Properties

Label 975.2.w
Level $975$
Weight $2$
Character orbit 975.w
Rep. character $\chi_{975}(49,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $80$
Newform subspaces $11$
Sturm bound $280$
Trace bound $13$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.w (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 65 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 11 \)
Sturm bound: \(280\)
Trace bound: \(13\)
Distinguishing \(T_p\): \(2\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(975, [\chi])\).

Total New Old
Modular forms 304 80 224
Cusp forms 256 80 176
Eisenstein series 48 0 48

Trace form

\( 80 q - 36 q^{4} + 40 q^{9} + 24 q^{11} - 16 q^{14} - 20 q^{16} + 30 q^{19} - 32 q^{26} + 4 q^{29} + 36 q^{36} + 10 q^{39} - 24 q^{41} + 36 q^{46} - 42 q^{49} + 48 q^{51} + 76 q^{56} - 132 q^{59} + 24 q^{61}+ \cdots + 24 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(975, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
975.2.w.a 975.w 65.l $4$ $7.785$ \(\Q(\zeta_{12})\) None 195.2.bb.a \(-2\) \(0\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{6}]$ \(q+(\zeta_{12}-\zeta_{12}^{2}+\zeta_{12}^{3})q^{2}+(\zeta_{12}-\zeta_{12}^{3})q^{3}+\cdots\)
975.2.w.b 975.w 65.l $4$ $7.785$ \(\Q(\zeta_{12})\) None 975.2.bc.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-\zeta_{12}-\zeta_{12}^{3})q^{2}+(\zeta_{12}-\zeta_{12}^{3})q^{3}+\cdots\)
975.2.w.c 975.w 65.l $4$ $7.785$ \(\Q(\zeta_{12})\) None 975.2.bc.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-\zeta_{12}-\zeta_{12}^{3})q^{2}+(-\zeta_{12}+\zeta_{12}^{3})q^{3}+\cdots\)
975.2.w.d 975.w 65.l $4$ $7.785$ \(\Q(\zeta_{12})\) None 39.2.j.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q-\zeta_{12}q^{3}+2\zeta_{12}^{2}q^{4}+(-\zeta_{12}-\zeta_{12}^{3})q^{7}+\cdots\)
975.2.w.e 975.w 65.l $4$ $7.785$ \(\Q(\zeta_{12})\) None 975.2.bc.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\zeta_{12}q^{3}+2\zeta_{12}^{2}q^{4}+(2\zeta_{12}+2\zeta_{12}^{3})q^{7}+\cdots\)
975.2.w.f 975.w 65.l $4$ $7.785$ \(\Q(\zeta_{12})\) None 195.2.bb.a \(2\) \(0\) \(0\) \(2\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-\zeta_{12}+\zeta_{12}^{2}-\zeta_{12}^{3})q^{2}+(-\zeta_{12}+\cdots)q^{3}+\cdots\)
975.2.w.g 975.w 65.l $8$ $7.785$ 8.0.56070144.2 None 195.2.bb.c \(-2\) \(0\) \(0\) \(6\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-\beta _{3}+\beta _{6}-\beta _{7})q^{2}-\beta _{4}q^{3}+(-1+\cdots)q^{4}+\cdots\)
975.2.w.h 975.w 65.l $8$ $7.785$ 8.0.191102976.5 None 195.2.bb.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-\beta _{1}+\beta _{5}+\beta _{7})q^{2}+\beta _{6}q^{3}+(-1+\cdots)q^{4}+\cdots\)
975.2.w.i 975.w 65.l $8$ $7.785$ 8.0.191102976.5 None 195.2.bb.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-\beta _{1}+\beta _{5}+\beta _{7})q^{2}-\beta _{6}q^{3}+(-1+\cdots)q^{4}+\cdots\)
975.2.w.j 975.w 65.l $8$ $7.785$ 8.0.56070144.2 None 195.2.bb.c \(2\) \(0\) \(0\) \(-6\) $\mathrm{SU}(2)[C_{6}]$ \(q+(\beta _{3}-\beta _{6}+\beta _{7})q^{2}+\beta _{4}q^{3}+(-1+\cdots)q^{4}+\cdots\)
975.2.w.k 975.w 65.l $24$ $7.785$ None 975.2.bc.k \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{2}^{\mathrm{old}}(975, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(975, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(195, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(325, [\chi])\)\(^{\oplus 2}\)