Properties

Label 972.2.l.d.107.6
Level $972$
Weight $2$
Character 972.107
Analytic conductor $7.761$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [972,2,Mod(107,972)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(972, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 13])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("972.107"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 972 = 2^{2} \cdot 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 972.l (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,3,0,3,6,0,0,-9,0,-3,0,0,6,33] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.76145907647\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(16\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 108)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 107.6
Character \(\chi\) \(=\) 972.107
Dual form 972.2.l.d.863.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.612484 + 1.27470i) q^{2} +(-1.24973 - 1.56147i) q^{4} +(0.840877 - 2.31029i) q^{5} +(3.82489 + 0.674430i) q^{7} +(2.75584 - 0.636655i) q^{8} +(2.42991 + 2.48688i) q^{10} +(0.0547511 - 0.0199278i) q^{11} +(-3.53434 + 2.96567i) q^{13} +(-3.20238 + 4.46251i) q^{14} +(-0.876364 + 3.90282i) q^{16} +(1.79249 - 1.03489i) q^{17} +(2.46167 + 1.42125i) q^{19} +(-4.65831 + 1.57423i) q^{20} +(-0.00813220 + 0.0819967i) q^{22} +(-0.991876 - 5.62521i) q^{23} +(-0.800144 - 0.671401i) q^{25} +(-1.61561 - 6.32166i) q^{26} +(-3.72696 - 6.81529i) q^{28} +(2.57867 - 3.07314i) q^{29} +(7.51076 - 1.32435i) q^{31} +(-4.43817 - 3.50751i) q^{32} +(0.221310 + 2.91874i) q^{34} +(4.77439 - 8.26948i) q^{35} +(2.41051 + 4.17513i) q^{37} +(-3.31940 + 2.26740i) q^{38} +(0.846466 - 6.90215i) q^{40} +(-0.705325 - 0.840573i) q^{41} +(-3.29941 - 9.06505i) q^{43} +(-0.0995405 - 0.0605878i) q^{44} +(7.77797 + 2.18100i) q^{46} +(0.948548 - 5.37948i) q^{47} +(7.59704 + 2.76510i) q^{49} +(1.34591 - 0.608723i) q^{50} +(9.04776 + 1.81249i) q^{52} +10.5337i q^{53} -0.143248i q^{55} +(10.9702 - 0.576509i) q^{56} +(2.33794 + 5.16928i) q^{58} +(-1.50332 - 0.547162i) q^{59} +(-0.366631 + 2.07927i) q^{61} +(-2.91207 + 10.3851i) q^{62} +(7.18934 - 3.50904i) q^{64} +(3.87960 + 10.6591i) q^{65} +(4.85766 + 5.78913i) q^{67} +(-3.85607 - 1.50558i) q^{68} +(7.61689 + 11.1508i) q^{70} +(-4.08357 - 7.07295i) q^{71} +(3.26625 - 5.65731i) q^{73} +(-6.79844 + 0.515484i) q^{74} +(-0.857186 - 5.61999i) q^{76} +(0.222856 - 0.0392956i) q^{77} +(4.45402 - 5.30809i) q^{79} +(8.27973 + 5.30644i) q^{80} +(1.50348 - 0.384241i) q^{82} +(8.72941 + 7.32485i) q^{83} +(-0.883642 - 5.01138i) q^{85} +(13.5761 + 1.34644i) q^{86} +(0.138198 - 0.0897753i) q^{88} +(-1.85844 - 1.07297i) q^{89} +(-15.5186 + 8.95967i) q^{91} +(-7.54401 + 8.57876i) q^{92} +(6.27626 + 4.50396i) q^{94} +(5.35345 - 4.49208i) q^{95} +(4.84352 - 1.76290i) q^{97} +(-8.17774 + 7.99038i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 3 q^{2} + 3 q^{4} + 6 q^{5} - 9 q^{8} - 3 q^{10} + 6 q^{13} + 33 q^{14} + 3 q^{16} - 18 q^{17} - 18 q^{20} + 3 q^{22} + 6 q^{25} - 12 q^{28} + 30 q^{29} + 33 q^{32} + 15 q^{34} - 6 q^{37} - 63 q^{38}+ \cdots - 180 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/972\mathbb{Z}\right)^\times\).

\(n\) \(245\) \(487\)
\(\chi(n)\) \(e\left(\frac{13}{18}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.612484 + 1.27470i −0.433091 + 0.901350i
\(3\) 0 0
\(4\) −1.24973 1.56147i −0.624864 0.780734i
\(5\) 0.840877 2.31029i 0.376052 1.03319i −0.596927 0.802296i \(-0.703612\pi\)
0.972978 0.230897i \(-0.0741661\pi\)
\(6\) 0 0
\(7\) 3.82489 + 0.674430i 1.44567 + 0.254911i 0.840771 0.541391i \(-0.182102\pi\)
0.604900 + 0.796302i \(0.293213\pi\)
\(8\) 2.75584 0.636655i 0.974338 0.225092i
\(9\) 0 0
\(10\) 2.42991 + 2.48688i 0.768404 + 0.786421i
\(11\) 0.0547511 0.0199278i 0.0165081 0.00600845i −0.333753 0.942661i \(-0.608315\pi\)
0.350261 + 0.936652i \(0.386093\pi\)
\(12\) 0 0
\(13\) −3.53434 + 2.96567i −0.980251 + 0.822528i −0.984127 0.177465i \(-0.943210\pi\)
0.00387662 + 0.999992i \(0.498766\pi\)
\(14\) −3.20238 + 4.46251i −0.855871 + 1.19266i
\(15\) 0 0
\(16\) −0.876364 + 3.90282i −0.219091 + 0.975704i
\(17\) 1.79249 1.03489i 0.434742 0.250998i −0.266623 0.963801i \(-0.585908\pi\)
0.701365 + 0.712803i \(0.252574\pi\)
\(18\) 0 0
\(19\) 2.46167 + 1.42125i 0.564746 + 0.326056i 0.755048 0.655669i \(-0.227613\pi\)
−0.190302 + 0.981726i \(0.560947\pi\)
\(20\) −4.65831 + 1.57423i −1.04163 + 0.352009i
\(21\) 0 0
\(22\) −0.00813220 + 0.0819967i −0.00173379 + 0.0174818i
\(23\) −0.991876 5.62521i −0.206820 1.17294i −0.894549 0.446969i \(-0.852503\pi\)
0.687729 0.725968i \(-0.258608\pi\)
\(24\) 0 0
\(25\) −0.800144 0.671401i −0.160029 0.134280i
\(26\) −1.61561 6.32166i −0.316847 1.23978i
\(27\) 0 0
\(28\) −3.72696 6.81529i −0.704330 1.28797i
\(29\) 2.57867 3.07314i 0.478847 0.570668i −0.471497 0.881867i \(-0.656286\pi\)
0.950345 + 0.311200i \(0.100731\pi\)
\(30\) 0 0
\(31\) 7.51076 1.32435i 1.34897 0.237860i 0.547958 0.836506i \(-0.315405\pi\)
0.801014 + 0.598645i \(0.204294\pi\)
\(32\) −4.43817 3.50751i −0.784565 0.620047i
\(33\) 0 0
\(34\) 0.221310 + 2.91874i 0.0379544 + 0.500560i
\(35\) 4.77439 8.26948i 0.807019 1.39780i
\(36\) 0 0
\(37\) 2.41051 + 4.17513i 0.396286 + 0.686387i 0.993264 0.115870i \(-0.0369656\pi\)
−0.596979 + 0.802257i \(0.703632\pi\)
\(38\) −3.31940 + 2.26740i −0.538477 + 0.367822i
\(39\) 0 0
\(40\) 0.846466 6.90215i 0.133838 1.09132i
\(41\) −0.705325 0.840573i −0.110153 0.131275i 0.708151 0.706061i \(-0.249530\pi\)
−0.818304 + 0.574786i \(0.805085\pi\)
\(42\) 0 0
\(43\) −3.29941 9.06505i −0.503155 1.38241i −0.888178 0.459500i \(-0.848028\pi\)
0.385022 0.922907i \(-0.374194\pi\)
\(44\) −0.0995405 0.0605878i −0.0150063 0.00913395i
\(45\) 0 0
\(46\) 7.77797 + 2.18100i 1.14680 + 0.321571i
\(47\) 0.948548 5.37948i 0.138360 0.784678i −0.834101 0.551612i \(-0.814013\pi\)
0.972461 0.233066i \(-0.0748759\pi\)
\(48\) 0 0
\(49\) 7.59704 + 2.76510i 1.08529 + 0.395014i
\(50\) 1.34591 0.608723i 0.190341 0.0860864i
\(51\) 0 0
\(52\) 9.04776 + 1.81249i 1.25470 + 0.251347i
\(53\) 10.5337i 1.44692i 0.690367 + 0.723459i \(0.257449\pi\)
−0.690367 + 0.723459i \(0.742551\pi\)
\(54\) 0 0
\(55\) 0.143248i 0.0193155i
\(56\) 10.9702 0.576509i 1.46595 0.0770393i
\(57\) 0 0
\(58\) 2.33794 + 5.16928i 0.306987 + 0.678760i
\(59\) −1.50332 0.547162i −0.195715 0.0712344i 0.242303 0.970201i \(-0.422097\pi\)
−0.438018 + 0.898966i \(0.644319\pi\)
\(60\) 0 0
\(61\) −0.366631 + 2.07927i −0.0469423 + 0.266223i −0.999241 0.0389431i \(-0.987601\pi\)
0.952299 + 0.305166i \(0.0987120\pi\)
\(62\) −2.91207 + 10.3851i −0.369833 + 1.31891i
\(63\) 0 0
\(64\) 7.18934 3.50904i 0.898668 0.438630i
\(65\) 3.87960 + 10.6591i 0.481205 + 1.32210i
\(66\) 0 0
\(67\) 4.85766 + 5.78913i 0.593457 + 0.707255i 0.976266 0.216573i \(-0.0694879\pi\)
−0.382809 + 0.923827i \(0.625043\pi\)
\(68\) −3.85607 1.50558i −0.467617 0.182578i
\(69\) 0 0
\(70\) 7.61689 + 11.1508i 0.910392 + 1.33278i
\(71\) −4.08357 7.07295i −0.484630 0.839404i 0.515214 0.857062i \(-0.327712\pi\)
−0.999844 + 0.0176575i \(0.994379\pi\)
\(72\) 0 0
\(73\) 3.26625 5.65731i 0.382286 0.662138i −0.609103 0.793091i \(-0.708470\pi\)
0.991389 + 0.130953i \(0.0418037\pi\)
\(74\) −6.79844 + 0.515484i −0.790303 + 0.0599238i
\(75\) 0 0
\(76\) −0.857186 5.61999i −0.0983260 0.644657i
\(77\) 0.222856 0.0392956i 0.0253968 0.00447815i
\(78\) 0 0
\(79\) 4.45402 5.30809i 0.501116 0.597207i −0.454892 0.890546i \(-0.650322\pi\)
0.956008 + 0.293340i \(0.0947667\pi\)
\(80\) 8.27973 + 5.30644i 0.925702 + 0.593278i
\(81\) 0 0
\(82\) 1.50348 0.384241i 0.166032 0.0424323i
\(83\) 8.72941 + 7.32485i 0.958178 + 0.804006i 0.980656 0.195741i \(-0.0627111\pi\)
−0.0224781 + 0.999747i \(0.507156\pi\)
\(84\) 0 0
\(85\) −0.883642 5.01138i −0.0958444 0.543561i
\(86\) 13.5761 + 1.34644i 1.46395 + 0.145190i
\(87\) 0 0
\(88\) 0.138198 0.0897753i 0.0147320 0.00957008i
\(89\) −1.85844 1.07297i −0.196995 0.113735i 0.398258 0.917273i \(-0.369615\pi\)
−0.595253 + 0.803538i \(0.702948\pi\)
\(90\) 0 0
\(91\) −15.5186 + 8.95967i −1.62679 + 0.939228i
\(92\) −7.54401 + 8.57876i −0.786517 + 0.894397i
\(93\) 0 0
\(94\) 6.27626 + 4.50396i 0.647347 + 0.464548i
\(95\) 5.35345 4.49208i 0.549253 0.460878i
\(96\) 0 0
\(97\) 4.84352 1.76290i 0.491785 0.178995i −0.0842102 0.996448i \(-0.526837\pi\)
0.575996 + 0.817453i \(0.304615\pi\)
\(98\) −8.17774 + 7.99038i −0.826076 + 0.807151i
\(99\) 0 0
\(100\) −0.0484086 + 2.08847i −0.00484086 + 0.208847i
\(101\) −13.0167 2.29520i −1.29521 0.228381i −0.516784 0.856116i \(-0.672871\pi\)
−0.778427 + 0.627735i \(0.783982\pi\)
\(102\) 0 0
\(103\) 0.356687 0.979989i 0.0351454 0.0965612i −0.920879 0.389849i \(-0.872527\pi\)
0.956024 + 0.293288i \(0.0947494\pi\)
\(104\) −7.85199 + 10.4231i −0.769951 + 1.02207i
\(105\) 0 0
\(106\) −13.4274 6.45173i −1.30418 0.626648i
\(107\) 12.4850 1.20697 0.603485 0.797375i \(-0.293778\pi\)
0.603485 + 0.797375i \(0.293778\pi\)
\(108\) 0 0
\(109\) −19.2545 −1.84425 −0.922123 0.386896i \(-0.873547\pi\)
−0.922123 + 0.386896i \(0.873547\pi\)
\(110\) 0.182598 + 0.0877369i 0.0174100 + 0.00836538i
\(111\) 0 0
\(112\) −5.98417 + 14.3368i −0.565451 + 1.35470i
\(113\) −1.78289 + 4.89846i −0.167721 + 0.460809i −0.994869 0.101176i \(-0.967740\pi\)
0.827148 + 0.561984i \(0.189962\pi\)
\(114\) 0 0
\(115\) −13.8299 2.43859i −1.28965 0.227399i
\(116\) −8.02124 0.185925i −0.744754 0.0172627i
\(117\) 0 0
\(118\) 1.61822 1.58115i 0.148970 0.145557i
\(119\) 7.55402 2.74944i 0.692476 0.252041i
\(120\) 0 0
\(121\) −8.42389 + 7.06848i −0.765808 + 0.642589i
\(122\) −2.42589 1.74086i −0.219630 0.157610i
\(123\) 0 0
\(124\) −11.4543 10.0727i −1.02863 0.904559i
\(125\) 8.42192 4.86240i 0.753279 0.434906i
\(126\) 0 0
\(127\) −1.67801 0.968801i −0.148900 0.0859672i 0.423699 0.905803i \(-0.360731\pi\)
−0.572599 + 0.819836i \(0.694065\pi\)
\(128\) 0.0696290 + 11.3135i 0.00615439 + 0.999981i
\(129\) 0 0
\(130\) −15.9634 1.58320i −1.40008 0.138856i
\(131\) 0.0812185 + 0.460613i 0.00709609 + 0.0402440i 0.988150 0.153490i \(-0.0490513\pi\)
−0.981054 + 0.193734i \(0.937940\pi\)
\(132\) 0 0
\(133\) 8.45707 + 7.09633i 0.733321 + 0.615330i
\(134\) −10.3546 + 2.64631i −0.894505 + 0.228607i
\(135\) 0 0
\(136\) 4.28094 3.99320i 0.367088 0.342414i
\(137\) 2.82207 3.36321i 0.241105 0.287338i −0.631899 0.775051i \(-0.717724\pi\)
0.873004 + 0.487713i \(0.162169\pi\)
\(138\) 0 0
\(139\) 8.31937 1.46693i 0.705639 0.124423i 0.190698 0.981649i \(-0.438925\pi\)
0.514941 + 0.857225i \(0.327814\pi\)
\(140\) −18.8792 + 2.87954i −1.59558 + 0.243366i
\(141\) 0 0
\(142\) 11.5170 0.873264i 0.966486 0.0732827i
\(143\) −0.134410 + 0.232805i −0.0112399 + 0.0194681i
\(144\) 0 0
\(145\) −4.93150 8.54161i −0.409539 0.709342i
\(146\) 5.21086 + 7.62851i 0.431254 + 0.631340i
\(147\) 0 0
\(148\) 3.50685 8.98171i 0.288261 0.738292i
\(149\) 6.53498 + 7.78809i 0.535367 + 0.638025i 0.964142 0.265386i \(-0.0854994\pi\)
−0.428776 + 0.903411i \(0.641055\pi\)
\(150\) 0 0
\(151\) 0.816192 + 2.24247i 0.0664208 + 0.182490i 0.968463 0.249159i \(-0.0801542\pi\)
−0.902042 + 0.431649i \(0.857932\pi\)
\(152\) 7.68882 + 2.34950i 0.623646 + 0.190569i
\(153\) 0 0
\(154\) −0.0864058 + 0.308143i −0.00696278 + 0.0248309i
\(155\) 3.25599 18.4657i 0.261528 1.48320i
\(156\) 0 0
\(157\) 5.11743 + 1.86259i 0.408416 + 0.148651i 0.538054 0.842910i \(-0.319160\pi\)
−0.129639 + 0.991561i \(0.541382\pi\)
\(158\) 4.03822 + 8.92866i 0.321263 + 0.710326i
\(159\) 0 0
\(160\) −11.8353 + 7.30407i −0.935665 + 0.577437i
\(161\) 22.1847i 1.74840i
\(162\) 0 0
\(163\) 9.76328i 0.764719i 0.924014 + 0.382360i \(0.124888\pi\)
−0.924014 + 0.382360i \(0.875112\pi\)
\(164\) −0.431065 + 2.15183i −0.0336605 + 0.168030i
\(165\) 0 0
\(166\) −14.6836 + 6.64104i −1.13967 + 0.515445i
\(167\) 4.36568 + 1.58898i 0.337826 + 0.122959i 0.505362 0.862907i \(-0.331359\pi\)
−0.167536 + 0.985866i \(0.553581\pi\)
\(168\) 0 0
\(169\) 1.43898 8.16087i 0.110691 0.627759i
\(170\) 6.92923 + 1.94301i 0.531448 + 0.149022i
\(171\) 0 0
\(172\) −10.0314 + 16.4808i −0.764889 + 1.25665i
\(173\) −0.301382 0.828041i −0.0229137 0.0629548i 0.927708 0.373306i \(-0.121776\pi\)
−0.950622 + 0.310351i \(0.899553\pi\)
\(174\) 0 0
\(175\) −2.60765 3.10767i −0.197120 0.234918i
\(176\) 0.0297926 + 0.231147i 0.00224570 + 0.0174234i
\(177\) 0 0
\(178\) 2.50599 1.71178i 0.187832 0.128304i
\(179\) 6.34874 + 10.9963i 0.474527 + 0.821905i 0.999575 0.0291678i \(-0.00928571\pi\)
−0.525047 + 0.851073i \(0.675952\pi\)
\(180\) 0 0
\(181\) −3.30529 + 5.72493i −0.245680 + 0.425530i −0.962323 0.271910i \(-0.912345\pi\)
0.716643 + 0.697441i \(0.245678\pi\)
\(182\) −1.91601 25.2692i −0.142024 1.87308i
\(183\) 0 0
\(184\) −6.31477 14.8707i −0.465531 1.09628i
\(185\) 11.6727 2.05821i 0.858194 0.151323i
\(186\) 0 0
\(187\) 0.0775175 0.0923817i 0.00566864 0.00675562i
\(188\) −9.58531 + 5.24176i −0.699081 + 0.382294i
\(189\) 0 0
\(190\) 2.44716 + 9.57538i 0.177535 + 0.694671i
\(191\) −19.5133 16.3736i −1.41193 1.18475i −0.955500 0.294990i \(-0.904684\pi\)
−0.456429 0.889760i \(-0.650872\pi\)
\(192\) 0 0
\(193\) −3.57625 20.2819i −0.257424 1.45993i −0.789772 0.613400i \(-0.789801\pi\)
0.532348 0.846526i \(-0.321310\pi\)
\(194\) −0.719411 + 7.25379i −0.0516507 + 0.520792i
\(195\) 0 0
\(196\) −5.17662 15.3182i −0.369759 1.09415i
\(197\) 6.00833 + 3.46891i 0.428076 + 0.247150i 0.698526 0.715584i \(-0.253839\pi\)
−0.270451 + 0.962734i \(0.587173\pi\)
\(198\) 0 0
\(199\) 10.0244 5.78756i 0.710608 0.410270i −0.100678 0.994919i \(-0.532101\pi\)
0.811286 + 0.584650i \(0.198768\pi\)
\(200\) −2.63252 1.34086i −0.186147 0.0948131i
\(201\) 0 0
\(202\) 10.8982 15.1866i 0.766796 1.06853i
\(203\) 11.9357 10.0153i 0.837725 0.702934i
\(204\) 0 0
\(205\) −2.53506 + 0.922686i −0.177056 + 0.0644432i
\(206\) 1.03073 + 1.05490i 0.0718143 + 0.0734981i
\(207\) 0 0
\(208\) −8.47709 16.3929i −0.587780 1.13664i
\(209\) 0.163101 + 0.0287592i 0.0112820 + 0.00198931i
\(210\) 0 0
\(211\) −5.16932 + 14.2026i −0.355871 + 0.977747i 0.624576 + 0.780964i \(0.285272\pi\)
−0.980447 + 0.196783i \(0.936951\pi\)
\(212\) 16.4481 13.1643i 1.12966 0.904127i
\(213\) 0 0
\(214\) −7.64685 + 15.9146i −0.522728 + 1.08790i
\(215\) −23.7173 −1.61751
\(216\) 0 0
\(217\) 29.6210 2.01080
\(218\) 11.7931 24.5437i 0.798728 1.66231i
\(219\) 0 0
\(220\) −0.223677 + 0.179020i −0.0150803 + 0.0120696i
\(221\) −3.26612 + 8.97359i −0.219703 + 0.603629i
\(222\) 0 0
\(223\) −1.61660 0.285051i −0.108256 0.0190884i 0.119258 0.992863i \(-0.461949\pi\)
−0.227514 + 0.973775i \(0.573060\pi\)
\(224\) −14.6099 16.4091i −0.976166 1.09638i
\(225\) 0 0
\(226\) −5.15208 5.27289i −0.342711 0.350747i
\(227\) −25.6644 + 9.34108i −1.70341 + 0.619989i −0.996206 0.0870239i \(-0.972264\pi\)
−0.707200 + 0.707013i \(0.750042\pi\)
\(228\) 0 0
\(229\) −4.83939 + 4.06073i −0.319796 + 0.268340i −0.788527 0.615000i \(-0.789156\pi\)
0.468731 + 0.883341i \(0.344711\pi\)
\(230\) 11.5791 16.1354i 0.763501 1.06394i
\(231\) 0 0
\(232\) 5.14988 10.1108i 0.338106 0.663807i
\(233\) −25.6785 + 14.8255i −1.68226 + 0.971251i −0.722099 + 0.691790i \(0.756822\pi\)
−0.960157 + 0.279461i \(0.909844\pi\)
\(234\) 0 0
\(235\) −11.6306 6.71490i −0.758693 0.438032i
\(236\) 1.02436 + 3.03118i 0.0666800 + 0.197313i
\(237\) 0 0
\(238\) −1.12200 + 11.3131i −0.0727286 + 0.733320i
\(239\) 1.61593 + 9.16442i 0.104526 + 0.592797i 0.991409 + 0.130802i \(0.0417552\pi\)
−0.886882 + 0.461995i \(0.847134\pi\)
\(240\) 0 0
\(241\) −10.7714 9.03831i −0.693849 0.582209i 0.226167 0.974089i \(-0.427380\pi\)
−0.920016 + 0.391880i \(0.871825\pi\)
\(242\) −3.85071 15.0673i −0.247533 0.968561i
\(243\) 0 0
\(244\) 3.70490 2.02604i 0.237182 0.129704i
\(245\) 12.7764 15.2263i 0.816251 0.972771i
\(246\) 0 0
\(247\) −12.9153 + 2.27732i −0.821783 + 0.144902i
\(248\) 19.8553 8.43147i 1.26081 0.535399i
\(249\) 0 0
\(250\) 1.03982 + 13.7136i 0.0657637 + 0.867323i
\(251\) −7.60386 + 13.1703i −0.479951 + 0.831300i −0.999736 0.0229974i \(-0.992679\pi\)
0.519784 + 0.854298i \(0.326012\pi\)
\(252\) 0 0
\(253\) −0.166404 0.288220i −0.0104617 0.0181203i
\(254\) 2.26269 1.54559i 0.141974 0.0969789i
\(255\) 0 0
\(256\) −14.4640 6.84058i −0.903998 0.427536i
\(257\) −4.55275 5.42575i −0.283992 0.338449i 0.605123 0.796132i \(-0.293124\pi\)
−0.889115 + 0.457683i \(0.848679\pi\)
\(258\) 0 0
\(259\) 6.40410 + 17.5951i 0.397931 + 1.09331i
\(260\) 11.7954 19.3789i 0.731521 1.20183i
\(261\) 0 0
\(262\) −0.636889 0.178589i −0.0393471 0.0110332i
\(263\) −0.345233 + 1.95791i −0.0212880 + 0.120730i −0.993600 0.112957i \(-0.963968\pi\)
0.972312 + 0.233687i \(0.0750790\pi\)
\(264\) 0 0
\(265\) 24.3360 + 8.85756i 1.49495 + 0.544116i
\(266\) −14.2255 + 6.43386i −0.872223 + 0.394485i
\(267\) 0 0
\(268\) 2.96879 14.8199i 0.181348 0.905270i
\(269\) 1.18433i 0.0722097i −0.999348 0.0361048i \(-0.988505\pi\)
0.999348 0.0361048i \(-0.0114950\pi\)
\(270\) 0 0
\(271\) 10.9019i 0.662245i −0.943588 0.331122i \(-0.892573\pi\)
0.943588 0.331122i \(-0.107427\pi\)
\(272\) 2.46813 + 7.90269i 0.149652 + 0.479171i
\(273\) 0 0
\(274\) 2.55861 + 5.65720i 0.154572 + 0.341764i
\(275\) −0.0571883 0.0208148i −0.00344858 0.00125518i
\(276\) 0 0
\(277\) −0.982411 + 5.57153i −0.0590274 + 0.334761i −0.999993 0.00374124i \(-0.998809\pi\)
0.940966 + 0.338502i \(0.109920\pi\)
\(278\) −3.22558 + 11.5032i −0.193457 + 0.689915i
\(279\) 0 0
\(280\) 7.89265 25.8290i 0.471676 1.54358i
\(281\) 4.23708 + 11.6413i 0.252763 + 0.694460i 0.999567 + 0.0294162i \(0.00936483\pi\)
−0.746805 + 0.665044i \(0.768413\pi\)
\(282\) 0 0
\(283\) −14.4882 17.2663i −0.861233 1.02638i −0.999353 0.0359618i \(-0.988551\pi\)
0.138120 0.990415i \(-0.455894\pi\)
\(284\) −5.94083 + 15.2156i −0.352524 + 0.902880i
\(285\) 0 0
\(286\) −0.214433 0.313922i −0.0126797 0.0185626i
\(287\) −2.13088 3.69079i −0.125782 0.217860i
\(288\) 0 0
\(289\) −6.35799 + 11.0124i −0.374000 + 0.647786i
\(290\) 13.9085 1.05459i 0.816733 0.0619278i
\(291\) 0 0
\(292\) −12.9156 + 1.96995i −0.755830 + 0.115283i
\(293\) −24.7027 + 4.35575i −1.44315 + 0.254466i −0.839749 0.542975i \(-0.817298\pi\)
−0.603398 + 0.797440i \(0.706187\pi\)
\(294\) 0 0
\(295\) −2.52821 + 3.01300i −0.147198 + 0.175424i
\(296\) 9.30111 + 9.97134i 0.540616 + 0.579572i
\(297\) 0 0
\(298\) −13.9301 + 3.56007i −0.806946 + 0.206229i
\(299\) 20.1881 + 16.9398i 1.16751 + 0.979657i
\(300\) 0 0
\(301\) −6.50611 36.8980i −0.375006 2.12677i
\(302\) −3.35838 0.333075i −0.193253 0.0191663i
\(303\) 0 0
\(304\) −7.70418 + 8.36192i −0.441865 + 0.479589i
\(305\) 4.49542 + 2.59543i 0.257407 + 0.148614i
\(306\) 0 0
\(307\) 7.99858 4.61798i 0.456503 0.263562i −0.254070 0.967186i \(-0.581769\pi\)
0.710573 + 0.703624i \(0.248436\pi\)
\(308\) −0.339869 0.298874i −0.0193658 0.0170299i
\(309\) 0 0
\(310\) 21.5440 + 15.4603i 1.22361 + 0.878088i
\(311\) −19.9420 + 16.7333i −1.13080 + 0.948858i −0.999099 0.0424309i \(-0.986490\pi\)
−0.131706 + 0.991289i \(0.542045\pi\)
\(312\) 0 0
\(313\) −21.0105 + 7.64718i −1.18758 + 0.432244i −0.858874 0.512187i \(-0.828835\pi\)
−0.328708 + 0.944432i \(0.606613\pi\)
\(314\) −5.50859 + 5.38239i −0.310868 + 0.303746i
\(315\) 0 0
\(316\) −13.8547 0.321139i −0.779389 0.0180655i
\(317\) 11.4763 + 2.02358i 0.644574 + 0.113656i 0.486373 0.873751i \(-0.338320\pi\)
0.158201 + 0.987407i \(0.449431\pi\)
\(318\) 0 0
\(319\) 0.0799442 0.219645i 0.00447601 0.0122977i
\(320\) −2.06156 19.5601i −0.115245 1.09344i
\(321\) 0 0
\(322\) 28.2789 + 13.5878i 1.57592 + 0.757218i
\(323\) 5.88335 0.327358
\(324\) 0 0
\(325\) 4.81914 0.267318
\(326\) −12.4453 5.97985i −0.689280 0.331193i
\(327\) 0 0
\(328\) −2.47892 1.86744i −0.136875 0.103112i
\(329\) 7.25617 19.9362i 0.400046 1.09912i
\(330\) 0 0
\(331\) 4.32184 + 0.762057i 0.237550 + 0.0418864i 0.291155 0.956676i \(-0.405960\pi\)
−0.0536058 + 0.998562i \(0.517071\pi\)
\(332\) 0.528128 22.7848i 0.0289848 1.25048i
\(333\) 0 0
\(334\) −4.69938 + 4.59171i −0.257139 + 0.251247i
\(335\) 17.4593 6.35465i 0.953901 0.347192i
\(336\) 0 0
\(337\) −25.7716 + 21.6249i −1.40387 + 1.17799i −0.444517 + 0.895771i \(0.646625\pi\)
−0.959351 + 0.282214i \(0.908931\pi\)
\(338\) 9.52132 + 6.83267i 0.517891 + 0.371648i
\(339\) 0 0
\(340\) −6.72080 + 7.64264i −0.364487 + 0.414480i
\(341\) 0.384831 0.222182i 0.0208398 0.0120318i
\(342\) 0 0
\(343\) 3.64812 + 2.10624i 0.196980 + 0.113726i
\(344\) −14.8640 22.8813i −0.801411 1.23368i
\(345\) 0 0
\(346\) 1.24010 + 0.122989i 0.0666680 + 0.00661194i
\(347\) −2.59951 14.7425i −0.139549 0.791421i −0.971583 0.236697i \(-0.923935\pi\)
0.832035 0.554724i \(-0.187176\pi\)
\(348\) 0 0
\(349\) −8.14865 6.83753i −0.436187 0.366005i 0.398093 0.917345i \(-0.369672\pi\)
−0.834280 + 0.551340i \(0.814117\pi\)
\(350\) 5.55850 1.42057i 0.297114 0.0759328i
\(351\) 0 0
\(352\) −0.312891 0.103597i −0.0166772 0.00552176i
\(353\) −7.07097 + 8.42685i −0.376350 + 0.448516i −0.920659 0.390369i \(-0.872348\pi\)
0.544309 + 0.838885i \(0.316792\pi\)
\(354\) 0 0
\(355\) −19.7743 + 3.48675i −1.04951 + 0.185057i
\(356\) 0.647135 + 4.24282i 0.0342981 + 0.224869i
\(357\) 0 0
\(358\) −17.9056 + 1.35767i −0.946338 + 0.0717550i
\(359\) −8.75833 + 15.1699i −0.462247 + 0.800636i −0.999073 0.0430578i \(-0.986290\pi\)
0.536825 + 0.843693i \(0.319623\pi\)
\(360\) 0 0
\(361\) −5.46012 9.45721i −0.287375 0.497748i
\(362\) −5.27314 7.71968i −0.277150 0.405737i
\(363\) 0 0
\(364\) 33.3842 + 13.0347i 1.74981 + 0.683201i
\(365\) −10.3235 12.3031i −0.540358 0.643973i
\(366\) 0 0
\(367\) −1.77877 4.88714i −0.0928511 0.255106i 0.884570 0.466408i \(-0.154452\pi\)
−0.977421 + 0.211301i \(0.932230\pi\)
\(368\) 22.8234 + 1.05862i 1.18975 + 0.0551842i
\(369\) 0 0
\(370\) −4.52574 + 16.1398i −0.235282 + 0.839070i
\(371\) −7.10426 + 40.2903i −0.368835 + 2.09177i
\(372\) 0 0
\(373\) 14.9141 + 5.42829i 0.772223 + 0.281066i 0.697926 0.716170i \(-0.254107\pi\)
0.0742970 + 0.997236i \(0.476329\pi\)
\(374\) 0.0702809 + 0.155394i 0.00363414 + 0.00803523i
\(375\) 0 0
\(376\) −0.810827 15.4289i −0.0418152 0.795685i
\(377\) 18.5090i 0.953262i
\(378\) 0 0
\(379\) 13.3564i 0.686073i 0.939322 + 0.343037i \(0.111456\pi\)
−0.939322 + 0.343037i \(0.888544\pi\)
\(380\) −13.7046 2.74537i −0.703031 0.140834i
\(381\) 0 0
\(382\) 32.8230 14.8450i 1.67937 0.759538i
\(383\) 7.59874 + 2.76571i 0.388277 + 0.141321i 0.528780 0.848759i \(-0.322650\pi\)
−0.140503 + 0.990080i \(0.544872\pi\)
\(384\) 0 0
\(385\) 0.0966106 0.547906i 0.00492373 0.0279239i
\(386\) 28.0438 + 7.86371i 1.42739 + 0.400252i
\(387\) 0 0
\(388\) −8.80579 5.35987i −0.447046 0.272106i
\(389\) −6.72162 18.4675i −0.340799 0.936339i −0.985163 0.171620i \(-0.945100\pi\)
0.644364 0.764719i \(-0.277122\pi\)
\(390\) 0 0
\(391\) −7.59941 9.05663i −0.384319 0.458013i
\(392\) 22.6967 + 2.78348i 1.14636 + 0.140587i
\(393\) 0 0
\(394\) −8.10183 + 5.53417i −0.408164 + 0.278808i
\(395\) −8.51795 14.7535i −0.428585 0.742330i
\(396\) 0 0
\(397\) 12.3726 21.4299i 0.620961 1.07554i −0.368346 0.929689i \(-0.620076\pi\)
0.989307 0.145848i \(-0.0465910\pi\)
\(398\) 1.23766 + 16.3228i 0.0620383 + 0.818190i
\(399\) 0 0
\(400\) 3.32157 2.53443i 0.166079 0.126721i
\(401\) 11.9917 2.11446i 0.598836 0.105591i 0.133990 0.990983i \(-0.457221\pi\)
0.464846 + 0.885392i \(0.346110\pi\)
\(402\) 0 0
\(403\) −22.6180 + 26.9551i −1.12668 + 1.34273i
\(404\) 12.6835 + 23.1935i 0.631026 + 1.15392i
\(405\) 0 0
\(406\) 5.45604 + 21.3487i 0.270779 + 1.05952i
\(407\) 0.215179 + 0.180557i 0.0106660 + 0.00894986i
\(408\) 0 0
\(409\) 5.39760 + 30.6113i 0.266894 + 1.51363i 0.763586 + 0.645706i \(0.223437\pi\)
−0.496692 + 0.867927i \(0.665452\pi\)
\(410\) 0.376533 3.79657i 0.0185957 0.187499i
\(411\) 0 0
\(412\) −1.97598 + 0.667764i −0.0973497 + 0.0328984i
\(413\) −5.38099 3.10671i −0.264781 0.152871i
\(414\) 0 0
\(415\) 24.2629 14.0082i 1.19102 0.687635i
\(416\) 26.0881 0.765366i 1.27908 0.0375252i
\(417\) 0 0
\(418\) −0.136556 + 0.190291i −0.00667918 + 0.00930743i
\(419\) −28.2403 + 23.6964i −1.37963 + 1.15765i −0.410281 + 0.911959i \(0.634569\pi\)
−0.969349 + 0.245688i \(0.920986\pi\)
\(420\) 0 0
\(421\) 34.6191 12.6003i 1.68723 0.614102i 0.692960 0.720976i \(-0.256306\pi\)
0.994273 + 0.106874i \(0.0340842\pi\)
\(422\) −14.9379 15.2882i −0.727167 0.744218i
\(423\) 0 0
\(424\) 6.70635 + 29.0293i 0.325689 + 1.40979i
\(425\) −2.12908 0.375414i −0.103275 0.0182102i
\(426\) 0 0
\(427\) −2.80464 + 7.70569i −0.135726 + 0.372905i
\(428\) −15.6028 19.4949i −0.754191 0.942322i
\(429\) 0 0
\(430\) 14.5265 30.2325i 0.700528 1.45794i
\(431\) 11.3781 0.548063 0.274032 0.961721i \(-0.411643\pi\)
0.274032 + 0.961721i \(0.411643\pi\)
\(432\) 0 0
\(433\) −7.27646 −0.349684 −0.174842 0.984596i \(-0.555941\pi\)
−0.174842 + 0.984596i \(0.555941\pi\)
\(434\) −18.1424 + 37.7579i −0.870862 + 1.81244i
\(435\) 0 0
\(436\) 24.0629 + 30.0653i 1.15240 + 1.43987i
\(437\) 5.55313 15.2571i 0.265642 0.729846i
\(438\) 0 0
\(439\) 29.3104 + 5.16822i 1.39891 + 0.246665i 0.821695 0.569927i \(-0.193029\pi\)
0.577214 + 0.816593i \(0.304140\pi\)
\(440\) −0.0911994 0.394768i −0.00434776 0.0188198i
\(441\) 0 0
\(442\) −9.43820 9.65950i −0.448929 0.459456i
\(443\) −16.1633 + 5.88296i −0.767941 + 0.279508i −0.696135 0.717911i \(-0.745099\pi\)
−0.0718063 + 0.997419i \(0.522876\pi\)
\(444\) 0 0
\(445\) −4.04160 + 3.39131i −0.191590 + 0.160763i
\(446\) 1.35350 1.88610i 0.0640900 0.0893094i
\(447\) 0 0
\(448\) 29.8650 8.57298i 1.41099 0.405035i
\(449\) 18.8763 10.8982i 0.890826 0.514319i 0.0166137 0.999862i \(-0.494711\pi\)
0.874213 + 0.485543i \(0.161378\pi\)
\(450\) 0 0
\(451\) −0.0553680 0.0319667i −0.00260718 0.00150525i
\(452\) 9.87692 3.33781i 0.464571 0.156997i
\(453\) 0 0
\(454\) 3.81195 38.4357i 0.178903 1.80388i
\(455\) 7.65020 + 43.3864i 0.358647 + 2.03399i
\(456\) 0 0
\(457\) 7.39792 + 6.20759i 0.346060 + 0.290379i 0.799206 0.601058i \(-0.205254\pi\)
−0.453146 + 0.891436i \(0.649698\pi\)
\(458\) −2.21217 8.65590i −0.103368 0.404464i
\(459\) 0 0
\(460\) 13.4758 + 24.6425i 0.628314 + 1.14896i
\(461\) −21.0745 + 25.1156i −0.981536 + 1.16975i 0.00395005 + 0.999992i \(0.498743\pi\)
−0.985486 + 0.169757i \(0.945702\pi\)
\(462\) 0 0
\(463\) 37.7572 6.65762i 1.75473 0.309406i 0.798493 0.602005i \(-0.205631\pi\)
0.956235 + 0.292599i \(0.0945201\pi\)
\(464\) 9.73405 + 12.7573i 0.451892 + 0.592241i
\(465\) 0 0
\(466\) −3.17041 41.8128i −0.146866 1.93694i
\(467\) 5.79199 10.0320i 0.268021 0.464227i −0.700329 0.713820i \(-0.746964\pi\)
0.968351 + 0.249593i \(0.0802969\pi\)
\(468\) 0 0
\(469\) 14.6756 + 25.4189i 0.677657 + 1.17374i
\(470\) 15.6830 10.7127i 0.723404 0.494140i
\(471\) 0 0
\(472\) −4.49125 0.550799i −0.206727 0.0253526i
\(473\) −0.361292 0.430571i −0.0166122 0.0197977i
\(474\) 0 0
\(475\) −1.01547 2.78997i −0.0465928 0.128013i
\(476\) −13.7336 8.35931i −0.629480 0.383148i
\(477\) 0 0
\(478\) −12.6716 3.55323i −0.579587 0.162521i
\(479\) −3.11270 + 17.6530i −0.142223 + 0.806585i 0.827332 + 0.561713i \(0.189857\pi\)
−0.969555 + 0.244873i \(0.921254\pi\)
\(480\) 0 0
\(481\) −20.9016 7.60757i −0.953032 0.346875i
\(482\) 18.1185 8.19455i 0.825274 0.373252i
\(483\) 0 0
\(484\) 21.5648 + 4.31996i 0.980217 + 0.196362i
\(485\) 12.6723i 0.575421i
\(486\) 0 0
\(487\) 22.6464i 1.02621i −0.858327 0.513104i \(-0.828496\pi\)
0.858327 0.513104i \(-0.171504\pi\)
\(488\) 0.313399 + 5.96355i 0.0141869 + 0.269957i
\(489\) 0 0
\(490\) 11.5836 + 25.6119i 0.523295 + 1.15703i
\(491\) −24.1565 8.79224i −1.09017 0.396788i −0.266484 0.963839i \(-0.585862\pi\)
−0.823683 + 0.567051i \(0.808084\pi\)
\(492\) 0 0
\(493\) 1.44186 8.17721i 0.0649382 0.368283i
\(494\) 5.00753 17.8580i 0.225299 0.803470i
\(495\) 0 0
\(496\) −1.41346 + 30.4737i −0.0634663 + 1.36831i
\(497\) −10.8490 29.8073i −0.486643 1.33704i
\(498\) 0 0
\(499\) −4.64688 5.53794i −0.208023 0.247912i 0.651938 0.758273i \(-0.273956\pi\)
−0.859961 + 0.510360i \(0.829512\pi\)
\(500\) −18.1176 7.07389i −0.810243 0.316354i
\(501\) 0 0
\(502\) −12.1309 17.7592i −0.541430 0.792633i
\(503\) 19.3621 + 33.5362i 0.863314 + 1.49530i 0.868712 + 0.495318i \(0.164949\pi\)
−0.00539768 + 0.999985i \(0.501718\pi\)
\(504\) 0 0
\(505\) −16.2480 + 28.1424i −0.723027 + 1.25232i
\(506\) 0.469315 0.0355852i 0.0208636 0.00158196i
\(507\) 0 0
\(508\) 0.584306 + 3.83090i 0.0259244 + 0.169969i
\(509\) −18.8059 + 3.31600i −0.833559 + 0.146979i −0.574110 0.818778i \(-0.694652\pi\)
−0.259449 + 0.965757i \(0.583541\pi\)
\(510\) 0 0
\(511\) 16.3085 19.4357i 0.721446 0.859785i
\(512\) 17.5786 14.2475i 0.776873 0.629657i
\(513\) 0 0
\(514\) 9.70469 2.48021i 0.428056 0.109397i
\(515\) −1.96413 1.64810i −0.0865499 0.0726240i
\(516\) 0 0
\(517\) −0.0552670 0.313435i −0.00243064 0.0137848i
\(518\) −26.3509 2.61341i −1.15779 0.114827i
\(519\) 0 0
\(520\) 17.4778 + 26.9049i 0.766450 + 1.17986i
\(521\) −19.0779 11.0146i −0.835817 0.482559i 0.0200233 0.999800i \(-0.493626\pi\)
−0.855840 + 0.517240i \(0.826959\pi\)
\(522\) 0 0
\(523\) 3.75661 2.16888i 0.164265 0.0948384i −0.415614 0.909541i \(-0.636433\pi\)
0.579879 + 0.814703i \(0.303100\pi\)
\(524\) 0.617732 0.702461i 0.0269857 0.0306871i
\(525\) 0 0
\(526\) −2.28430 1.63926i −0.0996004 0.0714750i
\(527\) 12.0924 10.1467i 0.526752 0.441998i
\(528\) 0 0
\(529\) −9.04622 + 3.29256i −0.393314 + 0.143155i
\(530\) −26.1961 + 25.5960i −1.13789 + 1.11182i
\(531\) 0 0
\(532\) 0.511652 22.0739i 0.0221829 0.957026i
\(533\) 4.98572 + 0.879117i 0.215955 + 0.0380788i
\(534\) 0 0
\(535\) 10.4983 28.8439i 0.453883 1.24703i
\(536\) 17.0726 + 12.8613i 0.737425 + 0.555523i
\(537\) 0 0
\(538\) 1.50966 + 0.725381i 0.0650862 + 0.0312734i
\(539\) 0.471048 0.0202895
\(540\) 0 0
\(541\) −2.88802 −0.124166 −0.0620829 0.998071i \(-0.519774\pi\)
−0.0620829 + 0.998071i \(0.519774\pi\)
\(542\) 13.8967 + 6.67725i 0.596915 + 0.286813i
\(543\) 0 0
\(544\) −11.5853 1.69415i −0.496714 0.0726359i
\(545\) −16.1907 + 44.4835i −0.693532 + 1.90546i
\(546\) 0 0
\(547\) 22.9975 + 4.05508i 0.983303 + 0.173383i 0.642112 0.766611i \(-0.278059\pi\)
0.341191 + 0.939994i \(0.389170\pi\)
\(548\) −8.77835 0.203474i −0.374993 0.00869196i
\(549\) 0 0
\(550\) 0.0615596 0.0601492i 0.00262491 0.00256477i
\(551\) 10.7155 3.90013i 0.456497 0.166151i
\(552\) 0 0
\(553\) 20.6160 17.2989i 0.876683 0.735625i
\(554\) −6.50033 4.66475i −0.276172 0.198186i
\(555\) 0 0
\(556\) −12.6875 11.1572i −0.538070 0.473169i
\(557\) −7.72227 + 4.45845i −0.327203 + 0.188911i −0.654599 0.755977i \(-0.727162\pi\)
0.327396 + 0.944887i \(0.393829\pi\)
\(558\) 0 0
\(559\) 38.5452 + 22.2541i 1.63029 + 0.941247i
\(560\) 28.0902 + 25.8806i 1.18703 + 1.09366i
\(561\) 0 0
\(562\) −17.4343 1.72908i −0.735421 0.0729369i
\(563\) −3.80400 21.5736i −0.160320 0.909218i −0.953760 0.300570i \(-0.902823\pi\)
0.793440 0.608648i \(-0.208288\pi\)
\(564\) 0 0
\(565\) 9.81767 + 8.23801i 0.413033 + 0.346576i
\(566\) 30.8832 7.89275i 1.29812 0.331757i
\(567\) 0 0
\(568\) −15.7567 16.8921i −0.661136 0.708777i
\(569\) −12.7365 + 15.1788i −0.533943 + 0.636329i −0.963818 0.266560i \(-0.914113\pi\)
0.429875 + 0.902888i \(0.358558\pi\)
\(570\) 0 0
\(571\) −27.0599 + 4.77140i −1.13242 + 0.199677i −0.708289 0.705923i \(-0.750533\pi\)
−0.424134 + 0.905599i \(0.639421\pi\)
\(572\) 0.531493 0.0810658i 0.0222229 0.00338953i
\(573\) 0 0
\(574\) 6.00978 0.455685i 0.250843 0.0190199i
\(575\) −2.98313 + 5.16693i −0.124405 + 0.215476i
\(576\) 0 0
\(577\) 1.20328 + 2.08414i 0.0500931 + 0.0867638i 0.889985 0.455990i \(-0.150715\pi\)
−0.839892 + 0.542754i \(0.817382\pi\)
\(578\) −10.1433 14.8494i −0.421906 0.617655i
\(579\) 0 0
\(580\) −7.17442 + 18.3751i −0.297901 + 0.762983i
\(581\) 28.4489 + 33.9041i 1.18026 + 1.40658i
\(582\) 0 0
\(583\) 0.209913 + 0.576733i 0.00869373 + 0.0238858i
\(584\) 5.39952 17.6701i 0.223434 0.731196i
\(585\) 0 0
\(586\) 9.57772 34.1564i 0.395652 1.41099i
\(587\) −2.24123 + 12.7106i −0.0925054 + 0.524624i 0.902978 + 0.429687i \(0.141376\pi\)
−0.995483 + 0.0949372i \(0.969735\pi\)
\(588\) 0 0
\(589\) 20.3712 + 7.41453i 0.839383 + 0.305510i
\(590\) −2.29219 5.06812i −0.0943679 0.208651i
\(591\) 0 0
\(592\) −18.4073 + 5.74886i −0.756534 + 0.236277i
\(593\) 27.2738i 1.12000i 0.828493 + 0.560000i \(0.189199\pi\)
−0.828493 + 0.560000i \(0.810801\pi\)
\(594\) 0 0
\(595\) 19.7639i 0.810242i
\(596\) 3.99390 19.9371i 0.163597 0.816657i
\(597\) 0 0
\(598\) −33.9581 + 15.3584i −1.38865 + 0.628054i
\(599\) 19.1994 + 6.98801i 0.784466 + 0.285522i 0.703034 0.711157i \(-0.251828\pi\)
0.0814322 + 0.996679i \(0.474051\pi\)
\(600\) 0 0
\(601\) −7.63059 + 43.2752i −0.311258 + 1.76523i 0.281216 + 0.959645i \(0.409262\pi\)
−0.592474 + 0.805589i \(0.701849\pi\)
\(602\) 51.0188 + 14.3061i 2.07937 + 0.583072i
\(603\) 0 0
\(604\) 2.48153 4.07693i 0.100972 0.165888i
\(605\) 9.24679 + 25.4053i 0.375935 + 1.03287i
\(606\) 0 0
\(607\) 24.2266 + 28.8721i 0.983326 + 1.17188i 0.985117 + 0.171884i \(0.0549854\pi\)
−0.00179117 + 0.999998i \(0.500570\pi\)
\(608\) −5.94027 14.9421i −0.240910 0.605981i
\(609\) 0 0
\(610\) −6.06177 + 4.14066i −0.245434 + 0.167650i
\(611\) 12.6013 + 21.8260i 0.509792 + 0.882986i
\(612\) 0 0
\(613\) 1.70832 2.95890i 0.0689984 0.119509i −0.829462 0.558563i \(-0.811353\pi\)
0.898461 + 0.439054i \(0.144686\pi\)
\(614\) 0.987548 + 13.0242i 0.0398542 + 0.525616i
\(615\) 0 0
\(616\) 0.589140 0.250175i 0.0237371 0.0100798i
\(617\) 28.4409 5.01489i 1.14499 0.201892i 0.431200 0.902256i \(-0.358090\pi\)
0.713786 + 0.700364i \(0.246979\pi\)
\(618\) 0 0
\(619\) −11.5574 + 13.7736i −0.464533 + 0.553609i −0.946552 0.322552i \(-0.895459\pi\)
0.482019 + 0.876161i \(0.339904\pi\)
\(620\) −32.9026 + 17.9929i −1.32140 + 0.722612i
\(621\) 0 0
\(622\) −9.11582 35.6689i −0.365511 1.43019i
\(623\) −6.38469 5.35739i −0.255797 0.214639i
\(624\) 0 0
\(625\) −5.05864 28.6890i −0.202346 1.14756i
\(626\) 3.12069 31.4658i 0.124728 1.25763i
\(627\) 0 0
\(628\) −3.48702 10.3184i −0.139147 0.411751i
\(629\) 8.64162 + 4.98924i 0.344564 + 0.198934i
\(630\) 0 0
\(631\) 10.4847 6.05333i 0.417388 0.240979i −0.276571 0.960994i \(-0.589198\pi\)
0.693959 + 0.720014i \(0.255865\pi\)
\(632\) 8.89515 17.4639i 0.353830 0.694678i
\(633\) 0 0
\(634\) −9.60852 + 13.3895i −0.381603 + 0.531763i
\(635\) −3.64921 + 3.06205i −0.144815 + 0.121514i
\(636\) 0 0
\(637\) −35.0509 + 12.7575i −1.38877 + 0.505470i
\(638\) 0.231017 + 0.236434i 0.00914605 + 0.00936050i
\(639\) 0 0
\(640\) 26.1960 + 9.35239i 1.03549 + 0.369686i
\(641\) −18.9399 3.33962i −0.748081 0.131907i −0.213405 0.976964i \(-0.568455\pi\)
−0.534676 + 0.845057i \(0.679566\pi\)
\(642\) 0 0
\(643\) −0.978566 + 2.68859i −0.0385909 + 0.106028i −0.957491 0.288462i \(-0.906856\pi\)
0.918901 + 0.394489i \(0.129078\pi\)
\(644\) −34.6407 + 27.7249i −1.36504 + 1.09251i
\(645\) 0 0
\(646\) −3.60346 + 7.49951i −0.141776 + 0.295064i
\(647\) −36.4238 −1.43197 −0.715984 0.698117i \(-0.754022\pi\)
−0.715984 + 0.698117i \(0.754022\pi\)
\(648\) 0 0
\(649\) −0.0932118 −0.00365888
\(650\) −2.95164 + 6.14296i −0.115773 + 0.240947i
\(651\) 0 0
\(652\) 15.2451 12.2014i 0.597042 0.477845i
\(653\) 7.46684 20.5150i 0.292200 0.802813i −0.703544 0.710652i \(-0.748400\pi\)
0.995744 0.0921615i \(-0.0293776\pi\)
\(654\) 0 0
\(655\) 1.13244 + 0.199681i 0.0442483 + 0.00780216i
\(656\) 3.89872 2.01611i 0.152220 0.0787157i
\(657\) 0 0
\(658\) 20.9684 + 21.4600i 0.817432 + 0.836599i
\(659\) −0.310964 + 0.113182i −0.0121134 + 0.00440894i −0.348070 0.937469i \(-0.613163\pi\)
0.335956 + 0.941878i \(0.390941\pi\)
\(660\) 0 0
\(661\) 18.1399 15.2212i 0.705561 0.592036i −0.217789 0.975996i \(-0.569884\pi\)
0.923350 + 0.383960i \(0.125440\pi\)
\(662\) −3.61845 + 5.04230i −0.140635 + 0.195975i
\(663\) 0 0
\(664\) 28.7203 + 14.6285i 1.11456 + 0.567696i
\(665\) 23.5059 13.5712i 0.911521 0.526267i
\(666\) 0 0
\(667\) −19.8448 11.4574i −0.768393 0.443632i
\(668\) −2.97477 8.80266i −0.115097 0.340585i
\(669\) 0 0
\(670\) −2.59323 + 26.1475i −0.100185 + 1.01016i
\(671\) 0.0213617 + 0.121148i 0.000824660 + 0.00467688i
\(672\) 0 0
\(673\) 2.82408 + 2.36968i 0.108860 + 0.0913446i 0.695593 0.718436i \(-0.255142\pi\)
−0.586733 + 0.809781i \(0.699586\pi\)
\(674\) −11.7806 46.0960i −0.453774 1.77555i
\(675\) 0 0
\(676\) −14.5413 + 7.95194i −0.559280 + 0.305844i
\(677\) −6.13883 + 7.31597i −0.235934 + 0.281176i −0.871001 0.491282i \(-0.836528\pi\)
0.635066 + 0.772458i \(0.280973\pi\)
\(678\) 0 0
\(679\) 19.7149 3.47627i 0.756588 0.133407i
\(680\) −5.62570 13.2480i −0.215736 0.508038i
\(681\) 0 0
\(682\) 0.0475133 + 0.626628i 0.00181938 + 0.0239948i
\(683\) 14.0206 24.2843i 0.536482 0.929214i −0.462608 0.886563i \(-0.653086\pi\)
0.999090 0.0426510i \(-0.0135804\pi\)
\(684\) 0 0
\(685\) −5.39697 9.34783i −0.206208 0.357162i
\(686\) −4.91925 + 3.36022i −0.187818 + 0.128294i
\(687\) 0 0
\(688\) 38.2707 4.93271i 1.45906 0.188058i
\(689\) −31.2395 37.2298i −1.19013 1.41834i
\(690\) 0 0
\(691\) 13.8412 + 38.0284i 0.526545 + 1.44667i 0.863113 + 0.505011i \(0.168512\pi\)
−0.336568 + 0.941659i \(0.609266\pi\)
\(692\) −0.916314 + 1.50542i −0.0348330 + 0.0572276i
\(693\) 0 0
\(694\) 20.3845 + 5.71597i 0.773785 + 0.216975i
\(695\) 3.60653 20.4537i 0.136804 0.775851i
\(696\) 0 0
\(697\) −2.13419 0.776781i −0.0808381 0.0294227i
\(698\) 13.7067 6.19922i 0.518807 0.234644i
\(699\) 0 0
\(700\) −1.59368 + 7.95550i −0.0602356 + 0.300690i
\(701\) 13.2691i 0.501165i −0.968095 0.250583i \(-0.919378\pi\)
0.968095 0.250583i \(-0.0806222\pi\)
\(702\) 0 0
\(703\) 13.7037i 0.516846i
\(704\) 0.323697 0.335391i 0.0121998 0.0126405i
\(705\) 0 0
\(706\) −6.41087 14.1747i −0.241276 0.533471i
\(707\) −48.2395 17.5577i −1.81423 0.660326i
\(708\) 0 0
\(709\) 2.29730 13.0286i 0.0862768 0.489300i −0.910797 0.412855i \(-0.864532\pi\)
0.997074 0.0764456i \(-0.0243571\pi\)
\(710\) 7.66689 27.3419i 0.287733 1.02612i
\(711\) 0 0
\(712\) −5.80469 1.77376i −0.217540 0.0664744i
\(713\) −14.8995 40.9360i −0.557990 1.53307i
\(714\) 0 0
\(715\) 0.424825 + 0.506286i 0.0158875 + 0.0189340i
\(716\) 9.23624 23.6558i 0.345175 0.884058i
\(717\) 0 0
\(718\) −13.9727 20.4556i −0.521458 0.763395i
\(719\) −20.7715 35.9773i −0.774647 1.34173i −0.934992 0.354668i \(-0.884594\pi\)
0.160345 0.987061i \(-0.448739\pi\)
\(720\) 0 0
\(721\) 2.02522 3.50779i 0.0754232 0.130637i
\(722\) 15.3993 1.16764i 0.573104 0.0434550i
\(723\) 0 0
\(724\) 13.0700 1.99350i 0.485743 0.0740877i
\(725\) −4.12662 + 0.727634i −0.153259 + 0.0270236i
\(726\) 0 0
\(727\) 22.0411 26.2675i 0.817458 0.974208i −0.182502 0.983206i \(-0.558420\pi\)
0.999960 + 0.00899729i \(0.00286396\pi\)
\(728\) −37.0626 + 34.5714i −1.37363 + 1.28130i
\(729\) 0 0
\(730\) 22.0058 5.62396i 0.814470 0.208152i
\(731\) −15.2955 12.8345i −0.565725 0.474699i
\(732\) 0 0
\(733\) 3.79927 + 21.5467i 0.140329 + 0.795846i 0.970999 + 0.239082i \(0.0768464\pi\)
−0.830670 + 0.556765i \(0.812043\pi\)
\(734\) 7.31911 + 0.725888i 0.270153 + 0.0267930i
\(735\) 0 0
\(736\) −15.3284 + 28.4446i −0.565012 + 1.04848i
\(737\) 0.381326 + 0.220159i 0.0140463 + 0.00810965i
\(738\) 0 0
\(739\) −23.8855 + 13.7903i −0.878644 + 0.507285i −0.870211 0.492679i \(-0.836018\pi\)
−0.00843293 + 0.999964i \(0.502684\pi\)
\(740\) −17.8015 15.6543i −0.654397 0.575465i
\(741\) 0 0
\(742\) −47.0068 33.7330i −1.72568 1.23838i
\(743\) 16.1814 13.5778i 0.593637 0.498121i −0.295756 0.955263i \(-0.595572\pi\)
0.889393 + 0.457143i \(0.151127\pi\)
\(744\) 0 0
\(745\) 23.4879 8.54888i 0.860528 0.313207i
\(746\) −16.0541 + 15.6863i −0.587782 + 0.574316i
\(747\) 0 0
\(748\) −0.241127 0.00558908i −0.00881647 0.000204357i
\(749\) 47.7537 + 8.42026i 1.74488 + 0.307670i
\(750\) 0 0
\(751\) −5.22592 + 14.3581i −0.190696 + 0.523934i −0.997787 0.0664938i \(-0.978819\pi\)
0.807090 + 0.590428i \(0.201041\pi\)
\(752\) 20.1639 + 8.41639i 0.735300 + 0.306914i
\(753\) 0 0
\(754\) −23.5935 11.3365i −0.859223 0.412850i
\(755\) 5.86707 0.213525
\(756\) 0 0
\(757\) −29.8309 −1.08422 −0.542112 0.840306i \(-0.682375\pi\)
−0.542112 + 0.840306i \(0.682375\pi\)
\(758\) −17.0254 8.18059i −0.618392 0.297132i
\(759\) 0 0
\(760\) 11.8934 15.7878i 0.431418 0.572683i
\(761\) 3.25292 8.93733i 0.117918 0.323978i −0.866666 0.498889i \(-0.833742\pi\)
0.984584 + 0.174911i \(0.0559638\pi\)
\(762\) 0 0
\(763\) −73.6463 12.9858i −2.66617 0.470118i
\(764\) −1.18055 + 50.9318i −0.0427108 + 1.84265i
\(765\) 0 0
\(766\) −8.17956 + 7.99217i −0.295540 + 0.288769i
\(767\) 6.93593 2.52447i 0.250442 0.0911534i
\(768\) 0 0
\(769\) 4.27261 3.58514i 0.154074 0.129284i −0.562492 0.826803i \(-0.690157\pi\)
0.716566 + 0.697519i \(0.245713\pi\)
\(770\) 0.639244 + 0.458733i 0.0230368 + 0.0165316i
\(771\) 0 0
\(772\) −27.2003 + 30.9311i −0.978959 + 1.11323i
\(773\) 15.2614 8.81115i 0.548913 0.316915i −0.199770 0.979843i \(-0.564020\pi\)
0.748683 + 0.662928i \(0.230686\pi\)
\(774\) 0 0
\(775\) −6.89886 3.98306i −0.247815 0.143076i
\(776\) 12.2256 7.94193i 0.438875 0.285099i
\(777\) 0 0
\(778\) 27.6574 + 2.74298i 0.991566 + 0.0983407i
\(779\) −0.541615 3.07165i −0.0194054 0.110053i
\(780\) 0 0
\(781\) −0.364528 0.305875i −0.0130438 0.0109451i
\(782\) 16.1990 4.13994i 0.579275 0.148044i
\(783\) 0 0
\(784\) −17.4494 + 27.2266i −0.623194 + 0.972380i
\(785\) 8.60626 10.2565i 0.307171 0.366072i
\(786\) 0 0
\(787\) −38.0897 + 6.71624i −1.35775 + 0.239408i −0.804672 0.593720i \(-0.797659\pi\)
−0.553080 + 0.833128i \(0.686547\pi\)
\(788\) −2.09218 13.7170i −0.0745308 0.488648i
\(789\) 0 0
\(790\) 24.0234 1.82155i 0.854716 0.0648078i
\(791\) −10.1230 + 17.5336i −0.359934 + 0.623424i
\(792\) 0 0
\(793\) −4.87062 8.43615i −0.172961 0.299577i
\(794\) 19.7387 + 28.8968i 0.700502 + 1.02551i
\(795\) 0 0
\(796\) −21.5648 8.41983i −0.764344 0.298433i
\(797\) −2.14341 2.55442i −0.0759236 0.0904822i 0.726746 0.686907i \(-0.241032\pi\)
−0.802669 + 0.596425i \(0.796587\pi\)
\(798\) 0 0
\(799\) −3.86693 10.6243i −0.136802 0.375861i
\(800\) 1.19623 + 5.78631i 0.0422930 + 0.204577i
\(801\) 0 0
\(802\) −4.64941 + 16.5809i −0.164176 + 0.585492i
\(803\) 0.0660932 0.374833i 0.00233238 0.0132276i
\(804\) 0 0
\(805\) −51.2532 18.6546i −1.80644 0.657489i
\(806\) −20.5066 45.3408i −0.722313 1.59706i
\(807\) 0 0
\(808\) −37.3333 + 1.96195i −1.31338 + 0.0690213i
\(809\) 5.26208i 0.185005i −0.995712 0.0925025i \(-0.970513\pi\)
0.995712 0.0925025i \(-0.0294866\pi\)
\(810\) 0 0
\(811\) 3.33372i 0.117063i −0.998286 0.0585314i \(-0.981358\pi\)
0.998286 0.0585314i \(-0.0186418\pi\)
\(812\) −30.5549 6.12091i −1.07227 0.214802i
\(813\) 0 0
\(814\) −0.361950 + 0.163701i −0.0126863 + 0.00573772i
\(815\) 22.5560 + 8.20972i 0.790103 + 0.287574i
\(816\) 0 0
\(817\) 4.76161 27.0044i 0.166588 0.944766i
\(818\) −42.3263 11.8686i −1.47990 0.414976i
\(819\) 0 0
\(820\) 4.60888 + 2.80531i 0.160949 + 0.0979656i
\(821\) −8.98195 24.6777i −0.313472 0.861258i −0.991949 0.126636i \(-0.959582\pi\)
0.678477 0.734622i \(-0.262640\pi\)
\(822\) 0 0
\(823\) −24.7575 29.5048i −0.862991 1.02847i −0.999285 0.0378043i \(-0.987964\pi\)
0.136294 0.990668i \(-0.456481\pi\)
\(824\) 0.359058 2.92778i 0.0125084 0.101994i
\(825\) 0 0
\(826\) 7.25590 4.95634i 0.252465 0.172453i
\(827\) −16.3619 28.3397i −0.568960 0.985467i −0.996669 0.0815507i \(-0.974013\pi\)
0.427710 0.903916i \(-0.359321\pi\)
\(828\) 0 0
\(829\) 13.4083 23.2238i 0.465688 0.806595i −0.533544 0.845772i \(-0.679140\pi\)
0.999232 + 0.0391769i \(0.0124736\pi\)
\(830\) 2.99563 + 39.5077i 0.103980 + 1.37133i
\(831\) 0 0
\(832\) −15.0029 + 33.7234i −0.520134 + 1.16915i
\(833\) 16.4792 2.90572i 0.570970 0.100677i
\(834\) 0 0
\(835\) 7.34200 8.74985i 0.254080 0.302801i
\(836\) −0.158926 0.290619i −0.00549656 0.0100513i
\(837\) 0 0
\(838\) −12.9091 50.5117i −0.445939 1.74490i
\(839\) −4.82314 4.04709i −0.166513 0.139721i 0.555723 0.831367i \(-0.312441\pi\)
−0.722237 + 0.691646i \(0.756886\pi\)
\(840\) 0 0
\(841\) 2.24115 + 12.7102i 0.0772811 + 0.438283i
\(842\) −5.14199 + 51.8465i −0.177205 + 1.78675i
\(843\) 0 0
\(844\) 28.6371 9.67764i 0.985731 0.333118i
\(845\) −17.6440 10.1867i −0.606971 0.350435i
\(846\) 0 0
\(847\) −36.9876 + 21.3548i −1.27091 + 0.733760i
\(848\) −41.1112 9.23137i −1.41176 0.317007i
\(849\) 0 0
\(850\) 1.78256 2.48400i 0.0611415 0.0852006i
\(851\) 21.0950 17.7008i 0.723129 0.606777i
\(852\) 0 0
\(853\) −0.675411 + 0.245829i −0.0231256 + 0.00841704i −0.353557 0.935413i \(-0.615028\pi\)
0.330431 + 0.943830i \(0.392806\pi\)
\(854\) −8.10466 8.29470i −0.277336 0.283839i
\(855\) 0 0
\(856\) 34.4067 7.94863i 1.17600 0.271679i
\(857\) 53.7149 + 9.47138i 1.83486 + 0.323536i 0.980557 0.196232i \(-0.0628706\pi\)
0.854307 + 0.519768i \(0.173982\pi\)
\(858\) 0 0
\(859\) −10.4149 + 28.6147i −0.355352 + 0.976322i 0.625269 + 0.780409i \(0.284989\pi\)
−0.980621 + 0.195913i \(0.937233\pi\)
\(860\) 29.6402 + 37.0338i 1.01072 + 1.26284i
\(861\) 0 0
\(862\) −6.96890 + 14.5037i −0.237362 + 0.493997i
\(863\) 30.5772 1.04086 0.520430 0.853904i \(-0.325772\pi\)
0.520430 + 0.853904i \(0.325772\pi\)
\(864\) 0 0
\(865\) −2.16644 −0.0736612
\(866\) 4.45671 9.27531i 0.151445 0.315188i
\(867\) 0 0
\(868\) −37.0182 46.2522i −1.25648 1.56990i
\(869\) 0.138084 0.379382i 0.00468417 0.0128697i
\(870\) 0 0
\(871\) −34.3372 6.05458i −1.16347 0.205152i
\(872\) −53.0624 + 12.2585i −1.79692 + 0.415125i
\(873\) 0 0
\(874\) 16.0471 + 16.4233i 0.542800 + 0.555527i
\(875\) 35.4922 12.9181i 1.19986 0.436712i
\(876\) 0 0
\(877\) −25.9234 + 21.7523i −0.875372 + 0.734524i −0.965222 0.261431i \(-0.915806\pi\)
0.0898503 + 0.995955i \(0.471361\pi\)
\(878\) −24.5401 + 34.1966i −0.828188 + 1.15408i
\(879\) 0 0
\(880\) 0.559069 + 0.125537i 0.0188462 + 0.00423185i
\(881\) −10.3117 + 5.95348i −0.347411 + 0.200578i −0.663544 0.748137i \(-0.730949\pi\)
0.316133 + 0.948715i \(0.397615\pi\)
\(882\) 0 0
\(883\) 10.5936 + 6.11620i 0.356502 + 0.205827i 0.667545 0.744569i \(-0.267345\pi\)
−0.311043 + 0.950396i \(0.600678\pi\)
\(884\) 18.0937 6.11460i 0.608558 0.205656i
\(885\) 0 0
\(886\) 2.40074 24.2066i 0.0806545 0.813236i
\(887\) 2.31672 + 13.1388i 0.0777879 + 0.441157i 0.998681 + 0.0513422i \(0.0163499\pi\)
−0.920893 + 0.389815i \(0.872539\pi\)
\(888\) 0 0
\(889\) −5.76482 4.83725i −0.193346 0.162236i
\(890\) −1.84749 7.22896i −0.0619279 0.242315i
\(891\) 0 0
\(892\) 1.57522 + 2.88051i 0.0527422 + 0.0964467i
\(893\) 9.98058 11.8944i 0.333987 0.398031i
\(894\) 0 0
\(895\) 30.7433 5.42086i 1.02763 0.181200i
\(896\) −7.36384 + 43.3198i −0.246009 + 1.44721i
\(897\) 0 0
\(898\) 2.33057 + 30.7366i 0.0777720 + 1.02569i
\(899\) 15.2979 26.4967i 0.510212 0.883714i
\(900\) 0 0
\(901\) 10.9013 + 18.8816i 0.363174 + 0.629036i
\(902\) 0.0746600 0.0509986i 0.00248591 0.00169807i
\(903\) 0 0
\(904\) −1.79475 + 14.6345i −0.0596923 + 0.486736i
\(905\) 10.4469 + 12.4501i 0.347267 + 0.413856i
\(906\) 0 0
\(907\) −6.89696 18.9492i −0.229010 0.629199i 0.770961 0.636883i \(-0.219776\pi\)
−0.999970 + 0.00768346i \(0.997554\pi\)
\(908\) 46.6593 + 28.4003i 1.54844 + 0.942499i
\(909\) 0 0
\(910\) −59.9904 16.8218i −1.98866 0.557636i
\(911\) 5.48881 31.1286i 0.181852 1.03134i −0.748081 0.663607i \(-0.769025\pi\)
0.929933 0.367728i \(-0.119864\pi\)
\(912\) 0 0
\(913\) 0.623912 + 0.227086i 0.0206485 + 0.00751544i
\(914\) −12.4439 + 5.62809i −0.411608 + 0.186161i
\(915\) 0 0
\(916\) 12.3886 + 2.48175i 0.409331 + 0.0819992i
\(917\) 1.81657i 0.0599884i
\(918\) 0 0
\(919\) 3.86720i 0.127567i −0.997964 0.0637835i \(-0.979683\pi\)
0.997964 0.0637835i \(-0.0203167\pi\)
\(920\) −39.6656 + 2.08452i −1.30774 + 0.0687247i
\(921\) 0 0
\(922\) −19.1071 42.2465i −0.629258 1.39132i
\(923\) 35.4087 + 12.8877i 1.16549 + 0.424205i
\(924\) 0 0
\(925\) 0.874428 4.95913i 0.0287510 0.163055i
\(926\) −14.6392 + 52.2069i −0.481075 + 1.71562i
\(927\) 0 0
\(928\) −22.2237 + 4.59439i −0.729527 + 0.150818i
\(929\) 17.2575 + 47.4145i 0.566200 + 1.55562i 0.810388 + 0.585893i \(0.199256\pi\)
−0.244189 + 0.969728i \(0.578522\pi\)
\(930\) 0 0
\(931\) 14.7715 + 17.6040i 0.484117 + 0.576949i
\(932\) 55.2407 + 21.5684i 1.80947 + 0.706495i
\(933\) 0 0
\(934\) 9.24034 + 13.5275i 0.302353 + 0.442634i
\(935\) −0.148246 0.256770i −0.00484816 0.00839726i
\(936\) 0 0
\(937\) 24.0457 41.6483i 0.785538 1.36059i −0.143139 0.989703i \(-0.545720\pi\)
0.928677 0.370890i \(-0.120947\pi\)
\(938\) −41.3901 + 3.13836i −1.35143 + 0.102471i
\(939\) 0 0
\(940\) 4.04991 + 26.5525i 0.132094 + 0.866048i
\(941\) −7.23098 + 1.27502i −0.235723 + 0.0415644i −0.290262 0.956947i \(-0.593742\pi\)
0.0545385 + 0.998512i \(0.482631\pi\)
\(942\) 0 0
\(943\) −4.02880 + 4.80134i −0.131196 + 0.156353i
\(944\) 3.45292 5.38765i 0.112383 0.175353i
\(945\) 0 0
\(946\) 0.770136 0.196822i 0.0250393 0.00639923i
\(947\) −24.3956 20.4704i −0.792752 0.665198i 0.153673 0.988122i \(-0.450890\pi\)
−0.946425 + 0.322924i \(0.895334\pi\)
\(948\) 0 0
\(949\) 5.23365 + 29.6815i 0.169891 + 0.963502i
\(950\) 4.17833 + 0.414395i 0.135563 + 0.0134448i
\(951\) 0 0
\(952\) 19.0672 12.3863i 0.617973 0.401443i
\(953\) 13.1967 + 7.61912i 0.427483 + 0.246807i 0.698274 0.715831i \(-0.253952\pi\)
−0.270791 + 0.962638i \(0.587285\pi\)
\(954\) 0 0
\(955\) −54.2359 + 31.3131i −1.75503 + 1.01327i
\(956\) 12.2905 13.9763i 0.397502 0.452025i
\(957\) 0 0
\(958\) −20.5958 14.7799i −0.665420 0.477518i
\(959\) 13.0623 10.9606i 0.421804 0.353936i
\(960\) 0 0
\(961\) 25.5272 9.29113i 0.823457 0.299714i
\(962\) 22.4993 21.9838i 0.725406 0.708787i
\(963\) 0 0
\(964\) −0.651671 + 28.1147i −0.0209889 + 0.905513i
\(965\) −49.8644 8.79243i −1.60519 0.283038i
\(966\) 0 0
\(967\) 14.7610 40.5556i 0.474683 1.30418i −0.439268 0.898356i \(-0.644762\pi\)
0.913951 0.405825i \(-0.133016\pi\)
\(968\) −18.7147 + 24.8427i −0.601514 + 0.798476i
\(969\) 0 0
\(970\) 16.1534 + 7.76160i 0.518656 + 0.249210i
\(971\) 32.9105 1.05615 0.528074 0.849198i \(-0.322914\pi\)
0.528074 + 0.849198i \(0.322914\pi\)
\(972\) 0 0
\(973\) 32.8100 1.05184
\(974\) 28.8674 + 13.8706i 0.924972 + 0.444442i
\(975\) 0 0
\(976\) −7.79370 3.25309i −0.249470 0.104129i
\(977\) −19.4179 + 53.3502i −0.621234 + 1.70683i 0.0827138 + 0.996573i \(0.473641\pi\)
−0.703947 + 0.710252i \(0.748581\pi\)
\(978\) 0 0
\(979\) −0.123134 0.0217118i −0.00393537 0.000693912i
\(980\) −39.7423 0.921187i −1.26952 0.0294262i
\(981\) 0 0
\(982\) 26.0029 25.4072i 0.829787 0.810776i
\(983\) 30.4707 11.0904i 0.971864 0.353730i 0.193192 0.981161i \(-0.438116\pi\)
0.778672 + 0.627431i \(0.215894\pi\)
\(984\) 0 0
\(985\) 13.0665 10.9641i 0.416332 0.349344i
\(986\) 9.54038 + 6.84635i 0.303828 + 0.218032i
\(987\) 0 0
\(988\) 19.6966 + 17.3208i 0.626632 + 0.551049i
\(989\) −47.7202 + 27.5513i −1.51741 + 0.876080i
\(990\) 0 0
\(991\) −36.6324 21.1497i −1.16367 0.671843i −0.211486 0.977381i \(-0.567830\pi\)
−0.952180 + 0.305539i \(0.901164\pi\)
\(992\) −37.9792 20.4664i −1.20584 0.649809i
\(993\) 0 0
\(994\) 44.6402 + 4.42729i 1.41590 + 0.140425i
\(995\) −4.94170 28.0258i −0.156663 0.888477i
\(996\) 0 0
\(997\) −25.8985 21.7314i −0.820213 0.688241i 0.132809 0.991142i \(-0.457600\pi\)
−0.953022 + 0.302901i \(0.902045\pi\)
\(998\) 9.90536 2.53149i 0.313549 0.0801329i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 972.2.l.d.107.6 96
3.2 odd 2 972.2.l.a.107.11 96
4.3 odd 2 inner 972.2.l.d.107.4 96
9.2 odd 6 972.2.l.b.755.1 96
9.4 even 3 108.2.l.a.47.6 yes 96
9.5 odd 6 324.2.l.a.143.11 96
9.7 even 3 972.2.l.c.755.16 96
12.11 even 2 972.2.l.a.107.13 96
27.4 even 9 972.2.l.b.215.2 96
27.5 odd 18 inner 972.2.l.d.863.4 96
27.13 even 9 324.2.l.a.179.10 96
27.14 odd 18 108.2.l.a.23.7 yes 96
27.22 even 9 972.2.l.a.863.13 96
27.23 odd 18 972.2.l.c.215.15 96
36.7 odd 6 972.2.l.c.755.15 96
36.11 even 6 972.2.l.b.755.2 96
36.23 even 6 324.2.l.a.143.10 96
36.31 odd 6 108.2.l.a.47.7 yes 96
108.23 even 18 972.2.l.c.215.16 96
108.31 odd 18 972.2.l.b.215.1 96
108.59 even 18 inner 972.2.l.d.863.6 96
108.67 odd 18 324.2.l.a.179.11 96
108.95 even 18 108.2.l.a.23.6 96
108.103 odd 18 972.2.l.a.863.11 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
108.2.l.a.23.6 96 108.95 even 18
108.2.l.a.23.7 yes 96 27.14 odd 18
108.2.l.a.47.6 yes 96 9.4 even 3
108.2.l.a.47.7 yes 96 36.31 odd 6
324.2.l.a.143.10 96 36.23 even 6
324.2.l.a.143.11 96 9.5 odd 6
324.2.l.a.179.10 96 27.13 even 9
324.2.l.a.179.11 96 108.67 odd 18
972.2.l.a.107.11 96 3.2 odd 2
972.2.l.a.107.13 96 12.11 even 2
972.2.l.a.863.11 96 108.103 odd 18
972.2.l.a.863.13 96 27.22 even 9
972.2.l.b.215.1 96 108.31 odd 18
972.2.l.b.215.2 96 27.4 even 9
972.2.l.b.755.1 96 9.2 odd 6
972.2.l.b.755.2 96 36.11 even 6
972.2.l.c.215.15 96 27.23 odd 18
972.2.l.c.215.16 96 108.23 even 18
972.2.l.c.755.15 96 36.7 odd 6
972.2.l.c.755.16 96 9.7 even 3
972.2.l.d.107.4 96 4.3 odd 2 inner
972.2.l.d.107.6 96 1.1 even 1 trivial
972.2.l.d.863.4 96 27.5 odd 18 inner
972.2.l.d.863.6 96 108.59 even 18 inner