Properties

Label 972.2.l.c.755.15
Level $972$
Weight $2$
Character 972.755
Analytic conductor $7.761$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [972,2,Mod(107,972)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(972, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 13])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("972.107"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 972 = 2^{2} \cdot 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 972.l (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,3,0,3,6,0,0,-9,0,-3,0,0,6,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.76145907647\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(16\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 108)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 755.15
Character \(\chi\) \(=\) 972.755
Dual form 972.2.l.c.215.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.28855 + 0.582781i) q^{2} +(1.32073 + 1.50189i) q^{4} +(1.58033 + 1.88337i) q^{5} +(1.32837 + 3.64966i) q^{7} +(0.826562 + 2.70496i) q^{8} +(0.938750 + 3.34780i) q^{10} +(0.0446335 + 0.0374519i) q^{11} +(-0.801171 - 4.54366i) q^{13} +(-0.415282 + 5.47693i) q^{14} +(-0.511330 + 3.96718i) q^{16} +(1.79249 - 1.03489i) q^{17} +(-2.46167 - 1.42125i) q^{19} +(-0.741407 + 4.86090i) q^{20} +(0.0356863 + 0.0742703i) q^{22} +(-5.36751 - 1.95361i) q^{23} +(-0.181378 + 1.02865i) q^{25} +(1.61561 - 6.32166i) q^{26} +(-3.72696 + 6.81529i) q^{28} +(-3.95075 - 0.696624i) q^{29} +(2.60846 - 7.16669i) q^{31} +(-2.97087 + 4.81393i) q^{32} +(2.91283 - 0.288886i) q^{34} +(-4.77439 + 8.26948i) q^{35} +(2.41051 + 4.17513i) q^{37} +(-2.34372 - 3.26596i) q^{38} +(-3.78818 + 5.83145i) q^{40} +(1.08062 - 0.190542i) q^{41} +(6.20086 - 7.38990i) q^{43} +(0.00270032 + 0.116498i) q^{44} +(-5.77779 - 5.64542i) q^{46} +(5.13304 - 1.86827i) q^{47} +(-6.19317 + 5.19668i) q^{49} +(-0.833190 + 1.21976i) q^{50} +(5.76594 - 7.20423i) q^{52} +10.5337i q^{53} +0.143248i q^{55} +(-8.77421 + 6.60985i) q^{56} +(-4.68477 - 3.20006i) q^{58} +(-1.22551 + 1.02833i) q^{59} +(1.98401 - 0.722122i) q^{61} +(7.53775 - 7.71449i) q^{62} +(-6.63359 + 4.47163i) q^{64} +(7.29127 - 8.68939i) q^{65} +(7.44236 - 1.31229i) q^{67} +(3.92169 + 1.32530i) q^{68} +(-10.9713 + 7.87324i) q^{70} +(4.08357 + 7.07295i) q^{71} +(3.26625 - 5.65731i) q^{73} +(0.672885 + 6.78467i) q^{74} +(-1.11666 - 5.57424i) q^{76} +(-0.0773972 + 0.212647i) q^{77} +(6.82395 + 1.20325i) q^{79} +(-8.27973 + 5.30644i) q^{80} +(1.50348 + 0.384241i) q^{82} +(-1.97880 + 11.2223i) q^{83} +(4.78181 + 1.74043i) q^{85} +(12.2968 - 5.90853i) q^{86} +(-0.0644136 + 0.151688i) q^{88} +(-1.85844 - 1.07297i) q^{89} +(15.5186 - 8.95967i) q^{91} +(-4.15494 - 10.6416i) q^{92} +(7.70299 + 0.584070i) q^{94} +(-1.21353 - 6.88226i) q^{95} +(-3.94848 - 3.31317i) q^{97} +(-11.0087 + 3.08694i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 3 q^{2} + 3 q^{4} + 6 q^{5} - 9 q^{8} - 3 q^{10} + 6 q^{13} - 12 q^{14} + 3 q^{16} - 18 q^{17} + 45 q^{20} + 3 q^{22} + 6 q^{25} - 12 q^{28} - 6 q^{29} - 57 q^{32} - 3 q^{34} - 6 q^{37} + 45 q^{38}+ \cdots - 180 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/972\mathbb{Z}\right)^\times\).

\(n\) \(245\) \(487\)
\(\chi(n)\) \(e\left(\frac{1}{18}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.28855 + 0.582781i 0.911144 + 0.412088i
\(3\) 0 0
\(4\) 1.32073 + 1.50189i 0.660366 + 0.750944i
\(5\) 1.58033 + 1.88337i 0.706746 + 0.842267i 0.993272 0.115806i \(-0.0369450\pi\)
−0.286526 + 0.958072i \(0.592501\pi\)
\(6\) 0 0
\(7\) 1.32837 + 3.64966i 0.502076 + 1.37944i 0.889244 + 0.457434i \(0.151231\pi\)
−0.387168 + 0.922009i \(0.626547\pi\)
\(8\) 0.826562 + 2.70496i 0.292234 + 0.956347i
\(9\) 0 0
\(10\) 0.938750 + 3.34780i 0.296859 + 1.05867i
\(11\) 0.0446335 + 0.0374519i 0.0134575 + 0.0112922i 0.649492 0.760369i \(-0.274982\pi\)
−0.636034 + 0.771661i \(0.719426\pi\)
\(12\) 0 0
\(13\) −0.801171 4.54366i −0.222205 1.26019i −0.867957 0.496639i \(-0.834567\pi\)
0.645752 0.763547i \(-0.276544\pi\)
\(14\) −0.415282 + 5.47693i −0.110989 + 1.46377i
\(15\) 0 0
\(16\) −0.511330 + 3.96718i −0.127832 + 0.991796i
\(17\) 1.79249 1.03489i 0.434742 0.250998i −0.266623 0.963801i \(-0.585908\pi\)
0.701365 + 0.712803i \(0.252574\pi\)
\(18\) 0 0
\(19\) −2.46167 1.42125i −0.564746 0.326056i 0.190302 0.981726i \(-0.439053\pi\)
−0.755048 + 0.655669i \(0.772387\pi\)
\(20\) −0.741407 + 4.86090i −0.165784 + 1.08693i
\(21\) 0 0
\(22\) 0.0356863 + 0.0742703i 0.00760834 + 0.0158345i
\(23\) −5.36751 1.95361i −1.11920 0.407357i −0.284842 0.958574i \(-0.591941\pi\)
−0.834361 + 0.551218i \(0.814163\pi\)
\(24\) 0 0
\(25\) −0.181378 + 1.02865i −0.0362756 + 0.205729i
\(26\) 1.61561 6.32166i 0.316847 1.23978i
\(27\) 0 0
\(28\) −3.72696 + 6.81529i −0.704330 + 1.28797i
\(29\) −3.95075 0.696624i −0.733636 0.129360i −0.205665 0.978622i \(-0.565936\pi\)
−0.527971 + 0.849263i \(0.677047\pi\)
\(30\) 0 0
\(31\) 2.60846 7.16669i 0.468493 1.28717i −0.450456 0.892799i \(-0.648739\pi\)
0.918949 0.394376i \(-0.129039\pi\)
\(32\) −2.97087 + 4.81393i −0.525181 + 0.850990i
\(33\) 0 0
\(34\) 2.91283 0.288886i 0.499546 0.0495436i
\(35\) −4.77439 + 8.26948i −0.807019 + 1.39780i
\(36\) 0 0
\(37\) 2.41051 + 4.17513i 0.396286 + 0.686387i 0.993264 0.115870i \(-0.0369656\pi\)
−0.596979 + 0.802257i \(0.703632\pi\)
\(38\) −2.34372 3.26596i −0.380201 0.529809i
\(39\) 0 0
\(40\) −3.78818 + 5.83145i −0.598964 + 0.922033i
\(41\) 1.08062 0.190542i 0.168764 0.0297577i −0.0886273 0.996065i \(-0.528248\pi\)
0.257392 + 0.966307i \(0.417137\pi\)
\(42\) 0 0
\(43\) 6.20086 7.38990i 0.945622 1.12695i −0.0461498 0.998935i \(-0.514695\pi\)
0.991772 0.128014i \(-0.0408604\pi\)
\(44\) 0.00270032 + 0.116498i 0.000407088 + 0.0175628i
\(45\) 0 0
\(46\) −5.77779 5.64542i −0.851888 0.832371i
\(47\) 5.13304 1.86827i 0.748731 0.272516i 0.0606593 0.998159i \(-0.480680\pi\)
0.688072 + 0.725643i \(0.258457\pi\)
\(48\) 0 0
\(49\) −6.19317 + 5.19668i −0.884738 + 0.742383i
\(50\) −0.833190 + 1.21976i −0.117831 + 0.172500i
\(51\) 0 0
\(52\) 5.76594 7.20423i 0.799592 0.999048i
\(53\) 10.5337i 1.44692i 0.690367 + 0.723459i \(0.257449\pi\)
−0.690367 + 0.723459i \(0.742551\pi\)
\(54\) 0 0
\(55\) 0.143248i 0.0193155i
\(56\) −8.77421 + 6.60985i −1.17250 + 0.883279i
\(57\) 0 0
\(58\) −4.68477 3.20006i −0.615140 0.420188i
\(59\) −1.22551 + 1.02833i −0.159548 + 0.133877i −0.719067 0.694941i \(-0.755431\pi\)
0.559519 + 0.828818i \(0.310986\pi\)
\(60\) 0 0
\(61\) 1.98401 0.722122i 0.254027 0.0924583i −0.211868 0.977298i \(-0.567955\pi\)
0.465895 + 0.884840i \(0.345732\pi\)
\(62\) 7.53775 7.71449i 0.957295 0.979741i
\(63\) 0 0
\(64\) −6.63359 + 4.47163i −0.829199 + 0.558954i
\(65\) 7.29127 8.68939i 0.904370 1.07779i
\(66\) 0 0
\(67\) 7.44236 1.31229i 0.909229 0.160322i 0.300576 0.953758i \(-0.402821\pi\)
0.608653 + 0.793436i \(0.291710\pi\)
\(68\) 3.92169 + 1.32530i 0.475575 + 0.160716i
\(69\) 0 0
\(70\) −10.9713 + 7.87324i −1.31133 + 0.941032i
\(71\) 4.08357 + 7.07295i 0.484630 + 0.839404i 0.999844 0.0176575i \(-0.00562084\pi\)
−0.515214 + 0.857062i \(0.672288\pi\)
\(72\) 0 0
\(73\) 3.26625 5.65731i 0.382286 0.662138i −0.609103 0.793091i \(-0.708470\pi\)
0.991389 + 0.130953i \(0.0418037\pi\)
\(74\) 0.672885 + 6.78467i 0.0782212 + 0.788702i
\(75\) 0 0
\(76\) −1.11666 5.57424i −0.128089 0.639409i
\(77\) −0.0773972 + 0.212647i −0.00882023 + 0.0242334i
\(78\) 0 0
\(79\) 6.82395 + 1.20325i 0.767754 + 0.135376i 0.543790 0.839222i \(-0.316989\pi\)
0.223965 + 0.974597i \(0.428100\pi\)
\(80\) −8.27973 + 5.30644i −0.925702 + 0.593278i
\(81\) 0 0
\(82\) 1.50348 + 0.384241i 0.166032 + 0.0424323i
\(83\) −1.97880 + 11.2223i −0.217201 + 1.23181i 0.659844 + 0.751402i \(0.270622\pi\)
−0.877046 + 0.480407i \(0.840489\pi\)
\(84\) 0 0
\(85\) 4.78181 + 1.74043i 0.518660 + 0.188777i
\(86\) 12.2968 5.90853i 1.32600 0.637133i
\(87\) 0 0
\(88\) −0.0644136 + 0.151688i −0.00686651 + 0.0161700i
\(89\) −1.85844 1.07297i −0.196995 0.113735i 0.398258 0.917273i \(-0.369615\pi\)
−0.595253 + 0.803538i \(0.702948\pi\)
\(90\) 0 0
\(91\) 15.5186 8.95967i 1.62679 0.939228i
\(92\) −4.15494 10.6416i −0.433182 1.10946i
\(93\) 0 0
\(94\) 7.70299 + 0.584070i 0.794502 + 0.0602422i
\(95\) −1.21353 6.88226i −0.124505 0.706105i
\(96\) 0 0
\(97\) −3.94848 3.31317i −0.400907 0.336401i 0.419937 0.907553i \(-0.362052\pi\)
−0.820844 + 0.571152i \(0.806497\pi\)
\(98\) −11.0087 + 3.08694i −1.11205 + 0.311828i
\(99\) 0 0
\(100\) −1.78446 + 1.08616i −0.178446 + 0.108616i
\(101\) 4.52066 + 12.4204i 0.449822 + 1.23588i 0.932848 + 0.360270i \(0.117315\pi\)
−0.483026 + 0.875606i \(0.660462\pi\)
\(102\) 0 0
\(103\) −0.670352 0.798895i −0.0660518 0.0787174i 0.732007 0.681297i \(-0.238584\pi\)
−0.798059 + 0.602580i \(0.794139\pi\)
\(104\) 11.6282 5.92275i 1.14024 0.580774i
\(105\) 0 0
\(106\) −6.13885 + 13.5733i −0.596258 + 1.31835i
\(107\) −12.4850 −1.20697 −0.603485 0.797375i \(-0.706222\pi\)
−0.603485 + 0.797375i \(0.706222\pi\)
\(108\) 0 0
\(109\) −19.2545 −1.84425 −0.922123 0.386896i \(-0.873547\pi\)
−0.922123 + 0.386896i \(0.873547\pi\)
\(110\) −0.0834820 + 0.184582i −0.00795970 + 0.0175992i
\(111\) 0 0
\(112\) −15.1581 + 3.40370i −1.43231 + 0.321619i
\(113\) −3.35075 3.99326i −0.315212 0.375655i 0.585055 0.810994i \(-0.301073\pi\)
−0.900267 + 0.435339i \(0.856628\pi\)
\(114\) 0 0
\(115\) −4.80308 13.1963i −0.447889 1.23057i
\(116\) −4.17164 6.85364i −0.387327 0.636344i
\(117\) 0 0
\(118\) −2.17843 + 0.610848i −0.200541 + 0.0562331i
\(119\) 6.15809 + 5.16725i 0.564512 + 0.473681i
\(120\) 0 0
\(121\) −1.90954 10.8295i −0.173595 0.984504i
\(122\) 2.97734 + 0.225754i 0.269556 + 0.0204388i
\(123\) 0 0
\(124\) 14.2086 5.54766i 1.27597 0.498195i
\(125\) 8.42192 4.86240i 0.753279 0.434906i
\(126\) 0 0
\(127\) 1.67801 + 0.968801i 0.148900 + 0.0859672i 0.572599 0.819836i \(-0.305935\pi\)
−0.423699 + 0.905803i \(0.639269\pi\)
\(128\) −11.1537 + 1.89600i −0.985858 + 0.167584i
\(129\) 0 0
\(130\) 14.4592 6.94752i 1.26815 0.609338i
\(131\) 0.439512 + 0.159969i 0.0384003 + 0.0139766i 0.361149 0.932508i \(-0.382385\pi\)
−0.322749 + 0.946485i \(0.604607\pi\)
\(132\) 0 0
\(133\) 1.91706 10.8722i 0.166230 0.942740i
\(134\) 10.3546 + 2.64631i 0.894505 + 0.228607i
\(135\) 0 0
\(136\) 4.28094 + 3.99320i 0.367088 + 0.342414i
\(137\) −4.32365 0.762377i −0.369395 0.0651343i −0.0141305 0.999900i \(-0.504498\pi\)
−0.355264 + 0.934766i \(0.615609\pi\)
\(138\) 0 0
\(139\) 2.88929 7.93825i 0.245066 0.673313i −0.754784 0.655974i \(-0.772258\pi\)
0.999850 0.0173395i \(-0.00551960\pi\)
\(140\) −18.7255 + 3.75118i −1.58260 + 0.317033i
\(141\) 0 0
\(142\) 1.13991 + 11.4937i 0.0956592 + 0.964528i
\(143\) 0.134410 0.232805i 0.0112399 0.0194681i
\(144\) 0 0
\(145\) −4.93150 8.54161i −0.409539 0.709342i
\(146\) 7.50571 5.38623i 0.621177 0.445768i
\(147\) 0 0
\(148\) −3.08693 + 9.13455i −0.253744 + 0.750855i
\(149\) −10.0122 + 1.76542i −0.820229 + 0.144629i −0.567989 0.823036i \(-0.692278\pi\)
−0.252240 + 0.967665i \(0.581167\pi\)
\(150\) 0 0
\(151\) −1.53394 + 1.82808i −0.124830 + 0.148767i −0.824840 0.565367i \(-0.808735\pi\)
0.700009 + 0.714134i \(0.253179\pi\)
\(152\) 1.80969 7.83346i 0.146785 0.635378i
\(153\) 0 0
\(154\) −0.223657 + 0.228901i −0.0180228 + 0.0184454i
\(155\) 17.6197 6.41305i 1.41525 0.515109i
\(156\) 0 0
\(157\) −4.17177 + 3.50053i −0.332943 + 0.279373i −0.793898 0.608051i \(-0.791952\pi\)
0.460954 + 0.887424i \(0.347507\pi\)
\(158\) 8.09178 + 5.52731i 0.643748 + 0.439729i
\(159\) 0 0
\(160\) −13.7614 + 2.01236i −1.08793 + 0.159091i
\(161\) 22.1847i 1.74840i
\(162\) 0 0
\(163\) 9.76328i 0.764719i −0.924014 0.382360i \(-0.875112\pi\)
0.924014 0.382360i \(-0.124888\pi\)
\(164\) 1.71338 + 1.37131i 0.133793 + 0.107082i
\(165\) 0 0
\(166\) −9.08994 + 13.3073i −0.705516 + 1.03285i
\(167\) 3.55893 2.98630i 0.275399 0.231087i −0.494618 0.869110i \(-0.664692\pi\)
0.770017 + 0.638023i \(0.220248\pi\)
\(168\) 0 0
\(169\) −7.78701 + 2.83424i −0.599001 + 0.218018i
\(170\) 5.14731 + 5.02939i 0.394781 + 0.385736i
\(171\) 0 0
\(172\) 19.2885 0.447088i 1.47073 0.0340901i
\(173\) −0.566413 + 0.675025i −0.0430636 + 0.0513212i −0.787146 0.616766i \(-0.788442\pi\)
0.744083 + 0.668087i \(0.232887\pi\)
\(174\) 0 0
\(175\) −3.99515 + 0.704452i −0.302005 + 0.0532516i
\(176\) −0.171401 + 0.157919i −0.0129198 + 0.0119036i
\(177\) 0 0
\(178\) −1.76939 2.46565i −0.132622 0.184808i
\(179\) −6.34874 10.9963i −0.474527 0.821905i 0.525047 0.851073i \(-0.324048\pi\)
−0.999575 + 0.0291678i \(0.990714\pi\)
\(180\) 0 0
\(181\) −3.30529 + 5.72493i −0.245680 + 0.425530i −0.962323 0.271910i \(-0.912345\pi\)
0.716643 + 0.697441i \(0.245678\pi\)
\(182\) 25.2180 2.50105i 1.86929 0.185390i
\(183\) 0 0
\(184\) 0.847864 16.1337i 0.0625054 1.18939i
\(185\) −4.05389 + 11.1380i −0.298048 + 0.818880i
\(186\) 0 0
\(187\) 0.118764 + 0.0209412i 0.00868486 + 0.00153138i
\(188\) 9.58531 + 5.24176i 0.699081 + 0.382294i
\(189\) 0 0
\(190\) 2.44716 9.57538i 0.177535 0.694671i
\(191\) 4.42330 25.0858i 0.320058 1.81514i −0.222282 0.974982i \(-0.571350\pi\)
0.542340 0.840159i \(-0.317538\pi\)
\(192\) 0 0
\(193\) 19.3528 + 7.04384i 1.39305 + 0.507027i 0.926106 0.377263i \(-0.123135\pi\)
0.466939 + 0.884290i \(0.345357\pi\)
\(194\) −3.15697 6.57028i −0.226657 0.471719i
\(195\) 0 0
\(196\) −15.9844 2.43801i −1.14174 0.174143i
\(197\) 6.00833 + 3.46891i 0.428076 + 0.247150i 0.698526 0.715584i \(-0.253839\pi\)
−0.270451 + 0.962734i \(0.587173\pi\)
\(198\) 0 0
\(199\) −10.0244 + 5.78756i −0.710608 + 0.410270i −0.811286 0.584650i \(-0.801232\pi\)
0.100678 + 0.994919i \(0.467899\pi\)
\(200\) −2.93236 + 0.359619i −0.207349 + 0.0254289i
\(201\) 0 0
\(202\) −1.41327 + 18.6389i −0.0994375 + 1.31143i
\(203\) −2.70561 15.3443i −0.189897 1.07696i
\(204\) 0 0
\(205\) 2.06660 + 1.73408i 0.144338 + 0.121114i
\(206\) −0.398203 1.42009i −0.0277441 0.0989421i
\(207\) 0 0
\(208\) 18.4352 0.855080i 1.27825 0.0592891i
\(209\) −0.0566445 0.155629i −0.00391818 0.0107651i
\(210\) 0 0
\(211\) 9.71514 + 11.5781i 0.668818 + 0.797066i 0.988623 0.150417i \(-0.0480617\pi\)
−0.319805 + 0.947484i \(0.603617\pi\)
\(212\) −15.8205 + 13.9122i −1.08655 + 0.955496i
\(213\) 0 0
\(214\) −16.0876 7.27601i −1.09972 0.497378i
\(215\) 23.7173 1.61751
\(216\) 0 0
\(217\) 29.6210 2.01080
\(218\) −24.8104 11.2212i −1.68037 0.759993i
\(219\) 0 0
\(220\) −0.215142 + 0.189192i −0.0145049 + 0.0127553i
\(221\) −6.13829 7.31533i −0.412906 0.492083i
\(222\) 0 0
\(223\) −0.561441 1.54255i −0.0375969 0.103297i 0.919474 0.393151i \(-0.128615\pi\)
−0.957071 + 0.289855i \(0.906393\pi\)
\(224\) −21.5156 4.44802i −1.43757 0.297196i
\(225\) 0 0
\(226\) −1.99041 7.09828i −0.132400 0.472170i
\(227\) −20.9218 17.5555i −1.38863 1.16520i −0.965892 0.258947i \(-0.916625\pi\)
−0.422738 0.906252i \(-0.638931\pi\)
\(228\) 0 0
\(229\) −1.09700 6.22140i −0.0724918 0.411121i −0.999361 0.0357375i \(-0.988622\pi\)
0.926869 0.375384i \(-0.122489\pi\)
\(230\) 1.50156 19.8033i 0.0990102 1.30579i
\(231\) 0 0
\(232\) −1.38120 11.2624i −0.0906803 0.739414i
\(233\) −25.6785 + 14.8255i −1.68226 + 0.971251i −0.722099 + 0.691790i \(0.756822\pi\)
−0.960157 + 0.279461i \(0.909844\pi\)
\(234\) 0 0
\(235\) 11.6306 + 6.71490i 0.758693 + 0.438032i
\(236\) −3.16301 0.482437i −0.205894 0.0314040i
\(237\) 0 0
\(238\) 4.92365 + 10.2471i 0.319153 + 0.664221i
\(239\) 8.74459 + 3.18277i 0.565641 + 0.205876i 0.608982 0.793184i \(-0.291578\pi\)
−0.0433415 + 0.999060i \(0.513800\pi\)
\(240\) 0 0
\(241\) −2.44169 + 13.8475i −0.157283 + 0.891996i 0.799386 + 0.600818i \(0.205158\pi\)
−0.956669 + 0.291178i \(0.905953\pi\)
\(242\) 3.85071 15.0673i 0.247533 0.968561i
\(243\) 0 0
\(244\) 3.70490 + 2.02604i 0.237182 + 0.129704i
\(245\) −19.5745 3.45151i −1.25057 0.220509i
\(246\) 0 0
\(247\) −4.48545 + 12.3237i −0.285402 + 0.784136i
\(248\) 21.5416 + 1.13207i 1.36790 + 0.0718863i
\(249\) 0 0
\(250\) 13.6858 1.35732i 0.865566 0.0858444i
\(251\) 7.60386 13.1703i 0.479951 0.831300i −0.519784 0.854298i \(-0.673988\pi\)
0.999736 + 0.0229974i \(0.00732094\pi\)
\(252\) 0 0
\(253\) −0.166404 0.288220i −0.0104617 0.0181203i
\(254\) 1.59761 + 2.22626i 0.100243 + 0.139688i
\(255\) 0 0
\(256\) −15.4771 4.05708i −0.967318 0.253567i
\(257\) 6.97521 1.22992i 0.435102 0.0767202i 0.0481926 0.998838i \(-0.484654\pi\)
0.386909 + 0.922118i \(0.373543\pi\)
\(258\) 0 0
\(259\) −12.0358 + 14.3437i −0.747866 + 0.891272i
\(260\) 22.6803 0.525707i 1.40657 0.0326030i
\(261\) 0 0
\(262\) 0.473107 + 0.462268i 0.0292286 + 0.0285590i
\(263\) −1.86822 + 0.679976i −0.115199 + 0.0419291i −0.398977 0.916961i \(-0.630635\pi\)
0.283777 + 0.958890i \(0.408412\pi\)
\(264\) 0 0
\(265\) −19.8389 + 16.6468i −1.21869 + 1.02260i
\(266\) 8.80635 12.8922i 0.539952 0.790470i
\(267\) 0 0
\(268\) 11.8003 + 9.44440i 0.720817 + 0.576909i
\(269\) 1.18433i 0.0722097i −0.999348 0.0361048i \(-0.988505\pi\)
0.999348 0.0361048i \(-0.0114950\pi\)
\(270\) 0 0
\(271\) 10.9019i 0.662245i 0.943588 + 0.331122i \(0.107427\pi\)
−0.943588 + 0.331122i \(0.892573\pi\)
\(272\) 3.18906 + 7.64030i 0.193365 + 0.463261i
\(273\) 0 0
\(274\) −5.12696 3.50211i −0.309731 0.211570i
\(275\) −0.0466203 + 0.0391191i −0.00281131 + 0.00235897i
\(276\) 0 0
\(277\) 5.31629 1.93497i 0.319425 0.116261i −0.177331 0.984151i \(-0.556746\pi\)
0.496756 + 0.867890i \(0.334524\pi\)
\(278\) 8.34925 8.54502i 0.500755 0.512496i
\(279\) 0 0
\(280\) −26.3149 6.07928i −1.57262 0.363306i
\(281\) 7.96310 9.49005i 0.475039 0.566129i −0.474308 0.880359i \(-0.657302\pi\)
0.949347 + 0.314230i \(0.101746\pi\)
\(282\) 0 0
\(283\) −22.1972 + 3.91396i −1.31949 + 0.232661i −0.788665 0.614824i \(-0.789227\pi\)
−0.530820 + 0.847484i \(0.678116\pi\)
\(284\) −5.22946 + 15.4745i −0.310312 + 0.918244i
\(285\) 0 0
\(286\) 0.308869 0.221650i 0.0182638 0.0131064i
\(287\) 2.13088 + 3.69079i 0.125782 + 0.217860i
\(288\) 0 0
\(289\) −6.35799 + 11.0124i −0.374000 + 0.647786i
\(290\) −1.37661 13.8803i −0.0808372 0.815079i
\(291\) 0 0
\(292\) 12.8105 2.56626i 0.749677 0.150179i
\(293\) 8.57916 23.5710i 0.501200 1.37703i −0.388905 0.921278i \(-0.627147\pi\)
0.890104 0.455757i \(-0.150631\pi\)
\(294\) 0 0
\(295\) −3.87344 0.682991i −0.225520 0.0397653i
\(296\) −9.30111 + 9.97134i −0.540616 + 0.579572i
\(297\) 0 0
\(298\) −13.9301 3.56007i −0.806946 0.206229i
\(299\) −4.57628 + 25.9534i −0.264653 + 1.50092i
\(300\) 0 0
\(301\) 35.2077 + 12.8145i 2.02934 + 0.738618i
\(302\) −3.04193 + 1.46162i −0.175043 + 0.0841070i
\(303\) 0 0
\(304\) 6.89707 9.03917i 0.395574 0.518432i
\(305\) 4.49542 + 2.59543i 0.257407 + 0.148614i
\(306\) 0 0
\(307\) −7.99858 + 4.61798i −0.456503 + 0.263562i −0.710573 0.703624i \(-0.751564\pi\)
0.254070 + 0.967186i \(0.418231\pi\)
\(308\) −0.421593 + 0.164608i −0.0240225 + 0.00937942i
\(309\) 0 0
\(310\) 26.4413 + 2.00488i 1.50177 + 0.113870i
\(311\) 4.52048 + 25.6369i 0.256333 + 1.45373i 0.792629 + 0.609705i \(0.208712\pi\)
−0.536296 + 0.844030i \(0.680177\pi\)
\(312\) 0 0
\(313\) 17.1279 + 14.3720i 0.968125 + 0.812354i 0.982256 0.187547i \(-0.0600536\pi\)
−0.0141304 + 0.999900i \(0.504498\pi\)
\(314\) −7.41558 + 2.07939i −0.418486 + 0.117347i
\(315\) 0 0
\(316\) 7.20547 + 11.8380i 0.405340 + 0.665938i
\(317\) −3.98568 10.9506i −0.223858 0.615045i 0.776019 0.630709i \(-0.217236\pi\)
−0.999877 + 0.0156642i \(0.995014\pi\)
\(318\) 0 0
\(319\) −0.150246 0.179056i −0.00841215 0.0100252i
\(320\) −18.9050 5.42682i −1.05682 0.303369i
\(321\) 0 0
\(322\) 12.9288 28.5862i 0.720496 1.59305i
\(323\) −5.88335 −0.327358
\(324\) 0 0
\(325\) 4.81914 0.267318
\(326\) 5.68986 12.5805i 0.315132 0.696769i
\(327\) 0 0
\(328\) 1.40861 + 2.76554i 0.0777774 + 0.152701i
\(329\) 13.6371 + 16.2521i 0.751840 + 0.896008i
\(330\) 0 0
\(331\) 1.50096 + 4.12385i 0.0825001 + 0.226667i 0.974083 0.226190i \(-0.0726270\pi\)
−0.891583 + 0.452857i \(0.850405\pi\)
\(332\) −19.4681 + 11.8498i −1.06845 + 0.650340i
\(333\) 0 0
\(334\) 6.32623 1.77392i 0.346156 0.0970648i
\(335\) 14.2329 + 11.9428i 0.777627 + 0.652507i
\(336\) 0 0
\(337\) −5.84195 33.1313i −0.318231 1.80478i −0.553502 0.832848i \(-0.686709\pi\)
0.235271 0.971930i \(-0.424402\pi\)
\(338\) −11.6857 0.886055i −0.635619 0.0481951i
\(339\) 0 0
\(340\) 3.70155 + 9.48038i 0.200745 + 0.514146i
\(341\) 0.384831 0.222182i 0.0208398 0.0120318i
\(342\) 0 0
\(343\) −3.64812 2.10624i −0.196980 0.113726i
\(344\) 25.1148 + 10.6649i 1.35410 + 0.575011i
\(345\) 0 0
\(346\) −1.12324 + 0.539710i −0.0603860 + 0.0290150i
\(347\) −14.0672 5.12003i −0.755165 0.274858i −0.0643876 0.997925i \(-0.520509\pi\)
−0.690778 + 0.723067i \(0.742732\pi\)
\(348\) 0 0
\(349\) −1.84715 + 10.4757i −0.0988756 + 0.560752i 0.894615 + 0.446838i \(0.147450\pi\)
−0.993491 + 0.113914i \(0.963661\pi\)
\(350\) −5.55850 1.42057i −0.297114 0.0759328i
\(351\) 0 0
\(352\) −0.312891 + 0.103597i −0.0166772 + 0.00552176i
\(353\) 10.8334 + 1.91021i 0.576601 + 0.101670i 0.454341 0.890828i \(-0.349875\pi\)
0.122260 + 0.992498i \(0.460986\pi\)
\(354\) 0 0
\(355\) −6.86755 + 18.8684i −0.364492 + 1.00143i
\(356\) −0.843023 4.20828i −0.0446802 0.223039i
\(357\) 0 0
\(358\) −1.77223 17.8693i −0.0936650 0.944421i
\(359\) 8.75833 15.1699i 0.462247 0.800636i −0.536825 0.843693i \(-0.680377\pi\)
0.999073 + 0.0430578i \(0.0137100\pi\)
\(360\) 0 0
\(361\) −5.46012 9.45721i −0.287375 0.497748i
\(362\) −7.59541 + 5.45061i −0.399206 + 0.286477i
\(363\) 0 0
\(364\) 33.9523 + 11.4739i 1.77959 + 0.601393i
\(365\) 15.8165 2.78888i 0.827876 0.145977i
\(366\) 0 0
\(367\) 3.34300 3.98403i 0.174503 0.207965i −0.671703 0.740821i \(-0.734437\pi\)
0.846206 + 0.532856i \(0.178881\pi\)
\(368\) 10.4949 20.2950i 0.547085 1.05795i
\(369\) 0 0
\(370\) −11.7146 + 11.9893i −0.609015 + 0.623295i
\(371\) −38.4445 + 13.9927i −1.99594 + 0.726463i
\(372\) 0 0
\(373\) −12.1581 + 10.2018i −0.629522 + 0.528232i −0.900780 0.434275i \(-0.857005\pi\)
0.271259 + 0.962507i \(0.412560\pi\)
\(374\) 0.140829 + 0.0961971i 0.00728209 + 0.00497423i
\(375\) 0 0
\(376\) 9.29638 + 12.3404i 0.479424 + 0.636408i
\(377\) 18.5090i 0.953262i
\(378\) 0 0
\(379\) 13.3564i 0.686073i −0.939322 0.343037i \(-0.888544\pi\)
0.939322 0.343037i \(-0.111456\pi\)
\(380\) 8.73364 10.9122i 0.448026 0.559785i
\(381\) 0 0
\(382\) 20.3191 29.7465i 1.03962 1.52196i
\(383\) 6.19455 5.19784i 0.316527 0.265597i −0.470657 0.882316i \(-0.655983\pi\)
0.787183 + 0.616719i \(0.211539\pi\)
\(384\) 0 0
\(385\) −0.522806 + 0.190286i −0.0266446 + 0.00969786i
\(386\) 20.8321 + 20.3548i 1.06032 + 1.03603i
\(387\) 0 0
\(388\) −0.238882 10.3060i −0.0121274 0.523207i
\(389\) −12.6325 + 15.0548i −0.640493 + 0.763310i −0.984448 0.175676i \(-0.943789\pi\)
0.343955 + 0.938986i \(0.388233\pi\)
\(390\) 0 0
\(391\) −11.6430 + 2.05297i −0.588811 + 0.103823i
\(392\) −19.1758 12.4569i −0.968526 0.629167i
\(393\) 0 0
\(394\) 5.72043 + 7.97141i 0.288191 + 0.401594i
\(395\) 8.51795 + 14.7535i 0.428585 + 0.742330i
\(396\) 0 0
\(397\) 12.3726 21.4299i 0.620961 1.07554i −0.368346 0.929689i \(-0.620076\pi\)
0.989307 0.145848i \(-0.0465910\pi\)
\(398\) −16.2898 + 1.61557i −0.816533 + 0.0809814i
\(399\) 0 0
\(400\) −3.98808 1.24554i −0.199404 0.0622769i
\(401\) −4.16467 + 11.4423i −0.207974 + 0.571403i −0.999195 0.0401276i \(-0.987224\pi\)
0.791221 + 0.611530i \(0.209446\pi\)
\(402\) 0 0
\(403\) −34.6528 6.11023i −1.72618 0.304372i
\(404\) −12.6835 + 23.1935i −0.631026 + 1.15392i
\(405\) 0 0
\(406\) 5.45604 21.3487i 0.270779 1.05952i
\(407\) −0.0487771 + 0.276629i −0.00241779 + 0.0137120i
\(408\) 0 0
\(409\) −29.2090 10.6312i −1.44429 0.525679i −0.503301 0.864111i \(-0.667881\pi\)
−0.940991 + 0.338432i \(0.890104\pi\)
\(410\) 1.65233 + 3.43883i 0.0816028 + 0.169832i
\(411\) 0 0
\(412\) 0.314493 2.06192i 0.0154940 0.101583i
\(413\) −5.38099 3.10671i −0.264781 0.152871i
\(414\) 0 0
\(415\) −24.2629 + 14.0082i −1.19102 + 0.687635i
\(416\) 24.2531 + 9.64188i 1.18910 + 0.472732i
\(417\) 0 0
\(418\) 0.0177085 0.233548i 0.000866151 0.0114232i
\(419\) 6.40156 + 36.3051i 0.312737 + 1.77362i 0.584639 + 0.811293i \(0.301236\pi\)
−0.271903 + 0.962325i \(0.587653\pi\)
\(420\) 0 0
\(421\) −28.2218 23.6809i −1.37544 1.15413i −0.970864 0.239632i \(-0.922973\pi\)
−0.404580 0.914502i \(-0.632582\pi\)
\(422\) 5.77100 + 20.5807i 0.280928 + 1.00185i
\(423\) 0 0
\(424\) −28.4933 + 8.70677i −1.38376 + 0.422838i
\(425\) 0.739420 + 2.03154i 0.0358672 + 0.0985442i
\(426\) 0 0
\(427\) 5.27101 + 6.28174i 0.255082 + 0.303995i
\(428\) −16.4893 18.7510i −0.797042 0.906366i
\(429\) 0 0
\(430\) 30.5610 + 13.8220i 1.47378 + 0.666556i
\(431\) −11.3781 −0.548063 −0.274032 0.961721i \(-0.588357\pi\)
−0.274032 + 0.961721i \(0.588357\pi\)
\(432\) 0 0
\(433\) −7.27646 −0.349684 −0.174842 0.984596i \(-0.555941\pi\)
−0.174842 + 0.984596i \(0.555941\pi\)
\(434\) 38.1682 + 17.2625i 1.83213 + 0.828629i
\(435\) 0 0
\(436\) −25.4301 28.9181i −1.21788 1.38493i
\(437\) 10.4365 + 12.4377i 0.499244 + 0.594976i
\(438\) 0 0
\(439\) 10.1794 + 27.9677i 0.485836 + 1.33482i 0.904419 + 0.426645i \(0.140305\pi\)
−0.418583 + 0.908179i \(0.637473\pi\)
\(440\) −0.387479 + 0.118403i −0.0184723 + 0.00564464i
\(441\) 0 0
\(442\) −3.64627 13.0035i −0.173436 0.618512i
\(443\) −13.1764 11.0563i −0.626032 0.525303i 0.273661 0.961826i \(-0.411765\pi\)
−0.899693 + 0.436523i \(0.856210\pi\)
\(444\) 0 0
\(445\) −0.916157 5.19578i −0.0434300 0.246304i
\(446\) 0.175521 2.31485i 0.00831114 0.109611i
\(447\) 0 0
\(448\) −25.1318 18.2704i −1.18737 0.863195i
\(449\) 18.8763 10.8982i 0.890826 0.514319i 0.0166137 0.999862i \(-0.494711\pi\)
0.874213 + 0.485543i \(0.161378\pi\)
\(450\) 0 0
\(451\) 0.0553680 + 0.0319667i 0.00260718 + 0.00150525i
\(452\) 1.57199 10.3065i 0.0739402 0.484776i
\(453\) 0 0
\(454\) −16.7278 34.8140i −0.785077 1.63390i
\(455\) 41.3989 + 15.0680i 1.94081 + 0.706396i
\(456\) 0 0
\(457\) 1.67697 9.51058i 0.0784454 0.444886i −0.920134 0.391604i \(-0.871920\pi\)
0.998579 0.0532825i \(-0.0169684\pi\)
\(458\) 2.21217 8.65590i 0.103368 0.404464i
\(459\) 0 0
\(460\) 13.4758 24.6425i 0.628314 1.14896i
\(461\) 32.2880 + 5.69324i 1.50380 + 0.265161i 0.864044 0.503417i \(-0.167924\pi\)
0.639757 + 0.768578i \(0.279035\pi\)
\(462\) 0 0
\(463\) 13.1130 36.0275i 0.609411 1.67434i −0.122105 0.992517i \(-0.538965\pi\)
0.731516 0.681825i \(-0.238813\pi\)
\(464\) 4.78377 15.3172i 0.222081 0.711081i
\(465\) 0 0
\(466\) −41.7281 + 4.13848i −1.93302 + 0.191711i
\(467\) −5.79199 + 10.0320i −0.268021 + 0.464227i −0.968351 0.249593i \(-0.919703\pi\)
0.700329 + 0.713820i \(0.253036\pi\)
\(468\) 0 0
\(469\) 14.6756 + 25.4189i 0.677657 + 1.17374i
\(470\) 11.0733 + 15.4306i 0.510771 + 0.711759i
\(471\) 0 0
\(472\) −3.79455 2.46499i −0.174658 0.113460i
\(473\) 0.553532 0.0976026i 0.0254514 0.00448777i
\(474\) 0 0
\(475\) 1.90845 2.27440i 0.0875658 0.104357i
\(476\) 0.372564 + 16.0733i 0.0170764 + 0.736720i
\(477\) 0 0
\(478\) 9.41300 + 9.19735i 0.430541 + 0.420677i
\(479\) −16.8443 + 6.13082i −0.769635 + 0.280124i −0.696844 0.717223i \(-0.745413\pi\)
−0.0727912 + 0.997347i \(0.523191\pi\)
\(480\) 0 0
\(481\) 17.0392 14.2976i 0.776919 0.651912i
\(482\) −11.2163 + 16.4202i −0.510888 + 0.747922i
\(483\) 0 0
\(484\) 13.7428 17.1708i 0.624671 0.780493i
\(485\) 12.6723i 0.575421i
\(486\) 0 0
\(487\) 22.6464i 1.02621i 0.858327 + 0.513104i \(0.171504\pi\)
−0.858327 + 0.513104i \(0.828496\pi\)
\(488\) 3.59322 + 4.76980i 0.162657 + 0.215919i
\(489\) 0 0
\(490\) −23.2113 15.8551i −1.04858 0.716261i
\(491\) −19.6925 + 16.5240i −0.888712 + 0.745718i −0.967951 0.251137i \(-0.919195\pi\)
0.0792391 + 0.996856i \(0.474751\pi\)
\(492\) 0 0
\(493\) −7.80260 + 2.83992i −0.351412 + 0.127903i
\(494\) −12.9617 + 13.2656i −0.583176 + 0.596850i
\(495\) 0 0
\(496\) 27.0978 + 14.0128i 1.21673 + 0.629192i
\(497\) −20.3894 + 24.2991i −0.914589 + 1.08996i
\(498\) 0 0
\(499\) −7.11944 + 1.25535i −0.318710 + 0.0561971i −0.330715 0.943731i \(-0.607290\pi\)
0.0120049 + 0.999928i \(0.496179\pi\)
\(500\) 18.4259 + 6.22685i 0.824030 + 0.278473i
\(501\) 0 0
\(502\) 17.4734 12.5392i 0.779874 0.559652i
\(503\) −19.3621 33.5362i −0.863314 1.49530i −0.868712 0.495318i \(-0.835051\pi\)
0.00539768 0.999985i \(-0.498282\pi\)
\(504\) 0 0
\(505\) −16.2480 + 28.1424i −0.723027 + 1.25232i
\(506\) −0.0464510 0.468364i −0.00206500 0.0208213i
\(507\) 0 0
\(508\) 0.761176 + 3.79971i 0.0337717 + 0.168585i
\(509\) 6.53124 17.9444i 0.289492 0.795373i −0.706646 0.707567i \(-0.749793\pi\)
0.996138 0.0878050i \(-0.0279852\pi\)
\(510\) 0 0
\(511\) 24.9861 + 4.40572i 1.10532 + 0.194898i
\(512\) −17.5786 14.2475i −0.776873 0.629657i
\(513\) 0 0
\(514\) 9.70469 + 2.48021i 0.428056 + 0.109397i
\(515\) 0.445232 2.52504i 0.0196193 0.111266i
\(516\) 0 0
\(517\) 0.299076 + 0.108855i 0.0131533 + 0.00478743i
\(518\) −23.8679 + 11.4683i −1.04870 + 0.503890i
\(519\) 0 0
\(520\) 29.5311 + 12.5402i 1.29503 + 0.549926i
\(521\) −19.0779 11.0146i −0.835817 0.482559i 0.0200233 0.999800i \(-0.493626\pi\)
−0.855840 + 0.517240i \(0.826959\pi\)
\(522\) 0 0
\(523\) −3.75661 + 2.16888i −0.164265 + 0.0948384i −0.579879 0.814703i \(-0.696900\pi\)
0.415614 + 0.909541i \(0.363567\pi\)
\(524\) 0.340222 + 0.871374i 0.0148627 + 0.0380661i
\(525\) 0 0
\(526\) −2.80357 0.212578i −0.122242 0.00926883i
\(527\) −2.74112 15.5457i −0.119405 0.677180i
\(528\) 0 0
\(529\) 7.37455 + 6.18798i 0.320632 + 0.269043i
\(530\) −35.2648 + 9.88853i −1.53181 + 0.429530i
\(531\) 0 0
\(532\) 18.8608 11.4801i 0.817717 0.497724i
\(533\) −1.73152 4.75732i −0.0750005 0.206062i
\(534\) 0 0
\(535\) −19.7304 23.5138i −0.853021 1.01659i
\(536\) 9.70126 + 19.0466i 0.419030 + 0.822687i
\(537\) 0 0
\(538\) 0.690203 1.52607i 0.0297568 0.0657934i
\(539\) −0.471048 −0.0202895
\(540\) 0 0
\(541\) −2.88802 −0.124166 −0.0620829 0.998071i \(-0.519774\pi\)
−0.0620829 + 0.998071i \(0.519774\pi\)
\(542\) −6.35344 + 14.0477i −0.272903 + 0.603400i
\(543\) 0 0
\(544\) −0.343352 + 11.7034i −0.0147211 + 0.501781i
\(545\) −30.4285 36.2633i −1.30341 1.55335i
\(546\) 0 0
\(547\) 7.98695 + 21.9440i 0.341497 + 0.938256i 0.984961 + 0.172779i \(0.0552747\pi\)
−0.643463 + 0.765477i \(0.722503\pi\)
\(548\) −4.56539 7.50054i −0.195024 0.320407i
\(549\) 0 0
\(550\) −0.0828705 + 0.0232375i −0.00353361 + 0.000990852i
\(551\) 8.73537 + 7.32985i 0.372139 + 0.312262i
\(552\) 0 0
\(553\) 4.67328 + 26.5035i 0.198728 + 1.12704i
\(554\) 7.97799 + 0.604922i 0.338952 + 0.0257007i
\(555\) 0 0
\(556\) 15.7383 6.14492i 0.667454 0.260603i
\(557\) −7.72227 + 4.45845i −0.327203 + 0.188911i −0.654599 0.755977i \(-0.727162\pi\)
0.327396 + 0.944887i \(0.393829\pi\)
\(558\) 0 0
\(559\) −38.5452 22.2541i −1.63029 0.941247i
\(560\) −30.3653 23.1693i −1.28317 0.979082i
\(561\) 0 0
\(562\) 15.7915 7.58768i 0.666124 0.320067i
\(563\) −20.5853 7.49242i −0.867565 0.315768i −0.130385 0.991463i \(-0.541621\pi\)
−0.737181 + 0.675696i \(0.763843\pi\)
\(564\) 0 0
\(565\) 2.22549 12.6214i 0.0936269 0.530985i
\(566\) −30.8832 7.89275i −1.29812 0.331757i
\(567\) 0 0
\(568\) −15.7567 + 16.8921i −0.661136 + 0.708777i
\(569\) 19.5135 + 3.44076i 0.818048 + 0.144244i 0.566986 0.823727i \(-0.308109\pi\)
0.251062 + 0.967971i \(0.419220\pi\)
\(570\) 0 0
\(571\) −9.39781 + 25.8203i −0.393286 + 1.08055i 0.572205 + 0.820111i \(0.306088\pi\)
−0.965491 + 0.260435i \(0.916134\pi\)
\(572\) 0.527166 0.105604i 0.0220419 0.00441555i
\(573\) 0 0
\(574\) 0.594826 + 5.99761i 0.0248275 + 0.250335i
\(575\) 2.98313 5.16693i 0.124405 0.215476i
\(576\) 0 0
\(577\) 1.20328 + 2.08414i 0.0500931 + 0.0867638i 0.889985 0.455990i \(-0.150715\pi\)
−0.839892 + 0.542754i \(0.817382\pi\)
\(578\) −14.6104 + 10.4847i −0.607713 + 0.436106i
\(579\) 0 0
\(580\) 6.31534 18.6877i 0.262230 0.775966i
\(581\) −43.5863 + 7.68543i −1.80826 + 0.318845i
\(582\) 0 0
\(583\) −0.394508 + 0.470157i −0.0163389 + 0.0194719i
\(584\) 18.0025 + 4.15895i 0.744951 + 0.172099i
\(585\) 0 0
\(586\) 24.7914 25.3727i 1.02412 1.04814i
\(587\) −12.1284 + 4.41436i −0.500591 + 0.182200i −0.579960 0.814645i \(-0.696932\pi\)
0.0793690 + 0.996845i \(0.474709\pi\)
\(588\) 0 0
\(589\) −16.6068 + 13.9348i −0.684271 + 0.574172i
\(590\) −4.59309 3.13743i −0.189095 0.129166i
\(591\) 0 0
\(592\) −17.7961 + 7.42808i −0.731414 + 0.305292i
\(593\) 27.2738i 1.12000i 0.828493 + 0.560000i \(0.189199\pi\)
−0.828493 + 0.560000i \(0.810801\pi\)
\(594\) 0 0
\(595\) 19.7639i 0.810242i
\(596\) −15.8749 12.7055i −0.650260 0.520438i
\(597\) 0 0
\(598\) −21.0219 + 30.7753i −0.859649 + 1.25849i
\(599\) 15.6515 13.1332i 0.639502 0.536606i −0.264363 0.964423i \(-0.585162\pi\)
0.903865 + 0.427817i \(0.140717\pi\)
\(600\) 0 0
\(601\) 41.2928 15.0293i 1.68437 0.613059i 0.690469 0.723362i \(-0.257404\pi\)
0.993898 + 0.110303i \(0.0351822\pi\)
\(602\) 37.8988 + 37.0306i 1.54464 + 1.50925i
\(603\) 0 0
\(604\) −4.77149 + 0.110598i −0.194149 + 0.00450019i
\(605\) 17.3783 20.7106i 0.706528 0.842007i
\(606\) 0 0
\(607\) 37.1173 6.54477i 1.50654 0.265644i 0.641414 0.767195i \(-0.278348\pi\)
0.865128 + 0.501550i \(0.167237\pi\)
\(608\) 14.1551 7.62796i 0.574065 0.309355i
\(609\) 0 0
\(610\) 4.28002 + 5.96419i 0.173293 + 0.241483i
\(611\) −12.6013 21.8260i −0.509792 0.882986i
\(612\) 0 0
\(613\) 1.70832 2.95890i 0.0689984 0.119509i −0.829462 0.558563i \(-0.811353\pi\)
0.898461 + 0.439054i \(0.144686\pi\)
\(614\) −12.9979 + 1.28909i −0.524551 + 0.0520235i
\(615\) 0 0
\(616\) −0.639175 0.0335902i −0.0257531 0.00135339i
\(617\) −9.87741 + 27.1380i −0.397649 + 1.09253i 0.565777 + 0.824559i \(0.308576\pi\)
−0.963426 + 0.267974i \(0.913646\pi\)
\(618\) 0 0
\(619\) −17.7070 3.12223i −0.711705 0.125493i −0.193937 0.981014i \(-0.562126\pi\)
−0.517768 + 0.855521i \(0.673237\pi\)
\(620\) 32.9026 + 17.9929i 1.32140 + 0.722612i
\(621\) 0 0
\(622\) −9.11582 + 35.6689i −0.365511 + 1.43019i
\(623\) 1.44729 8.20800i 0.0579845 0.328847i
\(624\) 0 0
\(625\) 27.3747 + 9.96358i 1.09499 + 0.398543i
\(626\) 13.6944 + 28.5009i 0.547340 + 1.13912i
\(627\) 0 0
\(628\) −10.7672 1.64226i −0.429658 0.0655334i
\(629\) 8.64162 + 4.98924i 0.344564 + 0.198934i
\(630\) 0 0
\(631\) −10.4847 + 6.05333i −0.417388 + 0.240979i −0.693959 0.720014i \(-0.744135\pi\)
0.276571 + 0.960994i \(0.410802\pi\)
\(632\) 2.38569 + 19.4530i 0.0948975 + 0.773801i
\(633\) 0 0
\(634\) 1.24602 16.4332i 0.0494860 0.652644i
\(635\) 0.827209 + 4.69134i 0.0328268 + 0.186170i
\(636\) 0 0
\(637\) 28.5738 + 23.9762i 1.13213 + 0.949973i
\(638\) −0.0892492 0.318284i −0.00353341 0.0126010i
\(639\) 0 0
\(640\) −21.1974 18.0102i −0.837901 0.711916i
\(641\) 6.57776 + 18.0722i 0.259806 + 0.713811i 0.999179 + 0.0405147i \(0.0128998\pi\)
−0.739373 + 0.673296i \(0.764878\pi\)
\(642\) 0 0
\(643\) 1.83910 + 2.19176i 0.0725272 + 0.0864345i 0.801088 0.598547i \(-0.204255\pi\)
−0.728561 + 0.684981i \(0.759810\pi\)
\(644\) 33.3190 29.3001i 1.31295 1.15459i
\(645\) 0 0
\(646\) −7.58100 3.42870i −0.298270 0.134901i
\(647\) 36.4238 1.43197 0.715984 0.698117i \(-0.245978\pi\)
0.715984 + 0.698117i \(0.245978\pi\)
\(648\) 0 0
\(649\) −0.0932118 −0.00365888
\(650\) 6.20971 + 2.80850i 0.243565 + 0.110158i
\(651\) 0 0
\(652\) 14.6633 12.8947i 0.574261 0.504995i
\(653\) 14.0331 + 16.7240i 0.549157 + 0.654459i 0.967214 0.253961i \(-0.0817335\pi\)
−0.418058 + 0.908420i \(0.637289\pi\)
\(654\) 0 0
\(655\) 0.393294 + 1.08057i 0.0153673 + 0.0422212i
\(656\) 0.203364 + 4.38445i 0.00794001 + 0.171184i
\(657\) 0 0
\(658\) 8.10075 + 28.8892i 0.315800 + 1.12622i
\(659\) −0.253500 0.212712i −0.00987497 0.00828609i 0.637837 0.770172i \(-0.279829\pi\)
−0.647712 + 0.761885i \(0.724274\pi\)
\(660\) 0 0
\(661\) 4.11198 + 23.3202i 0.159938 + 0.907052i 0.954132 + 0.299387i \(0.0967822\pi\)
−0.794194 + 0.607664i \(0.792107\pi\)
\(662\) −0.469238 + 6.18852i −0.0182374 + 0.240524i
\(663\) 0 0
\(664\) −31.9915 + 3.92338i −1.24151 + 0.152257i
\(665\) 23.5059 13.5712i 0.911521 0.526267i
\(666\) 0 0
\(667\) 19.8448 + 11.4574i 0.768393 + 0.443632i
\(668\) 9.18549 + 1.40101i 0.355397 + 0.0542068i
\(669\) 0 0
\(670\) 11.3798 + 23.6836i 0.439640 + 0.914979i
\(671\) 0.115598 + 0.0420744i 0.00446262 + 0.00162426i
\(672\) 0 0
\(673\) 0.640167 3.63057i 0.0246766 0.139948i −0.969980 0.243183i \(-0.921808\pi\)
0.994657 + 0.103235i \(0.0329194\pi\)
\(674\) 11.7806 46.0960i 0.453774 1.77555i
\(675\) 0 0
\(676\) −14.5413 7.95194i −0.559280 0.305844i
\(677\) 9.40523 + 1.65840i 0.361473 + 0.0637374i 0.351435 0.936212i \(-0.385694\pi\)
0.0100375 + 0.999950i \(0.496805\pi\)
\(678\) 0 0
\(679\) 6.84691 18.8117i 0.262760 0.721928i
\(680\) −0.755345 + 14.3732i −0.0289662 + 0.551185i
\(681\) 0 0
\(682\) 0.625358 0.0620213i 0.0239462 0.00237492i
\(683\) −14.0206 + 24.2843i −0.536482 + 0.929214i 0.462608 + 0.886563i \(0.346914\pi\)
−0.999090 + 0.0426510i \(0.986420\pi\)
\(684\) 0 0
\(685\) −5.39697 9.34783i −0.206208 0.357162i
\(686\) −3.47331 4.84006i −0.132612 0.184794i
\(687\) 0 0
\(688\) 26.1464 + 28.3786i 0.996822 + 1.08193i
\(689\) 47.8617 8.43931i 1.82339 0.321512i
\(690\) 0 0
\(691\) −26.0130 + 31.0011i −0.989581 + 1.17934i −0.00579604 + 0.999983i \(0.501845\pi\)
−0.983785 + 0.179353i \(0.942599\pi\)
\(692\) −1.76189 + 0.0408389i −0.0669771 + 0.00155246i
\(693\) 0 0
\(694\) −15.1424 14.7955i −0.574798 0.561630i
\(695\) 19.5166 7.10348i 0.740309 0.269450i
\(696\) 0 0
\(697\) 1.73981 1.45987i 0.0658998 0.0552965i
\(698\) −8.48519 + 12.4220i −0.321169 + 0.470180i
\(699\) 0 0
\(700\) −6.33453 5.06987i −0.239423 0.191623i
\(701\) 13.2691i 0.501165i −0.968095 0.250583i \(-0.919378\pi\)
0.968095 0.250583i \(-0.0806222\pi\)
\(702\) 0 0
\(703\) 13.7037i 0.516846i
\(704\) −0.463551 0.0488565i −0.0174708 0.00184135i
\(705\) 0 0
\(706\) 12.8461 + 8.77488i 0.483470 + 0.330247i
\(707\) −39.3252 + 32.9977i −1.47898 + 1.24101i
\(708\) 0 0
\(709\) −12.4318 + 4.52479i −0.466885 + 0.169932i −0.564741 0.825268i \(-0.691024\pi\)
0.0978558 + 0.995201i \(0.468802\pi\)
\(710\) −19.8454 + 20.3107i −0.744784 + 0.762247i
\(711\) 0 0
\(712\) 1.36623 5.91389i 0.0512016 0.221632i
\(713\) −28.0019 + 33.3713i −1.04868 + 1.24977i
\(714\) 0 0
\(715\) 0.650869 0.114766i 0.0243411 0.00429200i
\(716\) 8.13027 24.0583i 0.303843 0.899102i
\(717\) 0 0
\(718\) 20.1263 14.4430i 0.751106 0.539008i
\(719\) 20.7715 + 35.9773i 0.774647 + 1.34173i 0.934992 + 0.354668i \(0.115406\pi\)
−0.160345 + 0.987061i \(0.551261\pi\)
\(720\) 0 0
\(721\) 2.02522 3.50779i 0.0754232 0.130637i
\(722\) −1.52417 15.3682i −0.0567237 0.571944i
\(723\) 0 0
\(724\) −12.9636 + 2.59693i −0.481788 + 0.0965141i
\(725\) 1.43316 3.93757i 0.0532262 0.146238i
\(726\) 0 0
\(727\) 33.7689 + 5.95436i 1.25242 + 0.220835i 0.760230 0.649654i \(-0.225086\pi\)
0.492188 + 0.870489i \(0.336197\pi\)
\(728\) 37.0626 + 34.5714i 1.37363 + 1.28130i
\(729\) 0 0
\(730\) 22.0058 + 5.62396i 0.814470 + 0.208152i
\(731\) 3.46721 19.6635i 0.128239 0.727282i
\(732\) 0 0
\(733\) −20.5596 7.48310i −0.759388 0.276395i −0.0668372 0.997764i \(-0.521291\pi\)
−0.692551 + 0.721369i \(0.743513\pi\)
\(734\) 6.62944 3.18539i 0.244697 0.117575i
\(735\) 0 0
\(736\) 25.3508 20.0349i 0.934441 0.738495i
\(737\) 0.381326 + 0.220159i 0.0140463 + 0.00810965i
\(738\) 0 0
\(739\) 23.8855 13.7903i 0.878644 0.507285i 0.00843293 0.999964i \(-0.497316\pi\)
0.870211 + 0.492679i \(0.163982\pi\)
\(740\) −22.0821 + 8.62179i −0.811753 + 0.316943i
\(741\) 0 0
\(742\) −57.6925 4.37446i −2.11796 0.160592i
\(743\) −3.66802 20.8024i −0.134567 0.763165i −0.975161 0.221499i \(-0.928905\pi\)
0.840594 0.541666i \(-0.182206\pi\)
\(744\) 0 0
\(745\) −19.1475 16.0666i −0.701509 0.588636i
\(746\) −21.6118 + 6.06011i −0.791263 + 0.221876i
\(747\) 0 0
\(748\) 0.125404 + 0.206027i 0.00458521 + 0.00753311i
\(749\) −16.5847 45.5660i −0.605991 1.66495i
\(750\) 0 0
\(751\) 9.82151 + 11.7048i 0.358392 + 0.427115i 0.914871 0.403747i \(-0.132292\pi\)
−0.556479 + 0.830862i \(0.687848\pi\)
\(752\) 4.78711 + 21.3190i 0.174568 + 0.777425i
\(753\) 0 0
\(754\) −10.7867 + 23.8498i −0.392828 + 0.868559i
\(755\) −5.86707 −0.213525
\(756\) 0 0
\(757\) −29.8309 −1.08422 −0.542112 0.840306i \(-0.682375\pi\)
−0.542112 + 0.840306i \(0.682375\pi\)
\(758\) 7.78387 17.2104i 0.282723 0.625112i
\(759\) 0 0
\(760\) 17.6132 8.97116i 0.638897 0.325418i
\(761\) 6.11349 + 7.28578i 0.221614 + 0.264109i 0.865383 0.501110i \(-0.167075\pi\)
−0.643770 + 0.765219i \(0.722630\pi\)
\(762\) 0 0
\(763\) −25.5771 70.2725i −0.925953 2.54403i
\(764\) 43.5180 26.4883i 1.57442 0.958313i
\(765\) 0 0
\(766\) 11.0112 3.08763i 0.397851 0.111560i
\(767\) 5.65422 + 4.74446i 0.204162 + 0.171312i
\(768\) 0 0
\(769\) 0.968522 + 5.49276i 0.0349258 + 0.198074i 0.997278 0.0737309i \(-0.0234906\pi\)
−0.962352 + 0.271805i \(0.912379\pi\)
\(770\) −0.784557 0.0594881i −0.0282735 0.00214380i
\(771\) 0 0
\(772\) 14.9808 + 38.3688i 0.539172 + 1.38092i
\(773\) 15.2614 8.81115i 0.548913 0.316915i −0.199770 0.979843i \(-0.564020\pi\)
0.748683 + 0.662928i \(0.230686\pi\)
\(774\) 0 0
\(775\) 6.89886 + 3.98306i 0.247815 + 0.143076i
\(776\) 5.69831 13.4190i 0.204558 0.481714i
\(777\) 0 0
\(778\) −25.0513 + 12.0370i −0.898133 + 0.431546i
\(779\) −2.93094 1.06677i −0.105012 0.0382211i
\(780\) 0 0
\(781\) −0.0826317 + 0.468628i −0.00295679 + 0.0167688i
\(782\) −16.1990 4.13994i −0.579275 0.148044i
\(783\) 0 0
\(784\) −17.4494 27.2266i −0.623194 0.972380i
\(785\) −13.1856 2.32497i −0.470613 0.0829817i
\(786\) 0 0
\(787\) −13.2284 + 36.3448i −0.471542 + 1.29555i 0.444971 + 0.895545i \(0.353214\pi\)
−0.916513 + 0.400006i \(0.869008\pi\)
\(788\) 2.72548 + 13.6053i 0.0970914 + 0.484670i
\(789\) 0 0
\(790\) 2.37775 + 23.9748i 0.0845966 + 0.852984i
\(791\) 10.1230 17.5336i 0.359934 0.623424i
\(792\) 0 0
\(793\) −4.87062 8.43615i −0.172961 0.299577i
\(794\) 28.4316 20.4031i 1.00900 0.724078i
\(795\) 0 0
\(796\) −21.9318 7.41162i −0.777351 0.262698i
\(797\) 3.28390 0.579040i 0.116322 0.0205107i −0.115184 0.993344i \(-0.536746\pi\)
0.231506 + 0.972833i \(0.425635\pi\)
\(798\) 0 0
\(799\) 7.26745 8.66100i 0.257104 0.306404i
\(800\) −4.41298 3.92912i −0.156022 0.138915i
\(801\) 0 0
\(802\) −12.0348 + 12.3170i −0.424962 + 0.434927i
\(803\) 0.357661 0.130178i 0.0126216 0.00459389i
\(804\) 0 0
\(805\) 41.7820 35.0592i 1.47262 1.23568i
\(806\) −41.0911 28.0684i −1.44737 0.988666i
\(807\) 0 0
\(808\) −29.8601 + 22.4944i −1.05047 + 0.791351i
\(809\) 5.26208i 0.185005i −0.995712 0.0925025i \(-0.970513\pi\)
0.995712 0.0925025i \(-0.0294866\pi\)
\(810\) 0 0
\(811\) 3.33372i 0.117063i 0.998286 + 0.0585314i \(0.0186418\pi\)
−0.998286 + 0.0585314i \(0.981358\pi\)
\(812\) 19.4720 24.3292i 0.683333 0.853789i
\(813\) 0 0
\(814\) −0.224066 + 0.328024i −0.00785351 + 0.0114972i
\(815\) 18.3878 15.4292i 0.644098 0.540462i
\(816\) 0 0
\(817\) −25.7673 + 9.37854i −0.901485 + 0.328114i
\(818\) −31.4416 30.7213i −1.09933 1.07415i
\(819\) 0 0
\(820\) 0.125029 + 5.39406i 0.00436620 + 0.188369i
\(821\) −16.8806 + 20.1175i −0.589135 + 0.702104i −0.975440 0.220267i \(-0.929307\pi\)
0.386304 + 0.922371i \(0.373752\pi\)
\(822\) 0 0
\(823\) −37.9306 + 6.68820i −1.32218 + 0.233136i −0.789797 0.613368i \(-0.789814\pi\)
−0.532382 + 0.846504i \(0.678703\pi\)
\(824\) 1.60689 2.47361i 0.0559786 0.0861723i
\(825\) 0 0
\(826\) −5.12315 7.13910i −0.178257 0.248401i
\(827\) 16.3619 + 28.3397i 0.568960 + 0.985467i 0.996669 + 0.0815507i \(0.0259873\pi\)
−0.427710 + 0.903916i \(0.640679\pi\)
\(828\) 0 0
\(829\) 13.4083 23.2238i 0.465688 0.806595i −0.533544 0.845772i \(-0.679140\pi\)
0.999232 + 0.0391769i \(0.0124736\pi\)
\(830\) −39.4277 + 3.91033i −1.36856 + 0.135729i
\(831\) 0 0
\(832\) 25.6322 + 26.5583i 0.888637 + 0.920743i
\(833\) −5.72316 + 15.7243i −0.198296 + 0.544813i
\(834\) 0 0
\(835\) 11.2486 + 1.98343i 0.389274 + 0.0686394i
\(836\) 0.158926 0.290619i 0.00549656 0.0100513i
\(837\) 0 0
\(838\) −12.9091 + 50.5117i −0.445939 + 1.74490i
\(839\) 1.09332 6.20051i 0.0377455 0.214065i −0.960101 0.279652i \(-0.909781\pi\)
0.997847 + 0.0655869i \(0.0208920\pi\)
\(840\) 0 0
\(841\) −12.1279 4.41421i −0.418204 0.152214i
\(842\) −22.5644 46.9611i −0.777622 1.61839i
\(843\) 0 0
\(844\) −4.55783 + 29.8826i −0.156887 + 1.02860i
\(845\) −17.6440 10.1867i −0.606971 0.350435i
\(846\) 0 0
\(847\) 36.9876 21.3548i 1.27091 0.733760i
\(848\) −41.7892 5.38621i −1.43505 0.184963i
\(849\) 0 0
\(850\) −0.231162 + 3.04867i −0.00792878 + 0.104568i
\(851\) −4.78186 27.1193i −0.163920 0.929637i
\(852\) 0 0
\(853\) 0.550600 + 0.462008i 0.0188522 + 0.0158189i 0.652165 0.758077i \(-0.273861\pi\)
−0.633313 + 0.773896i \(0.718305\pi\)
\(854\) 3.13109 + 11.1662i 0.107144 + 0.382099i
\(855\) 0 0
\(856\) −10.3196 33.7714i −0.352717 1.15428i
\(857\) −18.6550 51.2541i −0.637242 1.75081i −0.660221 0.751072i \(-0.729537\pi\)
0.0229789 0.999736i \(-0.492685\pi\)
\(858\) 0 0
\(859\) 19.5736 + 23.3269i 0.667844 + 0.795905i 0.988489 0.151294i \(-0.0483441\pi\)
−0.320645 + 0.947199i \(0.603900\pi\)
\(860\) 31.3242 + 35.6207i 1.06815 + 1.21466i
\(861\) 0 0
\(862\) −14.6613 6.63093i −0.499365 0.225850i
\(863\) −30.5772 −1.04086 −0.520430 0.853904i \(-0.674228\pi\)
−0.520430 + 0.853904i \(0.674228\pi\)
\(864\) 0 0
\(865\) −2.16644 −0.0736612
\(866\) −9.37609 4.24058i −0.318613 0.144101i
\(867\) 0 0
\(868\) 39.1214 + 44.4874i 1.32787 + 1.51000i
\(869\) 0.259513 + 0.309275i 0.00880336 + 0.0104914i
\(870\) 0 0
\(871\) −11.9252 32.7642i −0.404070 1.11017i
\(872\) −15.9150 52.0826i −0.538951 1.76374i
\(873\) 0 0
\(874\) 6.19948 + 22.1088i 0.209701 + 0.747842i
\(875\) 28.9335 + 24.2781i 0.978132 + 0.820750i
\(876\) 0 0
\(877\) −5.87636 33.3265i −0.198431 1.12536i −0.907448 0.420165i \(-0.861972\pi\)
0.709017 0.705191i \(-0.249139\pi\)
\(878\) −3.18234 + 41.9701i −0.107399 + 1.41642i
\(879\) 0 0
\(880\) −0.568290 0.0732468i −0.0191570 0.00246915i
\(881\) −10.3117 + 5.95348i −0.347411 + 0.200578i −0.663544 0.748137i \(-0.730949\pi\)
0.316133 + 0.948715i \(0.397615\pi\)
\(882\) 0 0
\(883\) −10.5936 6.11620i −0.356502 0.205827i 0.311043 0.950396i \(-0.399322\pi\)
−0.667545 + 0.744569i \(0.732655\pi\)
\(884\) 2.87976 18.8806i 0.0968568 0.635024i
\(885\) 0 0
\(886\) −10.5351 21.9257i −0.353934 0.736607i
\(887\) 12.5369 + 4.56305i 0.420947 + 0.153212i 0.543804 0.839212i \(-0.316983\pi\)
−0.122857 + 0.992424i \(0.539206\pi\)
\(888\) 0 0
\(889\) −1.30678 + 7.41110i −0.0438279 + 0.248560i
\(890\) 1.84749 7.22896i 0.0619279 0.242315i
\(891\) 0 0
\(892\) 1.57522 2.88051i 0.0527422 0.0964467i
\(893\) −15.2911 2.69624i −0.511698 0.0902262i
\(894\) 0 0
\(895\) 10.6770 29.3349i 0.356893 0.980557i
\(896\) −21.7360 38.1887i −0.726148 1.27579i
\(897\) 0 0
\(898\) 30.6743 3.04219i 1.02362 0.101519i
\(899\) −15.2979 + 26.4967i −0.510212 + 0.883714i
\(900\) 0 0
\(901\) 10.9013 + 18.8816i 0.363174 + 0.629036i
\(902\) 0.0527150 + 0.0734582i 0.00175522 + 0.00244589i
\(903\) 0 0
\(904\) 8.03201 12.3643i 0.267141 0.411231i
\(905\) −16.0056 + 2.82222i −0.532043 + 0.0938136i
\(906\) 0 0
\(907\) 12.9620 15.4476i 0.430398 0.512928i −0.506639 0.862158i \(-0.669112\pi\)
0.937037 + 0.349230i \(0.113557\pi\)
\(908\) −1.26577 54.6083i −0.0420060 1.81224i
\(909\) 0 0
\(910\) 44.5633 + 43.5423i 1.47726 + 1.44341i
\(911\) 29.7025 10.8108i 0.984089 0.358179i 0.200660 0.979661i \(-0.435691\pi\)
0.783429 + 0.621482i \(0.213469\pi\)
\(912\) 0 0
\(913\) −0.508618 + 0.426781i −0.0168328 + 0.0141244i
\(914\) 7.70345 11.2776i 0.254807 0.373029i
\(915\) 0 0
\(916\) 7.89499 9.86437i 0.260858 0.325928i
\(917\) 1.81657i 0.0599884i
\(918\) 0 0
\(919\) 3.86720i 0.127567i 0.997964 + 0.0637835i \(0.0203167\pi\)
−0.997964 + 0.0637835i \(0.979683\pi\)
\(920\) 31.7255 23.8997i 1.04596 0.787950i
\(921\) 0 0
\(922\) 38.2868 + 26.1528i 1.26091 + 0.861298i
\(923\) 28.8655 24.2210i 0.950118 0.797244i
\(924\) 0 0
\(925\) −4.73194 + 1.72229i −0.155585 + 0.0566284i
\(926\) 37.8929 38.7814i 1.24524 1.27444i
\(927\) 0 0
\(928\) 15.0907 16.9491i 0.495376 0.556380i
\(929\) 32.4335 38.6527i 1.06411 1.26815i 0.102204 0.994763i \(-0.467410\pi\)
0.961903 0.273390i \(-0.0881451\pi\)
\(930\) 0 0
\(931\) 22.6313 3.99051i 0.741711 0.130784i
\(932\) −56.1807 18.9857i −1.84026 0.621898i
\(933\) 0 0
\(934\) −13.3098 + 9.55132i −0.435509 + 0.312529i
\(935\) 0.148246 + 0.256770i 0.00484816 + 0.00839726i
\(936\) 0 0
\(937\) 24.0457 41.6483i 0.785538 1.36059i −0.143139 0.989703i \(-0.545720\pi\)
0.928677 0.370890i \(-0.120947\pi\)
\(938\) 4.09664 + 41.3062i 0.133760 + 1.34870i
\(939\) 0 0
\(940\) 5.27583 + 26.3364i 0.172078 + 0.858997i
\(941\) 2.51129 6.89972i 0.0818658 0.224924i −0.892006 0.452024i \(-0.850702\pi\)
0.973872 + 0.227100i \(0.0729243\pi\)
\(942\) 0 0
\(943\) −6.17249 1.08838i −0.201004 0.0354424i
\(944\) −3.45292 5.38765i −0.112383 0.175353i
\(945\) 0 0
\(946\) 0.770136 + 0.196822i 0.0250393 + 0.00639923i
\(947\) 5.53004 31.3624i 0.179702 1.01914i −0.752873 0.658166i \(-0.771332\pi\)
0.932575 0.360976i \(-0.117556\pi\)
\(948\) 0 0
\(949\) −28.3218 10.3083i −0.919363 0.334621i
\(950\) 3.78462 1.81848i 0.122789 0.0589992i
\(951\) 0 0
\(952\) −8.88716 + 20.9284i −0.288034 + 0.678295i
\(953\) 13.1967 + 7.61912i 0.427483 + 0.246807i 0.698274 0.715831i \(-0.253952\pi\)
−0.270791 + 0.962638i \(0.587285\pi\)
\(954\) 0 0
\(955\) 54.2359 31.3131i 1.75503 1.01327i
\(956\) 6.76910 + 17.3370i 0.218929 + 0.560718i
\(957\) 0 0
\(958\) −25.2777 1.91665i −0.816684 0.0619241i
\(959\) −2.96099 16.7926i −0.0956153 0.542261i
\(960\) 0 0
\(961\) −20.8099 17.4616i −0.671289 0.563278i
\(962\) 30.2882 8.49304i 0.976530 0.273827i
\(963\) 0 0
\(964\) −24.0222 + 14.6217i −0.773703 + 0.470933i
\(965\) 17.3177 + 47.5800i 0.557477 + 1.53165i
\(966\) 0 0
\(967\) −27.7417 33.0612i −0.892112 1.06318i −0.997633 0.0687608i \(-0.978095\pi\)
0.105521 0.994417i \(-0.466349\pi\)
\(968\) 27.7151 14.1165i 0.890797 0.453722i
\(969\) 0 0
\(970\) 7.38519 16.3290i 0.237124 0.524291i
\(971\) −32.9105 −1.05615 −0.528074 0.849198i \(-0.677086\pi\)
−0.528074 + 0.849198i \(0.677086\pi\)
\(972\) 0 0
\(973\) 32.8100 1.05184
\(974\) −13.1979 + 29.1811i −0.422888 + 0.935023i
\(975\) 0 0
\(976\) 1.85031 + 8.24019i 0.0592268 + 0.263762i
\(977\) −36.4937 43.4915i −1.16754 1.39142i −0.904415 0.426654i \(-0.859692\pi\)
−0.263123 0.964762i \(-0.584752\pi\)
\(978\) 0 0
\(979\) −0.0427639 0.117493i −0.00136674 0.00375509i
\(980\) −20.6689 33.9572i −0.660244 1.08472i
\(981\) 0 0
\(982\) −35.0048 + 9.81561i −1.11705 + 0.313229i
\(983\) 24.8399 + 20.8432i 0.792271 + 0.664794i 0.946306 0.323271i \(-0.104783\pi\)
−0.154036 + 0.988065i \(0.549227\pi\)
\(984\) 0 0
\(985\) 2.96192 + 16.7979i 0.0943748 + 0.535226i
\(986\) −11.7091 0.887830i −0.372894 0.0282743i
\(987\) 0 0
\(988\) −24.4328 + 9.53963i −0.777312 + 0.303496i
\(989\) −47.7202 + 27.5513i −1.51741 + 0.876080i
\(990\) 0 0
\(991\) 36.6324 + 21.1497i 1.16367 + 0.671843i 0.952180 0.305539i \(-0.0988365\pi\)
0.211486 + 0.977381i \(0.432170\pi\)
\(992\) 26.7505 + 33.8483i 0.849330 + 1.07468i
\(993\) 0 0
\(994\) −40.4338 + 19.4281i −1.28248 + 0.616223i
\(995\) −26.7419 9.73326i −0.847775 0.308565i
\(996\) 0 0
\(997\) −5.87071 + 33.2945i −0.185927 + 1.05445i 0.738831 + 0.673891i \(0.235378\pi\)
−0.924758 + 0.380555i \(0.875733\pi\)
\(998\) −9.90536 2.53149i −0.313549 0.0801329i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 972.2.l.c.755.15 96
3.2 odd 2 972.2.l.b.755.2 96
4.3 odd 2 inner 972.2.l.c.755.16 96
9.2 odd 6 324.2.l.a.143.10 96
9.4 even 3 972.2.l.d.107.4 96
9.5 odd 6 972.2.l.a.107.13 96
9.7 even 3 108.2.l.a.47.7 yes 96
12.11 even 2 972.2.l.b.755.1 96
27.4 even 9 972.2.l.a.863.11 96
27.5 odd 18 108.2.l.a.23.6 96
27.13 even 9 972.2.l.b.215.1 96
27.14 odd 18 inner 972.2.l.c.215.16 96
27.22 even 9 324.2.l.a.179.11 96
27.23 odd 18 972.2.l.d.863.6 96
36.7 odd 6 108.2.l.a.47.6 yes 96
36.11 even 6 324.2.l.a.143.11 96
36.23 even 6 972.2.l.a.107.11 96
36.31 odd 6 972.2.l.d.107.6 96
108.23 even 18 972.2.l.d.863.4 96
108.31 odd 18 972.2.l.a.863.13 96
108.59 even 18 108.2.l.a.23.7 yes 96
108.67 odd 18 972.2.l.b.215.2 96
108.95 even 18 inner 972.2.l.c.215.15 96
108.103 odd 18 324.2.l.a.179.10 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
108.2.l.a.23.6 96 27.5 odd 18
108.2.l.a.23.7 yes 96 108.59 even 18
108.2.l.a.47.6 yes 96 36.7 odd 6
108.2.l.a.47.7 yes 96 9.7 even 3
324.2.l.a.143.10 96 9.2 odd 6
324.2.l.a.143.11 96 36.11 even 6
324.2.l.a.179.10 96 108.103 odd 18
324.2.l.a.179.11 96 27.22 even 9
972.2.l.a.107.11 96 36.23 even 6
972.2.l.a.107.13 96 9.5 odd 6
972.2.l.a.863.11 96 27.4 even 9
972.2.l.a.863.13 96 108.31 odd 18
972.2.l.b.215.1 96 27.13 even 9
972.2.l.b.215.2 96 108.67 odd 18
972.2.l.b.755.1 96 12.11 even 2
972.2.l.b.755.2 96 3.2 odd 2
972.2.l.c.215.15 96 108.95 even 18 inner
972.2.l.c.215.16 96 27.14 odd 18 inner
972.2.l.c.755.15 96 1.1 even 1 trivial
972.2.l.c.755.16 96 4.3 odd 2 inner
972.2.l.d.107.4 96 9.4 even 3
972.2.l.d.107.6 96 36.31 odd 6
972.2.l.d.863.4 96 108.23 even 18
972.2.l.d.863.6 96 27.23 odd 18