Properties

Label 975.2.bn.d.218.9
Level $975$
Weight $2$
Character 975.218
Analytic conductor $7.785$
Analytic rank $0$
Dimension $96$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [975,2,Mod(218,975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("975.218"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(975, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 10])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.bn (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0,2,0,0,-12,12,0,0,0,0,12,24,0,0,16,0,0,0,0,0,-20,0,0,0,0, 32,36,0,0,0,0,-30,0,0,-4,84,0,0,0,0,48,-8,0,0,0,0,28,0,0,-16,-28,0,0,0, 0,0,-84,0,0,-32,0,-90,0,0,0,-36,0,0,0,0,-90,0,0,0,72] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(76)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(24\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 218.9
Character \(\chi\) \(=\) 975.218
Dual form 975.2.bn.d.407.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.01047 - 0.270756i) q^{2} +(0.981641 + 1.42702i) q^{3} +(-0.784302 - 0.452817i) q^{4} +(-0.605549 - 1.70775i) q^{6} +(-0.396013 + 0.106111i) q^{7} +(2.14935 + 2.14935i) q^{8} +(-1.07276 + 2.80164i) q^{9} +(-0.440197 - 0.762444i) q^{11} +(-0.123725 - 1.56372i) q^{12} +(-0.187578 + 3.60067i) q^{13} +0.428892 q^{14} +(-0.684279 - 1.18521i) q^{16} +(-2.55774 + 0.685345i) q^{17} +(1.84256 - 2.54053i) q^{18} +(1.91991 - 3.32538i) q^{19} +(-0.540166 - 0.460955i) q^{21} +(0.238372 + 0.889616i) q^{22} +(-3.37426 - 0.904132i) q^{23} +(-0.957273 + 5.17705i) q^{24} +(1.16444 - 3.58759i) q^{26} +(-5.05106 + 1.21935i) q^{27} +(0.358643 + 0.0960982i) q^{28} +(-2.13030 - 3.68979i) q^{29} +7.83820i q^{31} +(-1.20289 - 4.48924i) q^{32} +(0.655906 - 1.37662i) q^{33} +2.77009 q^{34} +(2.11000 - 1.71157i) q^{36} +(-1.79187 + 6.68733i) q^{37} +(-2.84038 + 2.84038i) q^{38} +(-5.32235 + 3.26689i) q^{39} +(-2.14922 - 3.72255i) q^{41} +(0.421017 + 0.612036i) q^{42} +(9.78689 - 2.62239i) q^{43} +0.797316i q^{44} +(3.16481 + 1.82720i) q^{46} +(-8.73570 + 8.73570i) q^{47} +(1.01960 - 2.13993i) q^{48} +(-5.91661 + 3.41596i) q^{49} +(-3.48878 - 2.97718i) q^{51} +(1.77756 - 2.73907i) q^{52} +(-4.55030 + 4.55030i) q^{53} +(5.43411 + 0.135481i) q^{54} +(-1.07924 - 0.623101i) q^{56} +(6.63004 - 0.524583i) q^{57} +(1.15358 + 4.30522i) q^{58} +(-3.44655 - 1.98987i) q^{59} +(-1.37989 + 2.39004i) q^{61} +(2.12224 - 7.92030i) q^{62} +(0.127543 - 1.22332i) q^{63} +7.59907i q^{64} +(-1.03550 + 1.21344i) q^{66} +(1.47705 - 5.51244i) q^{67} +(2.31638 + 0.620672i) q^{68} +(-2.02210 - 5.70267i) q^{69} +(-1.91546 + 3.31767i) q^{71} +(-8.32745 + 3.71596i) q^{72} +(-11.1297 + 11.1297i) q^{73} +(3.62127 - 6.27222i) q^{74} +(-3.01158 + 1.73874i) q^{76} +(0.255228 + 0.255228i) q^{77} +(6.26263 - 1.86004i) q^{78} -1.92220i q^{79} +(-6.69836 - 6.01099i) q^{81} +(1.16382 + 4.34345i) q^{82} +(-9.67699 - 9.67699i) q^{83} +(0.214925 + 0.606124i) q^{84} -10.5994 q^{86} +(3.17421 - 6.66202i) q^{87} +(0.692621 - 2.58490i) q^{88} +(1.54079 - 0.889574i) q^{89} +(-0.307789 - 1.44582i) q^{91} +(2.23704 + 2.23704i) q^{92} +(-11.1853 + 7.69430i) q^{93} +(11.1924 - 6.46196i) q^{94} +(5.22543 - 6.12337i) q^{96} +(-3.99780 + 1.07121i) q^{97} +(6.90347 - 1.84978i) q^{98} +(2.60832 - 0.415352i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 2 q^{3} - 12 q^{6} + 12 q^{7} + 12 q^{12} + 24 q^{13} + 16 q^{16} - 20 q^{22} + 32 q^{27} + 36 q^{28} - 30 q^{33} - 4 q^{36} + 84 q^{37} + 48 q^{42} - 8 q^{43} + 28 q^{48} - 16 q^{51} - 28 q^{52}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.01047 0.270756i −0.714513 0.191453i −0.116791 0.993157i \(-0.537261\pi\)
−0.597722 + 0.801703i \(0.703927\pi\)
\(3\) 0.981641 + 1.42702i 0.566751 + 0.823889i
\(4\) −0.784302 0.452817i −0.392151 0.226409i
\(5\) 0 0
\(6\) −0.605549 1.70775i −0.247214 0.697186i
\(7\) −0.396013 + 0.106111i −0.149679 + 0.0401064i −0.332881 0.942969i \(-0.608021\pi\)
0.183202 + 0.983075i \(0.441354\pi\)
\(8\) 2.14935 + 2.14935i 0.759910 + 0.759910i
\(9\) −1.07276 + 2.80164i −0.357588 + 0.933880i
\(10\) 0 0
\(11\) −0.440197 0.762444i −0.132725 0.229886i 0.792001 0.610519i \(-0.209039\pi\)
−0.924726 + 0.380634i \(0.875706\pi\)
\(12\) −0.123725 1.56372i −0.0357162 0.451406i
\(13\) −0.187578 + 3.60067i −0.0520249 + 0.998646i
\(14\) 0.428892 0.114626
\(15\) 0 0
\(16\) −0.684279 1.18521i −0.171070 0.296302i
\(17\) −2.55774 + 0.685345i −0.620344 + 0.166221i −0.555284 0.831661i \(-0.687390\pi\)
−0.0650597 + 0.997881i \(0.520724\pi\)
\(18\) 1.84256 2.54053i 0.434295 0.598808i
\(19\) 1.91991 3.32538i 0.440458 0.762895i −0.557266 0.830334i \(-0.688150\pi\)
0.997723 + 0.0674392i \(0.0214829\pi\)
\(20\) 0 0
\(21\) −0.540166 0.460955i −0.117874 0.100589i
\(22\) 0.238372 + 0.889616i 0.0508211 + 0.189667i
\(23\) −3.37426 0.904132i −0.703583 0.188524i −0.110748 0.993849i \(-0.535325\pi\)
−0.592835 + 0.805324i \(0.701991\pi\)
\(24\) −0.957273 + 5.17705i −0.195402 + 1.05676i
\(25\) 0 0
\(26\) 1.16444 3.58759i 0.228366 0.703585i
\(27\) −5.05106 + 1.21935i −0.972077 + 0.234664i
\(28\) 0.358643 + 0.0960982i 0.0677772 + 0.0181609i
\(29\) −2.13030 3.68979i −0.395587 0.685176i 0.597589 0.801802i \(-0.296125\pi\)
−0.993176 + 0.116626i \(0.962792\pi\)
\(30\) 0 0
\(31\) 7.83820i 1.40778i 0.710308 + 0.703891i \(0.248556\pi\)
−0.710308 + 0.703891i \(0.751444\pi\)
\(32\) −1.20289 4.48924i −0.212643 0.793593i
\(33\) 0.655906 1.37662i 0.114179 0.239638i
\(34\) 2.77009 0.475067
\(35\) 0 0
\(36\) 2.11000 1.71157i 0.351667 0.285261i
\(37\) −1.79187 + 6.68733i −0.294581 + 1.09939i 0.646969 + 0.762517i \(0.276036\pi\)
−0.941550 + 0.336874i \(0.890630\pi\)
\(38\) −2.84038 + 2.84038i −0.460771 + 0.460771i
\(39\) −5.32235 + 3.26689i −0.852259 + 0.523120i
\(40\) 0 0
\(41\) −2.14922 3.72255i −0.335651 0.581365i 0.647958 0.761676i \(-0.275623\pi\)
−0.983610 + 0.180311i \(0.942290\pi\)
\(42\) 0.421017 + 0.612036i 0.0649644 + 0.0944392i
\(43\) 9.78689 2.62239i 1.49249 0.399911i 0.581911 0.813253i \(-0.302305\pi\)
0.910576 + 0.413342i \(0.135639\pi\)
\(44\) 0.797316i 0.120200i
\(45\) 0 0
\(46\) 3.16481 + 1.82720i 0.466625 + 0.269406i
\(47\) −8.73570 + 8.73570i −1.27423 + 1.27423i −0.330388 + 0.943845i \(0.607180\pi\)
−0.943845 + 0.330388i \(0.892820\pi\)
\(48\) 1.01960 2.13993i 0.147166 0.308872i
\(49\) −5.91661 + 3.41596i −0.845230 + 0.487994i
\(50\) 0 0
\(51\) −3.48878 2.97718i −0.488527 0.416889i
\(52\) 1.77756 2.73907i 0.246504 0.379841i
\(53\) −4.55030 + 4.55030i −0.625032 + 0.625032i −0.946814 0.321782i \(-0.895718\pi\)
0.321782 + 0.946814i \(0.395718\pi\)
\(54\) 5.43411 + 0.135481i 0.739488 + 0.0184367i
\(55\) 0 0
\(56\) −1.07924 0.623101i −0.144220 0.0832654i
\(57\) 6.63004 0.524583i 0.878171 0.0694827i
\(58\) 1.15358 + 4.30522i 0.151473 + 0.565304i
\(59\) −3.44655 1.98987i −0.448703 0.259059i 0.258579 0.965990i \(-0.416746\pi\)
−0.707282 + 0.706931i \(0.750079\pi\)
\(60\) 0 0
\(61\) −1.37989 + 2.39004i −0.176677 + 0.306014i −0.940740 0.339128i \(-0.889868\pi\)
0.764063 + 0.645141i \(0.223202\pi\)
\(62\) 2.12224 7.92030i 0.269524 1.00588i
\(63\) 0.127543 1.22332i 0.0160689 0.154124i
\(64\) 7.59907i 0.949883i
\(65\) 0 0
\(66\) −1.03550 + 1.21344i −0.127462 + 0.149365i
\(67\) 1.47705 5.51244i 0.180451 0.673452i −0.815108 0.579309i \(-0.803322\pi\)
0.995559 0.0941427i \(-0.0300110\pi\)
\(68\) 2.31638 + 0.620672i 0.280902 + 0.0752675i
\(69\) −2.02210 5.70267i −0.243433 0.686521i
\(70\) 0 0
\(71\) −1.91546 + 3.31767i −0.227323 + 0.393734i −0.957014 0.290042i \(-0.906331\pi\)
0.729691 + 0.683777i \(0.239664\pi\)
\(72\) −8.32745 + 3.71596i −0.981399 + 0.437930i
\(73\) −11.1297 + 11.1297i −1.30264 + 1.30264i −0.376028 + 0.926608i \(0.622710\pi\)
−0.926608 + 0.376028i \(0.877290\pi\)
\(74\) 3.62127 6.27222i 0.420964 0.729131i
\(75\) 0 0
\(76\) −3.01158 + 1.73874i −0.345452 + 0.199447i
\(77\) 0.255228 + 0.255228i 0.0290860 + 0.0290860i
\(78\) 6.26263 1.86004i 0.709103 0.210609i
\(79\) 1.92220i 0.216264i −0.994137 0.108132i \(-0.965513\pi\)
0.994137 0.108132i \(-0.0344870\pi\)
\(80\) 0 0
\(81\) −6.69836 6.01099i −0.744262 0.667888i
\(82\) 1.16382 + 4.34345i 0.128523 + 0.479654i
\(83\) −9.67699 9.67699i −1.06219 1.06219i −0.997934 0.0642539i \(-0.979533\pi\)
−0.0642539 0.997934i \(-0.520467\pi\)
\(84\) 0.214925 + 0.606124i 0.0234502 + 0.0661336i
\(85\) 0 0
\(86\) −10.5994 −1.14296
\(87\) 3.17421 6.66202i 0.340311 0.714244i
\(88\) 0.692621 2.58490i 0.0738337 0.275551i
\(89\) 1.54079 0.889574i 0.163323 0.0942947i −0.416111 0.909314i \(-0.636607\pi\)
0.579434 + 0.815019i \(0.303274\pi\)
\(90\) 0 0
\(91\) −0.307789 1.44582i −0.0322650 0.151563i
\(92\) 2.23704 + 2.23704i 0.233227 + 0.233227i
\(93\) −11.1853 + 7.69430i −1.15986 + 0.797861i
\(94\) 11.1924 6.46196i 1.15441 0.666500i
\(95\) 0 0
\(96\) 5.22543 6.12337i 0.533318 0.624963i
\(97\) −3.99780 + 1.07121i −0.405916 + 0.108765i −0.455999 0.889980i \(-0.650718\pi\)
0.0500834 + 0.998745i \(0.484051\pi\)
\(98\) 6.90347 1.84978i 0.697356 0.186856i
\(99\) 2.60832 0.415352i 0.262146 0.0417445i
\(100\) 0 0
\(101\) 0.815875 0.471046i 0.0811826 0.0468708i −0.458859 0.888509i \(-0.651742\pi\)
0.540042 + 0.841638i \(0.318408\pi\)
\(102\) 2.71924 + 3.95297i 0.269244 + 0.391403i
\(103\) −4.29455 4.29455i −0.423154 0.423154i 0.463134 0.886288i \(-0.346725\pi\)
−0.886288 + 0.463134i \(0.846725\pi\)
\(104\) −8.14227 + 7.33593i −0.798415 + 0.719347i
\(105\) 0 0
\(106\) 5.82998 3.36594i 0.566258 0.326929i
\(107\) 0.548581 2.04733i 0.0530334 0.197923i −0.934326 0.356419i \(-0.883998\pi\)
0.987360 + 0.158495i \(0.0506643\pi\)
\(108\) 4.51370 + 1.33087i 0.434331 + 0.128063i
\(109\) 8.75477 0.838555 0.419277 0.907858i \(-0.362283\pi\)
0.419277 + 0.907858i \(0.362283\pi\)
\(110\) 0 0
\(111\) −11.3019 + 4.00753i −1.07273 + 0.380378i
\(112\) 0.396748 + 0.396748i 0.0374891 + 0.0374891i
\(113\) −0.382672 1.42815i −0.0359988 0.134349i 0.945588 0.325367i \(-0.105488\pi\)
−0.981587 + 0.191018i \(0.938821\pi\)
\(114\) −6.84152 1.26504i −0.640767 0.118482i
\(115\) 0 0
\(116\) 3.85854i 0.358257i
\(117\) −9.88655 4.38819i −0.914011 0.405688i
\(118\) 2.94388 + 2.94388i 0.271006 + 0.271006i
\(119\) 0.940178 0.542812i 0.0861859 0.0497595i
\(120\) 0 0
\(121\) 5.11245 8.85503i 0.464768 0.805002i
\(122\) 2.04146 2.04146i 0.184825 0.184825i
\(123\) 3.20239 6.72118i 0.288750 0.606028i
\(124\) 3.54927 6.14752i 0.318734 0.552063i
\(125\) 0 0
\(126\) −0.460099 + 1.20160i −0.0409889 + 0.107047i
\(127\) 12.3168 + 3.30028i 1.09294 + 0.292852i 0.759887 0.650055i \(-0.225254\pi\)
0.333054 + 0.942908i \(0.391921\pi\)
\(128\) −0.348287 + 1.29983i −0.0307845 + 0.114889i
\(129\) 13.3494 + 11.3918i 1.17535 + 1.00299i
\(130\) 0 0
\(131\) 14.4459i 1.26214i 0.775725 + 0.631071i \(0.217384\pi\)
−0.775725 + 0.631071i \(0.782616\pi\)
\(132\) −1.13778 + 0.782678i −0.0990314 + 0.0681233i
\(133\) −0.407449 + 1.52062i −0.0353303 + 0.131855i
\(134\) −2.98505 + 5.17026i −0.257869 + 0.446642i
\(135\) 0 0
\(136\) −6.97053 4.02444i −0.597718 0.345093i
\(137\) 4.47333 + 16.6947i 0.382183 + 1.42633i 0.842560 + 0.538602i \(0.181047\pi\)
−0.460378 + 0.887723i \(0.652286\pi\)
\(138\) 0.499252 + 6.30989i 0.0424992 + 0.537134i
\(139\) −7.96426 4.59817i −0.675520 0.390012i 0.122645 0.992451i \(-0.460862\pi\)
−0.798165 + 0.602439i \(0.794196\pi\)
\(140\) 0 0
\(141\) −21.0413 3.89069i −1.77200 0.327655i
\(142\) 2.83379 2.83379i 0.237807 0.237807i
\(143\) 2.82788 1.44199i 0.236479 0.120585i
\(144\) 4.05459 0.645658i 0.337883 0.0538048i
\(145\) 0 0
\(146\) 14.2597 8.23286i 1.18014 0.681357i
\(147\) −10.6826 5.08987i −0.881088 0.419805i
\(148\) 4.43350 4.43350i 0.364432 0.364432i
\(149\) 1.47738 + 0.852967i 0.121032 + 0.0698778i 0.559294 0.828970i \(-0.311072\pi\)
−0.438262 + 0.898847i \(0.644406\pi\)
\(150\) 0 0
\(151\) 17.4866i 1.42304i 0.702666 + 0.711520i \(0.251993\pi\)
−0.702666 + 0.711520i \(0.748007\pi\)
\(152\) 11.2740 3.02085i 0.914440 0.245023i
\(153\) 0.823763 7.90108i 0.0665973 0.638765i
\(154\) −0.188797 0.327006i −0.0152137 0.0263509i
\(155\) 0 0
\(156\) 5.65364 0.152172i 0.452653 0.0121835i
\(157\) 3.64849 3.64849i 0.291181 0.291181i −0.546365 0.837547i \(-0.683989\pi\)
0.837547 + 0.546365i \(0.183989\pi\)
\(158\) −0.520447 + 1.94233i −0.0414045 + 0.154524i
\(159\) −10.9601 2.02660i −0.869194 0.160720i
\(160\) 0 0
\(161\) 1.43219 0.112873
\(162\) 5.14101 + 7.88757i 0.403916 + 0.619706i
\(163\) 1.33210 + 4.97146i 0.104338 + 0.389395i 0.998269 0.0588093i \(-0.0187304\pi\)
−0.893931 + 0.448204i \(0.852064\pi\)
\(164\) 3.89281i 0.303977i
\(165\) 0 0
\(166\) 7.15824 + 12.3984i 0.555588 + 0.962306i
\(167\) −8.36399 2.24112i −0.647225 0.173423i −0.0797510 0.996815i \(-0.525413\pi\)
−0.567474 + 0.823391i \(0.692079\pi\)
\(168\) −0.170252 2.15176i −0.0131352 0.166012i
\(169\) −12.9296 1.35081i −0.994587 0.103909i
\(170\) 0 0
\(171\) 7.25691 + 8.94624i 0.554950 + 0.684136i
\(172\) −8.86334 2.37492i −0.675823 0.181086i
\(173\) −3.68187 13.7409i −0.279927 1.04470i −0.952467 0.304642i \(-0.901463\pi\)
0.672540 0.740061i \(-0.265203\pi\)
\(174\) −5.01123 + 5.87237i −0.379901 + 0.445183i
\(175\) 0 0
\(176\) −0.602436 + 1.04345i −0.0454103 + 0.0786530i
\(177\) −0.543698 6.87163i −0.0408668 0.516503i
\(178\) −1.79778 + 0.481714i −0.134750 + 0.0361060i
\(179\) 9.67835 + 16.7634i 0.723394 + 1.25295i 0.959632 + 0.281259i \(0.0907521\pi\)
−0.236238 + 0.971695i \(0.575915\pi\)
\(180\) 0 0
\(181\) 24.4852 1.81997 0.909984 0.414644i \(-0.136094\pi\)
0.909984 + 0.414644i \(0.136094\pi\)
\(182\) −0.0804508 + 1.54430i −0.00596341 + 0.114471i
\(183\) −4.76519 + 0.377032i −0.352253 + 0.0278710i
\(184\) −5.30918 9.19577i −0.391398 0.677921i
\(185\) 0 0
\(186\) 13.3857 4.74641i 0.981486 0.348024i
\(187\) 1.64845 + 1.64845i 0.120547 + 0.120547i
\(188\) 10.8071 2.89576i 0.788189 0.211195i
\(189\) 1.87090 1.01885i 0.136088 0.0741107i
\(190\) 0 0
\(191\) 20.3420 + 11.7444i 1.47189 + 0.849798i 0.999501 0.0315908i \(-0.0100573\pi\)
0.472392 + 0.881389i \(0.343391\pi\)
\(192\) −10.8440 + 7.45955i −0.782599 + 0.538347i
\(193\) −5.43240 1.45561i −0.391032 0.104777i 0.0579453 0.998320i \(-0.481545\pi\)
−0.448978 + 0.893543i \(0.648212\pi\)
\(194\) 4.32971 0.310855
\(195\) 0 0
\(196\) 6.18721 0.441944
\(197\) 12.2140 + 3.27274i 0.870213 + 0.233173i 0.666180 0.745791i \(-0.267928\pi\)
0.204033 + 0.978964i \(0.434595\pi\)
\(198\) −2.74810 0.286515i −0.195299 0.0203618i
\(199\) 10.2770 + 5.93343i 0.728518 + 0.420610i 0.817880 0.575389i \(-0.195149\pi\)
−0.0893620 + 0.995999i \(0.528483\pi\)
\(200\) 0 0
\(201\) 9.31629 3.30345i 0.657121 0.233008i
\(202\) −0.951959 + 0.255077i −0.0669796 + 0.0179471i
\(203\) 1.23516 + 1.23516i 0.0866910 + 0.0866910i
\(204\) 1.38814 + 3.91479i 0.0971894 + 0.274090i
\(205\) 0 0
\(206\) 3.17676 + 5.50230i 0.221335 + 0.383364i
\(207\) 6.15284 8.48355i 0.427652 0.589648i
\(208\) 4.39589 2.24154i 0.304800 0.155423i
\(209\) −3.38056 −0.233838
\(210\) 0 0
\(211\) 3.11693 + 5.39868i 0.214578 + 0.371661i 0.953142 0.302523i \(-0.0978289\pi\)
−0.738564 + 0.674184i \(0.764496\pi\)
\(212\) 5.62927 1.50836i 0.386620 0.103594i
\(213\) −6.61466 + 0.523366i −0.453229 + 0.0358604i
\(214\) −1.10865 + 1.92025i −0.0757861 + 0.131265i
\(215\) 0 0
\(216\) −13.4773 8.23568i −0.917014 0.560367i
\(217\) −0.831723 3.10403i −0.0564610 0.210715i
\(218\) −8.84647 2.37040i −0.599158 0.160544i
\(219\) −26.8077 4.95693i −1.81150 0.334959i
\(220\) 0 0
\(221\) −1.98792 9.33814i −0.133722 0.628151i
\(222\) 12.5054 0.989450i 0.839304 0.0664075i
\(223\) −2.19220 0.587397i −0.146800 0.0393350i 0.184671 0.982800i \(-0.440878\pi\)
−0.331471 + 0.943465i \(0.607545\pi\)
\(224\) 0.952720 + 1.65016i 0.0636563 + 0.110256i
\(225\) 0 0
\(226\) 1.54672i 0.102886i
\(227\) 2.38781 + 8.91142i 0.158484 + 0.591472i 0.998782 + 0.0493459i \(0.0157137\pi\)
−0.840297 + 0.542126i \(0.817620\pi\)
\(228\) −5.43750 2.59077i −0.360107 0.171578i
\(229\) 17.3079 1.14374 0.571869 0.820345i \(-0.306218\pi\)
0.571869 + 0.820345i \(0.306218\pi\)
\(230\) 0 0
\(231\) −0.113673 + 0.614758i −0.00747913 + 0.0404481i
\(232\) 3.35189 12.5094i 0.220062 0.821283i
\(233\) 14.0715 14.0715i 0.921854 0.921854i −0.0753068 0.997160i \(-0.523994\pi\)
0.997160 + 0.0753068i \(0.0239936\pi\)
\(234\) 8.80197 + 7.11099i 0.575403 + 0.464860i
\(235\) 0 0
\(236\) 1.80209 + 3.12132i 0.117306 + 0.203180i
\(237\) 2.74302 1.88691i 0.178178 0.122568i
\(238\) −1.09699 + 0.293939i −0.0711076 + 0.0190532i
\(239\) 13.6042i 0.879984i −0.898002 0.439992i \(-0.854981\pi\)
0.898002 0.439992i \(-0.145019\pi\)
\(240\) 0 0
\(241\) −16.3605 9.44575i −1.05387 0.608454i −0.130142 0.991495i \(-0.541543\pi\)
−0.923731 + 0.383041i \(0.874877\pi\)
\(242\) −7.56355 + 7.56355i −0.486203 + 0.486203i
\(243\) 2.00241 15.4593i 0.128455 0.991715i
\(244\) 2.16451 1.24968i 0.138568 0.0800024i
\(245\) 0 0
\(246\) −5.05573 + 5.92451i −0.322342 + 0.377733i
\(247\) 11.6135 + 7.53673i 0.738947 + 0.479551i
\(248\) −16.8470 + 16.8470i −1.06979 + 1.06979i
\(249\) 4.30992 23.3086i 0.273130 1.47712i
\(250\) 0 0
\(251\) −13.2104 7.62703i −0.833833 0.481414i 0.0213304 0.999772i \(-0.493210\pi\)
−0.855163 + 0.518359i \(0.826543\pi\)
\(252\) −0.653972 + 0.901698i −0.0411963 + 0.0568017i
\(253\) 0.795993 + 2.97069i 0.0500436 + 0.186765i
\(254\) −11.5522 6.66969i −0.724852 0.418494i
\(255\) 0 0
\(256\) 8.30294 14.3811i 0.518934 0.898819i
\(257\) 7.53822 28.1330i 0.470221 1.75489i −0.168751 0.985659i \(-0.553973\pi\)
0.638972 0.769230i \(-0.279360\pi\)
\(258\) −10.4048 15.1256i −0.647776 0.941677i
\(259\) 2.83841i 0.176370i
\(260\) 0 0
\(261\) 12.6228 2.01006i 0.781329 0.124420i
\(262\) 3.91130 14.5972i 0.241641 0.901816i
\(263\) 18.9951 + 5.08972i 1.17129 + 0.313845i 0.791465 0.611214i \(-0.209319\pi\)
0.379822 + 0.925060i \(0.375985\pi\)
\(264\) 4.36860 1.54906i 0.268869 0.0953379i
\(265\) 0 0
\(266\) 0.823433 1.42623i 0.0504879 0.0874477i
\(267\) 2.78194 + 1.32549i 0.170252 + 0.0811187i
\(268\) −3.65458 + 3.65458i −0.223239 + 0.223239i
\(269\) 15.6000 27.0200i 0.951148 1.64744i 0.208201 0.978086i \(-0.433239\pi\)
0.742947 0.669350i \(-0.233427\pi\)
\(270\) 0 0
\(271\) 12.3700 7.14185i 0.751427 0.433836i −0.0747824 0.997200i \(-0.523826\pi\)
0.826209 + 0.563363i \(0.190493\pi\)
\(272\) 2.56249 + 2.56249i 0.155374 + 0.155374i
\(273\) 1.76107 1.85849i 0.106585 0.112481i
\(274\) 18.0807i 1.09230i
\(275\) 0 0
\(276\) −0.996326 + 5.38826i −0.0599718 + 0.324335i
\(277\) −4.19871 15.6698i −0.252276 0.941507i −0.969586 0.244752i \(-0.921293\pi\)
0.717310 0.696755i \(-0.245373\pi\)
\(278\) 6.80270 + 6.80270i 0.407999 + 0.407999i
\(279\) −21.9598 8.40853i −1.31470 0.503406i
\(280\) 0 0
\(281\) −6.00560 −0.358264 −0.179132 0.983825i \(-0.557329\pi\)
−0.179132 + 0.983825i \(0.557329\pi\)
\(282\) 20.2083 + 9.62850i 1.20339 + 0.573369i
\(283\) −8.01173 + 29.9002i −0.476248 + 1.77738i 0.140348 + 0.990102i \(0.455178\pi\)
−0.616596 + 0.787280i \(0.711489\pi\)
\(284\) 3.00459 1.73470i 0.178290 0.102936i
\(285\) 0 0
\(286\) −3.24793 + 0.691426i −0.192054 + 0.0408848i
\(287\) 1.24612 + 1.24612i 0.0735564 + 0.0735564i
\(288\) 13.8676 + 1.44583i 0.817159 + 0.0851965i
\(289\) −8.65008 + 4.99413i −0.508828 + 0.293772i
\(290\) 0 0
\(291\) −5.45304 4.65340i −0.319663 0.272787i
\(292\) 13.7688 3.68934i 0.805758 0.215902i
\(293\) 13.8318 3.70623i 0.808064 0.216520i 0.168943 0.985626i \(-0.445965\pi\)
0.639121 + 0.769106i \(0.279298\pi\)
\(294\) 9.41640 + 8.03556i 0.549175 + 0.468643i
\(295\) 0 0
\(296\) −18.2248 + 10.5221i −1.05929 + 0.611583i
\(297\) 3.15315 + 3.31440i 0.182964 + 0.192321i
\(298\) −1.26191 1.26191i −0.0731005 0.0731005i
\(299\) 3.88842 11.9800i 0.224873 0.692822i
\(300\) 0 0
\(301\) −3.59747 + 2.07700i −0.207355 + 0.119716i
\(302\) 4.73460 17.6698i 0.272445 1.01678i
\(303\) 1.47309 + 0.701871i 0.0846266 + 0.0403214i
\(304\) −5.25502 −0.301396
\(305\) 0 0
\(306\) −2.97165 + 7.76080i −0.169878 + 0.443655i
\(307\) 12.4805 + 12.4805i 0.712300 + 0.712300i 0.967016 0.254716i \(-0.0819821\pi\)
−0.254716 + 0.967016i \(0.581982\pi\)
\(308\) −0.0846044 0.315748i −0.00482078 0.0179914i
\(309\) 1.91270 10.3441i 0.108809 0.588455i
\(310\) 0 0
\(311\) 13.6423i 0.773585i −0.922167 0.386792i \(-0.873583\pi\)
0.922167 0.386792i \(-0.126417\pi\)
\(312\) −18.4613 4.41792i −1.04516 0.250116i
\(313\) −2.73940 2.73940i −0.154840 0.154840i 0.625436 0.780276i \(-0.284921\pi\)
−0.780276 + 0.625436i \(0.784921\pi\)
\(314\) −4.67456 + 2.69886i −0.263801 + 0.152305i
\(315\) 0 0
\(316\) −0.870405 + 1.50759i −0.0489641 + 0.0848084i
\(317\) −5.58971 + 5.58971i −0.313949 + 0.313949i −0.846437 0.532488i \(-0.821257\pi\)
0.532488 + 0.846437i \(0.321257\pi\)
\(318\) 10.5262 + 5.01534i 0.590280 + 0.281247i
\(319\) −1.87551 + 3.24847i −0.105008 + 0.181879i
\(320\) 0 0
\(321\) 3.46009 1.22691i 0.193124 0.0684795i
\(322\) −1.44719 0.387774i −0.0806489 0.0216098i
\(323\) −2.63160 + 9.82127i −0.146426 + 0.546470i
\(324\) 2.53166 + 7.74756i 0.140648 + 0.430420i
\(325\) 0 0
\(326\) 5.38421i 0.298204i
\(327\) 8.59404 + 12.4932i 0.475251 + 0.690877i
\(328\) 3.38165 12.6205i 0.186720 0.696850i
\(329\) 2.53250 4.38641i 0.139621 0.241831i
\(330\) 0 0
\(331\) 5.92414 + 3.42030i 0.325620 + 0.187997i 0.653895 0.756585i \(-0.273134\pi\)
−0.328275 + 0.944582i \(0.606467\pi\)
\(332\) 3.20778 + 11.9716i 0.176050 + 0.657026i
\(333\) −16.8132 12.1941i −0.921360 0.668232i
\(334\) 7.84479 + 4.52919i 0.429248 + 0.247826i
\(335\) 0 0
\(336\) −0.176703 + 0.955630i −0.00963992 + 0.0521339i
\(337\) −15.6466 + 15.6466i −0.852323 + 0.852323i −0.990419 0.138096i \(-0.955902\pi\)
0.138096 + 0.990419i \(0.455902\pi\)
\(338\) 12.6993 + 4.86573i 0.690751 + 0.264661i
\(339\) 1.66235 1.94801i 0.0902866 0.105802i
\(340\) 0 0
\(341\) 5.97619 3.45036i 0.323629 0.186847i
\(342\) −4.91067 11.0048i −0.265539 0.595071i
\(343\) 4.00990 4.00990i 0.216514 0.216514i
\(344\) 26.6719 + 15.3990i 1.43805 + 0.830260i
\(345\) 0 0
\(346\) 14.8817i 0.800046i
\(347\) −6.13932 + 1.64503i −0.329576 + 0.0883097i −0.419813 0.907611i \(-0.637904\pi\)
0.0902367 + 0.995920i \(0.471238\pi\)
\(348\) −5.50621 + 3.78770i −0.295164 + 0.203042i
\(349\) 2.24199 + 3.88324i 0.120011 + 0.207865i 0.919772 0.392454i \(-0.128374\pi\)
−0.799761 + 0.600319i \(0.795040\pi\)
\(350\) 0 0
\(351\) −3.44301 18.4159i −0.183774 0.982969i
\(352\) −2.89329 + 2.89329i −0.154213 + 0.154213i
\(353\) −5.09337 + 19.0087i −0.271093 + 1.01173i 0.687322 + 0.726353i \(0.258786\pi\)
−0.958415 + 0.285379i \(0.907880\pi\)
\(354\) −1.31114 + 7.09081i −0.0696863 + 0.376872i
\(355\) 0 0
\(356\) −1.61126 −0.0853965
\(357\) 1.69752 + 0.808805i 0.0898422 + 0.0428065i
\(358\) −5.24093 19.5594i −0.276992 1.03375i
\(359\) 28.4889i 1.50359i 0.659399 + 0.751793i \(0.270811\pi\)
−0.659399 + 0.751793i \(0.729189\pi\)
\(360\) 0 0
\(361\) 2.12789 + 3.68561i 0.111994 + 0.193980i
\(362\) −24.7416 6.62950i −1.30039 0.348439i
\(363\) 17.6549 1.39689i 0.926641 0.0733178i
\(364\) −0.413291 + 1.27333i −0.0216624 + 0.0667406i
\(365\) 0 0
\(366\) 4.91719 + 0.909222i 0.257026 + 0.0475258i
\(367\) 6.74878 + 1.80833i 0.352284 + 0.0943941i 0.430621 0.902533i \(-0.358295\pi\)
−0.0783376 + 0.996927i \(0.524961\pi\)
\(368\) 1.23736 + 4.61788i 0.0645017 + 0.240724i
\(369\) 12.7348 2.02791i 0.662950 0.105569i
\(370\) 0 0
\(371\) 1.31914 2.28482i 0.0684864 0.118622i
\(372\) 12.2567 0.969778i 0.635482 0.0502807i
\(373\) 12.7108 3.40584i 0.658139 0.176348i 0.0857330 0.996318i \(-0.472677\pi\)
0.572406 + 0.819970i \(0.306010\pi\)
\(374\) −1.21939 2.11204i −0.0630530 0.109211i
\(375\) 0 0
\(376\) −37.5522 −1.93661
\(377\) 13.6853 6.97838i 0.704829 0.359405i
\(378\) −2.16636 + 0.522969i −0.111425 + 0.0268986i
\(379\) 3.61705 + 6.26491i 0.185795 + 0.321807i 0.943844 0.330391i \(-0.107181\pi\)
−0.758049 + 0.652198i \(0.773847\pi\)
\(380\) 0 0
\(381\) 7.38112 + 20.8160i 0.378146 + 1.06644i
\(382\) −17.3751 17.3751i −0.888990 0.888990i
\(383\) −7.54590 + 2.02192i −0.385578 + 0.103315i −0.446400 0.894833i \(-0.647294\pi\)
0.0608227 + 0.998149i \(0.480628\pi\)
\(384\) −2.19677 + 0.778949i −0.112103 + 0.0397506i
\(385\) 0 0
\(386\) 5.09518 + 2.94170i 0.259338 + 0.149729i
\(387\) −3.15203 + 30.2325i −0.160227 + 1.53681i
\(388\) 3.62055 + 0.970123i 0.183805 + 0.0492505i
\(389\) −28.6894 −1.45461 −0.727306 0.686314i \(-0.759228\pi\)
−0.727306 + 0.686314i \(0.759228\pi\)
\(390\) 0 0
\(391\) 9.25014 0.467800
\(392\) −20.0590 5.37478i −1.01313 0.271467i
\(393\) −20.6145 + 14.1807i −1.03987 + 0.715319i
\(394\) −11.4558 6.61403i −0.577136 0.333210i
\(395\) 0 0
\(396\) −2.23379 0.855331i −0.112252 0.0429820i
\(397\) −24.4939 + 6.56311i −1.22931 + 0.329393i −0.814312 0.580428i \(-0.802885\pi\)
−0.415001 + 0.909821i \(0.636219\pi\)
\(398\) −8.77813 8.77813i −0.440008 0.440008i
\(399\) −2.56992 + 0.911266i −0.128657 + 0.0456203i
\(400\) 0 0
\(401\) −10.3734 17.9672i −0.518023 0.897241i −0.999781 0.0209373i \(-0.993335\pi\)
0.481758 0.876304i \(-0.339998\pi\)
\(402\) −10.3083 + 0.815614i −0.514131 + 0.0406792i
\(403\) −28.2228 1.47028i −1.40588 0.0732397i
\(404\) −0.853190 −0.0424478
\(405\) 0 0
\(406\) −0.913668 1.58252i −0.0453446 0.0785391i
\(407\) 5.88750 1.57755i 0.291832 0.0781962i
\(408\) −1.09961 13.8976i −0.0544388 0.688035i
\(409\) −13.5268 + 23.4291i −0.668856 + 1.15849i 0.309368 + 0.950942i \(0.399882\pi\)
−0.978224 + 0.207550i \(0.933451\pi\)
\(410\) 0 0
\(411\) −19.4324 + 22.7717i −0.958532 + 1.12325i
\(412\) 1.42358 + 5.31287i 0.0701347 + 0.261746i
\(413\) 1.57603 + 0.422296i 0.0775513 + 0.0207798i
\(414\) −8.51425 + 6.90649i −0.418453 + 0.339436i
\(415\) 0 0
\(416\) 16.3899 3.48912i 0.803581 0.171068i
\(417\) −1.25637 15.8789i −0.0615248 0.777593i
\(418\) 3.41597 + 0.915305i 0.167080 + 0.0447690i
\(419\) 6.46519 + 11.1980i 0.315845 + 0.547060i 0.979617 0.200876i \(-0.0643787\pi\)
−0.663772 + 0.747935i \(0.731045\pi\)
\(420\) 0 0
\(421\) 16.5986i 0.808966i −0.914545 0.404483i \(-0.867451\pi\)
0.914545 0.404483i \(-0.132549\pi\)
\(422\) −1.68785 6.29915i −0.0821634 0.306638i
\(423\) −15.1029 33.8456i −0.734330 1.64563i
\(424\) −19.5604 −0.949936
\(425\) 0 0
\(426\) 6.82564 + 1.26211i 0.330704 + 0.0611494i
\(427\) 0.292845 1.09291i 0.0141718 0.0528897i
\(428\) −1.35732 + 1.35732i −0.0656086 + 0.0656086i
\(429\) 4.83371 + 2.61993i 0.233373 + 0.126491i
\(430\) 0 0
\(431\) 10.4373 + 18.0779i 0.502745 + 0.870781i 0.999995 + 0.00317304i \(0.00101001\pi\)
−0.497250 + 0.867608i \(0.665657\pi\)
\(432\) 4.90152 + 5.15217i 0.235824 + 0.247884i
\(433\) 39.1549 10.4915i 1.88166 0.504191i 0.882221 0.470835i \(-0.156047\pi\)
0.999444 0.0333555i \(-0.0106194\pi\)
\(434\) 3.36174i 0.161369i
\(435\) 0 0
\(436\) −6.86639 3.96431i −0.328840 0.189856i
\(437\) −9.48487 + 9.48487i −0.453723 + 0.453723i
\(438\) 25.7464 + 12.2672i 1.23021 + 0.586149i
\(439\) 19.3023 11.1442i 0.921248 0.531883i 0.0372151 0.999307i \(-0.488151\pi\)
0.884033 + 0.467424i \(0.154818\pi\)
\(440\) 0 0
\(441\) −3.22316 20.2407i −0.153484 0.963844i
\(442\) −0.519609 + 9.97419i −0.0247153 + 0.474424i
\(443\) −1.29342 + 1.29342i −0.0614522 + 0.0614522i −0.737165 0.675713i \(-0.763836\pi\)
0.675713 + 0.737165i \(0.263836\pi\)
\(444\) 10.6788 + 1.97458i 0.506793 + 0.0937096i
\(445\) 0 0
\(446\) 2.05612 + 1.18710i 0.0973599 + 0.0562108i
\(447\) 0.233059 + 2.94556i 0.0110233 + 0.139320i
\(448\) −0.806348 3.00933i −0.0380964 0.142178i
\(449\) 5.11305 + 2.95202i 0.241300 + 0.139314i 0.615774 0.787923i \(-0.288843\pi\)
−0.374474 + 0.927237i \(0.622177\pi\)
\(450\) 0 0
\(451\) −1.89216 + 3.27732i −0.0890983 + 0.154323i
\(452\) −0.346561 + 1.29338i −0.0163009 + 0.0608356i
\(453\) −24.9537 + 17.1656i −1.17243 + 0.806508i
\(454\) 9.65127i 0.452956i
\(455\) 0 0
\(456\) 15.3778 + 13.1228i 0.720131 + 0.614530i
\(457\) −6.48293 + 24.1946i −0.303259 + 1.13178i 0.631175 + 0.775640i \(0.282573\pi\)
−0.934434 + 0.356137i \(0.884094\pi\)
\(458\) −17.4892 4.68621i −0.817216 0.218972i
\(459\) 12.0836 6.58050i 0.564016 0.307151i
\(460\) 0 0
\(461\) 6.00551 10.4018i 0.279704 0.484462i −0.691607 0.722274i \(-0.743097\pi\)
0.971311 + 0.237812i \(0.0764302\pi\)
\(462\) 0.281313 0.590419i 0.0130879 0.0274688i
\(463\) 3.70703 3.70703i 0.172280 0.172280i −0.615700 0.787980i \(-0.711127\pi\)
0.787980 + 0.615700i \(0.211127\pi\)
\(464\) −2.91544 + 5.04969i −0.135346 + 0.234426i
\(465\) 0 0
\(466\) −18.0288 + 10.4089i −0.835168 + 0.482185i
\(467\) −4.97371 4.97371i −0.230156 0.230156i 0.582602 0.812758i \(-0.302035\pi\)
−0.812758 + 0.582602i \(0.802035\pi\)
\(468\) 5.76699 + 7.91846i 0.266579 + 0.366031i
\(469\) 2.33973i 0.108039i
\(470\) 0 0
\(471\) 8.78798 + 1.62496i 0.404929 + 0.0748741i
\(472\) −3.13093 11.6848i −0.144113 0.537835i
\(473\) −6.30759 6.30759i −0.290023 0.290023i
\(474\) −3.28264 + 1.16399i −0.150777 + 0.0534637i
\(475\) 0 0
\(476\) −0.983178 −0.0450639
\(477\) −7.86690 17.6297i −0.360201 0.807208i
\(478\) −3.68342 + 13.7467i −0.168476 + 0.628760i
\(479\) 0.897191 0.517993i 0.0409937 0.0236677i −0.479363 0.877617i \(-0.659132\pi\)
0.520357 + 0.853949i \(0.325799\pi\)
\(480\) 0 0
\(481\) −23.7428 7.70631i −1.08258 0.351378i
\(482\) 13.9744 + 13.9744i 0.636515 + 0.636515i
\(483\) 1.40590 + 2.04377i 0.0639706 + 0.0929946i
\(484\) −8.01941 + 4.63001i −0.364519 + 0.210455i
\(485\) 0 0
\(486\) −6.20908 + 15.0791i −0.281650 + 0.684000i
\(487\) −35.9674 + 9.63744i −1.62984 + 0.436714i −0.953871 0.300217i \(-0.902941\pi\)
−0.675968 + 0.736931i \(0.736274\pi\)
\(488\) −8.10291 + 2.17117i −0.366802 + 0.0982842i
\(489\) −5.78673 + 6.78112i −0.261685 + 0.306653i
\(490\) 0 0
\(491\) −19.2248 + 11.0994i −0.867603 + 0.500911i −0.866551 0.499089i \(-0.833668\pi\)
−0.00105176 + 0.999999i \(0.500335\pi\)
\(492\) −5.55511 + 3.82134i −0.250444 + 0.172279i
\(493\) 7.97754 + 7.97754i 0.359290 + 0.359290i
\(494\) −9.69449 10.7601i −0.436176 0.484119i
\(495\) 0 0
\(496\) 9.28989 5.36352i 0.417128 0.240829i
\(497\) 0.406504 1.51709i 0.0182342 0.0680509i
\(498\) −10.6660 + 22.3858i −0.477954 + 1.00313i
\(499\) −2.69061 −0.120448 −0.0602240 0.998185i \(-0.519182\pi\)
−0.0602240 + 0.998185i \(0.519182\pi\)
\(500\) 0 0
\(501\) −5.01231 14.1355i −0.223933 0.631530i
\(502\) 11.2837 + 11.2837i 0.503616 + 0.503616i
\(503\) 4.29176 + 16.0171i 0.191360 + 0.714166i 0.993179 + 0.116599i \(0.0371992\pi\)
−0.801819 + 0.597567i \(0.796134\pi\)
\(504\) 2.90348 2.35521i 0.129331 0.104909i
\(505\) 0 0
\(506\) 3.21732i 0.143027i
\(507\) −10.7646 19.7768i −0.478073 0.878320i
\(508\) −8.16568 8.16568i −0.362293 0.362293i
\(509\) −29.8804 + 17.2515i −1.32443 + 0.764658i −0.984431 0.175770i \(-0.943759\pi\)
−0.339995 + 0.940427i \(0.610425\pi\)
\(510\) 0 0
\(511\) 3.22653 5.58852i 0.142733 0.247221i
\(512\) −10.3806 + 10.3806i −0.458762 + 0.458762i
\(513\) −5.64277 + 19.1377i −0.249135 + 0.844952i
\(514\) −15.2343 + 26.3866i −0.671958 + 1.16387i
\(515\) 0 0
\(516\) −5.31155 14.9795i −0.233828 0.659435i
\(517\) 10.5059 + 2.81505i 0.462050 + 0.123806i
\(518\) −0.768516 + 2.86814i −0.0337667 + 0.126019i
\(519\) 15.9943 18.7427i 0.702070 0.822715i
\(520\) 0 0
\(521\) 42.5919i 1.86598i 0.359898 + 0.932992i \(0.382812\pi\)
−0.359898 + 0.932992i \(0.617188\pi\)
\(522\) −13.2992 1.38657i −0.582090 0.0606884i
\(523\) 8.56640 31.9703i 0.374583 1.39796i −0.479371 0.877612i \(-0.659135\pi\)
0.853954 0.520349i \(-0.174198\pi\)
\(524\) 6.54134 11.3299i 0.285760 0.494950i
\(525\) 0 0
\(526\) −17.8160 10.2861i −0.776813 0.448493i
\(527\) −5.37187 20.0481i −0.234002 0.873309i
\(528\) −2.08040 + 0.164605i −0.0905377 + 0.00716353i
\(529\) −9.35037 5.39844i −0.406538 0.234715i
\(530\) 0 0
\(531\) 9.27223 7.52134i 0.402380 0.326398i
\(532\) 1.00813 1.00813i 0.0437078 0.0437078i
\(533\) 13.8068 7.04035i 0.598040 0.304951i
\(534\) −2.45219 2.09260i −0.106117 0.0905556i
\(535\) 0 0
\(536\) 15.0229 8.67346i 0.648889 0.374636i
\(537\) −14.4210 + 30.2668i −0.622312 + 1.30611i
\(538\) −23.0792 + 23.0792i −0.995014 + 0.995014i
\(539\) 5.20895 + 3.00739i 0.224366 + 0.129538i
\(540\) 0 0
\(541\) 4.59490i 0.197550i 0.995110 + 0.0987752i \(0.0314925\pi\)
−0.995110 + 0.0987752i \(0.968508\pi\)
\(542\) −14.4333 + 3.86739i −0.619963 + 0.166119i
\(543\) 24.0356 + 34.9408i 1.03147 + 1.49945i
\(544\) 6.15336 + 10.6579i 0.263823 + 0.456955i
\(545\) 0 0
\(546\) −2.28271 + 1.40114i −0.0976911 + 0.0599632i
\(547\) −10.5892 + 10.5892i −0.452763 + 0.452763i −0.896271 0.443507i \(-0.853734\pi\)
0.443507 + 0.896271i \(0.353734\pi\)
\(548\) 4.05120 15.1193i 0.173059 0.645864i
\(549\) −5.21574 6.42991i −0.222602 0.274422i
\(550\) 0 0
\(551\) −16.3599 −0.696957
\(552\) 7.91083 16.6032i 0.336707 0.706681i
\(553\) 0.203968 + 0.761217i 0.00867358 + 0.0323703i
\(554\) 16.9707i 0.721018i
\(555\) 0 0
\(556\) 4.16426 + 7.21271i 0.176604 + 0.305887i
\(557\) −0.0735142 0.0196981i −0.00311490 0.000834634i 0.257261 0.966342i \(-0.417180\pi\)
−0.260376 + 0.965507i \(0.583847\pi\)
\(558\) 19.9132 + 14.4423i 0.842991 + 0.611393i
\(559\) 7.60655 + 35.7312i 0.321723 + 1.51127i
\(560\) 0 0
\(561\) −0.734183 + 3.97055i −0.0309972 + 0.167637i
\(562\) 6.06850 + 1.62605i 0.255984 + 0.0685908i
\(563\) 1.99623 + 7.45003i 0.0841311 + 0.313981i 0.995148 0.0983870i \(-0.0313683\pi\)
−0.911017 + 0.412368i \(0.864702\pi\)
\(564\) 14.7410 + 12.5793i 0.620708 + 0.529686i
\(565\) 0 0
\(566\) 16.1913 28.0441i 0.680571 1.17878i
\(567\) 3.29048 + 1.66966i 0.138187 + 0.0701191i
\(568\) −11.2478 + 3.01384i −0.471948 + 0.126458i
\(569\) 12.0281 + 20.8333i 0.504244 + 0.873377i 0.999988 + 0.00490805i \(0.00156229\pi\)
−0.495743 + 0.868469i \(0.665104\pi\)
\(570\) 0 0
\(571\) −24.0278 −1.00553 −0.502767 0.864422i \(-0.667685\pi\)
−0.502767 + 0.864422i \(0.667685\pi\)
\(572\) −2.87087 0.149559i −0.120037 0.00625338i
\(573\) 3.20897 + 40.5572i 0.134057 + 1.69430i
\(574\) −0.921781 1.59657i −0.0384744 0.0666396i
\(575\) 0 0
\(576\) −21.2898 8.15200i −0.887077 0.339667i
\(577\) 6.28126 + 6.28126i 0.261492 + 0.261492i 0.825660 0.564168i \(-0.190803\pi\)
−0.564168 + 0.825660i \(0.690803\pi\)
\(578\) 10.0929 2.70438i 0.419808 0.112487i
\(579\) −3.25548 9.18101i −0.135293 0.381550i
\(580\) 0 0
\(581\) 4.85906 + 2.80538i 0.201588 + 0.116387i
\(582\) 4.25022 + 6.17858i 0.176177 + 0.256110i
\(583\) 5.47238 + 1.46632i 0.226643 + 0.0607288i
\(584\) −47.8434 −1.97977
\(585\) 0 0
\(586\) −14.9802 −0.618826
\(587\) 41.6351 + 11.1561i 1.71847 + 0.460462i 0.977475 0.211053i \(-0.0676891\pi\)
0.740992 + 0.671514i \(0.234356\pi\)
\(588\) 6.07362 + 8.82927i 0.250472 + 0.364113i
\(589\) 26.0650 + 15.0486i 1.07399 + 0.620068i
\(590\) 0 0
\(591\) 7.31952 + 20.6423i 0.301085 + 0.849110i
\(592\) 9.15201 2.45227i 0.376145 0.100788i
\(593\) −18.7850 18.7850i −0.771409 0.771409i 0.206944 0.978353i \(-0.433648\pi\)
−0.978353 + 0.206944i \(0.933648\pi\)
\(594\) −2.28878 4.20284i −0.0939099 0.172445i
\(595\) 0 0
\(596\) −0.772476 1.33797i −0.0316418 0.0548053i
\(597\) 1.62121 + 20.4900i 0.0663517 + 0.838599i
\(598\) −7.17280 + 11.0527i −0.293318 + 0.451978i
\(599\) 17.2478 0.704727 0.352363 0.935863i \(-0.385378\pi\)
0.352363 + 0.935863i \(0.385378\pi\)
\(600\) 0 0
\(601\) −17.2038 29.7979i −0.701758 1.21548i −0.967849 0.251533i \(-0.919065\pi\)
0.266091 0.963948i \(-0.414268\pi\)
\(602\) 4.19751 1.12472i 0.171078 0.0458402i
\(603\) 13.8593 + 10.0517i 0.564396 + 0.409338i
\(604\) 7.91823 13.7148i 0.322188 0.558046i
\(605\) 0 0
\(606\) −1.29848 1.10807i −0.0527472 0.0450122i
\(607\) −6.69769 24.9961i −0.271851 1.01456i −0.957922 0.287027i \(-0.907333\pi\)
0.686072 0.727534i \(-0.259334\pi\)
\(608\) −17.2379 4.61888i −0.699088 0.187320i
\(609\) −0.550111 + 2.97507i −0.0222916 + 0.120556i
\(610\) 0 0
\(611\) −29.8157 33.0930i −1.20622 1.33880i
\(612\) −4.22382 + 5.82382i −0.170738 + 0.235414i
\(613\) 27.0052 + 7.23603i 1.09073 + 0.292260i 0.758985 0.651108i \(-0.225696\pi\)
0.331746 + 0.943369i \(0.392362\pi\)
\(614\) −9.23205 15.9904i −0.372575 0.645319i
\(615\) 0 0
\(616\) 1.09715i 0.0442054i
\(617\) −7.95090 29.6732i −0.320091 1.19460i −0.919155 0.393895i \(-0.871127\pi\)
0.599064 0.800701i \(-0.295539\pi\)
\(618\) −4.73345 + 9.93457i −0.190407 + 0.399627i
\(619\) −13.4208 −0.539429 −0.269714 0.962940i \(-0.586929\pi\)
−0.269714 + 0.962940i \(0.586929\pi\)
\(620\) 0 0
\(621\) 18.1461 + 0.452412i 0.728176 + 0.0181546i
\(622\) −3.69373 + 13.7852i −0.148105 + 0.552736i
\(623\) −0.515779 + 0.515779i −0.0206642 + 0.0206642i
\(624\) 7.51391 + 4.07263i 0.300797 + 0.163036i
\(625\) 0 0
\(626\) 2.02638 + 3.50979i 0.0809905 + 0.140280i
\(627\) −3.31849 4.82412i −0.132528 0.192657i
\(628\) −4.51362 + 1.20942i −0.180113 + 0.0482612i
\(629\) 18.3325i 0.730966i
\(630\) 0 0
\(631\) −1.20146 0.693665i −0.0478295 0.0276144i 0.475895 0.879502i \(-0.342124\pi\)
−0.523724 + 0.851888i \(0.675458\pi\)
\(632\) 4.13148 4.13148i 0.164342 0.164342i
\(633\) −4.64431 + 9.74748i −0.184595 + 0.387428i
\(634\) 7.16170 4.13481i 0.284427 0.164214i
\(635\) 0 0
\(636\) 7.67837 + 6.55240i 0.304467 + 0.259820i
\(637\) −11.1899 21.9445i −0.443360 0.869473i
\(638\) 2.77469 2.77469i 0.109851 0.109851i
\(639\) −7.24007 8.92548i −0.286413 0.353087i
\(640\) 0 0
\(641\) 7.29569 + 4.21217i 0.288162 + 0.166371i 0.637113 0.770771i \(-0.280129\pi\)
−0.348950 + 0.937141i \(0.613462\pi\)
\(642\) −3.82853 + 0.302921i −0.151100 + 0.0119553i
\(643\) −9.38439 35.0230i −0.370084 1.38117i −0.860396 0.509626i \(-0.829784\pi\)
0.490312 0.871547i \(-0.336883\pi\)
\(644\) −1.12327 0.648521i −0.0442631 0.0255553i
\(645\) 0 0
\(646\) 5.31833 9.21162i 0.209247 0.362426i
\(647\) −5.74546 + 21.4424i −0.225877 + 0.842986i 0.756174 + 0.654371i \(0.227066\pi\)
−0.982051 + 0.188615i \(0.939600\pi\)
\(648\) −1.47740 27.3168i −0.0580377 1.07311i
\(649\) 3.50374i 0.137534i
\(650\) 0 0
\(651\) 3.61306 4.23393i 0.141607 0.165941i
\(652\) 1.20639 4.50233i 0.0472461 0.176325i
\(653\) 5.12398 + 1.37297i 0.200517 + 0.0537283i 0.357679 0.933844i \(-0.383568\pi\)
−0.157163 + 0.987573i \(0.550235\pi\)
\(654\) −5.30144 14.9510i −0.207303 0.584629i
\(655\) 0 0
\(656\) −2.94133 + 5.09453i −0.114840 + 0.198908i
\(657\) −19.2419 43.1210i −0.750699 1.68231i
\(658\) −3.74667 + 3.74667i −0.146060 + 0.146060i
\(659\) −5.11174 + 8.85379i −0.199125 + 0.344895i −0.948245 0.317540i \(-0.897143\pi\)
0.749120 + 0.662434i \(0.230477\pi\)
\(660\) 0 0
\(661\) 0.0211888 0.0122334i 0.000824148 0.000475822i −0.499588 0.866263i \(-0.666515\pi\)
0.500412 + 0.865787i \(0.333182\pi\)
\(662\) −5.06012 5.06012i −0.196667 0.196667i
\(663\) 11.3743 12.0035i 0.441740 0.466177i
\(664\) 41.5985i 1.61433i
\(665\) 0 0
\(666\) 13.6877 + 16.8741i 0.530389 + 0.653858i
\(667\) 3.85214 + 14.3764i 0.149156 + 0.556656i
\(668\) 5.54507 + 5.54507i 0.214545 + 0.214545i
\(669\) −1.31372 3.70492i −0.0507914 0.143240i
\(670\) 0 0
\(671\) 2.42970 0.0937975
\(672\) −1.41958 + 2.97941i −0.0547615 + 0.114933i
\(673\) 6.47686 24.1720i 0.249665 0.931761i −0.721317 0.692605i \(-0.756463\pi\)
0.970981 0.239155i \(-0.0768706\pi\)
\(674\) 20.0468 11.5741i 0.772176 0.445816i
\(675\) 0 0
\(676\) 9.52906 + 6.91420i 0.366502 + 0.265931i
\(677\) −6.93371 6.93371i −0.266484 0.266484i 0.561198 0.827682i \(-0.310341\pi\)
−0.827682 + 0.561198i \(0.810341\pi\)
\(678\) −2.20720 + 1.51832i −0.0847670 + 0.0583109i
\(679\) 1.46952 0.848426i 0.0563949 0.0325596i
\(680\) 0 0
\(681\) −10.3728 + 12.1553i −0.397486 + 0.465790i
\(682\) −6.97299 + 1.86841i −0.267010 + 0.0715450i
\(683\) −5.21434 + 1.39718i −0.199521 + 0.0534615i −0.357196 0.934030i \(-0.616267\pi\)
0.157674 + 0.987491i \(0.449600\pi\)
\(684\) −1.64060 10.3026i −0.0627299 0.393930i
\(685\) 0 0
\(686\) −5.13760 + 2.96620i −0.196155 + 0.113250i
\(687\) 16.9901 + 24.6987i 0.648214 + 0.942314i
\(688\) −9.80504 9.80504i −0.373814 0.373814i
\(689\) −15.5306 17.2377i −0.591668 0.656703i
\(690\) 0 0
\(691\) 15.9273 9.19562i 0.605902 0.349818i −0.165458 0.986217i \(-0.552910\pi\)
0.771360 + 0.636399i \(0.219577\pi\)
\(692\) −3.33442 + 12.4442i −0.126756 + 0.473059i
\(693\) −0.988857 + 0.441258i −0.0375636 + 0.0167620i
\(694\) 6.64903 0.252394
\(695\) 0 0
\(696\) 21.1415 7.49654i 0.801366 0.284156i
\(697\) 8.04838 + 8.04838i 0.304854 + 0.304854i
\(698\) −1.21406 4.53095i −0.0459530 0.171499i
\(699\) 33.8934 + 6.26713i 1.28197 + 0.237044i
\(700\) 0 0
\(701\) 14.5957i 0.551274i 0.961262 + 0.275637i \(0.0888887\pi\)
−0.961262 + 0.275637i \(0.911111\pi\)
\(702\) −1.50714 + 19.5410i −0.0568835 + 0.737528i
\(703\) 18.7977 + 18.7977i 0.708969 + 0.708969i
\(704\) 5.79387 3.34509i 0.218365 0.126073i
\(705\) 0 0
\(706\) 10.2934 17.8288i 0.387399 0.670994i
\(707\) −0.273114 + 0.273114i −0.0102715 + 0.0102715i
\(708\) −2.68517 + 5.63563i −0.100915 + 0.211800i
\(709\) −8.47600 + 14.6809i −0.318323 + 0.551352i −0.980138 0.198315i \(-0.936453\pi\)
0.661815 + 0.749667i \(0.269786\pi\)
\(710\) 0 0
\(711\) 5.38531 + 2.06207i 0.201965 + 0.0773335i
\(712\) 5.22370 + 1.39969i 0.195766 + 0.0524555i
\(713\) 7.08676 26.4482i 0.265401 0.990492i
\(714\) −1.49631 1.27689i −0.0559980 0.0477864i
\(715\) 0 0
\(716\) 17.5301i 0.655130i
\(717\) 19.4135 13.3545i 0.725009 0.498731i
\(718\) 7.71353 28.7873i 0.287866 1.07433i
\(719\) 16.1158 27.9135i 0.601020 1.04100i −0.391647 0.920115i \(-0.628095\pi\)
0.992667 0.120881i \(-0.0385720\pi\)
\(720\) 0 0
\(721\) 2.15640 + 1.24500i 0.0803085 + 0.0463661i
\(722\) −1.15228 4.30035i −0.0428833 0.160043i
\(723\) −2.58089 32.6191i −0.0959844 1.21312i
\(724\) −19.2038 11.0873i −0.713702 0.412056i
\(725\) 0 0
\(726\) −18.2180 3.36864i −0.676134 0.125022i
\(727\) 16.7058 16.7058i 0.619582 0.619582i −0.325842 0.945424i \(-0.605648\pi\)
0.945424 + 0.325842i \(0.105648\pi\)
\(728\) 2.44602 3.76911i 0.0906556 0.139693i
\(729\) 24.0264 12.3180i 0.889866 0.456223i
\(730\) 0 0
\(731\) −23.2351 + 13.4148i −0.859381 + 0.496164i
\(732\) 3.90808 + 1.86205i 0.144447 + 0.0688235i
\(733\) 6.44344 6.44344i 0.237994 0.237994i −0.578025 0.816019i \(-0.696176\pi\)
0.816019 + 0.578025i \(0.196176\pi\)
\(734\) −6.32985 3.65454i −0.233639 0.134892i
\(735\) 0 0
\(736\) 16.2355i 0.598447i
\(737\) −4.85313 + 1.30039i −0.178767 + 0.0479005i
\(738\) −13.4173 1.39888i −0.493898 0.0514935i
\(739\) 25.1561 + 43.5716i 0.925382 + 1.60281i 0.790946 + 0.611886i \(0.209589\pi\)
0.134436 + 0.990922i \(0.457078\pi\)
\(740\) 0 0
\(741\) 0.645197 + 23.9710i 0.0237019 + 0.880596i
\(742\) −1.95159 + 1.95159i −0.0716450 + 0.0716450i
\(743\) −6.98181 + 26.0565i −0.256138 + 0.955920i 0.711316 + 0.702872i \(0.248099\pi\)
−0.967454 + 0.253047i \(0.918567\pi\)
\(744\) −40.5788 7.50330i −1.48769 0.275084i
\(745\) 0 0
\(746\) −13.7661 −0.504011
\(747\) 37.4925 16.7303i 1.37178 0.612130i
\(748\) −0.546436 2.03933i −0.0199797 0.0745652i
\(749\) 0.868983i 0.0317519i
\(750\) 0 0
\(751\) 1.46634 + 2.53977i 0.0535073 + 0.0926774i 0.891538 0.452945i \(-0.149627\pi\)
−0.838031 + 0.545622i \(0.816293\pi\)
\(752\) 16.3313 + 4.37595i 0.595540 + 0.159575i
\(753\) −2.08396 26.3385i −0.0759436 0.959827i
\(754\) −15.7181 + 3.34610i −0.572418 + 0.121858i
\(755\) 0 0
\(756\) −1.92871 0.0480858i −0.0701463 0.00174887i
\(757\) −29.6744 7.95123i −1.07853 0.288993i −0.324539 0.945872i \(-0.605209\pi\)
−0.753995 + 0.656880i \(0.771876\pi\)
\(758\) −1.95867 7.30986i −0.0711422 0.265506i
\(759\) −3.45784 + 4.05204i −0.125512 + 0.147080i
\(760\) 0 0
\(761\) 15.7186 27.2253i 0.569797 0.986918i −0.426788 0.904352i \(-0.640355\pi\)
0.996586 0.0825663i \(-0.0263116\pi\)
\(762\) −1.82238 23.0325i −0.0660179 0.834380i
\(763\) −3.46701 + 0.928982i −0.125514 + 0.0336314i
\(764\) −10.6362 18.4224i −0.384803 0.666498i
\(765\) 0 0
\(766\) 8.17238 0.295280
\(767\) 7.81135 12.0366i 0.282052 0.434618i
\(768\) 28.6726 2.26864i 1.03463 0.0818624i
\(769\) −16.7826 29.0682i −0.605194 1.04823i −0.992021 0.126075i \(-0.959762\pi\)
0.386826 0.922153i \(-0.373571\pi\)
\(770\) 0 0
\(771\) 47.5461 16.8593i 1.71233 0.607174i
\(772\) 3.60152 + 3.60152i 0.129621 + 0.129621i
\(773\) −41.8728 + 11.2198i −1.50606 + 0.403547i −0.915124 0.403172i \(-0.867907\pi\)
−0.590934 + 0.806720i \(0.701241\pi\)
\(774\) 11.3707 29.6957i 0.408710 1.06739i
\(775\) 0 0
\(776\) −10.8951 6.29028i −0.391111 0.225808i
\(777\) 4.05047 2.78630i 0.145310 0.0999580i
\(778\) 28.9899 + 7.76782i 1.03934 + 0.278490i
\(779\) −16.5052 −0.591361
\(780\) 0 0
\(781\) 3.37271 0.120685
\(782\) −9.34703 2.50453i −0.334249 0.0895617i
\(783\) 15.2594 + 16.0397i 0.545327 + 0.573214i
\(784\) 8.09723 + 4.67494i 0.289187 + 0.166962i
\(785\) 0 0
\(786\) 24.6699 8.74768i 0.879947 0.312019i
\(787\) 25.5167 6.83718i 0.909572 0.243719i 0.226450 0.974023i \(-0.427288\pi\)
0.683123 + 0.730304i \(0.260621\pi\)
\(788\) −8.09753 8.09753i −0.288463 0.288463i
\(789\) 11.3832 + 32.1026i 0.405254 + 1.14288i
\(790\) 0 0
\(791\) 0.303087 + 0.524962i 0.0107765 + 0.0186655i
\(792\) 6.49893 + 4.71346i 0.230930 + 0.167485i
\(793\) −8.34692 5.41686i −0.296408 0.192358i
\(794\) 26.5274 0.941423
\(795\) 0 0
\(796\) −5.37352 9.30721i −0.190459 0.329885i
\(797\) 8.19629 2.19619i 0.290328 0.0777930i −0.110716 0.993852i \(-0.535314\pi\)
0.401043 + 0.916059i \(0.368648\pi\)
\(798\) 2.84357 0.224989i 0.100661 0.00796453i
\(799\) 16.3567 28.3307i 0.578659 1.00227i
\(800\) 0 0
\(801\) 0.839365 + 5.27103i 0.0296575 + 0.186243i
\(802\) 5.61731 + 20.9641i 0.198354 + 0.740268i
\(803\) 13.3851 + 3.58652i 0.472349 + 0.126566i
\(804\) −8.80265 1.62767i −0.310445 0.0574035i
\(805\) 0 0
\(806\) 28.1203 + 9.12715i 0.990494 + 0.321490i
\(807\) 53.8716 4.26243i 1.89637 0.150045i
\(808\) 2.76604 + 0.741159i 0.0973091 + 0.0260739i
\(809\) 19.9584 + 34.5690i 0.701702 + 1.21538i 0.967869 + 0.251456i \(0.0809093\pi\)
−0.266167 + 0.963927i \(0.585757\pi\)
\(810\) 0 0
\(811\) 1.10001i 0.0386266i 0.999813 + 0.0193133i \(0.00614800\pi\)
−0.999813 + 0.0193133i \(0.993852\pi\)
\(812\) −0.409436 1.52804i −0.0143684 0.0536235i
\(813\) 22.3345 + 10.6416i 0.783305 + 0.373216i
\(814\) −6.37629 −0.223489
\(815\) 0 0
\(816\) −1.14127 + 6.17215i −0.0399526 + 0.216069i
\(817\) 10.0695 37.5799i 0.352287 1.31475i
\(818\) 20.0120 20.0120i 0.699703 0.699703i
\(819\) 4.38084 + 0.688707i 0.153079 + 0.0240654i
\(820\) 0 0
\(821\) 11.8403 + 20.5080i 0.413229 + 0.715733i 0.995241 0.0974469i \(-0.0310676\pi\)
−0.582012 + 0.813180i \(0.697734\pi\)
\(822\) 25.8016 17.7488i 0.899933 0.619060i
\(823\) −27.3251 + 7.32174i −0.952494 + 0.255220i −0.701420 0.712748i \(-0.747450\pi\)
−0.251074 + 0.967968i \(0.580784\pi\)
\(824\) 18.4610i 0.643119i
\(825\) 0 0
\(826\) −1.47820 0.853438i −0.0514331 0.0296949i
\(827\) −18.2137 + 18.2137i −0.633351 + 0.633351i −0.948907 0.315556i \(-0.897809\pi\)
0.315556 + 0.948907i \(0.397809\pi\)
\(828\) −8.66718 + 3.86756i −0.301205 + 0.134407i
\(829\) −28.3851 + 16.3881i −0.985855 + 0.569184i −0.904033 0.427463i \(-0.859407\pi\)
−0.0818224 + 0.996647i \(0.526074\pi\)
\(830\) 0 0
\(831\) 18.2395 21.3737i 0.632720 0.741447i
\(832\) −27.3617 1.42542i −0.948597 0.0494176i
\(833\) 12.7921 12.7921i 0.443219 0.443219i
\(834\) −3.02977 + 16.3854i −0.104912 + 0.567379i
\(835\) 0 0
\(836\) 2.65138 + 1.53077i 0.0916999 + 0.0529429i
\(837\) −9.55751 39.5912i −0.330356 1.36847i
\(838\) −3.50097 13.0658i −0.120939 0.451351i
\(839\) 15.2005 + 8.77600i 0.524779 + 0.302981i 0.738888 0.673829i \(-0.235351\pi\)
−0.214109 + 0.976810i \(0.568685\pi\)
\(840\) 0 0
\(841\) 5.42365 9.39403i 0.187022 0.323932i
\(842\) −4.49416 + 16.7724i −0.154879 + 0.578017i
\(843\) −5.89534 8.57010i −0.203046 0.295170i
\(844\) 5.64560i 0.194329i
\(845\) 0 0
\(846\) 6.09724 + 38.2893i 0.209627 + 1.31641i
\(847\) −1.08498 + 4.04920i −0.0372804 + 0.139132i
\(848\) 8.50672 + 2.27937i 0.292122 + 0.0782739i
\(849\) −50.5328 + 17.9184i −1.73428 + 0.614956i
\(850\) 0 0
\(851\) 12.0925 20.9448i 0.414524 0.717977i
\(852\) 5.42488 + 2.58475i 0.185853 + 0.0885522i
\(853\) −12.7997 + 12.7997i −0.438252 + 0.438252i −0.891423 0.453172i \(-0.850292\pi\)
0.453172 + 0.891423i \(0.350292\pi\)
\(854\) −0.591824 + 1.02507i −0.0202518 + 0.0350772i
\(855\) 0 0
\(856\) 5.57953 3.22134i 0.190704 0.110103i
\(857\) −8.76415 8.76415i −0.299378 0.299378i 0.541392 0.840770i \(-0.317897\pi\)
−0.840770 + 0.541392i \(0.817897\pi\)
\(858\) −4.17497 3.95612i −0.142531 0.135060i
\(859\) 15.1747i 0.517755i 0.965910 + 0.258878i \(0.0833526\pi\)
−0.965910 + 0.258878i \(0.916647\pi\)
\(860\) 0 0
\(861\) −0.554996 + 3.00149i −0.0189142 + 0.102290i
\(862\) −5.65190 21.0932i −0.192504 0.718436i
\(863\) −12.5980 12.5980i −0.428840 0.428840i 0.459393 0.888233i \(-0.348067\pi\)
−0.888233 + 0.459393i \(0.848067\pi\)
\(864\) 11.5498 + 21.2087i 0.392933 + 0.721534i
\(865\) 0 0
\(866\) −42.4056 −1.44100
\(867\) −15.6180 7.44139i −0.530415 0.252723i
\(868\) −0.753237 + 2.81112i −0.0255665 + 0.0954156i
\(869\) −1.46557 + 0.846148i −0.0497161 + 0.0287036i
\(870\) 0 0
\(871\) 19.5714 + 6.35240i 0.663152 + 0.215243i
\(872\) 18.8171 + 18.8171i 0.637226 + 0.637226i
\(873\) 1.28756 12.3496i 0.0435772 0.417969i
\(874\) 12.1523 7.01613i 0.411057 0.237324i
\(875\) 0 0
\(876\) 18.7808 + 16.0267i 0.634544 + 0.541493i
\(877\) −7.38015 + 1.97751i −0.249210 + 0.0667756i −0.381261 0.924467i \(-0.624510\pi\)
0.132051 + 0.991243i \(0.457844\pi\)
\(878\) −22.5218 + 6.03470i −0.760074 + 0.203661i
\(879\) 18.8667 + 16.1001i 0.636359 + 0.543043i
\(880\) 0 0
\(881\) 1.60541 0.926884i 0.0540877 0.0312275i −0.472712 0.881217i \(-0.656725\pi\)
0.526800 + 0.849989i \(0.323392\pi\)
\(882\) −2.22337 + 21.3254i −0.0748649 + 0.718064i
\(883\) −18.1052 18.1052i −0.609287 0.609287i 0.333472 0.942760i \(-0.391780\pi\)
−0.942760 + 0.333472i \(0.891780\pi\)
\(884\) −2.66934 + 8.22409i −0.0897795 + 0.276606i
\(885\) 0 0
\(886\) 1.65717 0.956765i 0.0556736 0.0321431i
\(887\) −10.2957 + 38.4242i −0.345697 + 1.29016i 0.546099 + 0.837721i \(0.316112\pi\)
−0.891796 + 0.452438i \(0.850554\pi\)
\(888\) −32.9054 15.6782i −1.10423 0.526125i
\(889\) −5.22782 −0.175335
\(890\) 0 0
\(891\) −1.63444 + 7.75315i −0.0547559 + 0.259740i
\(892\) 1.45336 + 1.45336i 0.0486621 + 0.0486621i
\(893\) 12.2778 + 45.8213i 0.410860 + 1.53335i
\(894\) 0.562027 3.03951i 0.0187970 0.101656i
\(895\) 0 0
\(896\) 0.551705i 0.0184312i
\(897\) 20.9127 6.21123i 0.698256 0.207387i
\(898\) −4.36733 4.36733i −0.145740 0.145740i
\(899\) 28.9213 16.6977i 0.964579 0.556900i
\(900\) 0 0
\(901\) 8.51997 14.7570i 0.283841 0.491628i
\(902\) 2.79933 2.79933i 0.0932075 0.0932075i
\(903\) −6.49535 3.09479i −0.216152 0.102988i
\(904\) 2.24710 3.89210i 0.0747375 0.129449i
\(905\) 0 0
\(906\) 29.8627 10.5890i 0.992123 0.351796i
\(907\) −6.82165 1.82785i −0.226509 0.0606929i 0.143779 0.989610i \(-0.454074\pi\)
−0.370288 + 0.928917i \(0.620741\pi\)
\(908\) 2.16248 8.07048i 0.0717644 0.267828i
\(909\) 0.444459 + 2.79111i 0.0147418 + 0.0925752i
\(910\) 0 0
\(911\) 42.3736i 1.40390i 0.712225 + 0.701951i \(0.247687\pi\)
−0.712225 + 0.701951i \(0.752313\pi\)
\(912\) −5.15854 7.49901i −0.170816 0.248317i
\(913\) −3.11838 + 11.6380i −0.103203 + 0.385160i
\(914\) 13.1017 22.6928i 0.433365 0.750610i
\(915\) 0 0
\(916\) −13.5746 7.83732i −0.448518 0.258952i
\(917\) −1.53287 5.72076i −0.0506199 0.188916i
\(918\) −13.9919 + 3.37771i −0.461801 + 0.111481i
\(919\) −3.72098 2.14831i −0.122744 0.0708661i 0.437371 0.899281i \(-0.355910\pi\)
−0.560115 + 0.828415i \(0.689243\pi\)
\(920\) 0 0
\(921\) −5.55854 + 30.0613i −0.183160 + 0.990552i
\(922\) −8.88477 + 8.88477i −0.292604 + 0.292604i
\(923\) −11.5865 7.51924i −0.381375 0.247499i
\(924\) 0.367527 0.430683i 0.0120907 0.0141684i
\(925\) 0 0
\(926\) −4.74955 + 2.74215i −0.156080 + 0.0901128i
\(927\) 16.6388 7.42474i 0.546490 0.243860i
\(928\) −14.0018 + 14.0018i −0.459633 + 0.459633i
\(929\) −33.1937 19.1644i −1.08905 0.628762i −0.155726 0.987800i \(-0.549772\pi\)
−0.933323 + 0.359038i \(0.883105\pi\)
\(930\) 0 0
\(931\) 26.2333i 0.859762i
\(932\) −17.4081 + 4.66449i −0.570221 + 0.152790i
\(933\) 19.4678 13.3919i 0.637348 0.438430i
\(934\) 3.67914 + 6.37246i 0.120385 + 0.208513i
\(935\) 0 0
\(936\) −11.8179 30.6814i −0.386280 1.00285i
\(937\) −10.0927 + 10.0927i −0.329713 + 0.329713i −0.852477 0.522764i \(-0.824901\pi\)
0.522764 + 0.852477i \(0.324901\pi\)
\(938\) 0.633496 2.36424i 0.0206844 0.0771952i
\(939\) 1.22007 6.59827i 0.0398153 0.215326i
\(940\) 0 0
\(941\) 4.90362 0.159853 0.0799267 0.996801i \(-0.474531\pi\)
0.0799267 + 0.996801i \(0.474531\pi\)
\(942\) −8.44005 4.02137i −0.274992 0.131023i
\(943\) 3.88635 + 14.5041i 0.126557 + 0.472317i
\(944\) 5.44650i 0.177269i
\(945\) 0 0
\(946\) 4.66584 + 8.08147i 0.151699 + 0.262751i
\(947\) 14.9071 + 3.99434i 0.484415 + 0.129799i 0.492758 0.870167i \(-0.335989\pi\)
−0.00834264 + 0.999965i \(0.502656\pi\)
\(948\) −3.00578 + 0.237824i −0.0976232 + 0.00772415i
\(949\) −37.9868 42.1622i −1.23310 1.36864i
\(950\) 0 0
\(951\) −13.4637 2.48953i −0.436590 0.0807286i
\(952\) 3.18746 + 0.854078i 0.103306 + 0.0276808i
\(953\) 5.10687 + 19.0591i 0.165428 + 0.617384i 0.997985 + 0.0634459i \(0.0202090\pi\)
−0.832558 + 0.553938i \(0.813124\pi\)
\(954\) 3.17596 + 19.9444i 0.102826 + 0.645722i
\(955\) 0 0
\(956\) −6.16022 + 10.6698i −0.199236 + 0.345087i
\(957\) −6.47670 + 0.512450i −0.209362 + 0.0165652i
\(958\) −1.04684 + 0.280499i −0.0338218 + 0.00906252i
\(959\) −3.54300 6.13666i −0.114409 0.198163i
\(960\) 0 0
\(961\) −30.4374 −0.981851
\(962\) 21.9049 + 14.2155i 0.706243 + 0.458327i
\(963\) 5.14739 + 3.73323i 0.165872 + 0.120302i
\(964\) 8.55439 + 14.8166i 0.275518 + 0.477212i
\(965\) 0 0
\(966\) −0.867263 2.44583i −0.0279037 0.0786932i
\(967\) 32.8519 + 32.8519i 1.05645 + 1.05645i 0.998309 + 0.0581387i \(0.0185166\pi\)
0.0581387 + 0.998309i \(0.481483\pi\)
\(968\) 30.0210 8.04410i 0.964912 0.258547i
\(969\) −16.5984 + 5.88562i −0.533218 + 0.189073i
\(970\) 0 0
\(971\) −18.2215 10.5202i −0.584757 0.337610i 0.178265 0.983983i \(-0.442952\pi\)
−0.763022 + 0.646373i \(0.776285\pi\)
\(972\) −8.57074 + 11.2180i −0.274906 + 0.359819i
\(973\) 3.64187 + 0.975837i 0.116753 + 0.0312839i
\(974\) 38.9535 1.24815
\(975\) 0 0
\(976\) 3.77693 0.120896
\(977\) −12.6370 3.38607i −0.404293 0.108330i 0.0509414 0.998702i \(-0.483778\pi\)
−0.455234 + 0.890372i \(0.650444\pi\)
\(978\) 7.68336 5.28536i 0.245687 0.169007i
\(979\) −1.35650 0.783177i −0.0433540 0.0250304i
\(980\) 0 0
\(981\) −9.39179 + 24.5277i −0.299857 + 0.783109i
\(982\) 22.4314 6.01047i 0.715814 0.191802i
\(983\) 20.5744 + 20.5744i 0.656223 + 0.656223i 0.954484 0.298261i \(-0.0964067\pi\)
−0.298261 + 0.954484i \(0.596407\pi\)
\(984\) 21.3292 7.56311i 0.679951 0.241103i
\(985\) 0 0
\(986\) −5.90113 10.2211i −0.187930 0.325505i
\(987\) 8.74550 0.691962i 0.278372 0.0220254i
\(988\) −5.69571 11.1698i −0.181205 0.355360i
\(989\) −35.3945 −1.12548
\(990\) 0 0
\(991\) −19.5736 33.9024i −0.621775 1.07695i −0.989155 0.146875i \(-0.953079\pi\)
0.367380 0.930071i \(-0.380255\pi\)
\(992\) 35.1876 9.42848i 1.11721 0.299355i
\(993\) 0.934540 + 11.8114i 0.0296567 + 0.374822i
\(994\) −0.821523 + 1.42292i −0.0260571 + 0.0451322i
\(995\) 0 0
\(996\) −13.9348 + 16.3294i −0.441541 + 0.517415i
\(997\) −6.24236 23.2968i −0.197697 0.737817i −0.991552 0.129709i \(-0.958596\pi\)
0.793855 0.608108i \(-0.208071\pi\)
\(998\) 2.71879 + 0.728497i 0.0860617 + 0.0230602i
\(999\) 0.896618 35.9630i 0.0283677 1.13782i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.bn.d.218.9 96
3.2 odd 2 inner 975.2.bn.d.218.16 96
5.2 odd 4 inner 975.2.bn.d.257.16 96
5.3 odd 4 195.2.bf.a.62.9 yes 96
5.4 even 2 195.2.bf.a.23.16 yes 96
13.4 even 6 inner 975.2.bn.d.368.9 96
15.2 even 4 inner 975.2.bn.d.257.9 96
15.8 even 4 195.2.bf.a.62.16 yes 96
15.14 odd 2 195.2.bf.a.23.9 yes 96
39.17 odd 6 inner 975.2.bn.d.368.16 96
65.4 even 6 195.2.bf.a.173.16 yes 96
65.17 odd 12 inner 975.2.bn.d.407.16 96
65.43 odd 12 195.2.bf.a.17.9 96
195.17 even 12 inner 975.2.bn.d.407.9 96
195.134 odd 6 195.2.bf.a.173.9 yes 96
195.173 even 12 195.2.bf.a.17.16 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.bf.a.17.9 96 65.43 odd 12
195.2.bf.a.17.16 yes 96 195.173 even 12
195.2.bf.a.23.9 yes 96 15.14 odd 2
195.2.bf.a.23.16 yes 96 5.4 even 2
195.2.bf.a.62.9 yes 96 5.3 odd 4
195.2.bf.a.62.16 yes 96 15.8 even 4
195.2.bf.a.173.9 yes 96 195.134 odd 6
195.2.bf.a.173.16 yes 96 65.4 even 6
975.2.bn.d.218.9 96 1.1 even 1 trivial
975.2.bn.d.218.16 96 3.2 odd 2 inner
975.2.bn.d.257.9 96 15.2 even 4 inner
975.2.bn.d.257.16 96 5.2 odd 4 inner
975.2.bn.d.368.9 96 13.4 even 6 inner
975.2.bn.d.368.16 96 39.17 odd 6 inner
975.2.bn.d.407.9 96 195.17 even 12 inner
975.2.bn.d.407.16 96 65.17 odd 12 inner