Properties

Label 975.2.o.n.551.3
Level $975$
Weight $2$
Character 975.551
Analytic conductor $7.785$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [975,2,Mod(476,975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("975.476"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(975, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.o (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,6,-2,0,0,4,-14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.619810816.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{5} + 14x^{4} - 8x^{3} + 2x^{2} + 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 551.3
Root \(1.18254 - 1.18254i\) of defining polynomial
Character \(\chi\) \(=\) 975.551
Dual form 975.2.o.n.476.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.42282 + 1.42282i) q^{2} +(-0.759725 - 1.55654i) q^{3} +2.04882i q^{4} +(1.13372 - 3.29562i) q^{6} +(0.739083 + 0.739083i) q^{7} +(-0.0694623 + 0.0694623i) q^{8} +(-1.84564 + 2.36509i) q^{9} +(0.336908 - 0.336908i) q^{11} +(3.18907 - 1.55654i) q^{12} +(-0.0370899 + 3.60536i) q^{13} +2.10316i q^{14} +3.89998 q^{16} +4.51945 q^{17} +(-5.99109 + 0.739083i) q^{18} +(1.60536 - 1.60536i) q^{19} +(0.588913 - 1.71191i) q^{21} +0.958716 q^{22} +2.68373 q^{23} +(0.160893 + 0.0553486i) q^{24} +(-5.18254 + 5.07700i) q^{26} +(5.08353 + 1.07599i) q^{27} +(-1.51425 + 1.51425i) q^{28} -4.78690i q^{29} +(2.29562 - 2.29562i) q^{31} +(5.68788 + 5.68788i) q^{32} +(-0.780367 - 0.268453i) q^{33} +(6.43035 + 6.43035i) q^{34} +(-4.84564 - 3.78137i) q^{36} +(1.60536 + 1.60536i) q^{37} +4.56827 q^{38} +(5.64007 - 2.68135i) q^{39} +(4.71090 + 4.71090i) q^{41} +(3.27365 - 1.59782i) q^{42} -1.99008i q^{43} +(0.690263 + 0.690263i) q^{44} +(3.81846 + 3.81846i) q^{46} +(-1.30735 + 1.30735i) q^{47} +(-2.96291 - 6.07047i) q^{48} -5.90751i q^{49} +(-3.43354 - 7.03471i) q^{51} +(-7.38674 - 0.0759906i) q^{52} +13.3290i q^{53} +(5.70199 + 8.76387i) q^{54} -0.102677 q^{56} +(-3.71844 - 1.27918i) q^{57} +(6.81088 - 6.81088i) q^{58} +(7.53351 - 7.53351i) q^{59} -12.8254 q^{61} +6.53251 q^{62} +(-3.11207 + 0.383917i) q^{63} +8.38568i q^{64} +(-0.728361 - 1.49228i) q^{66} +(-7.65079 + 7.65079i) q^{67} +9.25954i q^{68} +(-2.03890 - 4.17734i) q^{69} +(-3.32800 - 3.32800i) q^{71} +(-0.0360822 - 0.292486i) q^{72} +(-5.41762 - 5.41762i) q^{73} +4.56827i q^{74} +(3.28910 + 3.28910i) q^{76} +0.498005 q^{77} +(11.8399 + 4.20971i) q^{78} -11.1032 q^{79} +(-2.18726 - 8.73017i) q^{81} +13.4055i q^{82} +(9.05535 + 9.05535i) q^{83} +(3.50740 + 1.20658i) q^{84} +(2.83152 - 2.83152i) q^{86} +(-7.45100 + 3.63673i) q^{87} +0.0468047i q^{88} +(3.57819 - 3.57819i) q^{89} +(-2.69207 + 2.63725i) q^{91} +5.49849i q^{92} +(-5.31727 - 1.82919i) q^{93} -3.72025 q^{94} +(4.53219 - 13.1746i) q^{96} +(-6.51707 + 6.51707i) q^{97} +(8.40531 - 8.40531i) q^{98} +(0.175007 + 1.41862i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 6 q^{2} - 2 q^{3} + 4 q^{6} - 14 q^{7} - 12 q^{8} - 4 q^{9} + 4 q^{11} - 14 q^{12} + 2 q^{13} - 8 q^{16} + 28 q^{17} - 30 q^{18} - 2 q^{19} + 8 q^{21} - 24 q^{22} + 36 q^{23} - 18 q^{24} - 32 q^{26}+ \cdots + 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.42282 + 1.42282i 1.00608 + 1.00608i 0.999981 + 0.00610264i \(0.00194254\pi\)
0.00610264 + 0.999981i \(0.498057\pi\)
\(3\) −0.759725 1.55654i −0.438628 0.898669i
\(4\) 2.04882i 1.02441i
\(5\) 0 0
\(6\) 1.13372 3.29562i 0.462840 1.34543i
\(7\) 0.739083 + 0.739083i 0.279347 + 0.279347i 0.832848 0.553501i \(-0.186709\pi\)
−0.553501 + 0.832848i \(0.686709\pi\)
\(8\) −0.0694623 + 0.0694623i −0.0245586 + 0.0245586i
\(9\) −1.84564 + 2.36509i −0.615212 + 0.788362i
\(10\) 0 0
\(11\) 0.336908 0.336908i 0.101581 0.101581i −0.654490 0.756071i \(-0.727116\pi\)
0.756071 + 0.654490i \(0.227116\pi\)
\(12\) 3.18907 1.55654i 0.920606 0.449334i
\(13\) −0.0370899 + 3.60536i −0.0102869 + 0.999947i
\(14\) 2.10316i 0.562093i
\(15\) 0 0
\(16\) 3.89998 0.974994
\(17\) 4.51945 1.09613 0.548064 0.836436i \(-0.315365\pi\)
0.548064 + 0.836436i \(0.315365\pi\)
\(18\) −5.99109 + 0.739083i −1.41211 + 0.174204i
\(19\) 1.60536 1.60536i 0.368295 0.368295i −0.498560 0.866855i \(-0.666138\pi\)
0.866855 + 0.498560i \(0.166138\pi\)
\(20\) 0 0
\(21\) 0.588913 1.71191i 0.128511 0.373570i
\(22\) 0.958716 0.204399
\(23\) 2.68373 0.559597 0.279799 0.960059i \(-0.409732\pi\)
0.279799 + 0.960059i \(0.409732\pi\)
\(24\) 0.160893 + 0.0553486i 0.0328422 + 0.0112980i
\(25\) 0 0
\(26\) −5.18254 + 5.07700i −1.01638 + 0.995681i
\(27\) 5.08353 + 1.07599i 0.978325 + 0.207074i
\(28\) −1.51425 + 1.51425i −0.286166 + 0.286166i
\(29\) 4.78690i 0.888904i −0.895803 0.444452i \(-0.853398\pi\)
0.895803 0.444452i \(-0.146602\pi\)
\(30\) 0 0
\(31\) 2.29562 2.29562i 0.412306 0.412306i −0.470235 0.882541i \(-0.655831\pi\)
0.882541 + 0.470235i \(0.155831\pi\)
\(32\) 5.68788 + 5.68788i 1.00548 + 1.00548i
\(33\) −0.780367 0.268453i −0.135844 0.0467317i
\(34\) 6.43035 + 6.43035i 1.10280 + 1.10280i
\(35\) 0 0
\(36\) −4.84564 3.78137i −0.807606 0.630229i
\(37\) 1.60536 + 1.60536i 0.263920 + 0.263920i 0.826644 0.562725i \(-0.190247\pi\)
−0.562725 + 0.826644i \(0.690247\pi\)
\(38\) 4.56827 0.741071
\(39\) 5.64007 2.68135i 0.903134 0.429360i
\(40\) 0 0
\(41\) 4.71090 + 4.71090i 0.735720 + 0.735720i 0.971747 0.236027i \(-0.0758453\pi\)
−0.236027 + 0.971747i \(0.575845\pi\)
\(42\) 3.27365 1.59782i 0.505136 0.246550i
\(43\) 1.99008i 0.303484i −0.988420 0.151742i \(-0.951512\pi\)
0.988420 0.151742i \(-0.0484884\pi\)
\(44\) 0.690263 + 0.690263i 0.104061 + 0.104061i
\(45\) 0 0
\(46\) 3.81846 + 3.81846i 0.563002 + 0.563002i
\(47\) −1.30735 + 1.30735i −0.190697 + 0.190697i −0.795997 0.605300i \(-0.793053\pi\)
0.605300 + 0.795997i \(0.293053\pi\)
\(48\) −2.96291 6.07047i −0.427659 0.876197i
\(49\) 5.90751i 0.843930i
\(50\) 0 0
\(51\) −3.43354 7.03471i −0.480792 0.985056i
\(52\) −7.38674 0.0759906i −1.02436 0.0105380i
\(53\) 13.3290i 1.83087i 0.402463 + 0.915436i \(0.368154\pi\)
−0.402463 + 0.915436i \(0.631846\pi\)
\(54\) 5.70199 + 8.76387i 0.775943 + 1.19261i
\(55\) 0 0
\(56\) −0.102677 −0.0137208
\(57\) −3.71844 1.27918i −0.492520 0.169431i
\(58\) 6.81088 6.81088i 0.894312 0.894312i
\(59\) 7.53351 7.53351i 0.980780 0.980780i −0.0190387 0.999819i \(-0.506061\pi\)
0.999819 + 0.0190387i \(0.00606056\pi\)
\(60\) 0 0
\(61\) −12.8254 −1.64213 −0.821064 0.570836i \(-0.806619\pi\)
−0.821064 + 0.570836i \(0.806619\pi\)
\(62\) 6.53251 0.829629
\(63\) −3.11207 + 0.383917i −0.392084 + 0.0483690i
\(64\) 8.38568i 1.04821i
\(65\) 0 0
\(66\) −0.728361 1.49228i −0.0896550 0.183687i
\(67\) −7.65079 + 7.65079i −0.934693 + 0.934693i −0.997994 0.0633017i \(-0.979837\pi\)
0.0633017 + 0.997994i \(0.479837\pi\)
\(68\) 9.25954i 1.12288i
\(69\) −2.03890 4.17734i −0.245455 0.502893i
\(70\) 0 0
\(71\) −3.32800 3.32800i −0.394960 0.394960i 0.481491 0.876451i \(-0.340095\pi\)
−0.876451 + 0.481491i \(0.840095\pi\)
\(72\) −0.0360822 0.292486i −0.00425233 0.0344698i
\(73\) −5.41762 5.41762i −0.634084 0.634084i 0.315006 0.949090i \(-0.397994\pi\)
−0.949090 + 0.315006i \(0.897994\pi\)
\(74\) 4.56827i 0.531051i
\(75\) 0 0
\(76\) 3.28910 + 3.28910i 0.377285 + 0.377285i
\(77\) 0.498005 0.0567530
\(78\) 11.8399 + 4.20971i 1.34060 + 0.476656i
\(79\) −11.1032 −1.24920 −0.624602 0.780944i \(-0.714739\pi\)
−0.624602 + 0.780944i \(0.714739\pi\)
\(80\) 0 0
\(81\) −2.18726 8.73017i −0.243029 0.970019i
\(82\) 13.4055i 1.48039i
\(83\) 9.05535 + 9.05535i 0.993954 + 0.993954i 0.999982 0.00602819i \(-0.00191885\pi\)
−0.00602819 + 0.999982i \(0.501919\pi\)
\(84\) 3.50740 + 1.20658i 0.382689 + 0.131648i
\(85\) 0 0
\(86\) 2.83152 2.83152i 0.305331 0.305331i
\(87\) −7.45100 + 3.63673i −0.798831 + 0.389898i
\(88\) 0.0468047i 0.00498940i
\(89\) 3.57819 3.57819i 0.379287 0.379287i −0.491558 0.870845i \(-0.663572\pi\)
0.870845 + 0.491558i \(0.163572\pi\)
\(90\) 0 0
\(91\) −2.69207 + 2.63725i −0.282206 + 0.276459i
\(92\) 5.49849i 0.573257i
\(93\) −5.31727 1.82919i −0.551376 0.189678i
\(94\) −3.72025 −0.383715
\(95\) 0 0
\(96\) 4.53219 13.1746i 0.462565 1.34463i
\(97\) −6.51707 + 6.51707i −0.661708 + 0.661708i −0.955782 0.294075i \(-0.904989\pi\)
0.294075 + 0.955782i \(0.404989\pi\)
\(98\) 8.40531 8.40531i 0.849065 0.849065i
\(99\) 0.175007 + 1.41862i 0.0175888 + 0.142577i
\(100\) 0 0
\(101\) −9.12424 −0.907896 −0.453948 0.891028i \(-0.649985\pi\)
−0.453948 + 0.891028i \(0.649985\pi\)
\(102\) 5.12380 14.8944i 0.507332 1.47477i
\(103\) 10.9512i 1.07905i −0.841969 0.539526i \(-0.818603\pi\)
0.841969 0.539526i \(-0.181397\pi\)
\(104\) −0.247860 0.253013i −0.0243047 0.0248100i
\(105\) 0 0
\(106\) −18.9647 + 18.9647i −1.84201 + 1.84201i
\(107\) 5.02108i 0.485406i 0.970101 + 0.242703i \(0.0780340\pi\)
−0.970101 + 0.242703i \(0.921966\pi\)
\(108\) −2.20451 + 10.4152i −0.212129 + 1.00221i
\(109\) −2.63072 + 2.63072i −0.251977 + 0.251977i −0.821781 0.569804i \(-0.807019\pi\)
0.569804 + 0.821781i \(0.307019\pi\)
\(110\) 0 0
\(111\) 1.27918 3.71844i 0.121414 0.352939i
\(112\) 2.88241 + 2.88241i 0.272362 + 0.272362i
\(113\) 1.88454i 0.177282i −0.996064 0.0886411i \(-0.971748\pi\)
0.996064 0.0886411i \(-0.0282524\pi\)
\(114\) −3.47063 7.11070i −0.325054 0.665978i
\(115\) 0 0
\(116\) 9.80749 0.910602
\(117\) −8.45853 6.74190i −0.781992 0.623289i
\(118\) 21.4376 1.97349
\(119\) 3.34025 + 3.34025i 0.306200 + 0.306200i
\(120\) 0 0
\(121\) 10.7730i 0.979362i
\(122\) −18.2482 18.2482i −1.65212 1.65212i
\(123\) 3.75372 10.9117i 0.338462 0.983875i
\(124\) 4.70332 + 4.70332i 0.422371 + 0.422371i
\(125\) 0 0
\(126\) −4.97416 3.88167i −0.443133 0.345806i
\(127\) 3.73771i 0.331668i −0.986154 0.165834i \(-0.946968\pi\)
0.986154 0.165834i \(-0.0530316\pi\)
\(128\) −0.555533 + 0.555533i −0.0491026 + 0.0491026i
\(129\) −3.09764 + 1.51191i −0.272732 + 0.133117i
\(130\) 0 0
\(131\) 10.1441i 0.886292i 0.896449 + 0.443146i \(0.146138\pi\)
−0.896449 + 0.443146i \(0.853862\pi\)
\(132\) 0.550012 1.59883i 0.0478724 0.139160i
\(133\) 2.37299 0.205764
\(134\) −21.7714 −1.88076
\(135\) 0 0
\(136\) −0.313931 + 0.313931i −0.0269194 + 0.0269194i
\(137\) −0.0896200 + 0.0896200i −0.00765676 + 0.00765676i −0.710925 0.703268i \(-0.751723\pi\)
0.703268 + 0.710925i \(0.251723\pi\)
\(138\) 3.04261 8.84458i 0.259004 0.752901i
\(139\) −4.73017 −0.401208 −0.200604 0.979672i \(-0.564290\pi\)
−0.200604 + 0.979672i \(0.564290\pi\)
\(140\) 0 0
\(141\) 3.02818 + 1.04172i 0.255019 + 0.0877286i
\(142\) 9.47026i 0.794727i
\(143\) 1.20218 + 1.22717i 0.100531 + 0.102621i
\(144\) −7.19793 + 9.22378i −0.599828 + 0.768648i
\(145\) 0 0
\(146\) 15.4166i 1.27588i
\(147\) −9.19528 + 4.48809i −0.758414 + 0.370171i
\(148\) −3.28910 + 3.28910i −0.270362 + 0.270362i
\(149\) −16.9150 16.9150i −1.38573 1.38573i −0.834058 0.551677i \(-0.813988\pi\)
−0.551677 0.834058i \(-0.686012\pi\)
\(150\) 0 0
\(151\) −15.7855 15.7855i −1.28461 1.28461i −0.938016 0.346591i \(-0.887339\pi\)
−0.346591 0.938016i \(-0.612661\pi\)
\(152\) 0.223024i 0.0180896i
\(153\) −8.34126 + 10.6889i −0.674351 + 0.864145i
\(154\) 0.708571 + 0.708571i 0.0570983 + 0.0570983i
\(155\) 0 0
\(156\) 5.49361 + 11.5555i 0.439841 + 0.925179i
\(157\) 21.2079 1.69257 0.846285 0.532730i \(-0.178834\pi\)
0.846285 + 0.532730i \(0.178834\pi\)
\(158\) −15.7978 15.7978i −1.25680 1.25680i
\(159\) 20.7471 10.1263i 1.64535 0.803071i
\(160\) 0 0
\(161\) 1.98350 + 1.98350i 0.156322 + 0.156322i
\(162\) 9.30937 15.5335i 0.731413 1.22043i
\(163\) −11.2553 11.2553i −0.881587 0.881587i 0.112109 0.993696i \(-0.464239\pi\)
−0.993696 + 0.112109i \(0.964239\pi\)
\(164\) −9.65180 + 9.65180i −0.753679 + 0.753679i
\(165\) 0 0
\(166\) 25.7682i 2.00000i
\(167\) 11.2201 11.2201i 0.868235 0.868235i −0.124042 0.992277i \(-0.539586\pi\)
0.992277 + 0.124042i \(0.0395858\pi\)
\(168\) 0.0780061 + 0.159821i 0.00601830 + 0.0123304i
\(169\) −12.9972 0.267445i −0.999788 0.0205727i
\(170\) 0 0
\(171\) 0.833905 + 6.75973i 0.0637703 + 0.516929i
\(172\) 4.07732 0.310893
\(173\) −14.0262 −1.06639 −0.533197 0.845991i \(-0.679010\pi\)
−0.533197 + 0.845991i \(0.679010\pi\)
\(174\) −15.7758 5.42701i −1.19596 0.411421i
\(175\) 0 0
\(176\) 1.31393 1.31393i 0.0990413 0.0990413i
\(177\) −17.4496 6.00282i −1.31159 0.451199i
\(178\) 10.1822 0.763190
\(179\) 26.3524 1.96967 0.984836 0.173488i \(-0.0555038\pi\)
0.984836 + 0.173488i \(0.0555038\pi\)
\(180\) 0 0
\(181\) 0.195164i 0.0145065i −0.999974 0.00725323i \(-0.997691\pi\)
0.999974 0.00725323i \(-0.00230880\pi\)
\(182\) −7.58265 0.0780061i −0.562064 0.00578220i
\(183\) 9.74380 + 19.9633i 0.720282 + 1.47573i
\(184\) −0.186418 + 0.186418i −0.0137429 + 0.0137429i
\(185\) 0 0
\(186\) −4.96291 10.1681i −0.363898 0.745562i
\(187\) 1.52264 1.52264i 0.111346 0.111346i
\(188\) −2.67853 2.67853i −0.195352 0.195352i
\(189\) 2.96190 + 4.55240i 0.215447 + 0.331138i
\(190\) 0 0
\(191\) 5.64797i 0.408673i 0.978901 + 0.204336i \(0.0655036\pi\)
−0.978901 + 0.204336i \(0.934496\pi\)
\(192\) 13.0526 6.37081i 0.941994 0.459774i
\(193\) −18.2430 18.2430i −1.31316 1.31316i −0.919071 0.394092i \(-0.871059\pi\)
−0.394092 0.919071i \(-0.628941\pi\)
\(194\) −18.5452 −1.33147
\(195\) 0 0
\(196\) 12.1034 0.864531
\(197\) 0.235122 + 0.235122i 0.0167518 + 0.0167518i 0.715433 0.698681i \(-0.246229\pi\)
−0.698681 + 0.715433i \(0.746229\pi\)
\(198\) −1.76944 + 2.26745i −0.125749 + 0.161140i
\(199\) 19.6865i 1.39554i −0.716322 0.697770i \(-0.754176\pi\)
0.716322 0.697770i \(-0.245824\pi\)
\(200\) 0 0
\(201\) 17.7213 + 6.09626i 1.24996 + 0.429997i
\(202\) −12.9821 12.9821i −0.913419 0.913419i
\(203\) 3.53791 3.53791i 0.248313 0.248313i
\(204\) 14.4128 7.03471i 1.00910 0.492528i
\(205\) 0 0
\(206\) 15.5815 15.5815i 1.08562 1.08562i
\(207\) −4.95320 + 6.34726i −0.344271 + 0.441165i
\(208\) −0.144650 + 14.0608i −0.0100297 + 0.974942i
\(209\) 1.08172i 0.0748239i
\(210\) 0 0
\(211\) 13.4374 0.925066 0.462533 0.886602i \(-0.346941\pi\)
0.462533 + 0.886602i \(0.346941\pi\)
\(212\) −27.3086 −1.87556
\(213\) −2.65180 + 7.70852i −0.181698 + 0.528179i
\(214\) −7.14408 + 7.14408i −0.488359 + 0.488359i
\(215\) 0 0
\(216\) −0.427854 + 0.278373i −0.0291118 + 0.0189409i
\(217\) 3.39331 0.230353
\(218\) −7.48607 −0.507021
\(219\) −4.31684 + 12.5486i −0.291705 + 0.847958i
\(220\) 0 0
\(221\) −0.167626 + 16.2942i −0.0112758 + 1.09607i
\(222\) 7.11070 3.47063i 0.477239 0.232933i
\(223\) −14.5482 + 14.5482i −0.974216 + 0.974216i −0.999676 0.0254595i \(-0.991895\pi\)
0.0254595 + 0.999676i \(0.491895\pi\)
\(224\) 8.40763i 0.561759i
\(225\) 0 0
\(226\) 2.68135 2.68135i 0.178361 0.178361i
\(227\) 10.4317 + 10.4317i 0.692375 + 0.692375i 0.962754 0.270379i \(-0.0871490\pi\)
−0.270379 + 0.962754i \(0.587149\pi\)
\(228\) 2.62080 7.61842i 0.173567 0.504542i
\(229\) 19.4110 + 19.4110i 1.28272 + 1.28272i 0.939115 + 0.343602i \(0.111647\pi\)
0.343602 + 0.939115i \(0.388353\pi\)
\(230\) 0 0
\(231\) −0.378347 0.775165i −0.0248934 0.0510021i
\(232\) 0.332509 + 0.332509i 0.0218303 + 0.0218303i
\(233\) −14.7282 −0.964874 −0.482437 0.875931i \(-0.660248\pi\)
−0.482437 + 0.875931i \(0.660248\pi\)
\(234\) −2.44245 21.6274i −0.159668 1.41383i
\(235\) 0 0
\(236\) 15.4348 + 15.4348i 1.00472 + 1.00472i
\(237\) 8.43535 + 17.2825i 0.547935 + 1.12262i
\(238\) 9.50513i 0.616126i
\(239\) 1.91881 + 1.91881i 0.124117 + 0.124117i 0.766437 0.642320i \(-0.222028\pi\)
−0.642320 + 0.766437i \(0.722028\pi\)
\(240\) 0 0
\(241\) 1.43507 + 1.43507i 0.0924411 + 0.0924411i 0.751815 0.659374i \(-0.229179\pi\)
−0.659374 + 0.751815i \(0.729179\pi\)
\(242\) −15.3280 + 15.3280i −0.985321 + 0.985321i
\(243\) −11.9271 + 10.0371i −0.765127 + 0.643880i
\(244\) 26.2770i 1.68221i
\(245\) 0 0
\(246\) 20.8662 10.1845i 1.33038 0.649341i
\(247\) 5.72836 + 5.84745i 0.364487 + 0.372064i
\(248\) 0.318918i 0.0202513i
\(249\) 7.21544 20.9746i 0.457260 1.32921i
\(250\) 0 0
\(251\) −26.6058 −1.67935 −0.839673 0.543093i \(-0.817253\pi\)
−0.839673 + 0.543093i \(0.817253\pi\)
\(252\) −0.786577 6.37608i −0.0495497 0.401655i
\(253\) 0.904170 0.904170i 0.0568447 0.0568447i
\(254\) 5.31808 5.31808i 0.333686 0.333686i
\(255\) 0 0
\(256\) 15.1905 0.949407
\(257\) −15.6733 −0.977676 −0.488838 0.872375i \(-0.662579\pi\)
−0.488838 + 0.872375i \(0.662579\pi\)
\(258\) −6.55856 2.25620i −0.408318 0.140465i
\(259\) 2.37299i 0.147450i
\(260\) 0 0
\(261\) 11.3214 + 8.83486i 0.700778 + 0.546864i
\(262\) −14.4332 + 14.4332i −0.891684 + 0.891684i
\(263\) 0.693170i 0.0427427i 0.999772 + 0.0213713i \(0.00680323\pi\)
−0.999772 + 0.0213713i \(0.993197\pi\)
\(264\) 0.0728534 0.0355587i 0.00448382 0.00218849i
\(265\) 0 0
\(266\) 3.37633 + 3.37633i 0.207016 + 0.207016i
\(267\) −8.28804 2.85116i −0.507220 0.174488i
\(268\) −15.6751 15.6751i −0.957509 0.957509i
\(269\) 3.75001i 0.228642i 0.993444 + 0.114321i \(0.0364693\pi\)
−0.993444 + 0.114321i \(0.963531\pi\)
\(270\) 0 0
\(271\) 3.61370 + 3.61370i 0.219517 + 0.219517i 0.808295 0.588778i \(-0.200391\pi\)
−0.588778 + 0.808295i \(0.700391\pi\)
\(272\) 17.6257 1.06872
\(273\) 6.15022 + 2.18674i 0.372228 + 0.132347i
\(274\) −0.255026 −0.0154067
\(275\) 0 0
\(276\) 8.55862 4.17734i 0.515168 0.251446i
\(277\) 18.8952i 1.13530i −0.823269 0.567652i \(-0.807852\pi\)
0.823269 0.567652i \(-0.192148\pi\)
\(278\) −6.73017 6.73017i −0.403649 0.403649i
\(279\) 1.19246 + 9.66623i 0.0713909 + 0.578702i
\(280\) 0 0
\(281\) 1.68889 1.68889i 0.100751 0.100751i −0.654935 0.755685i \(-0.727304\pi\)
0.755685 + 0.654935i \(0.227304\pi\)
\(282\) 2.82637 + 5.79072i 0.168308 + 0.344832i
\(283\) 28.3106i 1.68289i 0.540340 + 0.841447i \(0.318296\pi\)
−0.540340 + 0.841447i \(0.681704\pi\)
\(284\) 6.81846 6.81846i 0.404601 0.404601i
\(285\) 0 0
\(286\) −0.0355587 + 3.45652i −0.00210263 + 0.204388i
\(287\) 6.96350i 0.411042i
\(288\) −23.9501 + 2.95457i −1.41127 + 0.174100i
\(289\) 3.42543 0.201496
\(290\) 0 0
\(291\) 15.0953 + 5.19290i 0.884900 + 0.304413i
\(292\) 11.0997 11.0997i 0.649562 0.649562i
\(293\) 13.7452 13.7452i 0.803006 0.803006i −0.180559 0.983564i \(-0.557791\pi\)
0.983564 + 0.180559i \(0.0577905\pi\)
\(294\) −19.4689 6.69748i −1.13545 0.390605i
\(295\) 0 0
\(296\) −0.223024 −0.0129630
\(297\) 2.07519 1.35017i 0.120415 0.0783448i
\(298\) 48.1341i 2.78833i
\(299\) −0.0995396 + 9.67583i −0.00575652 + 0.559568i
\(300\) 0 0
\(301\) 1.47083 1.47083i 0.0847775 0.0847775i
\(302\) 44.9198i 2.58485i
\(303\) 6.93191 + 14.2022i 0.398228 + 0.815898i
\(304\) 6.26087 6.26087i 0.359085 0.359085i
\(305\) 0 0
\(306\) −27.0764 + 3.34025i −1.54786 + 0.190949i
\(307\) 17.4791 + 17.4791i 0.997586 + 0.997586i 0.999997 0.00241075i \(-0.000767366\pi\)
−0.00241075 + 0.999997i \(0.500767\pi\)
\(308\) 1.02032i 0.0581383i
\(309\) −17.0460 + 8.31989i −0.969710 + 0.473302i
\(310\) 0 0
\(311\) 12.1718 0.690201 0.345100 0.938566i \(-0.387845\pi\)
0.345100 + 0.938566i \(0.387845\pi\)
\(312\) −0.205519 + 0.578025i −0.0116352 + 0.0327242i
\(313\) 27.7777 1.57009 0.785043 0.619441i \(-0.212641\pi\)
0.785043 + 0.619441i \(0.212641\pi\)
\(314\) 30.1749 + 30.1749i 1.70287 + 1.70287i
\(315\) 0 0
\(316\) 22.7484i 1.27970i
\(317\) −10.5771 10.5771i −0.594071 0.594071i 0.344658 0.938728i \(-0.387995\pi\)
−0.938728 + 0.344658i \(0.887995\pi\)
\(318\) 43.9272 + 15.1113i 2.46332 + 0.847402i
\(319\) −1.61274 1.61274i −0.0902962 0.0902962i
\(320\) 0 0
\(321\) 7.81551 3.81464i 0.436219 0.212912i
\(322\) 5.64433i 0.314546i
\(323\) 7.25535 7.25535i 0.403698 0.403698i
\(324\) 17.8866 4.48130i 0.993697 0.248961i
\(325\) 0 0
\(326\) 32.0286i 1.77390i
\(327\) 6.09345 + 2.09620i 0.336968 + 0.115920i
\(328\) −0.654460 −0.0361365
\(329\) −1.93249 −0.106541
\(330\) 0 0
\(331\) 2.00971 2.00971i 0.110464 0.110464i −0.649714 0.760178i \(-0.725112\pi\)
0.760178 + 0.649714i \(0.225112\pi\)
\(332\) −18.5528 + 18.5528i −1.01822 + 1.01822i
\(333\) −6.75973 + 0.833905i −0.370431 + 0.0456977i
\(334\) 31.9282 1.74703
\(335\) 0 0
\(336\) 2.29675 6.67642i 0.125298 0.364229i
\(337\) 18.6860i 1.01789i −0.860798 0.508946i \(-0.830035\pi\)
0.860798 0.508946i \(-0.169965\pi\)
\(338\) −18.1122 18.8732i −0.985173 1.02657i
\(339\) −2.93336 + 1.43173i −0.159318 + 0.0777609i
\(340\) 0 0
\(341\) 1.54683i 0.0837653i
\(342\) −8.43136 + 10.8044i −0.455916 + 0.584232i
\(343\) 9.53972 9.53972i 0.515097 0.515097i
\(344\) 0.138235 + 0.138235i 0.00745316 + 0.00745316i
\(345\) 0 0
\(346\) −19.9568 19.9568i −1.07288 1.07288i
\(347\) 22.6674i 1.21685i −0.793611 0.608426i \(-0.791801\pi\)
0.793611 0.608426i \(-0.208199\pi\)
\(348\) −7.45100 15.2658i −0.399415 0.818330i
\(349\) 1.89063 + 1.89063i 0.101203 + 0.101203i 0.755895 0.654692i \(-0.227202\pi\)
−0.654692 + 0.755895i \(0.727202\pi\)
\(350\) 0 0
\(351\) −4.06788 + 18.2880i −0.217127 + 0.976143i
\(352\) 3.83258 0.204277
\(353\) −13.8077 13.8077i −0.734909 0.734909i 0.236679 0.971588i \(-0.423941\pi\)
−0.971588 + 0.236679i \(0.923941\pi\)
\(354\) −16.2867 33.3685i −0.865629 1.77352i
\(355\) 0 0
\(356\) 7.33107 + 7.33107i 0.388546 + 0.388546i
\(357\) 2.66156 7.73690i 0.140865 0.409480i
\(358\) 37.4947 + 37.4947i 1.98166 + 1.98166i
\(359\) −9.48985 + 9.48985i −0.500855 + 0.500855i −0.911704 0.410849i \(-0.865232\pi\)
0.410849 + 0.911704i \(0.365232\pi\)
\(360\) 0 0
\(361\) 13.8456i 0.728718i
\(362\) 0.277683 0.277683i 0.0145947 0.0145947i
\(363\) 16.7686 8.18451i 0.880123 0.429575i
\(364\) −5.40325 5.51557i −0.283207 0.289095i
\(365\) 0 0
\(366\) −14.5405 + 42.2678i −0.760043 + 2.20937i
\(367\) −13.2306 −0.690630 −0.345315 0.938487i \(-0.612228\pi\)
−0.345315 + 0.938487i \(0.612228\pi\)
\(368\) 10.4665 0.545604
\(369\) −19.8363 + 2.44708i −1.03264 + 0.127390i
\(370\) 0 0
\(371\) −9.85121 + 9.85121i −0.511449 + 0.511449i
\(372\) 3.74768 10.8941i 0.194308 0.564835i
\(373\) −18.5810 −0.962086 −0.481043 0.876697i \(-0.659742\pi\)
−0.481043 + 0.876697i \(0.659742\pi\)
\(374\) 4.33287 0.224047
\(375\) 0 0
\(376\) 0.181623i 0.00936652i
\(377\) 17.2585 + 0.177546i 0.888857 + 0.00914407i
\(378\) −2.26298 + 10.6915i −0.116395 + 0.549910i
\(379\) 8.12344 8.12344i 0.417273 0.417273i −0.466990 0.884263i \(-0.654662\pi\)
0.884263 + 0.466990i \(0.154662\pi\)
\(380\) 0 0
\(381\) −5.81789 + 2.83963i −0.298060 + 0.145479i
\(382\) −8.03603 + 8.03603i −0.411159 + 0.411159i
\(383\) −7.48628 7.48628i −0.382531 0.382531i 0.489482 0.872013i \(-0.337186\pi\)
−0.872013 + 0.489482i \(0.837186\pi\)
\(384\) 1.28676 + 0.442657i 0.0656647 + 0.0225892i
\(385\) 0 0
\(386\) 51.9131i 2.64230i
\(387\) 4.70671 + 3.67296i 0.239256 + 0.186707i
\(388\) −13.3523 13.3523i −0.677860 0.677860i
\(389\) 5.90034 0.299159 0.149580 0.988750i \(-0.452208\pi\)
0.149580 + 0.988750i \(0.452208\pi\)
\(390\) 0 0
\(391\) 12.1290 0.613390
\(392\) 0.410349 + 0.410349i 0.0207258 + 0.0207258i
\(393\) 15.7897 7.70671i 0.796483 0.388752i
\(394\) 0.669072i 0.0337074i
\(395\) 0 0
\(396\) −2.90650 + 0.358557i −0.146057 + 0.0180182i
\(397\) −10.4992 10.4992i −0.526942 0.526942i 0.392717 0.919659i \(-0.371535\pi\)
−0.919659 + 0.392717i \(0.871535\pi\)
\(398\) 28.0103 28.0103i 1.40403 1.40403i
\(399\) −1.80282 3.69365i −0.0902539 0.184914i
\(400\) 0 0
\(401\) 5.06797 5.06797i 0.253082 0.253082i −0.569151 0.822233i \(-0.692728\pi\)
0.822233 + 0.569151i \(0.192728\pi\)
\(402\) 16.5402 + 33.8880i 0.824953 + 1.69018i
\(403\) 8.19141 + 8.36169i 0.408043 + 0.416526i
\(404\) 18.6939i 0.930057i
\(405\) 0 0
\(406\) 10.0676 0.499647
\(407\) 1.08172 0.0536187
\(408\) 0.727148 + 0.250145i 0.0359992 + 0.0123840i
\(409\) −9.73150 + 9.73150i −0.481192 + 0.481192i −0.905512 0.424320i \(-0.860513\pi\)
0.424320 + 0.905512i \(0.360513\pi\)
\(410\) 0 0
\(411\) 0.207584 + 0.0714106i 0.0102394 + 0.00352243i
\(412\) 22.4370 1.10539
\(413\) 11.1358 0.547956
\(414\) −16.0785 + 1.98350i −0.790215 + 0.0974838i
\(415\) 0 0
\(416\) −20.7178 + 20.2959i −1.01577 + 0.995088i
\(417\) 3.59363 + 7.36270i 0.175981 + 0.360553i
\(418\) 1.53908 1.53908i 0.0752791 0.0752791i
\(419\) 18.6219i 0.909738i 0.890558 + 0.454869i \(0.150314\pi\)
−0.890558 + 0.454869i \(0.849686\pi\)
\(420\) 0 0
\(421\) −16.6790 + 16.6790i −0.812883 + 0.812883i −0.985065 0.172182i \(-0.944918\pi\)
0.172182 + 0.985065i \(0.444918\pi\)
\(422\) 19.1189 + 19.1189i 0.930695 + 0.930695i
\(423\) −0.679105 5.50490i −0.0330192 0.267657i
\(424\) −0.925859 0.925859i −0.0449637 0.0449637i
\(425\) 0 0
\(426\) −14.7408 + 7.19480i −0.714196 + 0.348589i
\(427\) −9.47906 9.47906i −0.458724 0.458724i
\(428\) −10.2873 −0.497255
\(429\) 0.996814 2.80355i 0.0481266 0.135357i
\(430\) 0 0
\(431\) −16.5554 16.5554i −0.797445 0.797445i 0.185247 0.982692i \(-0.440692\pi\)
−0.982692 + 0.185247i \(0.940692\pi\)
\(432\) 19.8256 + 4.19634i 0.953861 + 0.201896i
\(433\) 28.3639i 1.36308i 0.731779 + 0.681542i \(0.238690\pi\)
−0.731779 + 0.681542i \(0.761310\pi\)
\(434\) 4.82807 + 4.82807i 0.231755 + 0.231755i
\(435\) 0 0
\(436\) −5.38987 5.38987i −0.258128 0.258128i
\(437\) 4.30836 4.30836i 0.206097 0.206097i
\(438\) −23.9965 + 11.7123i −1.14660 + 0.559638i
\(439\) 26.5091i 1.26521i 0.774475 + 0.632604i \(0.218014\pi\)
−0.774475 + 0.632604i \(0.781986\pi\)
\(440\) 0 0
\(441\) 13.9718 + 10.9031i 0.665323 + 0.519196i
\(442\) −23.4222 + 22.9452i −1.11408 + 1.09139i
\(443\) 12.9703i 0.616237i 0.951348 + 0.308118i \(0.0996993\pi\)
−0.951348 + 0.308118i \(0.900301\pi\)
\(444\) 7.61842 + 2.62080i 0.361554 + 0.124378i
\(445\) 0 0
\(446\) −41.3987 −1.96029
\(447\) −13.4782 + 39.1797i −0.637495 + 1.85314i
\(448\) −6.19771 + 6.19771i −0.292814 + 0.292814i
\(449\) −22.8445 + 22.8445i −1.07810 + 1.07810i −0.0814181 + 0.996680i \(0.525945\pi\)
−0.996680 + 0.0814181i \(0.974055\pi\)
\(450\) 0 0
\(451\) 3.17428 0.149471
\(452\) 3.86108 0.181610
\(453\) −12.5781 + 36.5635i −0.590973 + 1.71790i
\(454\) 29.6848i 1.39317i
\(455\) 0 0
\(456\) 0.347146 0.169437i 0.0162566 0.00793461i
\(457\) −15.3590 + 15.3590i −0.718463 + 0.718463i −0.968290 0.249827i \(-0.919626\pi\)
0.249827 + 0.968290i \(0.419626\pi\)
\(458\) 55.2367i 2.58104i
\(459\) 22.9747 + 4.86289i 1.07237 + 0.226980i
\(460\) 0 0
\(461\) −7.50039 7.50039i −0.349328 0.349328i 0.510531 0.859859i \(-0.329449\pi\)
−0.859859 + 0.510531i \(0.829449\pi\)
\(462\) 0.564600 1.64124i 0.0262676 0.0763573i
\(463\) 7.89441 + 7.89441i 0.366884 + 0.366884i 0.866340 0.499455i \(-0.166467\pi\)
−0.499455 + 0.866340i \(0.666467\pi\)
\(464\) 18.6688i 0.866676i
\(465\) 0 0
\(466\) −20.9555 20.9555i −0.970744 0.970744i
\(467\) 36.8758 1.70641 0.853204 0.521578i \(-0.174656\pi\)
0.853204 + 0.521578i \(0.174656\pi\)
\(468\) 13.8129 17.3300i 0.638504 0.801080i
\(469\) −11.3091 −0.522208
\(470\) 0 0
\(471\) −16.1121 33.0109i −0.742408 1.52106i
\(472\) 1.04659i 0.0481732i
\(473\) −0.670473 0.670473i −0.0308284 0.0308284i
\(474\) −12.5879 + 36.5918i −0.578182 + 1.68072i
\(475\) 0 0
\(476\) −6.84357 + 6.84357i −0.313675 + 0.313675i
\(477\) −31.5241 24.6004i −1.44339 1.12637i
\(478\) 5.46023i 0.249745i
\(479\) 30.1150 30.1150i 1.37599 1.37599i 0.524711 0.851280i \(-0.324173\pi\)
0.851280 0.524711i \(-0.175827\pi\)
\(480\) 0 0
\(481\) −5.84745 + 5.72836i −0.266621 + 0.261191i
\(482\) 4.08369i 0.186007i
\(483\) 1.58049 4.59432i 0.0719146 0.209049i
\(484\) −22.0719 −1.00327
\(485\) 0 0
\(486\) −31.2511 2.68921i −1.41758 0.121985i
\(487\) −14.5278 + 14.5278i −0.658317 + 0.658317i −0.954982 0.296665i \(-0.904126\pi\)
0.296665 + 0.954982i \(0.404126\pi\)
\(488\) 0.890883 0.890883i 0.0403284 0.0403284i
\(489\) −8.96843 + 26.0704i −0.405566 + 1.17894i
\(490\) 0 0
\(491\) 11.0154 0.497120 0.248560 0.968617i \(-0.420043\pi\)
0.248560 + 0.968617i \(0.420043\pi\)
\(492\) 22.3561 + 7.69070i 1.00789 + 0.346723i
\(493\) 21.6341i 0.974353i
\(494\) −0.169437 + 16.4703i −0.00762333 + 0.741032i
\(495\) 0 0
\(496\) 8.95288 8.95288i 0.401996 0.401996i
\(497\) 4.91933i 0.220662i
\(498\) 40.1093 19.5768i 1.79734 0.877256i
\(499\) 0.885544 0.885544i 0.0396424 0.0396424i −0.687008 0.726650i \(-0.741076\pi\)
0.726650 + 0.687008i \(0.241076\pi\)
\(500\) 0 0
\(501\) −25.9887 8.94032i −1.16109 0.399424i
\(502\) −37.8553 37.8553i −1.68956 1.68956i
\(503\) 15.6004i 0.695587i 0.937571 + 0.347793i \(0.113069\pi\)
−0.937571 + 0.347793i \(0.886931\pi\)
\(504\) 0.189504 0.242839i 0.00844117 0.0108169i
\(505\) 0 0
\(506\) 2.57294 0.114381
\(507\) 9.45805 + 20.4339i 0.420047 + 0.907503i
\(508\) 7.65789 0.339764
\(509\) −16.9597 16.9597i −0.751724 0.751724i 0.223077 0.974801i \(-0.428390\pi\)
−0.974801 + 0.223077i \(0.928390\pi\)
\(510\) 0 0
\(511\) 8.00814i 0.354259i
\(512\) 22.7244 + 22.7244i 1.00429 + 1.00429i
\(513\) 9.88825 6.43354i 0.436577 0.284048i
\(514\) −22.3003 22.3003i −0.983624 0.983624i
\(515\) 0 0
\(516\) −3.09764 6.34651i −0.136366 0.279389i
\(517\) 0.880915i 0.0387426i
\(518\) −3.37633 + 3.37633i −0.148347 + 0.148347i
\(519\) 10.6561 + 21.8324i 0.467750 + 0.958336i
\(520\) 0 0
\(521\) 9.51106i 0.416687i −0.978056 0.208344i \(-0.933193\pi\)
0.978056 0.208344i \(-0.0668072\pi\)
\(522\) 3.53791 + 28.6787i 0.154850 + 1.25523i
\(523\) −14.6147 −0.639057 −0.319528 0.947577i \(-0.603524\pi\)
−0.319528 + 0.947577i \(0.603524\pi\)
\(524\) −20.7834 −0.907927
\(525\) 0 0
\(526\) −0.986254 + 0.986254i −0.0430027 + 0.0430027i
\(527\) 10.3750 10.3750i 0.451940 0.451940i
\(528\) −3.04341 1.04696i −0.132448 0.0455631i
\(529\) −15.7976 −0.686851
\(530\) 0 0
\(531\) 3.91329 + 31.7215i 0.169822 + 1.37660i
\(532\) 4.86183i 0.210787i
\(533\) −17.1592 + 16.8098i −0.743249 + 0.728113i
\(534\) −7.73569 15.8490i −0.334756 0.685855i
\(535\) 0 0
\(536\) 1.06288i 0.0459095i
\(537\) −20.0206 41.0186i −0.863952 1.77008i
\(538\) −5.33558 + 5.33558i −0.230033 + 0.230033i
\(539\) −1.99029 1.99029i −0.0857277 0.0857277i
\(540\) 0 0
\(541\) −21.2823 21.2823i −0.914998 0.914998i 0.0816620 0.996660i \(-0.473977\pi\)
−0.996660 + 0.0816620i \(0.973977\pi\)
\(542\) 10.2833i 0.441704i
\(543\) −0.303781 + 0.148271i −0.0130365 + 0.00636293i
\(544\) 25.7061 + 25.7061i 1.10214 + 1.10214i
\(545\) 0 0
\(546\) 5.63931 + 11.8620i 0.241340 + 0.507645i
\(547\) 16.9541 0.724903 0.362452 0.932003i \(-0.381940\pi\)
0.362452 + 0.932003i \(0.381940\pi\)
\(548\) −0.183615 0.183615i −0.00784366 0.00784366i
\(549\) 23.6711 30.3332i 1.01026 1.29459i
\(550\) 0 0
\(551\) −7.68469 7.68469i −0.327379 0.327379i
\(552\) 0.431794 + 0.148541i 0.0183784 + 0.00632232i
\(553\) −8.20616 8.20616i −0.348961 0.348961i
\(554\) 26.8844 26.8844i 1.14221 1.14221i
\(555\) 0 0
\(556\) 9.69127i 0.411001i
\(557\) −10.4018 + 10.4018i −0.440739 + 0.440739i −0.892260 0.451522i \(-0.850881\pi\)
0.451522 + 0.892260i \(0.350881\pi\)
\(558\) −12.0566 + 15.4499i −0.510398 + 0.654048i
\(559\) 7.17496 + 0.0738120i 0.303468 + 0.00312191i
\(560\) 0 0
\(561\) −3.52683 1.21326i −0.148903 0.0512239i
\(562\) 4.80596 0.202727
\(563\) 9.46463 0.398886 0.199443 0.979909i \(-0.436087\pi\)
0.199443 + 0.979909i \(0.436087\pi\)
\(564\) −2.13430 + 6.20419i −0.0898700 + 0.261244i
\(565\) 0 0
\(566\) −40.2809 + 40.2809i −1.69313 + 1.69313i
\(567\) 4.83576 8.06889i 0.203083 0.338862i
\(568\) 0.462340 0.0193994
\(569\) 26.1992 1.09833 0.549164 0.835715i \(-0.314946\pi\)
0.549164 + 0.835715i \(0.314946\pi\)
\(570\) 0 0
\(571\) 2.01935i 0.0845074i −0.999107 0.0422537i \(-0.986546\pi\)
0.999107 0.0422537i \(-0.0134538\pi\)
\(572\) −2.51425 + 2.46304i −0.105126 + 0.102985i
\(573\) 8.79129 4.29091i 0.367262 0.179255i
\(574\) −9.90779 + 9.90779i −0.413543 + 0.413543i
\(575\) 0 0
\(576\) −19.8328 15.4769i −0.826369 0.644871i
\(577\) 14.1048 14.1048i 0.587191 0.587191i −0.349679 0.936870i \(-0.613709\pi\)
0.936870 + 0.349679i \(0.113709\pi\)
\(578\) 4.87376 + 4.87376i 0.202722 + 0.202722i
\(579\) −14.5363 + 42.2557i −0.604109 + 1.75609i
\(580\) 0 0
\(581\) 13.3853i 0.555316i
\(582\) 14.0893 + 28.8663i 0.584018 + 1.19655i
\(583\) 4.49062 + 4.49062i 0.185983 + 0.185983i
\(584\) 0.752640 0.0311445
\(585\) 0 0
\(586\) 39.1140 1.61578
\(587\) 29.5091 + 29.5091i 1.21797 + 1.21797i 0.968341 + 0.249630i \(0.0803091\pi\)
0.249630 + 0.968341i \(0.419691\pi\)
\(588\) −9.19528 18.8395i −0.379207 0.776927i
\(589\) 7.37061i 0.303701i
\(590\) 0 0
\(591\) 0.187349 0.544605i 0.00770650 0.0224021i
\(592\) 6.26087 + 6.26087i 0.257320 + 0.257320i
\(593\) 12.1679 12.1679i 0.499676 0.499676i −0.411661 0.911337i \(-0.635051\pi\)
0.911337 + 0.411661i \(0.135051\pi\)
\(594\) 4.87366 + 1.03157i 0.199969 + 0.0423258i
\(595\) 0 0
\(596\) 34.6559 34.6559i 1.41956 1.41956i
\(597\) −30.6428 + 14.9563i −1.25413 + 0.612122i
\(598\) −13.9086 + 13.6253i −0.568764 + 0.557181i
\(599\) 32.6782i 1.33520i −0.744522 0.667598i \(-0.767322\pi\)
0.744522 0.667598i \(-0.232678\pi\)
\(600\) 0 0
\(601\) 8.63691 0.352307 0.176153 0.984363i \(-0.443635\pi\)
0.176153 + 0.984363i \(0.443635\pi\)
\(602\) 4.18546 0.170587
\(603\) −3.97421 32.2153i −0.161842 1.31191i
\(604\) 32.3417 32.3417i 1.31596 1.31596i
\(605\) 0 0
\(606\) −10.3444 + 30.0701i −0.420211 + 1.22151i
\(607\) 20.1069 0.816114 0.408057 0.912956i \(-0.366206\pi\)
0.408057 + 0.912956i \(0.366206\pi\)
\(608\) 18.2622 0.740630
\(609\) −8.19475 2.81906i −0.332068 0.114234i
\(610\) 0 0
\(611\) −4.66499 4.76197i −0.188725 0.192649i
\(612\) −21.8996 17.0897i −0.885239 0.690812i
\(613\) 14.6949 14.6949i 0.593521 0.593521i −0.345060 0.938581i \(-0.612141\pi\)
0.938581 + 0.345060i \(0.112141\pi\)
\(614\) 49.7392i 2.00731i
\(615\) 0 0
\(616\) −0.0345926 + 0.0345926i −0.00139377 + 0.00139377i
\(617\) −29.8552 29.8552i −1.20192 1.20192i −0.973581 0.228343i \(-0.926669\pi\)
−0.228343 0.973581i \(-0.573331\pi\)
\(618\) −36.0910 12.4156i −1.45179 0.499429i
\(619\) 2.01564 + 2.01564i 0.0810156 + 0.0810156i 0.746453 0.665438i \(-0.231755\pi\)
−0.665438 + 0.746453i \(0.731755\pi\)
\(620\) 0 0
\(621\) 13.6428 + 2.88767i 0.547468 + 0.115878i
\(622\) 17.3183 + 17.3183i 0.694400 + 0.694400i
\(623\) 5.28916 0.211906
\(624\) 21.9961 10.4572i 0.880550 0.418623i
\(625\) 0 0
\(626\) 39.5225 + 39.5225i 1.57964 + 1.57964i
\(627\) −1.68373 + 0.821807i −0.0672419 + 0.0328198i
\(628\) 43.4511i 1.73389i
\(629\) 7.25535 + 7.25535i 0.289290 + 0.289290i
\(630\) 0 0
\(631\) −24.5399 24.5399i −0.976917 0.976917i 0.0228223 0.999740i \(-0.492735\pi\)
−0.999740 + 0.0228223i \(0.992735\pi\)
\(632\) 0.771251 0.771251i 0.0306787 0.0306787i
\(633\) −10.2087 20.9158i −0.405760 0.831329i
\(634\) 30.0987i 1.19537i
\(635\) 0 0
\(636\) 20.7471 + 42.5070i 0.822674 + 1.68551i
\(637\) 21.2987 + 0.219109i 0.843886 + 0.00868143i
\(638\) 4.58927i 0.181691i
\(639\) 14.0133 1.72873i 0.554356 0.0683874i
\(640\) 0 0
\(641\) −22.3667 −0.883433 −0.441716 0.897155i \(-0.645630\pi\)
−0.441716 + 0.897155i \(0.645630\pi\)
\(642\) 16.5476 + 5.69251i 0.653081 + 0.224665i
\(643\) −24.8057 + 24.8057i −0.978240 + 0.978240i −0.999768 0.0215278i \(-0.993147\pi\)
0.0215278 + 0.999768i \(0.493147\pi\)
\(644\) −4.06384 + 4.06384i −0.160138 + 0.160138i
\(645\) 0 0
\(646\) 20.6461 0.812309
\(647\) −5.70359 −0.224231 −0.112116 0.993695i \(-0.535763\pi\)
−0.112116 + 0.993695i \(0.535763\pi\)
\(648\) 0.758350 + 0.454485i 0.0297908 + 0.0178539i
\(649\) 5.07620i 0.199258i
\(650\) 0 0
\(651\) −2.57799 5.28183i −0.101039 0.207011i
\(652\) 23.0602 23.0602i 0.903106 0.903106i
\(653\) 17.5389i 0.686351i 0.939271 + 0.343176i \(0.111503\pi\)
−0.939271 + 0.343176i \(0.888497\pi\)
\(654\) 5.68736 + 11.6524i 0.222393 + 0.455644i
\(655\) 0 0
\(656\) 18.3724 + 18.3724i 0.717322 + 0.717322i
\(657\) 22.8121 2.81418i 0.889984 0.109792i
\(658\) −2.74958 2.74958i −0.107190 0.107190i
\(659\) 23.7592i 0.925525i 0.886482 + 0.462763i \(0.153142\pi\)
−0.886482 + 0.462763i \(0.846858\pi\)
\(660\) 0 0
\(661\) 9.44470 + 9.44470i 0.367356 + 0.367356i 0.866512 0.499156i \(-0.166357\pi\)
−0.499156 + 0.866512i \(0.666357\pi\)
\(662\) 5.71892 0.222272
\(663\) 25.4900 12.1182i 0.989950 0.470633i
\(664\) −1.25801 −0.0488203
\(665\) 0 0
\(666\) −10.8044 8.43136i −0.418660 0.326709i
\(667\) 12.8468i 0.497428i
\(668\) 22.9879 + 22.9879i 0.889429 + 0.889429i
\(669\) 33.6974 + 11.5922i 1.30282 + 0.448180i
\(670\) 0 0
\(671\) −4.32098 + 4.32098i −0.166810 + 0.166810i
\(672\) 13.0868 6.38749i 0.504835 0.246403i
\(673\) 8.66064i 0.333843i 0.985970 + 0.166922i \(0.0533827\pi\)
−0.985970 + 0.166922i \(0.946617\pi\)
\(674\) 26.5868 26.5868i 1.02409 1.02409i
\(675\) 0 0
\(676\) 0.547947 26.6290i 0.0210749 1.02419i
\(677\) 0.0318488i 0.00122405i −1.00000 0.000612025i \(-0.999805\pi\)
1.00000 0.000612025i \(-0.000194814\pi\)
\(678\) −6.21072 2.13654i −0.238521 0.0820534i
\(679\) −9.63331 −0.369692
\(680\) 0 0
\(681\) 8.31212 24.1625i 0.318521 0.925911i
\(682\) 2.20085 2.20085i 0.0842749 0.0842749i
\(683\) 12.2599 12.2599i 0.469111 0.469111i −0.432516 0.901626i \(-0.642374\pi\)
0.901626 + 0.432516i \(0.142374\pi\)
\(684\) −13.8495 + 1.70852i −0.529547 + 0.0653270i
\(685\) 0 0
\(686\) 27.1466 1.03646
\(687\) 15.4670 44.9611i 0.590103 1.71537i
\(688\) 7.76127i 0.295896i
\(689\) −48.0557 0.494370i −1.83078 0.0188340i
\(690\) 0 0
\(691\) 10.4049 10.4049i 0.395820 0.395820i −0.480936 0.876756i \(-0.659703\pi\)
0.876756 + 0.480936i \(0.159703\pi\)
\(692\) 28.7372i 1.09243i
\(693\) −0.919136 + 1.17783i −0.0349151 + 0.0447419i
\(694\) 32.2516 32.2516i 1.22426 1.22426i
\(695\) 0 0
\(696\) 0.264948 0.770178i 0.0100428 0.0291935i
\(697\) 21.2907 + 21.2907i 0.806443 + 0.806443i
\(698\) 5.38004i 0.203638i
\(699\) 11.1894 + 22.9250i 0.423220 + 0.867102i
\(700\) 0 0
\(701\) 38.4849 1.45355 0.726776 0.686874i \(-0.241018\pi\)
0.726776 + 0.686874i \(0.241018\pi\)
\(702\) −31.8084 + 20.2327i −1.20053 + 0.763634i
\(703\) 5.15436 0.194401
\(704\) 2.82520 + 2.82520i 0.106479 + 0.106479i
\(705\) 0 0
\(706\) 39.2917i 1.47876i
\(707\) −6.74357 6.74357i −0.253618 0.253618i
\(708\) 12.2987 35.7511i 0.462213 1.34361i
\(709\) −30.5927 30.5927i −1.14893 1.14893i −0.986763 0.162170i \(-0.948151\pi\)
−0.162170 0.986763i \(-0.551849\pi\)
\(710\) 0 0
\(711\) 20.4924 26.2599i 0.768525 0.984824i
\(712\) 0.497098i 0.0186295i
\(713\) 6.16084 6.16084i 0.230725 0.230725i
\(714\) 14.7951 7.22129i 0.553693 0.270250i
\(715\) 0 0
\(716\) 53.9914i 2.01775i
\(717\) 1.52893 4.44447i 0.0570991 0.165982i
\(718\) −27.0046 −1.00780
\(719\) 10.3484 0.385930 0.192965 0.981206i \(-0.438190\pi\)
0.192965 + 0.981206i \(0.438190\pi\)
\(720\) 0 0
\(721\) 8.09383 8.09383i 0.301430 0.301430i
\(722\) −19.6998 + 19.6998i −0.733151 + 0.733151i
\(723\) 1.14349 3.32401i 0.0425267 0.123621i
\(724\) 0.399857 0.0148606
\(725\) 0 0
\(726\) 35.5037 + 12.2136i 1.31767 + 0.453288i
\(727\) 38.3639i 1.42284i −0.702769 0.711419i \(-0.748053\pi\)
0.702769 0.711419i \(-0.251947\pi\)
\(728\) 0.00380828 0.370187i 0.000141144 0.0137200i
\(729\) 24.6845 + 10.9397i 0.914240 + 0.405172i
\(730\) 0 0
\(731\) 8.99407i 0.332658i
\(732\) −40.9012 + 19.9633i −1.51175 + 0.737865i
\(733\) −15.1762 + 15.1762i −0.560546 + 0.560546i −0.929462 0.368917i \(-0.879729\pi\)
0.368917 + 0.929462i \(0.379729\pi\)
\(734\) −18.8247 18.8247i −0.694831 0.694831i
\(735\) 0 0
\(736\) 15.2648 + 15.2648i 0.562666 + 0.562666i
\(737\) 5.15522i 0.189895i
\(738\) −31.7052 24.7417i −1.16708 0.910754i
\(739\) −20.4670 20.4670i −0.752889 0.752889i 0.222128 0.975017i \(-0.428700\pi\)
−0.975017 + 0.222128i \(0.928700\pi\)
\(740\) 0 0
\(741\) 4.74981 13.3589i 0.174488 0.490751i
\(742\) −28.0329 −1.02912
\(743\) −8.05943 8.05943i −0.295672 0.295672i 0.543644 0.839316i \(-0.317044\pi\)
−0.839316 + 0.543644i \(0.817044\pi\)
\(744\) 0.496409 0.242290i 0.0181992 0.00888279i
\(745\) 0 0
\(746\) −26.4373 26.4373i −0.967939 0.967939i
\(747\) −38.1295 + 4.70380i −1.39509 + 0.172103i
\(748\) 3.11961 + 3.11961i 0.114064 + 0.114064i
\(749\) −3.71099 + 3.71099i −0.135597 + 0.135597i
\(750\) 0 0
\(751\) 12.8622i 0.469350i −0.972074 0.234675i \(-0.924597\pi\)
0.972074 0.234675i \(-0.0754025\pi\)
\(752\) −5.09865 + 5.09865i −0.185929 + 0.185929i
\(753\) 20.2131 + 41.4131i 0.736607 + 1.50918i
\(754\) 24.3031 + 24.8083i 0.885065 + 0.903465i
\(755\) 0 0
\(756\) −9.32704 + 6.06841i −0.339221 + 0.220706i
\(757\) 5.31615 0.193219 0.0966094 0.995322i \(-0.469200\pi\)
0.0966094 + 0.995322i \(0.469200\pi\)
\(758\) 23.1163 0.839623
\(759\) −2.09430 0.720457i −0.0760182 0.0261509i
\(760\) 0 0
\(761\) 23.9765 23.9765i 0.869146 0.869146i −0.123232 0.992378i \(-0.539326\pi\)
0.992378 + 0.123232i \(0.0393260\pi\)
\(762\) −12.3181 4.23752i −0.446237 0.153509i
\(763\) −3.88864 −0.140778
\(764\) −11.5717 −0.418649
\(765\) 0 0
\(766\) 21.3032i 0.769716i
\(767\) 26.8816 + 27.4405i 0.970639 + 0.990817i
\(768\) −11.5406 23.6446i −0.416436 0.853203i
\(769\) −18.4441 + 18.4441i −0.665109 + 0.665109i −0.956580 0.291470i \(-0.905856\pi\)
0.291470 + 0.956580i \(0.405856\pi\)
\(770\) 0 0
\(771\) 11.9074 + 24.3962i 0.428835 + 0.878607i
\(772\) 37.3767 37.3767i 1.34522 1.34522i
\(773\) −17.3271 17.3271i −0.623211 0.623211i 0.323140 0.946351i \(-0.395261\pi\)
−0.946351 + 0.323140i \(0.895261\pi\)
\(774\) 1.47083 + 11.9227i 0.0528681 + 0.428554i
\(775\) 0 0
\(776\) 0.905380i 0.0325013i
\(777\) 3.69365 1.80282i 0.132509 0.0646758i
\(778\) 8.39511 + 8.39511i 0.300979 + 0.300979i
\(779\) 15.1254 0.541924
\(780\) 0 0
\(781\) −2.24245 −0.0802413
\(782\) 17.2574 + 17.2574i 0.617122 + 0.617122i
\(783\) 5.15065 24.3343i 0.184069 0.869637i
\(784\) 23.0392i 0.822827i
\(785\) 0 0
\(786\) 33.4311 + 11.5006i 1.19245 + 0.410212i
\(787\) 19.8254 + 19.8254i 0.706698 + 0.706698i 0.965839 0.259141i \(-0.0834394\pi\)
−0.259141 + 0.965839i \(0.583439\pi\)
\(788\) −0.481723 + 0.481723i −0.0171607 + 0.0171607i
\(789\) 1.07895 0.526619i 0.0384115 0.0187481i
\(790\) 0 0
\(791\) 1.39283 1.39283i 0.0495233 0.0495233i
\(792\) −0.110697 0.0863844i −0.00393345 0.00306954i
\(793\) 0.475694 46.2403i 0.0168924 1.64204i
\(794\) 29.8770i 1.06030i
\(795\) 0 0
\(796\) 40.3341 1.42960
\(797\) −14.1984 −0.502933 −0.251467 0.967866i \(-0.580913\pi\)
−0.251467 + 0.967866i \(0.580913\pi\)
\(798\) 2.69031 7.82048i 0.0952360 0.276842i
\(799\) −5.90852 + 5.90852i −0.209028 + 0.209028i
\(800\) 0 0
\(801\) 1.85869 + 15.0668i 0.0656737 + 0.532358i
\(802\) 14.4216 0.509244
\(803\) −3.65047 −0.128822
\(804\) −12.4902 + 36.3077i −0.440494 + 1.28047i
\(805\) 0 0
\(806\) −0.242290 + 23.5520i −0.00853431 + 0.829585i
\(807\) 5.83704 2.84898i 0.205474 0.100289i
\(808\) 0.633790 0.633790i 0.0222967 0.0222967i
\(809\) 29.7074i 1.04446i 0.852806 + 0.522228i \(0.174899\pi\)
−0.852806 + 0.522228i \(0.825101\pi\)
\(810\) 0 0
\(811\) 32.4832 32.4832i 1.14064 1.14064i 0.152305 0.988333i \(-0.451330\pi\)
0.988333 0.152305i \(-0.0486697\pi\)
\(812\) 7.24855 + 7.24855i 0.254374 + 0.254374i
\(813\) 2.87945 8.37029i 0.100987 0.293559i
\(814\) 1.53908 + 1.53908i 0.0539449 + 0.0539449i
\(815\) 0 0
\(816\) −13.3907 27.4352i −0.468769 0.960424i
\(817\) −3.19480 3.19480i −0.111772 0.111772i
\(818\) −27.6923 −0.968238
\(819\) −1.26873 11.2344i −0.0443331 0.392561i
\(820\) 0 0
\(821\) 31.5279 + 31.5279i 1.10033 + 1.10033i 0.994370 + 0.105963i \(0.0337924\pi\)
0.105963 + 0.994370i \(0.466208\pi\)
\(822\) 0.193750 + 0.396958i 0.00675779 + 0.0138455i
\(823\) 19.2920i 0.672478i −0.941777 0.336239i \(-0.890845\pi\)
0.941777 0.336239i \(-0.109155\pi\)
\(824\) 0.760694 + 0.760694i 0.0265000 + 0.0265000i
\(825\) 0 0
\(826\) 15.8442 + 15.8442i 0.551290 + 0.551290i
\(827\) −9.30756 + 9.30756i −0.323656 + 0.323656i −0.850168 0.526512i \(-0.823499\pi\)
0.526512 + 0.850168i \(0.323499\pi\)
\(828\) −13.0044 10.1482i −0.451934 0.352675i
\(829\) 27.8662i 0.967835i −0.875114 0.483917i \(-0.839214\pi\)
0.875114 0.483917i \(-0.160786\pi\)
\(830\) 0 0
\(831\) −29.4112 + 14.3552i −1.02026 + 0.497975i
\(832\) −30.2334 0.311024i −1.04815 0.0107828i
\(833\) 26.6987i 0.925055i
\(834\) −5.36270 + 15.5889i −0.185695 + 0.539798i
\(835\) 0 0
\(836\) 2.21624 0.0766503
\(837\) 14.1399 9.19979i 0.488748 0.317991i
\(838\) −26.4955 + 26.4955i −0.915273 + 0.915273i
\(839\) −5.90142 + 5.90142i −0.203740 + 0.203740i −0.801600 0.597861i \(-0.796018\pi\)
0.597861 + 0.801600i \(0.296018\pi\)
\(840\) 0 0
\(841\) 6.08563 0.209849
\(842\) −47.4623 −1.63566
\(843\) −3.91191 1.34573i −0.134733 0.0463494i
\(844\) 27.5307i 0.947647i
\(845\) 0 0
\(846\) 6.86623 8.79871i 0.236066 0.302506i
\(847\) −7.96213 + 7.96213i −0.273582 + 0.273582i
\(848\) 51.9826i 1.78509i
\(849\) 44.0667 21.5083i 1.51236 0.738163i
\(850\) 0 0
\(851\) 4.30836 + 4.30836i 0.147689 + 0.147689i
\(852\) −15.7934 5.43306i −0.541072 0.186133i
\(853\) 0.0178236 + 0.0178236i 0.000610267 + 0.000610267i 0.707412 0.706802i \(-0.249863\pi\)
−0.706802 + 0.707412i \(0.749863\pi\)
\(854\) 26.9739i 0.923029i
\(855\) 0 0
\(856\) −0.348775 0.348775i −0.0119209 0.0119209i
\(857\) −15.5955 −0.532734 −0.266367 0.963872i \(-0.585823\pi\)
−0.266367 + 0.963872i \(0.585823\pi\)
\(858\) 5.40722 2.57065i 0.184600 0.0877607i
\(859\) −1.89170 −0.0645441 −0.0322721 0.999479i \(-0.510274\pi\)
−0.0322721 + 0.999479i \(0.510274\pi\)
\(860\) 0 0
\(861\) 10.8390 5.29035i 0.369391 0.180295i
\(862\) 47.1106i 1.60459i
\(863\) 35.3417 + 35.3417i 1.20305 + 1.20305i 0.973236 + 0.229810i \(0.0738103\pi\)
0.229810 + 0.973236i \(0.426190\pi\)
\(864\) 22.7944 + 35.0346i 0.775481 + 1.19190i
\(865\) 0 0
\(866\) −40.3567 + 40.3567i −1.37138 + 1.37138i
\(867\) −2.60239 5.33182i −0.0883817 0.181078i
\(868\) 6.95229i 0.235976i
\(869\) −3.74074 + 3.74074i −0.126896 + 0.126896i
\(870\) 0 0
\(871\) −27.3001 27.8676i −0.925028 0.944258i
\(872\) 0.365472i 0.0123764i
\(873\) −3.38529 27.4416i −0.114575 0.928756i
\(874\) 12.2600 0.414702
\(875\) 0 0
\(876\) −25.7099 8.84443i −0.868657 0.298825i
\(877\) −17.4575 + 17.4575i −0.589497 + 0.589497i −0.937495 0.347998i \(-0.886862\pi\)
0.347998 + 0.937495i \(0.386862\pi\)
\(878\) −37.7176 + 37.7176i −1.27291 + 1.27291i
\(879\) −31.8376 10.9524i −1.07386 0.369416i
\(880\) 0 0
\(881\) 31.4060 1.05810 0.529048 0.848592i \(-0.322549\pi\)
0.529048 + 0.848592i \(0.322549\pi\)
\(882\) 4.36614 + 35.3924i 0.147016 + 1.19173i
\(883\) 17.2791i 0.581488i 0.956801 + 0.290744i \(0.0939027\pi\)
−0.956801 + 0.290744i \(0.906097\pi\)
\(884\) −33.3840 0.343436i −1.12282 0.0115510i
\(885\) 0 0
\(886\) −18.4543 + 18.4543i −0.619986 + 0.619986i
\(887\) 41.1922i 1.38310i −0.722329 0.691550i \(-0.756928\pi\)
0.722329 0.691550i \(-0.243072\pi\)
\(888\) 0.169437 + 0.347146i 0.00568593 + 0.0116494i
\(889\) 2.76248 2.76248i 0.0926505 0.0926505i
\(890\) 0 0
\(891\) −3.67816 2.20436i −0.123223 0.0738487i
\(892\) −29.8065 29.8065i −0.997997 0.997997i
\(893\) 4.19755i 0.140466i
\(894\) −74.9226 + 36.5687i −2.50579 + 1.22304i
\(895\) 0 0
\(896\) −0.821169 −0.0274333
\(897\) 15.1364 7.19603i 0.505391 0.240269i
\(898\) −65.0071 −2.16931
\(899\) −10.9889 10.9889i −0.366501 0.366501i
\(900\) 0 0
\(901\) 60.2395i 2.00687i
\(902\) 4.51642 + 4.51642i 0.150380 + 0.150380i
\(903\) −3.40684 1.17198i −0.113373 0.0390012i
\(904\) 0.130904 + 0.130904i 0.00435381 + 0.00435381i
\(905\) 0 0
\(906\) −69.9195 + 34.1267i −2.32292 + 1.13378i
\(907\) 19.4678i 0.646416i 0.946328 + 0.323208i \(0.104761\pi\)
−0.946328 + 0.323208i \(0.895239\pi\)
\(908\) −21.3726 + 21.3726i −0.709276 + 0.709276i
\(909\) 16.8400 21.5796i 0.558548 0.715750i
\(910\) 0 0
\(911\) 46.0411i 1.52541i −0.646747 0.762705i \(-0.723871\pi\)
0.646747 0.762705i \(-0.276129\pi\)
\(912\) −14.5018 4.98875i −0.480204 0.165194i
\(913\) 6.10163 0.201934
\(914\) −43.7061 −1.44567
\(915\) 0 0
\(916\) −39.7697 + 39.7697i −1.31403 + 1.31403i
\(917\) −7.49732 + 7.49732i −0.247583 + 0.247583i
\(918\) 25.7699 + 39.6079i 0.850533 + 1.30725i
\(919\) −46.0338 −1.51852 −0.759258 0.650790i \(-0.774438\pi\)
−0.759258 + 0.650790i \(0.774438\pi\)
\(920\) 0 0
\(921\) 13.9276 40.4863i 0.458931 1.33407i
\(922\) 21.3434i 0.702906i
\(923\) 12.1221 11.8752i 0.399002 0.390877i
\(924\) 1.58817 0.775165i 0.0522471 0.0255011i
\(925\) 0 0
\(926\) 22.4646i 0.738233i
\(927\) 25.9005 + 20.2119i 0.850683 + 0.663845i
\(928\) 27.2273 27.2273i 0.893779 0.893779i
\(929\) −31.1332 31.1332i −1.02145 1.02145i −0.999765 0.0216819i \(-0.993098\pi\)
−0.0216819 0.999765i \(-0.506902\pi\)
\(930\) 0 0
\(931\) −9.48369 9.48369i −0.310815 0.310815i
\(932\) 30.1753i 0.988426i
\(933\) −9.24724 18.9459i −0.302741 0.620262i
\(934\) 52.4675 + 52.4675i 1.71679 + 1.71679i
\(935\) 0 0
\(936\) 1.05586 0.119241i 0.0345117 0.00389751i
\(937\) −9.36435 −0.305920 −0.152960 0.988232i \(-0.548881\pi\)
−0.152960 + 0.988232i \(0.548881\pi\)
\(938\) −16.0908 16.0908i −0.525385 0.525385i
\(939\) −21.1034 43.2370i −0.688683 1.41099i
\(940\) 0 0
\(941\) 7.95452 + 7.95452i 0.259310 + 0.259310i 0.824773 0.565463i \(-0.191303\pi\)
−0.565463 + 0.824773i \(0.691303\pi\)
\(942\) 24.0438 69.8931i 0.783390 2.27724i
\(943\) 12.6428 + 12.6428i 0.411707 + 0.411707i
\(944\) 29.3805 29.3805i 0.956255 0.956255i
\(945\) 0 0
\(946\) 1.90792i 0.0620319i
\(947\) −26.7873 + 26.7873i −0.870471 + 0.870471i −0.992524 0.122052i \(-0.961052\pi\)
0.122052 + 0.992524i \(0.461052\pi\)
\(948\) −35.4088 + 17.2825i −1.15002 + 0.561310i
\(949\) 19.7334 19.3315i 0.640573 0.627528i
\(950\) 0 0
\(951\) −8.42802 + 24.4994i −0.273297 + 0.794449i
\(952\) −0.464043 −0.0150397
\(953\) 33.2009 1.07548 0.537741 0.843110i \(-0.319278\pi\)
0.537741 + 0.843110i \(0.319278\pi\)
\(954\) −9.85121 79.8549i −0.318945 2.58540i
\(955\) 0 0
\(956\) −3.93129 + 3.93129i −0.127147 + 0.127147i
\(957\) −1.28506 + 3.73554i −0.0415400 + 0.120753i
\(958\) 85.6964 2.76873
\(959\) −0.132473 −0.00427779
\(960\) 0 0
\(961\) 20.4602i 0.660007i
\(962\) −16.4703 0.169437i −0.531023 0.00546287i
\(963\) −11.8753 9.26708i −0.382675 0.298627i
\(964\) −2.94020 + 2.94020i −0.0946976 + 0.0946976i
\(965\) 0 0
\(966\) 8.78562 4.28814i 0.282673 0.137969i
\(967\) 4.58302 4.58302i 0.147380 0.147380i −0.629566 0.776947i \(-0.716767\pi\)
0.776947 + 0.629566i \(0.216767\pi\)
\(968\) −0.748316 0.748316i −0.0240518 0.0240518i
\(969\) −16.8053 5.78117i −0.539864 0.185718i
\(970\) 0 0
\(971\) 31.4545i 1.00942i 0.863288 + 0.504712i \(0.168401\pi\)
−0.863288 + 0.504712i \(0.831599\pi\)
\(972\) −20.5642 24.4366i −0.659597 0.783804i
\(973\) −3.49599 3.49599i −0.112076 0.112076i
\(974\) −41.3408 −1.32464
\(975\) 0 0
\(976\) −50.0189 −1.60106
\(977\) −20.0536 20.0536i −0.641572 0.641572i 0.309370 0.950942i \(-0.399882\pi\)
−0.950942 + 0.309370i \(0.899882\pi\)
\(978\) −49.8538 + 24.3329i −1.59415 + 0.778082i
\(979\) 2.41104i 0.0770571i
\(980\) 0 0
\(981\) −1.36653 11.0772i −0.0436299 0.353669i
\(982\) 15.6730 + 15.6730i 0.500144 + 0.500144i
\(983\) −35.7334 + 35.7334i −1.13972 + 1.13972i −0.151217 + 0.988501i \(0.548319\pi\)
−0.988501 + 0.151217i \(0.951681\pi\)
\(984\) 0.497210 + 1.01869i 0.0158505 + 0.0324748i
\(985\) 0 0
\(986\) 30.7814 30.7814i 0.980281 0.980281i
\(987\) 1.46816 + 3.00799i 0.0467320 + 0.0957455i
\(988\) −11.9804 + 11.7364i −0.381146 + 0.373384i
\(989\) 5.34085i 0.169829i
\(990\) 0 0
\(991\) −17.9023 −0.568685 −0.284342 0.958723i \(-0.591775\pi\)
−0.284342 + 0.958723i \(0.591775\pi\)
\(992\) 26.1145 0.829135
\(993\) −4.65503 1.60137i −0.147723 0.0508180i
\(994\) 6.99931 6.99931i 0.222005 0.222005i
\(995\) 0 0
\(996\) 42.9732 + 14.7831i 1.36166 + 0.468422i
\(997\) −29.1464 −0.923075 −0.461538 0.887121i \(-0.652702\pi\)
−0.461538 + 0.887121i \(0.652702\pi\)
\(998\) 2.51993 0.0797671
\(999\) 6.43354 + 9.88825i 0.203548 + 0.312850i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.o.n.551.3 yes 8
3.2 odd 2 975.2.o.l.551.2 yes 8
5.2 odd 4 975.2.n.n.824.2 8
5.3 odd 4 975.2.n.p.824.3 8
5.4 even 2 975.2.o.m.551.2 yes 8
13.8 odd 4 975.2.o.l.476.2 8
15.2 even 4 975.2.n.o.824.3 8
15.8 even 4 975.2.n.m.824.2 8
15.14 odd 2 975.2.o.o.551.3 yes 8
39.8 even 4 inner 975.2.o.n.476.3 yes 8
65.8 even 4 975.2.n.o.749.3 8
65.34 odd 4 975.2.o.o.476.3 yes 8
65.47 even 4 975.2.n.m.749.2 8
195.8 odd 4 975.2.n.n.749.2 8
195.47 odd 4 975.2.n.p.749.3 8
195.164 even 4 975.2.o.m.476.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
975.2.n.m.749.2 8 65.47 even 4
975.2.n.m.824.2 8 15.8 even 4
975.2.n.n.749.2 8 195.8 odd 4
975.2.n.n.824.2 8 5.2 odd 4
975.2.n.o.749.3 8 65.8 even 4
975.2.n.o.824.3 8 15.2 even 4
975.2.n.p.749.3 8 195.47 odd 4
975.2.n.p.824.3 8 5.3 odd 4
975.2.o.l.476.2 8 13.8 odd 4
975.2.o.l.551.2 yes 8 3.2 odd 2
975.2.o.m.476.2 yes 8 195.164 even 4
975.2.o.m.551.2 yes 8 5.4 even 2
975.2.o.n.476.3 yes 8 39.8 even 4 inner
975.2.o.n.551.3 yes 8 1.1 even 1 trivial
975.2.o.o.476.3 yes 8 65.34 odd 4
975.2.o.o.551.3 yes 8 15.14 odd 2