.4934i −0.347153 0.601287i
\(582\) 11.5556 + 6.67163i 0.478995 + 0.276548i
\(583\) −6.21374 + 10.7625i −0.257347 + 0.445738i
\(584\) 11.8473 0.490245
\(585\) 0 0
\(586\) 19.2991 0.797240
\(587\) −8.47088 + 14.6720i −0.349631 + 0.605578i −0.986184 0.165655i \(-0.947026\pi\)
0.636553 + 0.771233i \(0.280360\pi\)
\(588\) 1.21835 + 0.703415i 0.0502439 + 0.0290084i
\(589\) −4.18798 7.25379i −0.172563 0.298887i
\(590\) 0 0
\(591\) 11.5895 6.69120i 0.476728 0.275239i
\(592\) −10.5965 18.3538i −0.435515 0.754335i
\(593\) 45.0621 1.85048 0.925239 0.379384i \(-0.123864\pi\)
0.925239 + 0.379384i \(0.123864\pi\)
\(594\) 1.65382 + 2.86450i 0.0678569 + 0.117532i
\(595\) 0 0
\(596\) 0.701007 + 0.404726i 0.0287143 + 0.0165782i
\(597\) 17.8511i 0.730597i
\(598\) 3.54389 16.9778i 0.144920 0.694274i
\(599\) −24.1055 −0.984924 −0.492462 0.870334i \(-0.663903\pi\)
−0.492462 + 0.870334i \(0.663903\pi\)
\(600\) 0 0
\(601\) −14.0845 + 24.3950i −0.574518 + 0.995095i 0.421576 + 0.906793i \(0.361477\pi\)
−0.996094 + 0.0883014i \(0.971856\pi\)
\(602\) 11.7668 6.79359i 0.479581 0.276886i
\(603\) 7.63454 0.310903
\(604\) 0.304158 0.175606i 0.0123760 0.00714530i
\(605\) 0 0
\(606\) 15.1419i 0.615099i
\(607\) 4.97596 2.87287i 0.201968 0.116606i −0.395605 0.918421i \(-0.629465\pi\)
0.597573 + 0.801814i \(0.296132\pi\)
\(608\) −7.41144 4.27900i −0.300574 0.173536i
\(609\) −0.214735 0.123977i −0.00870149 0.00502381i
\(610\) 0 0
\(611\) 13.6999 15.3277i 0.554240 0.620092i
\(612\) 1.18510i 0.0479049i
\(613\) −6.55576 + 11.3549i −0.264785 + 0.458620i −0.967507 0.252844i \(-0.918634\pi\)
0.702723 + 0.711464i \(0.251968\pi\)
\(614\) 22.6279 39.1927i 0.913188 1.58169i
\(615\) 0 0
\(616\) 7.84353i 0.316025i
\(617\) 22.8202 + 39.5257i 0.918705 + 1.59124i 0.801384 + 0.598150i \(0.204097\pi\)
0.117321 + 0.993094i \(0.462569\pi\)
\(618\) 1.92261 + 3.33006i 0.0773387 + 0.133955i
\(619\) 2.88239i 0.115853i 0.998321 + 0.0579264i \(0.0184489\pi\)
−0.998321 + 0.0579264i \(0.981551\pi\)
\(620\) 0 0
\(621\) −1.81259 + 3.13950i −0.0727368 + 0.125984i
\(622\) −3.09808 + 5.36603i −0.124222 + 0.215158i
\(623\) 16.7794i 0.672254i
\(624\) 2.55211 12.2265i 0.102166 0.489451i
\(625\) 0 0
\(626\) 5.79722 + 3.34703i 0.231704 + 0.133774i
\(627\) −13.7238 7.92345i −0.548077 0.316432i
\(628\) 4.30738 2.48687i 0.171883 0.0992369i
\(629\) 30.2965i 1.20800i
\(630\) 0 0
\(631\) −10.3097 + 5.95230i −0.410422 + 0.236957i −0.690971 0.722882i \(-0.742817\pi\)
0.280549 + 0.959840i \(0.409483\pi\)
\(632\) −47.0541 −1.87171
\(633\) −8.65060 + 4.99443i −0.343830 + 0.198511i
\(634\) −9.69350 + 16.7896i −0.384978 + 0.666802i
\(635\) 0 0
\(636\) −1.19309 −0.0473092
\(637\) −6.62349 20.1341i −0.262432 0.797743i
\(638\) 0.774480i 0.0306619i
\(639\) 7.08138 + 4.08844i 0.280135 + 0.161736i
\(640\) 0 0
\(641\) 11.1489 + 19.3104i 0.440354 + 0.762715i 0.997716 0.0675549i \(-0.0215198\pi\)
−0.557362 + 0.830270i \(0.688186\pi\)
\(642\) 20.0538 0.791460
\(643\) −1.27144 2.20220i −0.0501408 0.0868465i 0.839866 0.542794i \(-0.182634\pi\)
−0.890007 + 0.455948i \(0.849300\pi\)
\(644\) −0.795623 + 0.459353i −0.0313519 + 0.0181010i
\(645\) 0 0
\(646\) −20.8866 36.1766i −0.821772 1.42335i
\(647\) 15.9566 + 9.21257i 0.627320 + 0.362183i 0.779713 0.626136i \(-0.215365\pi\)
−0.152393 + 0.988320i \(0.548698\pi\)
\(648\) −1.48568 + 2.57328i −0.0583631 + 0.101088i
\(649\) −5.24003 −0.205689
\(650\) 0 0
\(651\) −1.39523 −0.0546833
\(652\) 2.00154 3.46676i 0.0783862 0.135769i
\(653\) −7.30581 4.21801i −0.285898 0.165063i 0.350192 0.936678i \(-0.386116\pi\)
−0.636091 + 0.771614i \(0.719450\pi\)
\(654\) −0.256006 0.443415i −0.0100106 0.0173389i
\(655\) 0 0
\(656\) −26.5654 + 15.3375i −1.03720 + 0.598830i
\(657\) 1.99358 + 3.45298i 0.0777770 + 0.134714i
\(658\) 8.01174 0.312330
\(659\) 24.7303 + 42.8341i 0.963354 + 1.66858i 0.713973 + 0.700173i \(0.246894\pi\)
0.249381 + 0.968405i \(0.419773\pi\)
\(660\) 0 0
\(661\) −2.83376 1.63607i −0.110221 0.0636359i 0.443876 0.896088i \(-0.353603\pi\)
−0.554097 + 0.832452i \(0.686936\pi\)
\(662\) 21.1494i 0.821994i
\(663\) −11.8987 + 13.3125i −0.462108 + 0.517014i
\(664\) −46.9587 −1.82235
\(665\) 0 0
\(666\) 4.05896 7.03032i 0.157281 0.272420i
\(667\) −0.735111 + 0.424417i −0.0284636 + 0.0164335i
\(668\) 1.53425 0.0593618
\(669\) 17.5247 10.1179i 0.677546 0.391181i
\(670\) 0 0
\(671\) 7.61231i 0.293870i
\(672\) −1.23457 + 0.712776i −0.0476244 + 0.0274959i
\(673\) 7.67941 + 4.43371i 0.296020 + 0.170907i 0.640653 0.767830i \(-0.278664\pi\)
−0.344634 + 0.938737i \(0.611997\pi\)
\(674\) 22.7829 + 13.1537i 0.877564 + 0.506662i
\(675\) 0 0
\(676\) 2.50347 1.84701i 0.0962873 0.0710388i
\(677\) 45.0533i 1.73154i 0.500444 + 0.865769i \(0.333170\pi\)
−0.500444 + 0.865769i \(0.666830\pi\)
\(678\) −5.58718 + 9.67729i −0.214575 + 0.371654i
\(679\) −5.32439 + 9.22212i −0.204331 + 0.353913i
\(680\) 0 0
\(681\) 3.18793i 0.122162i
\(682\) 2.17898 + 3.77411i 0.0834375 + 0.144518i
\(683\) −10.6745 18.4888i −0.408449 0.707454i 0.586268 0.810117i \(-0.300597\pi\)
−0.994716 + 0.102664i \(0.967263\pi\)
\(684\) 1.52137i 0.0581711i
\(685\) 0 0
\(686\) 9.04814 15.6718i 0.345459 0.598353i
\(687\) −13.6730 + 23.6824i −0.521659 + 0.903540i
\(688\) 33.4965i 1.27704i
\(689\) 13.4022 + 11.9789i 0.510584 + 0.456361i
\(690\) 0 0
\(691\) −20.2844 11.7112i −0.771654 0.445515i 0.0618100 0.998088i \(-0.480313\pi\)
−0.833464 + 0.552573i \(0.813646\pi\)
\(692\) −4.66421 2.69288i −0.177307 0.102368i
\(693\) −2.28605 + 1.31985i −0.0868400 + 0.0501371i
\(694\) 13.7511i 0.521984i
\(695\) 0 0
\(696\) −0.602531 + 0.347871i −0.0228389 + 0.0131860i
\(697\) 43.8514 1.66099
\(698\) 36.5998 21.1309i 1.38532 0.799818i
\(699\) 6.42672 11.1314i 0.243081 0.421029i
\(700\) 0 0
\(701\) −43.7290 −1.65162 −0.825811 0.563948i \(-0.809282\pi\)
−0.825811 + 0.563948i \(0.809282\pi\)
\(702\) 4.54464 1.49504i 0.171526 0.0564268i
\(703\) 38.8930i 1.46688i
\(704\) 18.8126 + 10.8614i 0.709025 + 0.409356i
\(705\) 0 0
\(706\) 0.766987 + 1.32846i 0.0288659 + 0.0499973i
\(707\) −12.0843 −0.454475
\(708\) −0.251533 0.435668i −0.00945319 0.0163734i
\(709\) 7.86925 4.54331i 0.295536 0.170628i −0.344900 0.938639i \(-0.612087\pi\)
0.640436 + 0.768012i \(0.278754\pi\)
\(710\) 0 0
\(711\) −7.91793 13.7143i −0.296946 0.514325i
\(712\) −40.7741 23.5410i −1.52808 0.882235i
\(713\) −2.38817 + 4.13644i −0.0894378 + 0.154911i
\(714\) −6.95839 −0.260411
\(715\) 0 0
\(716\) −1.13816 −0.0425351
\(717\) −5.19846 + 9.00399i −0.194140 + 0.336260i
\(718\) 24.8513 + 14.3479i 0.927441 + 0.535458i
\(719\) 5.42357 + 9.39390i 0.202265 + 0.350333i 0.949258 0.314499i \(-0.101836\pi\)
−0.746993 + 0.664832i \(0.768503\pi\)
\(720\) 0 0
\(721\) −2.65760 + 1.53437i −0.0989743 + 0.0571429i
\(722\) −14.2075 24.6081i −0.528748 0.915818i
\(723\) 6.12477 0.227783
\(724\) 1.37134 + 2.37523i 0.0509655 + 0.0882749i
\(725\) 0 0
\(726\) −5.50007 3.17547i −0.204127 0.117853i
\(727\) 41.2173i 1.52866i −0.644822 0.764332i \(-0.723069\pi\)
0.644822 0.764332i \(-0.276931\pi\)
\(728\) 11.1057 + 2.31817i 0.411605 + 0.0859169i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −23.9424 + 41.4695i −0.885542 + 1.53380i
\(732\) 0.632904 0.365407i 0.0233928 0.0135058i
\(733\) −23.4406 −0.865799 −0.432900 0.901442i \(-0.642510\pi\)
−0.432900 + 0.901442i \(0.642510\pi\)
\(734\) −19.3522 + 11.1730i −0.714301 + 0.412402i
\(735\) 0 0
\(736\) 4.88016i 0.179885i
\(737\) 16.4813 9.51545i 0.607095 0.350506i
\(738\) −10.1758 5.87498i −0.374575 0.216261i
\(739\) 14.5603 + 8.40641i 0.535611 + 0.309235i 0.743298 0.668960i \(-0.233260\pi\)
−0.207688 + 0.978195i \(0.566594\pi\)
\(740\) 0 0
\(741\) −15.2750 + 17.0899i −0.561139 + 0.627811i
\(742\) 7.00530i 0.257173i
\(743\) 10.6155 18.3867i 0.389447 0.674541i −0.602929 0.797795i \(-0.706000\pi\)
0.992375 + 0.123254i \(0.0393330\pi\)
\(744\) −1.95746 + 3.39041i −0.0717638 + 0.124299i
\(745\) 0 0
\(746\) 32.5104i 1.19029i
\(747\) −7.90187 13.6864i −0.289114 0.500761i
\(748\) −1.47707 2.55837i −0.0540072 0.0935432i
\(749\) 16.0042i 0.584782i
\(750\) 0 0
\(751\) −11.1589 + 19.3278i −0.407195 + 0.705282i −0.994574 0.104029i \(-0.966826\pi\)
0.587379 + 0.809312i \(0.300160\pi\)
\(752\) 9.87568 17.1052i 0.360129 0.623762i
\(753\) 7.75343i 0.282551i
\(754\) 1.09659 + 0.228898i 0.0399354 + 0.00833599i
\(755\) 0 0
\(756\) −0.219471 0.126712i −0.00798209 0.00460846i
\(757\) 6.86045 + 3.96088i 0.249347 + 0.143961i 0.619465 0.785024i \(-0.287349\pi\)
−0.370118 + 0.928985i \(0.620683\pi\)
\(758\) −37.9994 + 21.9390i −1.38020 + 0.796860i
\(759\) 9.03662i 0.328009i
\(760\) 0 0
\(761\) −10.5400 + 6.08529i −0.382076 + 0.220592i −0.678721 0.734396i \(-0.737465\pi\)
0.296645 + 0.954988i \(0.404132\pi\)
\(762\) −15.1097 −0.547366
\(763\) 0.353874 0.204309i 0.0128111 0.00739649i
\(764\) −0.694256 + 1.20249i −0.0251173 + 0.0435044i
\(765\) 0 0
\(766\) 1.32709 0.0479497
\(767\) −1.54870 + 7.41939i −0.0559203 + 0.267899i
\(768\) 5.65801i 0.204166i
\(769\) −18.3243 10.5796i −0.660793 0.381509i 0.131786 0.991278i \(-0.457929\pi\)
−0.792579 + 0.609769i \(0.791262\pi\)
\(770\) 0 0
\(771\) 4.02069 + 6.96403i 0.144801 + 0.250804i
\(772\) 0.582337 0.0209588
\(773\) 2.19887 + 3.80856i 0.0790880 + 0.136984i 0.902857 0.429942i \(-0.141466\pi\)
−0.823769 + 0.566926i \(0.808133\pi\)
\(774\) 11.1117 6.41535i 0.399402 0.230595i
\(775\) 0 0
\(776\) 14.9399 + 25.8766i 0.536310 + 0.928916i
\(777\) 5.61066 + 3.23931i 0.201281 + 0.116210i
\(778\) 0.837232 1.45013i 0.0300162 0.0519896i
\(779\) 56.2941 2.01695
\(780\) 0 0
\(781\) 20.3828 0.729354
\(782\) −11.9105 + 20.6296i −0.425918 + 0.737712i
\(783\) −0.202779 0.117075i −0.00724673 0.00418390i
\(784\) −10.1820 17.6358i −0.363644 0.629851i
\(785\) 0 0
\(786\) −13.2091 + 7.62630i −0.471154 + 0.272021i
\(787\) 21.5567 + 37.3374i 0.768415 + 1.33093i 0.938422 + 0.345491i \(0.112288\pi\)
−0.170007 + 0.985443i \(0.554379\pi\)
\(788\) 3.20259 0.114088
\(789\) −8.51573 14.7497i −0.303168 0.525102i
\(790\) 0 0
\(791\) −7.72311 4.45894i −0.274602 0.158542i
\(792\) 7.40683i 0.263190i
\(793\) −10.7783 2.24983i −0.382749 0.0798937i
\(794\) −14.8029 −0.525335
\(795\) 0 0
\(796\) −2.13601 + 3.69967i −0.0757088 + 0.131131i
\(797\) 29.5008 17.0323i 1.04497 0.603315i 0.123734 0.992315i \(-0.460513\pi\)
0.921237 + 0.389001i \(0.127180\pi\)
\(798\) −8.93282 −0.316218
\(799\) −24.4526 + 14.1177i −0.865072 + 0.499449i
\(800\) 0 0
\(801\) 15.8452i 0.559863i
\(802\) 38.2346 22.0748i 1.35011 0.779487i
\(803\) 8.60738 + 4.96947i 0.303748 + 0.175369i
\(804\) 1.58227 + 0.913525i 0.0558024 + 0.0322176i
\(805\) 0 0
\(806\) 5.98778 1.96979i 0.210911 0.0693829i
\(807\) 9.75174i 0.343278i
\(808\) −16.9538 + 29.3648i −0.596432 + 1.03305i
\(809\) 7.86797 13.6277i 0.276623 0.479125i −0.693920 0.720052i \(-0.744118\pi\)
0.970543 + 0.240927i \(0.0774513\pi\)
\(810\) 0 0
\(811\) 47.5686i 1.67036i −0.549976 0.835180i \(-0.685363\pi\)
0.549976 0.835180i \(-0.314637\pi\)
\(812\) −0.0296694 0.0513890i −0.00104119 0.00180340i
\(813\) −10.6429 18.4341i −0.373264 0.646512i
\(814\) 20.2358i 0.709266i
\(815\) 0 0
\(816\) −8.57727 + 14.8563i −0.300265 + 0.520073i
\(817\) −30.7360 + 53.2363i −1.07532 + 1.86250i
\(818\) 3.20789i 0.112161i
\(819\) 1.19314 + 3.62692i 0.0416918 + 0.126735i
\(820\) 0 0
\(821\) 10.5205 + 6.07404i 0.367169 + 0.211985i 0.672221 0.740350i \(-0.265340\pi\)
−0.305052 + 0.952336i \(0.598674\pi\)
\(822\) −19.7847 11.4227i −0.690069 0.398412i
\(823\) −3.16596 + 1.82787i −0.110359 + 0.0637156i −0.554163 0.832408i \(-0.686962\pi\)
0.443805 + 0.896124i \(0.353628\pi\)
\(824\) 8.61066i 0.299966i
\(825\) 0 0
\(826\) −2.55805 + 1.47689i −0.0890058 + 0.0513875i
\(827\) −30.5084 −1.06088 −0.530441 0.847722i \(-0.677974\pi\)
−0.530441 + 0.847722i \(0.677974\pi\)
\(828\) −0.751325 + 0.433778i −0.0261104 + 0.0150748i
\(829\) −26.0329 + 45.0903i −0.904161 + 1.56605i −0.0821211 + 0.996622i \(0.526169\pi\)
−0.822040 + 0.569430i \(0.807164\pi\)
\(830\) 0 0
\(831\) −25.6648 −0.890301
\(832\) 20.9388 23.4267i 0.725924 0.812174i
\(833\) 29.1114i 1.00865i
\(834\) 2.76578 + 1.59682i 0.0957710 + 0.0552934i
\(835\) 0 0
\(836\) −1.89619 3.28430i −0.0655811 0.113590i
\(837\) −1.31755 −0.0455411
\(838\) −17.7087 30.6724i −0.611738 1.05956i
\(839\) 37.4902 21.6450i 1.29431 0.747268i 0.314891 0.949128i \(-0.398032\pi\)
0.979414 + 0.201860i \(0.0646987\pi\)
\(840\) 0 0
\(841\) 14.4726 + 25.0673i 0.499055 + 0.864388i
\(842\) −46.8124 27.0271i −1.61326 0.931416i
\(843\) −8.41821 + 14.5808i −0.289938 + 0.502188i
\(844\) −2.39047 −0.0822833
\(845\) 0 0
\(846\) 7.56567 0.260113
\(847\) 2.53423 4.38941i 0.0870771 0.150822i
\(848\) 14.9564 + 8.63509i 0.513606 + 0.296530i
\(849\) 9.03975 + 15.6573i 0.310244 + 0.537358i
\(850\) 0 0
\(851\) 19.2072 11.0893i 0.658414 0.380136i
\(852\) 0.978419 + 1.69467i 0.0335201 + 0.0580585i
\(853\) −7.62729 −0.261153 −0.130577 0.991438i \(-0.541683\pi\)
−0.130577 + 0.991438i \(0.541683\pi\)
\(854\) −2.14551 3.71613i −0.0734178 0.127163i
\(855\) 0 0
\(856\) 38.8904 + 22.4534i 1.32925 + 0.767440i
\(857\) 34.6287i 1.18289i 0.806344 + 0.591447i \(0.201443\pi\)
−0.806344 + 0.591447i \(0.798557\pi\)
\(858\) 7.94748 8.89176i 0.271322 0.303560i
\(859\) 15.1648 0.517415 0.258707 0.965956i \(-0.416703\pi\)
0.258707 + 0.965956i \(0.416703\pi\)
\(860\) 0 0
\(861\) 4.68861 8.12092i 0.159788 0.276760i
\(862\) −8.24479 + 4.76013i −0.280819 + 0.162131i
\(863\) 17.7187 0.603150 0.301575 0.953442i \(-0.402488\pi\)
0.301575 + 0.953442i \(0.402488\pi\)
\(864\) −1.16583 + 0.673091i −0.0396623 + 0.0228990i
\(865\) 0 0
\(866\) 38.1276i 1.29563i
\(867\) 6.51528 3.76160i 0.221270 0.127751i
\(868\) −0.289164 0.166949i −0.00981485 0.00566661i
\(869\) −34.1860 19.7373i −1.15968 0.669543i
\(870\) 0 0
\(871\) −8.60193 26.1482i −0.291465 0.885998i
\(872\) 1.14655i 0.0388272i
\(873\) −5.02795 + 8.70866i −0.170170 + 0.294744i
\(874\) −15.2900 + 26.4831i −0.517194 + 0.895806i
\(875\) 0 0
\(876\) 0.954183i 0.0322388i
\(877\) −1.20259 2.08295i −0.0406086 0.0703361i 0.845007 0.534756i \(-0.179596\pi\)
−0.885615 + 0.464420i \(0.846263\pi\)
\(878\) −25.9868 45.0105i −0.877013 1.51903i
\(879\) 14.5444i 0.490572i
\(880\) 0 0
\(881\) −13.2458 + 22.9423i −0.446261 + 0.772946i −0.998139 0.0609784i \(-0.980578\pi\)
0.551878 + 0.833925i \(0.313911\pi\)
\(882\) 3.90019 6.75532i 0.131326 0.227463i
\(883\) 14.5464i 0.489525i −0.969583 0.244763i \(-0.921290\pi\)
0.969583 0.244763i \(-0.0787100\pi\)
\(884\) −4.05896 + 1.33527i −0.136518 + 0.0449100i
\(885\) 0 0
\(886\) 14.3899 + 8.30800i 0.483437 + 0.279113i
\(887\) 30.5160 + 17.6184i 1.02463 + 0.591568i 0.915441 0.402453i \(-0.131842\pi\)
0.109185 + 0.994021i \(0.465176\pi\)
\(888\) 15.7431 9.08928i 0.528304 0.305016i
\(889\) 12.0585i 0.404430i
\(890\) 0 0
\(891\) −2.15877 + 1.24637i −0.0723216 + 0.0417549i
\(892\) 4.84271 0.162146
\(893\) −31.3910 + 18.1236i −1.05046 + 0.606483i
\(894\) 2.24406 3.88683i 0.0750527 0.129995i
\(895\) 0 0
\(896\) 9.39396 0.313830
\(897\) 12.7950 + 2.67079i 0.427213 + 0.0891749i
\(898\) 14.5393i 0.485182i
\(899\) −0.267171 0.154251i −0.00891065 0.00514457i
\(900\) 0 0
\(901\) −12.3443 21.3809i −0.411247 0.712301i
\(902\) −29.2895 −0.975235
\(903\) 5.11986 + 8.86787i 0.170378 + 0.295104i
\(904\) −21.6705 + 12.5115i −0.720750 + 0.416125i
\(905\) 0 0
\(906\) −0.973671 1.68645i −0.0323480 0.0560285i
\(907\) −14.4096 8.31939i −0.478463 0.276241i 0.241313 0.970447i \(-0.422422\pi\)
−0.719776 + 0.694207i \(0.755755\pi\)
\(908\) 0.381457 0.660703i 0.0126591 0.0219262i
\(909\) −11.4114 −0.378494
\(910\) 0 0
\(911\) −11.3931 −0.377471 −0.188736 0.982028i \(-0.560439\pi\)
−0.188736 + 0.982028i \(0.560439\pi\)
\(912\) −11.0110 + 19.0717i −0.364612 + 0.631527i
\(913\) −34.1167 19.6973i −1.12910 0.651885i
\(914\) −11.0033 19.0583i −0.363956 0.630391i
\(915\) 0 0
\(916\) −5.66752 + 3.27215i −0.187260 + 0.108115i
\(917\) −6.08628 10.5418i −0.200987 0.348119i
\(918\) −6.57097 −0.216874
\(919\) −13.3893 23.1909i −0.441672 0.764998i 0.556142 0.831088i \(-0.312281\pi\)
−0.997814 + 0.0660891i \(0.978948\pi\)
\(920\) 0 0
\(921\) 29.5369 + 17.0531i 0.973272 + 0.561919i
\(922\) 30.4396i 1.00247i
\(923\) 6.02416 28.8601i 0.198288 0.949943i
\(924\) −0.631718 −0.0207820
\(925\) 0 0
\(926\) 27.3407 47.3555i 0.898471 1.55620i
\(927\) −2.50964 + 1.44894i −0.0824273 + 0.0475894i
\(928\) −0.315208 −0.0103472
\(929\) 16.8755 9.74310i 0.553669 0.319661i −0.196932 0.980417i \(-0.563098\pi\)
0.750600 + 0.660756i \(0.229764\pi\)
\(930\) 0 0
\(931\) 37.3717i 1.22481i
\(932\) 2.66390 1.53800i 0.0872589 0.0503790i
\(933\) −4.04401 2.33481i −0.132395 0.0764382i
\(934\) 35.8378 + 20.6909i 1.17265 + 0.677028i
\(935\) 0 0
\(936\) 10.4874 + 2.18910i 0.342790 + 0.0715529i
\(937\) 9.81448i 0.320625i −0.987066 0.160313i \(-0.948750\pi\)
0.987066 0.160313i \(-0.0512502\pi\)
\(938\) 5.36381 9.29039i 0.175135 0.303342i
\(939\) −2.52242 + 4.36897i −0.0823162 + 0.142576i
\(940\) 0 0
\(941\) 47.0242i 1.53295i 0.642277 + 0.766473i \(0.277990\pi\)
−0.642277 + 0.766473i \(0.722010\pi\)
\(942\) −13.7888 23.8829i −0.449263 0.778147i
\(943\) −16.0507 27.8007i −0.522684 0.905315i
\(944\) 7.28196i 0.237008i
\(945\) 0 0
\(946\) 15.9918 27.6986i 0.519937 0.900558i
\(947\) 11.9613 20.7176i 0.388690 0.673232i −0.603583 0.797300i \(-0.706261\pi\)
0.992274 + 0.124068i \(0.0395942\pi\)
\(948\) 3.78974i 0.123085i
\(949\) 9.58023 10.7185i 0.310987 0.347937i
\(950\) 0 0
\(951\) −12.6532 7.30533i −0.410308 0.236891i
\(952\) −13.4944 7.79101i −0.437357 0.252508i
\(953\) −22.2122 + 12.8242i −0.719522 + 0.415416i −0.814577 0.580056i \(-0.803031\pi\)
0.0950546 + 0.995472i \(0.469697\pi\)
\(954\) 6.61527i 0.214177i
\(955\) 0 0
\(956\) −2.15478 + 1.24406i −0.0696905 + 0.0402358i
\(957\) −0.583672 −0.0188674
\(958\) 5.92932 3.42330i 0.191568 0.110602i
\(959\) 9.11604 15.7894i 0.294372 0.509868i
\(960\) 0 0
\(961\) 29.2641 0.944002
\(962\) −28.6520 5.98073i −0.923778 0.192826i
\(963\) 15.1132i 0.487015i
\(964\) 1.26937 + 0.732871i 0.0408836 + 0.0236042i
\(965\) 0 0
\(966\) 2.54695 + 4.41144i 0.0819467 + 0.141936i
\(967\) 25.1221 0.807873 0.403936 0.914787i \(-0.367642\pi\)
0.403936 + 0.914787i \(0.367642\pi\)
\(968\) −7.11086 12.3164i −0.228552 0.395863i
\(969\) 27.2639 15.7408i 0.875841 0.505667i
\(970\) 0 0
\(971\) −19.8822 34.4370i −0.638050 1.10513i −0.985860 0.167570i \(-0.946408\pi\)
0.347811 0.937565i \(-0.386925\pi\)
\(972\) −0.207252 0.119657i −0.00664760 0.00383799i
\(973\) −1.27437 + 2.20727i −0.0408544 + 0.0707618i
\(974\) −34.9720 −1.12058
\(975\) 0 0
\(976\) −10.5787 −0.338615
\(977\) −5.08581 + 8.80888i −0.162709 + 0.281821i −0.935839 0.352427i \(-0.885357\pi\)
0.773130 + 0.634247i \(0.218690\pi\)
\(978\) −19.2220 11.0978i −0.614650 0.354869i
\(979\) −19.7490 34.2062i −0.631180 1.09324i
\(980\) 0 0
\(981\) 0.334171 0.192934i 0.0106693 0.00615991i
\(982\) 12.4214 + 21.5144i 0.396382 + 0.686554i
\(983\) −37.0857 −1.18285 −0.591425 0.806360i \(-0.701434\pi\)
−0.591425 + 0.806360i \(0.701434\pi\)
\(984\) −13.1559 22.7867i −0.419395 0.726414i
\(985\) 0 0
\(986\) −1.33246 0.769294i −0.0424340 0.0244993i
\(987\) 6.03790i 0.192188i
\(988\) −5.21068 + 1.71415i −0.165774 + 0.0545343i
\(989\) 35.0541 1.11466
\(990\) 0 0
\(991\) −8.57901 + 14.8593i −0.272521 + 0.472021i −0.969507 0.245065i \(-0.921191\pi\)
0.696986 + 0.717085i \(0.254524\pi\)
\(992\) −1.53603 + 0.886830i −0.0487691 + 0.0281569i
\(993\) 15.9388 0.505804
\(994\) 9.95035 5.74484i 0.315606 0.182215i
\(995\) 0 0
\(996\) 3.78205i 0.119839i
\(997\) −30.1347 + 17.3983i −0.954374 + 0.551008i −0.894437 0.447194i \(-0.852423\pi\)
−0.0599374 + 0.998202i \(0.519090\pi\)
\(998\) 10.7036 + 6.17974i 0.338817 + 0.195616i
\(999\) 5.29827 + 3.05896i 0.167630 + 0.0967812i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.w.j.199.3 8
5.2 odd 4 975.2.bc.i.901.4 8
5.3 odd 4 195.2.bb.c.121.1 8
5.4 even 2 975.2.w.g.199.2 8
13.10 even 6 975.2.w.g.49.2 8
15.8 even 4 585.2.bu.b.316.4 8
65.23 odd 12 195.2.bb.c.166.1 yes 8
65.33 even 12 2535.2.a.bi.1.2 4
65.49 even 6 inner 975.2.w.j.49.3 8
65.58 even 12 2535.2.a.bl.1.3 4
65.62 odd 12 975.2.bc.i.751.4 8
195.23 even 12 585.2.bu.b.361.4 8
195.98 odd 12 7605.2.a.ck.1.3 4
195.188 odd 12 7605.2.a.cg.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.bb.c.121.1 8 5.3 odd 4
195.2.bb.c.166.1 yes 8 65.23 odd 12
585.2.bu.b.316.4 8 15.8 even 4
585.2.bu.b.361.4 8 195.23 even 12
975.2.w.g.49.2 8 13.10 even 6
975.2.w.g.199.2 8 5.4 even 2
975.2.w.j.49.3 8 65.49 even 6 inner
975.2.w.j.199.3 8 1.1 even 1 trivial
975.2.bc.i.751.4 8 65.62 odd 12
975.2.bc.i.901.4 8 5.2 odd 4
2535.2.a.bi.1.2 4 65.33 even 12
2535.2.a.bl.1.3 4 65.58 even 12
7605.2.a.cg.1.2 4 195.188 odd 12
7605.2.a.ck.1.3 4 195.98 odd 12