Properties

Label 972.2.l.d.107.1
Level $972$
Weight $2$
Character 972.107
Analytic conductor $7.761$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [972,2,Mod(107,972)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(972, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 13])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("972.107"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 972 = 2^{2} \cdot 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 972.l (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,3,0,3,6,0,0,-9,0,-3,0,0,6,33] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.76145907647\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(16\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 108)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 107.1
Character \(\chi\) \(=\) 972.107
Dual form 972.2.l.d.863.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.41292 + 0.0603944i) q^{2} +(1.99271 - 0.170665i) q^{4} +(-0.0476648 + 0.130958i) q^{5} +(4.57823 + 0.807266i) q^{7} +(-2.80523 + 0.361485i) q^{8} +(0.0594376 - 0.187912i) q^{10} +(0.987987 - 0.359598i) q^{11} +(1.19199 - 1.00020i) q^{13} +(-6.51745 - 0.864105i) q^{14} +(3.94175 - 0.680171i) q^{16} +(5.25631 - 3.03473i) q^{17} +(-3.80088 - 2.19444i) q^{19} +(-0.0726319 + 0.269095i) q^{20} +(-1.37423 + 0.567753i) q^{22} +(0.440052 + 2.49566i) q^{23} +(3.81534 + 3.20145i) q^{25} +(-1.62379 + 1.48520i) q^{26} +(9.26084 + 0.827297i) q^{28} +(0.395532 - 0.471376i) q^{29} +(-4.88457 + 0.861281i) q^{31} +(-5.52831 + 1.19909i) q^{32} +(-7.24349 + 4.60530i) q^{34} +(-0.323938 + 0.561078i) q^{35} +(-1.43991 - 2.49400i) q^{37} +(5.50288 + 2.87102i) q^{38} +(0.0863714 - 0.384598i) q^{40} +(-4.23420 - 5.04612i) q^{41} +(-0.748529 - 2.05657i) q^{43} +(1.90740 - 0.885188i) q^{44} +(-0.772484 - 3.49960i) q^{46} +(-1.91917 + 10.8842i) q^{47} +(13.7307 + 4.99756i) q^{49} +(-5.58414 - 4.29298i) q^{50} +(2.20459 - 2.19654i) q^{52} -8.73360i q^{53} +0.146525i q^{55} +(-13.1348 - 0.609605i) q^{56} +(-0.530388 + 0.689907i) q^{58} +(7.71009 + 2.80624i) q^{59} +(1.94148 - 11.0107i) q^{61} +(6.84951 - 1.51193i) q^{62} +(7.73866 - 2.02810i) q^{64} +(0.0741682 + 0.203776i) q^{65} +(3.62786 + 4.32351i) q^{67} +(9.95636 - 6.94440i) q^{68} +(0.423814 - 0.812324i) q^{70} +(2.33277 + 4.04048i) q^{71} +(-5.64518 + 9.77774i) q^{73} +(2.18511 + 3.43687i) q^{74} +(-7.94854 - 3.72419i) q^{76} +(4.81353 - 0.848755i) q^{77} +(1.07643 - 1.28284i) q^{79} +(-0.0988087 + 0.548623i) q^{80} +(6.28736 + 6.87406i) q^{82} +(-1.79797 - 1.50867i) q^{83} +(0.146881 + 0.833006i) q^{85} +(1.18182 + 2.86056i) q^{86} +(-2.64154 + 1.36590i) q^{88} +(7.63741 + 4.40946i) q^{89} +(6.26466 - 3.61690i) q^{91} +(1.30282 + 4.89801i) q^{92} +(2.05430 - 15.4944i) q^{94} +(0.468547 - 0.393158i) q^{95} +(5.29482 - 1.92716i) q^{97} +(-19.7022 - 6.23192i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 3 q^{2} + 3 q^{4} + 6 q^{5} - 9 q^{8} - 3 q^{10} + 6 q^{13} + 33 q^{14} + 3 q^{16} - 18 q^{17} - 18 q^{20} + 3 q^{22} + 6 q^{25} - 12 q^{28} + 30 q^{29} + 33 q^{32} + 15 q^{34} - 6 q^{37} - 63 q^{38}+ \cdots - 180 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/972\mathbb{Z}\right)^\times\).

\(n\) \(245\) \(487\)
\(\chi(n)\) \(e\left(\frac{13}{18}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.41292 + 0.0603944i −0.999088 + 0.0427053i
\(3\) 0 0
\(4\) 1.99271 0.170665i 0.996353 0.0853327i
\(5\) −0.0476648 + 0.130958i −0.0213163 + 0.0585662i −0.949894 0.312571i \(-0.898810\pi\)
0.928578 + 0.371137i \(0.121032\pi\)
\(6\) 0 0
\(7\) 4.57823 + 0.807266i 1.73041 + 0.305118i 0.948147 0.317831i \(-0.102955\pi\)
0.782262 + 0.622949i \(0.214066\pi\)
\(8\) −2.80523 + 0.361485i −0.991799 + 0.127804i
\(9\) 0 0
\(10\) 0.0594376 0.187912i 0.0187958 0.0594231i
\(11\) 0.987987 0.359598i 0.297889 0.108423i −0.188752 0.982025i \(-0.560444\pi\)
0.486641 + 0.873602i \(0.338222\pi\)
\(12\) 0 0
\(13\) 1.19199 1.00020i 0.330600 0.277406i −0.462344 0.886700i \(-0.652992\pi\)
0.792944 + 0.609294i \(0.208547\pi\)
\(14\) −6.51745 0.864105i −1.74186 0.230942i
\(15\) 0 0
\(16\) 3.94175 0.680171i 0.985437 0.170043i
\(17\) 5.25631 3.03473i 1.27484 0.736031i 0.298948 0.954269i \(-0.403364\pi\)
0.975895 + 0.218238i \(0.0700310\pi\)
\(18\) 0 0
\(19\) −3.80088 2.19444i −0.871981 0.503439i −0.00397518 0.999992i \(-0.501265\pi\)
−0.868006 + 0.496553i \(0.834599\pi\)
\(20\) −0.0726319 + 0.269095i −0.0162410 + 0.0601715i
\(21\) 0 0
\(22\) −1.37423 + 0.567753i −0.292987 + 0.121045i
\(23\) 0.440052 + 2.49566i 0.0917572 + 0.520381i 0.995693 + 0.0927127i \(0.0295538\pi\)
−0.903936 + 0.427668i \(0.859335\pi\)
\(24\) 0 0
\(25\) 3.81534 + 3.20145i 0.763069 + 0.640291i
\(26\) −1.62379 + 1.48520i −0.318451 + 0.291271i
\(27\) 0 0
\(28\) 9.26084 + 0.827297i 1.75013 + 0.156345i
\(29\) 0.395532 0.471376i 0.0734484 0.0875324i −0.728069 0.685504i \(-0.759582\pi\)
0.801517 + 0.597971i \(0.204026\pi\)
\(30\) 0 0
\(31\) −4.88457 + 0.861281i −0.877295 + 0.154691i −0.594119 0.804377i \(-0.702499\pi\)
−0.283176 + 0.959068i \(0.591388\pi\)
\(32\) −5.52831 + 1.19909i −0.977276 + 0.211971i
\(33\) 0 0
\(34\) −7.24349 + 4.60530i −1.24225 + 0.789802i
\(35\) −0.323938 + 0.561078i −0.0547556 + 0.0948394i
\(36\) 0 0
\(37\) −1.43991 2.49400i −0.236720 0.410012i 0.723051 0.690795i \(-0.242739\pi\)
−0.959771 + 0.280783i \(0.909406\pi\)
\(38\) 5.50288 + 2.87102i 0.892685 + 0.465741i
\(39\) 0 0
\(40\) 0.0863714 0.384598i 0.0136565 0.0608102i
\(41\) −4.23420 5.04612i −0.661271 0.788072i 0.326297 0.945267i \(-0.394199\pi\)
−0.987568 + 0.157196i \(0.949755\pi\)
\(42\) 0 0
\(43\) −0.748529 2.05657i −0.114150 0.313623i 0.869441 0.494036i \(-0.164479\pi\)
−0.983591 + 0.180413i \(0.942257\pi\)
\(44\) 1.90740 0.885188i 0.287551 0.133447i
\(45\) 0 0
\(46\) −0.772484 3.49960i −0.113897 0.515988i
\(47\) −1.91917 + 10.8842i −0.279940 + 1.58762i 0.442878 + 0.896582i \(0.353958\pi\)
−0.722818 + 0.691038i \(0.757154\pi\)
\(48\) 0 0
\(49\) 13.7307 + 4.99756i 1.96153 + 0.713938i
\(50\) −5.58414 4.29298i −0.789716 0.607120i
\(51\) 0 0
\(52\) 2.20459 2.19654i 0.305722 0.304605i
\(53\) 8.73360i 1.19965i −0.800130 0.599826i \(-0.795236\pi\)
0.800130 0.599826i \(-0.204764\pi\)
\(54\) 0 0
\(55\) 0.146525i 0.0197574i
\(56\) −13.1348 0.609605i −1.75521 0.0814619i
\(57\) 0 0
\(58\) −0.530388 + 0.689907i −0.0696433 + 0.0905892i
\(59\) 7.71009 + 2.80624i 1.00377 + 0.365342i 0.791036 0.611769i \(-0.209542\pi\)
0.212732 + 0.977111i \(0.431764\pi\)
\(60\) 0 0
\(61\) 1.94148 11.0107i 0.248581 1.40977i −0.563448 0.826152i \(-0.690525\pi\)
0.812028 0.583618i \(-0.198364\pi\)
\(62\) 6.84951 1.51193i 0.869888 0.192015i
\(63\) 0 0
\(64\) 7.73866 2.02810i 0.967332 0.253513i
\(65\) 0.0741682 + 0.203776i 0.00919944 + 0.0252752i
\(66\) 0 0
\(67\) 3.62786 + 4.32351i 0.443213 + 0.528201i 0.940686 0.339279i \(-0.110183\pi\)
−0.497473 + 0.867480i \(0.665739\pi\)
\(68\) 9.95636 6.94440i 1.20739 0.842132i
\(69\) 0 0
\(70\) 0.423814 0.812324i 0.0506555 0.0970913i
\(71\) 2.33277 + 4.04048i 0.276849 + 0.479517i 0.970600 0.240698i \(-0.0773764\pi\)
−0.693751 + 0.720215i \(0.744043\pi\)
\(72\) 0 0
\(73\) −5.64518 + 9.77774i −0.660718 + 1.14440i 0.319709 + 0.947516i \(0.396415\pi\)
−0.980427 + 0.196882i \(0.936918\pi\)
\(74\) 2.18511 + 3.43687i 0.254014 + 0.399528i
\(75\) 0 0
\(76\) −7.94854 3.72419i −0.911761 0.427194i
\(77\) 4.81353 0.848755i 0.548552 0.0967246i
\(78\) 0 0
\(79\) 1.07643 1.28284i 0.121108 0.144330i −0.702084 0.712094i \(-0.747747\pi\)
0.823192 + 0.567764i \(0.192191\pi\)
\(80\) −0.0988087 + 0.548623i −0.0110471 + 0.0613379i
\(81\) 0 0
\(82\) 6.28736 + 6.87406i 0.694322 + 0.759113i
\(83\) −1.79797 1.50867i −0.197353 0.165598i 0.538756 0.842462i \(-0.318894\pi\)
−0.736109 + 0.676863i \(0.763339\pi\)
\(84\) 0 0
\(85\) 0.146881 + 0.833006i 0.0159315 + 0.0903522i
\(86\) 1.18182 + 2.86056i 0.127439 + 0.308462i
\(87\) 0 0
\(88\) −2.64154 + 1.36590i −0.281590 + 0.145605i
\(89\) 7.63741 + 4.40946i 0.809564 + 0.467402i 0.846804 0.531905i \(-0.178524\pi\)
−0.0372408 + 0.999306i \(0.511857\pi\)
\(90\) 0 0
\(91\) 6.26466 3.61690i 0.656715 0.379154i
\(92\) 1.30282 + 4.89801i 0.135828 + 0.510653i
\(93\) 0 0
\(94\) 2.05430 15.4944i 0.211885 1.59813i
\(95\) 0.468547 0.393158i 0.0480719 0.0403371i
\(96\) 0 0
\(97\) 5.29482 1.92716i 0.537607 0.195673i −0.0589247 0.998262i \(-0.518767\pi\)
0.596532 + 0.802589i \(0.296545\pi\)
\(98\) −19.7022 6.23192i −1.99023 0.629519i
\(99\) 0 0
\(100\) 8.14923 + 5.72841i 0.814923 + 0.572841i
\(101\) 10.2986 + 1.81591i 1.02474 + 0.180690i 0.660667 0.750679i \(-0.270273\pi\)
0.364077 + 0.931369i \(0.381385\pi\)
\(102\) 0 0
\(103\) 0.528403 1.45178i 0.0520651 0.143048i −0.910934 0.412552i \(-0.864638\pi\)
0.962999 + 0.269504i \(0.0868598\pi\)
\(104\) −2.98226 + 3.23669i −0.292435 + 0.317383i
\(105\) 0 0
\(106\) 0.527461 + 12.3399i 0.0512315 + 1.19856i
\(107\) 7.89051 0.762805 0.381402 0.924409i \(-0.375441\pi\)
0.381402 + 0.924409i \(0.375441\pi\)
\(108\) 0 0
\(109\) 1.78550 0.171020 0.0855098 0.996337i \(-0.472748\pi\)
0.0855098 + 0.996337i \(0.472748\pi\)
\(110\) −0.00884928 0.207028i −0.000843746 0.0197394i
\(111\) 0 0
\(112\) 18.5953 + 0.0680555i 1.75709 + 0.00643064i
\(113\) 3.63295 9.98146i 0.341759 0.938976i −0.643125 0.765762i \(-0.722362\pi\)
0.984884 0.173215i \(-0.0554155\pi\)
\(114\) 0 0
\(115\) −0.347801 0.0613268i −0.0324327 0.00571875i
\(116\) 0.707730 1.00682i 0.0657111 0.0934807i
\(117\) 0 0
\(118\) −11.0632 3.49936i −1.01845 0.322142i
\(119\) 26.5145 9.65048i 2.43058 0.884658i
\(120\) 0 0
\(121\) −7.57968 + 6.36011i −0.689062 + 0.578192i
\(122\) −2.07817 + 15.6745i −0.188149 + 1.41910i
\(123\) 0 0
\(124\) −9.58652 + 2.54991i −0.860894 + 0.228988i
\(125\) −1.20457 + 0.695459i −0.107740 + 0.0622038i
\(126\) 0 0
\(127\) −2.89596 1.67198i −0.256975 0.148364i 0.365979 0.930623i \(-0.380734\pi\)
−0.622954 + 0.782259i \(0.714067\pi\)
\(128\) −10.8116 + 3.33292i −0.955623 + 0.294591i
\(129\) 0 0
\(130\) −0.117101 0.283440i −0.0102704 0.0248593i
\(131\) 0.455284 + 2.58205i 0.0397784 + 0.225594i 0.998216 0.0597082i \(-0.0190170\pi\)
−0.958438 + 0.285303i \(0.907906\pi\)
\(132\) 0 0
\(133\) −15.6298 13.1150i −1.35528 1.13721i
\(134\) −5.38700 5.88969i −0.465366 0.508791i
\(135\) 0 0
\(136\) −13.6482 + 10.4132i −1.17032 + 0.892926i
\(137\) 5.73036 6.82918i 0.489578 0.583456i −0.463532 0.886080i \(-0.653418\pi\)
0.953110 + 0.302624i \(0.0978626\pi\)
\(138\) 0 0
\(139\) −14.7775 + 2.60567i −1.25341 + 0.221010i −0.760654 0.649158i \(-0.775121\pi\)
−0.492756 + 0.870168i \(0.664010\pi\)
\(140\) −0.549757 + 1.17335i −0.0464630 + 0.0991660i
\(141\) 0 0
\(142\) −3.54005 5.56800i −0.297074 0.467256i
\(143\) 0.818005 1.41683i 0.0684050 0.118481i
\(144\) 0 0
\(145\) 0.0428775 + 0.0742661i 0.00356079 + 0.00616746i
\(146\) 7.38569 14.1561i 0.611244 1.17157i
\(147\) 0 0
\(148\) −3.29496 4.72407i −0.270844 0.388316i
\(149\) 11.6384 + 13.8701i 0.953455 + 1.13628i 0.990575 + 0.136972i \(0.0437372\pi\)
−0.0371200 + 0.999311i \(0.511818\pi\)
\(150\) 0 0
\(151\) 4.99425 + 13.7216i 0.406427 + 1.11665i 0.959055 + 0.283220i \(0.0914027\pi\)
−0.552628 + 0.833428i \(0.686375\pi\)
\(152\) 11.4556 + 4.78195i 0.929172 + 0.387867i
\(153\) 0 0
\(154\) −6.74988 + 1.48994i −0.543921 + 0.120062i
\(155\) 0.120030 0.680726i 0.00964107 0.0546772i
\(156\) 0 0
\(157\) −0.128774 0.0468700i −0.0102773 0.00374063i 0.336876 0.941549i \(-0.390630\pi\)
−0.347154 + 0.937808i \(0.612852\pi\)
\(158\) −1.44343 + 1.87756i −0.114833 + 0.149371i
\(159\) 0 0
\(160\) 0.106475 0.781130i 0.00841762 0.0617537i
\(161\) 11.7810i 0.928469i
\(162\) 0 0
\(163\) 12.0210i 0.941554i −0.882252 0.470777i \(-0.843974\pi\)
0.882252 0.470777i \(-0.156026\pi\)
\(164\) −9.29871 9.33280i −0.726107 0.728769i
\(165\) 0 0
\(166\) 2.63151 + 2.02305i 0.204244 + 0.157019i
\(167\) −10.5733 3.84838i −0.818189 0.297797i −0.101187 0.994867i \(-0.532264\pi\)
−0.717002 + 0.697071i \(0.754486\pi\)
\(168\) 0 0
\(169\) −1.83698 + 10.4180i −0.141306 + 0.801387i
\(170\) −0.257841 1.16810i −0.0197755 0.0895894i
\(171\) 0 0
\(172\) −1.84258 3.97038i −0.140496 0.302739i
\(173\) −1.95052 5.35901i −0.148295 0.407438i 0.843197 0.537605i \(-0.180671\pi\)
−0.991492 + 0.130167i \(0.958449\pi\)
\(174\) 0 0
\(175\) 14.8831 + 17.7370i 1.12506 + 1.34079i
\(176\) 3.64981 2.08944i 0.275115 0.157498i
\(177\) 0 0
\(178\) −11.0574 5.76897i −0.828786 0.432403i
\(179\) 6.20187 + 10.7419i 0.463549 + 0.802891i 0.999135 0.0415901i \(-0.0132424\pi\)
−0.535585 + 0.844481i \(0.679909\pi\)
\(180\) 0 0
\(181\) 0.582122 1.00827i 0.0432688 0.0749437i −0.843580 0.537004i \(-0.819556\pi\)
0.886849 + 0.462060i \(0.152889\pi\)
\(182\) −8.63304 + 5.48876i −0.639924 + 0.406854i
\(183\) 0 0
\(184\) −2.13659 6.84183i −0.157512 0.504387i
\(185\) 0.395243 0.0696919i 0.0290588 0.00512385i
\(186\) 0 0
\(187\) 4.10189 4.88844i 0.299960 0.357478i
\(188\) −1.96680 + 22.0165i −0.143443 + 1.60572i
\(189\) 0 0
\(190\) −0.638277 + 0.583799i −0.0463055 + 0.0423533i
\(191\) −11.0185 9.24558i −0.797267 0.668987i 0.150265 0.988646i \(-0.451987\pi\)
−0.947533 + 0.319659i \(0.896432\pi\)
\(192\) 0 0
\(193\) −3.19429 18.1157i −0.229930 1.30400i −0.853032 0.521859i \(-0.825239\pi\)
0.623102 0.782141i \(-0.285872\pi\)
\(194\) −7.36478 + 3.04270i −0.528760 + 0.218453i
\(195\) 0 0
\(196\) 28.2141 + 7.61532i 2.01529 + 0.543951i
\(197\) −18.3471 10.5927i −1.30718 0.754699i −0.325553 0.945524i \(-0.605550\pi\)
−0.981624 + 0.190825i \(0.938884\pi\)
\(198\) 0 0
\(199\) −5.80763 + 3.35304i −0.411692 + 0.237691i −0.691517 0.722361i \(-0.743057\pi\)
0.279824 + 0.960051i \(0.409724\pi\)
\(200\) −11.8602 7.60163i −0.838643 0.537517i
\(201\) 0 0
\(202\) −14.6607 1.94377i −1.03153 0.136763i
\(203\) 2.19136 1.83877i 0.153803 0.129056i
\(204\) 0 0
\(205\) 0.862652 0.313980i 0.0602502 0.0219293i
\(206\) −0.658914 + 2.08316i −0.0459087 + 0.145141i
\(207\) 0 0
\(208\) 4.01823 4.75330i 0.278614 0.329582i
\(209\) −4.54433 0.801289i −0.314338 0.0554263i
\(210\) 0 0
\(211\) 6.01877 16.5364i 0.414349 1.13841i −0.540505 0.841340i \(-0.681767\pi\)
0.954854 0.297074i \(-0.0960108\pi\)
\(212\) −1.49052 17.4035i −0.102370 1.19528i
\(213\) 0 0
\(214\) −11.1487 + 0.476543i −0.762109 + 0.0325758i
\(215\) 0.305002 0.0208010
\(216\) 0 0
\(217\) −23.0580 −1.56528
\(218\) −2.52277 + 0.107834i −0.170864 + 0.00730345i
\(219\) 0 0
\(220\) 0.0250067 + 0.291981i 0.00168595 + 0.0196853i
\(221\) 3.23015 8.87476i 0.217283 0.596981i
\(222\) 0 0
\(223\) −9.12995 1.60986i −0.611386 0.107804i −0.140623 0.990063i \(-0.544910\pi\)
−0.470764 + 0.882259i \(0.656022\pi\)
\(224\) −26.2779 + 1.02690i −1.75576 + 0.0686123i
\(225\) 0 0
\(226\) −4.53026 + 14.3224i −0.301348 + 0.952715i
\(227\) −20.9726 + 7.63340i −1.39200 + 0.506647i −0.925794 0.378029i \(-0.876602\pi\)
−0.466207 + 0.884676i \(0.654380\pi\)
\(228\) 0 0
\(229\) −20.1745 + 16.9284i −1.33317 + 1.11866i −0.349840 + 0.936810i \(0.613764\pi\)
−0.983326 + 0.181849i \(0.941792\pi\)
\(230\) 0.495121 + 0.0656448i 0.0326473 + 0.00432849i
\(231\) 0 0
\(232\) −0.939163 + 1.46530i −0.0616591 + 0.0962016i
\(233\) −6.49629 + 3.75063i −0.425586 + 0.245712i −0.697464 0.716619i \(-0.745688\pi\)
0.271878 + 0.962332i \(0.412355\pi\)
\(234\) 0 0
\(235\) −1.33389 0.770123i −0.0870135 0.0502373i
\(236\) 15.8429 + 4.27617i 1.03128 + 0.278355i
\(237\) 0 0
\(238\) −36.8801 + 15.2367i −2.39058 + 0.987649i
\(239\) 0.596327 + 3.38194i 0.0385732 + 0.218759i 0.998001 0.0631941i \(-0.0201287\pi\)
−0.959428 + 0.281954i \(0.909018\pi\)
\(240\) 0 0
\(241\) −1.30402 1.09420i −0.0839993 0.0704838i 0.599821 0.800134i \(-0.295238\pi\)
−0.683820 + 0.729650i \(0.739683\pi\)
\(242\) 10.3254 9.44411i 0.663741 0.607091i
\(243\) 0 0
\(244\) 1.98965 22.2723i 0.127374 1.42584i
\(245\) −1.30894 + 1.55993i −0.0836252 + 0.0996606i
\(246\) 0 0
\(247\) −6.72551 + 1.18589i −0.427934 + 0.0754563i
\(248\) 13.3910 4.18179i 0.850330 0.265544i
\(249\) 0 0
\(250\) 1.65996 1.05538i 0.104985 0.0667481i
\(251\) −7.79783 + 13.5062i −0.492195 + 0.852506i −0.999960 0.00898943i \(-0.997139\pi\)
0.507765 + 0.861496i \(0.330472\pi\)
\(252\) 0 0
\(253\) 1.33220 + 2.30744i 0.0837547 + 0.145067i
\(254\) 4.19274 + 2.18748i 0.263076 + 0.137255i
\(255\) 0 0
\(256\) 15.0747 5.36213i 0.942171 0.335133i
\(257\) −6.38236 7.60620i −0.398121 0.474462i 0.529325 0.848419i \(-0.322445\pi\)
−0.927446 + 0.373957i \(0.878001\pi\)
\(258\) 0 0
\(259\) −4.57894 12.5805i −0.284521 0.781716i
\(260\) 0.182573 + 0.393407i 0.0113227 + 0.0243980i
\(261\) 0 0
\(262\) −0.799223 3.62074i −0.0493761 0.223690i
\(263\) −4.54071 + 25.7516i −0.279992 + 1.58791i 0.442652 + 0.896693i \(0.354038\pi\)
−0.722644 + 0.691220i \(0.757074\pi\)
\(264\) 0 0
\(265\) 1.14373 + 0.416285i 0.0702590 + 0.0255722i
\(266\) 22.8758 + 17.5865i 1.40261 + 1.07830i
\(267\) 0 0
\(268\) 7.96712 + 7.99633i 0.486669 + 0.488454i
\(269\) 0.465194i 0.0283634i 0.999899 + 0.0141817i \(0.00451432\pi\)
−0.999899 + 0.0141817i \(0.995486\pi\)
\(270\) 0 0
\(271\) 15.6578i 0.951143i 0.879677 + 0.475571i \(0.157759\pi\)
−0.879677 + 0.475571i \(0.842241\pi\)
\(272\) 18.6549 15.5373i 1.13112 0.942090i
\(273\) 0 0
\(274\) −7.68412 + 9.99519i −0.464215 + 0.603831i
\(275\) 4.92075 + 1.79101i 0.296732 + 0.108002i
\(276\) 0 0
\(277\) −1.71249 + 9.71201i −0.102893 + 0.583538i 0.889147 + 0.457621i \(0.151298\pi\)
−0.992041 + 0.125917i \(0.959813\pi\)
\(278\) 20.7221 4.57409i 1.24283 0.274335i
\(279\) 0 0
\(280\) 0.705901 1.69105i 0.0421857 0.101060i
\(281\) −5.83636 16.0353i −0.348168 0.956584i −0.982947 0.183890i \(-0.941131\pi\)
0.634779 0.772694i \(-0.281091\pi\)
\(282\) 0 0
\(283\) −6.10047 7.27025i −0.362635 0.432172i 0.553619 0.832770i \(-0.313247\pi\)
−0.916254 + 0.400599i \(0.868802\pi\)
\(284\) 5.33810 + 7.65336i 0.316758 + 0.454143i
\(285\) 0 0
\(286\) −1.07021 + 2.05127i −0.0632828 + 0.121294i
\(287\) −15.3116 26.5204i −0.903814 1.56545i
\(288\) 0 0
\(289\) 9.91922 17.1806i 0.583484 1.01062i
\(290\) −0.0650679 0.102343i −0.00382092 0.00600977i
\(291\) 0 0
\(292\) −9.58046 + 20.4476i −0.560654 + 1.19660i
\(293\) −2.23373 + 0.393868i −0.130496 + 0.0230100i −0.238515 0.971139i \(-0.576661\pi\)
0.108019 + 0.994149i \(0.465549\pi\)
\(294\) 0 0
\(295\) −0.734999 + 0.875938i −0.0427933 + 0.0509991i
\(296\) 4.94084 + 6.47575i 0.287180 + 0.376395i
\(297\) 0 0
\(298\) −17.2818 18.8945i −1.00111 1.09453i
\(299\) 3.02070 + 2.53467i 0.174692 + 0.146584i
\(300\) 0 0
\(301\) −1.76674 10.0197i −0.101833 0.577526i
\(302\) −7.88521 19.0859i −0.453743 1.09827i
\(303\) 0 0
\(304\) −16.4747 6.06467i −0.944889 0.347833i
\(305\) 1.34939 + 0.779072i 0.0772660 + 0.0446095i
\(306\) 0 0
\(307\) −10.5153 + 6.07100i −0.600138 + 0.346490i −0.769096 0.639133i \(-0.779293\pi\)
0.168958 + 0.985623i \(0.445960\pi\)
\(308\) 9.44709 2.51282i 0.538298 0.143181i
\(309\) 0 0
\(310\) −0.128482 + 0.969063i −0.00729727 + 0.0550391i
\(311\) −13.3085 + 11.1672i −0.754656 + 0.633232i −0.936730 0.350053i \(-0.886164\pi\)
0.182074 + 0.983285i \(0.441719\pi\)
\(312\) 0 0
\(313\) −15.2929 + 5.56618i −0.864408 + 0.314619i −0.735901 0.677090i \(-0.763241\pi\)
−0.128508 + 0.991709i \(0.541019\pi\)
\(314\) 0.184779 + 0.0584465i 0.0104277 + 0.00329832i
\(315\) 0 0
\(316\) 1.92607 2.74002i 0.108350 0.154138i
\(317\) −28.6958 5.05984i −1.61171 0.284189i −0.706043 0.708169i \(-0.749521\pi\)
−0.905671 + 0.423980i \(0.860633\pi\)
\(318\) 0 0
\(319\) 0.221274 0.607946i 0.0123890 0.0340385i
\(320\) −0.103266 + 1.11011i −0.00577272 + 0.0620569i
\(321\) 0 0
\(322\) −0.711504 16.6456i −0.0396505 0.927622i
\(323\) −26.6381 −1.48219
\(324\) 0 0
\(325\) 7.74997 0.429891
\(326\) 0.725998 + 16.9847i 0.0402093 + 0.940695i
\(327\) 0 0
\(328\) 13.7020 + 12.6249i 0.756567 + 0.697096i
\(329\) −17.5729 + 48.2810i −0.968823 + 2.66182i
\(330\) 0 0
\(331\) 2.69396 + 0.475018i 0.148074 + 0.0261094i 0.247194 0.968966i \(-0.420492\pi\)
−0.0991200 + 0.995075i \(0.531603\pi\)
\(332\) −3.84030 2.69949i −0.210764 0.148154i
\(333\) 0 0
\(334\) 15.1717 + 4.79889i 0.830160 + 0.262584i
\(335\) −0.739119 + 0.269017i −0.0403824 + 0.0146980i
\(336\) 0 0
\(337\) 5.28333 4.43324i 0.287801 0.241494i −0.487444 0.873154i \(-0.662071\pi\)
0.775245 + 0.631660i \(0.217626\pi\)
\(338\) 1.96632 14.8308i 0.106954 0.806690i
\(339\) 0 0
\(340\) 0.434857 + 1.63487i 0.0235834 + 0.0886631i
\(341\) −4.51618 + 2.60742i −0.244565 + 0.141199i
\(342\) 0 0
\(343\) 30.6457 + 17.6933i 1.65471 + 0.955349i
\(344\) 2.84322 + 5.49856i 0.153296 + 0.296463i
\(345\) 0 0
\(346\) 3.07959 + 7.45407i 0.165560 + 0.400733i
\(347\) −3.97755 22.5578i −0.213526 1.21097i −0.883446 0.468533i \(-0.844783\pi\)
0.669920 0.742433i \(-0.266328\pi\)
\(348\) 0 0
\(349\) 20.7811 + 17.4374i 1.11238 + 0.933401i 0.998195 0.0600575i \(-0.0191284\pi\)
0.114190 + 0.993459i \(0.463573\pi\)
\(350\) −22.0999 24.1622i −1.18129 1.29152i
\(351\) 0 0
\(352\) −5.03071 + 3.17265i −0.268138 + 0.169103i
\(353\) −4.32953 + 5.15974i −0.230438 + 0.274625i −0.868856 0.495064i \(-0.835144\pi\)
0.638419 + 0.769689i \(0.279589\pi\)
\(354\) 0 0
\(355\) −0.640324 + 0.112906i −0.0339849 + 0.00599245i
\(356\) 15.9716 + 7.48331i 0.846495 + 0.396615i
\(357\) 0 0
\(358\) −9.41152 14.8030i −0.497414 0.782362i
\(359\) 14.3604 24.8729i 0.757913 1.31274i −0.186000 0.982550i \(-0.559552\pi\)
0.943913 0.330194i \(-0.107114\pi\)
\(360\) 0 0
\(361\) 0.131118 + 0.227104i 0.00690097 + 0.0119528i
\(362\) −0.761600 + 1.45976i −0.0400288 + 0.0767232i
\(363\) 0 0
\(364\) 11.8663 8.27658i 0.621965 0.433811i
\(365\) −1.01140 1.20533i −0.0529389 0.0630901i
\(366\) 0 0
\(367\) 1.33583 + 3.67016i 0.0697298 + 0.191581i 0.969662 0.244448i \(-0.0786067\pi\)
−0.899933 + 0.436029i \(0.856385\pi\)
\(368\) 3.43205 + 9.53795i 0.178908 + 0.497200i
\(369\) 0 0
\(370\) −0.554239 + 0.122340i −0.0288135 + 0.00636014i
\(371\) 7.05034 39.9845i 0.366035 2.07589i
\(372\) 0 0
\(373\) 10.2477 + 3.72985i 0.530605 + 0.193124i 0.593408 0.804902i \(-0.297782\pi\)
−0.0628037 + 0.998026i \(0.520004\pi\)
\(374\) −5.50042 + 7.15472i −0.284420 + 0.369962i
\(375\) 0 0
\(376\) 1.44926 31.2264i 0.0747399 1.61038i
\(377\) 0.957490i 0.0493132i
\(378\) 0 0
\(379\) 5.95264i 0.305766i −0.988244 0.152883i \(-0.951144\pi\)
0.988244 0.152883i \(-0.0488558\pi\)
\(380\) 0.866578 0.863412i 0.0444545 0.0442921i
\(381\) 0 0
\(382\) 16.1266 + 12.3978i 0.825109 + 0.634329i
\(383\) 6.27333 + 2.28330i 0.320552 + 0.116671i 0.497285 0.867588i \(-0.334331\pi\)
−0.176732 + 0.984259i \(0.556553\pi\)
\(384\) 0 0
\(385\) −0.118285 + 0.670825i −0.00602834 + 0.0341884i
\(386\) 5.60738 + 25.4032i 0.285408 + 1.29299i
\(387\) 0 0
\(388\) 10.2221 4.74389i 0.518949 0.240835i
\(389\) 10.4246 + 28.6413i 0.528548 + 1.45217i 0.860781 + 0.508976i \(0.169976\pi\)
−0.332233 + 0.943197i \(0.607802\pi\)
\(390\) 0 0
\(391\) 9.88672 + 11.7825i 0.499993 + 0.595868i
\(392\) −40.3243 9.05588i −2.03669 0.457391i
\(393\) 0 0
\(394\) 26.5628 + 13.8586i 1.33821 + 0.698187i
\(395\) 0.116690 + 0.202113i 0.00587131 + 0.0101694i
\(396\) 0 0
\(397\) 7.87633 13.6422i 0.395302 0.684683i −0.597838 0.801617i \(-0.703973\pi\)
0.993140 + 0.116934i \(0.0373067\pi\)
\(398\) 8.00323 5.08833i 0.401166 0.255055i
\(399\) 0 0
\(400\) 17.2167 + 10.0242i 0.860833 + 0.501212i
\(401\) 3.05192 0.538136i 0.152406 0.0268733i −0.0969247 0.995292i \(-0.530901\pi\)
0.249330 + 0.968418i \(0.419789\pi\)
\(402\) 0 0
\(403\) −4.96092 + 5.91220i −0.247121 + 0.294508i
\(404\) 20.8319 + 1.86097i 1.03643 + 0.0925868i
\(405\) 0 0
\(406\) −2.98518 + 2.73039i −0.148152 + 0.135507i
\(407\) −2.31945 1.94625i −0.114971 0.0964722i
\(408\) 0 0
\(409\) −4.55893 25.8550i −0.225424 1.27845i −0.861872 0.507126i \(-0.830708\pi\)
0.636448 0.771320i \(-0.280403\pi\)
\(410\) −1.19990 + 0.495728i −0.0592588 + 0.0244823i
\(411\) 0 0
\(412\) 0.805184 2.98314i 0.0396686 0.146969i
\(413\) 33.0332 + 19.0717i 1.62546 + 0.938458i
\(414\) 0 0
\(415\) 0.283273 0.163547i 0.0139053 0.00802823i
\(416\) −5.39038 + 6.95873i −0.264285 + 0.341180i
\(417\) 0 0
\(418\) 6.46919 + 0.857707i 0.316418 + 0.0419518i
\(419\) 27.7064 23.2484i 1.35355 1.13576i 0.375628 0.926771i \(-0.377427\pi\)
0.977918 0.208989i \(-0.0670172\pi\)
\(420\) 0 0
\(421\) −11.9136 + 4.33621i −0.580635 + 0.211334i −0.615605 0.788055i \(-0.711088\pi\)
0.0349706 + 0.999388i \(0.488866\pi\)
\(422\) −7.50535 + 23.7282i −0.365355 + 1.15507i
\(423\) 0 0
\(424\) 3.15707 + 24.4998i 0.153321 + 1.18981i
\(425\) 29.7702 + 5.24929i 1.44407 + 0.254628i
\(426\) 0 0
\(427\) 17.7771 48.8421i 0.860292 2.36363i
\(428\) 15.7235 1.34664i 0.760022 0.0650921i
\(429\) 0 0
\(430\) −0.430945 + 0.0184204i −0.0207820 + 0.000888311i
\(431\) 11.3033 0.544463 0.272231 0.962232i \(-0.412238\pi\)
0.272231 + 0.962232i \(0.412238\pi\)
\(432\) 0 0
\(433\) 18.1058 0.870111 0.435056 0.900404i \(-0.356729\pi\)
0.435056 + 0.900404i \(0.356729\pi\)
\(434\) 32.5792 1.39257i 1.56385 0.0668456i
\(435\) 0 0
\(436\) 3.55797 0.304723i 0.170396 0.0145936i
\(437\) 3.80399 10.4514i 0.181969 0.499957i
\(438\) 0 0
\(439\) 13.4676 + 2.37471i 0.642776 + 0.113339i 0.485529 0.874221i \(-0.338627\pi\)
0.157247 + 0.987559i \(0.449738\pi\)
\(440\) −0.0529666 0.411036i −0.00252508 0.0195954i
\(441\) 0 0
\(442\) −4.02797 + 12.7344i −0.191591 + 0.605716i
\(443\) −10.2251 + 3.72164i −0.485811 + 0.176821i −0.573301 0.819345i \(-0.694337\pi\)
0.0874905 + 0.996165i \(0.472115\pi\)
\(444\) 0 0
\(445\) −0.941489 + 0.790003i −0.0446309 + 0.0374497i
\(446\) 12.9971 + 1.72321i 0.615432 + 0.0815961i
\(447\) 0 0
\(448\) 37.0666 3.03796i 1.75123 0.143530i
\(449\) −6.10203 + 3.52301i −0.287973 + 0.166261i −0.637027 0.770841i \(-0.719836\pi\)
0.349055 + 0.937102i \(0.386503\pi\)
\(450\) 0 0
\(451\) −5.99791 3.46289i −0.282431 0.163061i
\(452\) 5.53592 20.5101i 0.260388 0.964715i
\(453\) 0 0
\(454\) 29.1717 12.0520i 1.36909 0.565630i
\(455\) 0.175058 + 0.992805i 0.00820686 + 0.0465434i
\(456\) 0 0
\(457\) 19.4984 + 16.3611i 0.912098 + 0.765341i 0.972517 0.232832i \(-0.0747993\pi\)
−0.0604193 + 0.998173i \(0.519244\pi\)
\(458\) 27.4826 25.1369i 1.28418 1.17457i
\(459\) 0 0
\(460\) −0.703532 0.0628485i −0.0328024 0.00293033i
\(461\) −25.2014 + 30.0339i −1.17375 + 1.39882i −0.274382 + 0.961621i \(0.588473\pi\)
−0.899365 + 0.437198i \(0.855971\pi\)
\(462\) 0 0
\(463\) −7.36631 + 1.29888i −0.342341 + 0.0603640i −0.342176 0.939636i \(-0.611164\pi\)
−0.000165553 1.00000i \(0.500053\pi\)
\(464\) 1.23847 2.12708i 0.0574945 0.0987470i
\(465\) 0 0
\(466\) 8.95224 5.69170i 0.414704 0.263663i
\(467\) 0.689932 1.19500i 0.0319262 0.0552979i −0.849621 0.527394i \(-0.823169\pi\)
0.881547 + 0.472096i \(0.156502\pi\)
\(468\) 0 0
\(469\) 13.1189 + 22.7227i 0.605777 + 1.04924i
\(470\) 1.93120 + 1.00757i 0.0890795 + 0.0464755i
\(471\) 0 0
\(472\) −22.6430 5.08508i −1.04223 0.234060i
\(473\) −1.47907 1.76269i −0.0680079 0.0810486i
\(474\) 0 0
\(475\) −7.47627 20.5409i −0.343035 0.942480i
\(476\) 51.1885 23.7557i 2.34622 1.08884i
\(477\) 0 0
\(478\) −1.04681 4.74241i −0.0478802 0.216913i
\(479\) 2.20993 12.5331i 0.100974 0.572654i −0.891778 0.452474i \(-0.850542\pi\)
0.992752 0.120180i \(-0.0383472\pi\)
\(480\) 0 0
\(481\) −4.21088 1.53263i −0.191999 0.0698821i
\(482\) 1.90856 + 1.46727i 0.0869327 + 0.0668322i
\(483\) 0 0
\(484\) −14.0186 + 13.9674i −0.637210 + 0.634882i
\(485\) 0.785256i 0.0356566i
\(486\) 0 0
\(487\) 12.3932i 0.561588i 0.959768 + 0.280794i \(0.0905979\pi\)
−0.959768 + 0.280794i \(0.909402\pi\)
\(488\) −1.46610 + 31.5893i −0.0663673 + 1.42998i
\(489\) 0 0
\(490\) 1.75522 2.28312i 0.0792928 0.103141i
\(491\) −24.9589 9.08428i −1.12638 0.409968i −0.289402 0.957208i \(-0.593456\pi\)
−0.836976 + 0.547240i \(0.815679\pi\)
\(492\) 0 0
\(493\) 0.648537 3.67804i 0.0292086 0.165650i
\(494\) 9.43101 2.08175i 0.424321 0.0936625i
\(495\) 0 0
\(496\) −18.6679 + 6.71730i −0.838214 + 0.301616i
\(497\) 7.41823 + 20.3814i 0.332753 + 0.914232i
\(498\) 0 0
\(499\) −6.19736 7.38573i −0.277432 0.330631i 0.609278 0.792957i \(-0.291459\pi\)
−0.886710 + 0.462326i \(0.847015\pi\)
\(500\) −2.28166 + 1.59142i −0.102039 + 0.0711706i
\(501\) 0 0
\(502\) 10.2020 19.5542i 0.455339 0.872748i
\(503\) −4.28642 7.42429i −0.191122 0.331033i 0.754500 0.656300i \(-0.227879\pi\)
−0.945622 + 0.325267i \(0.894546\pi\)
\(504\) 0 0
\(505\) −0.728686 + 1.26212i −0.0324261 + 0.0561637i
\(506\) −2.02165 3.17978i −0.0898734 0.141358i
\(507\) 0 0
\(508\) −6.05614 2.83753i −0.268698 0.125895i
\(509\) −30.5338 + 5.38393i −1.35339 + 0.238638i −0.802854 0.596176i \(-0.796686\pi\)
−0.550532 + 0.834814i \(0.685575\pi\)
\(510\) 0 0
\(511\) −33.7382 + 40.2076i −1.49249 + 1.77868i
\(512\) −20.9756 + 8.48670i −0.926999 + 0.375063i
\(513\) 0 0
\(514\) 9.47716 + 10.3615i 0.418020 + 0.457027i
\(515\) 0.164935 + 0.138397i 0.00726792 + 0.00609851i
\(516\) 0 0
\(517\) 2.01781 + 11.4436i 0.0887431 + 0.503287i
\(518\) 7.22948 + 17.4988i 0.317645 + 0.768852i
\(519\) 0 0
\(520\) −0.281721 0.544827i −0.0123543 0.0238922i
\(521\) −25.2374 14.5708i −1.10567 0.638359i −0.167966 0.985793i \(-0.553720\pi\)
−0.937705 + 0.347433i \(0.887053\pi\)
\(522\) 0 0
\(523\) −4.50959 + 2.60361i −0.197190 + 0.113848i −0.595344 0.803471i \(-0.702984\pi\)
0.398154 + 0.917319i \(0.369651\pi\)
\(524\) 1.34791 + 5.06755i 0.0588838 + 0.221377i
\(525\) 0 0
\(526\) 4.86042 36.6593i 0.211924 1.59842i
\(527\) −23.0611 + 19.3505i −1.00456 + 0.842922i
\(528\) 0 0
\(529\) 15.5783 5.67002i 0.677316 0.246523i
\(530\) −1.64115 0.519104i −0.0712870 0.0225484i
\(531\) 0 0
\(532\) −33.3839 23.4668i −1.44737 1.01741i
\(533\) −10.0943 1.77989i −0.437232 0.0770958i
\(534\) 0 0
\(535\) −0.376100 + 1.03332i −0.0162602 + 0.0446745i
\(536\) −11.7399 10.8170i −0.507085 0.467225i
\(537\) 0 0
\(538\) −0.0280951 0.657283i −0.00121127 0.0283375i
\(539\) 15.3629 0.661725
\(540\) 0 0
\(541\) 24.3664 1.04759 0.523797 0.851843i \(-0.324515\pi\)
0.523797 + 0.851843i \(0.324515\pi\)
\(542\) −0.945643 22.1233i −0.0406188 0.950275i
\(543\) 0 0
\(544\) −25.4196 + 23.0797i −1.08986 + 0.989535i
\(545\) −0.0851054 + 0.233825i −0.00364551 + 0.0100160i
\(546\) 0 0
\(547\) −35.2269 6.21145i −1.50619 0.265582i −0.641202 0.767372i \(-0.721564\pi\)
−0.864990 + 0.501790i \(0.832675\pi\)
\(548\) 10.2534 14.5865i 0.438004 0.623105i
\(549\) 0 0
\(550\) −7.06081 2.23337i −0.301074 0.0952311i
\(551\) −2.53777 + 0.923674i −0.108113 + 0.0393498i
\(552\) 0 0
\(553\) 5.96373 5.00416i 0.253604 0.212799i
\(554\) 1.83306 13.8257i 0.0778795 0.587400i
\(555\) 0 0
\(556\) −29.0025 + 7.71433i −1.22998 + 0.327160i
\(557\) 10.4040 6.00674i 0.440831 0.254514i −0.263119 0.964763i \(-0.584751\pi\)
0.703950 + 0.710250i \(0.251418\pi\)
\(558\) 0 0
\(559\) −2.94922 1.70274i −0.124739 0.0720180i
\(560\) −0.895254 + 2.43196i −0.0378314 + 0.102769i
\(561\) 0 0
\(562\) 9.21477 + 22.3041i 0.388702 + 0.940843i
\(563\) 0.829324 + 4.70333i 0.0349518 + 0.198222i 0.997284 0.0736557i \(-0.0234666\pi\)
−0.962332 + 0.271877i \(0.912355\pi\)
\(564\) 0 0
\(565\) 1.13399 + 0.951528i 0.0477072 + 0.0400311i
\(566\) 9.05857 + 9.90387i 0.380760 + 0.416291i
\(567\) 0 0
\(568\) −8.00454 10.4912i −0.335863 0.440202i
\(569\) 5.10034 6.07835i 0.213818 0.254818i −0.648466 0.761244i \(-0.724589\pi\)
0.862284 + 0.506426i \(0.169034\pi\)
\(570\) 0 0
\(571\) 15.9498 2.81238i 0.667478 0.117694i 0.170366 0.985381i \(-0.445505\pi\)
0.497112 + 0.867686i \(0.334394\pi\)
\(572\) 1.38824 2.96292i 0.0580452 0.123886i
\(573\) 0 0
\(574\) 23.2358 + 36.5466i 0.969843 + 1.52543i
\(575\) −6.31079 + 10.9306i −0.263178 + 0.455838i
\(576\) 0 0
\(577\) −8.09164 14.0151i −0.336859 0.583458i 0.646981 0.762506i \(-0.276031\pi\)
−0.983840 + 0.179049i \(0.942698\pi\)
\(578\) −12.9775 + 24.8739i −0.539792 + 1.03462i
\(579\) 0 0
\(580\) 0.0981169 + 0.140673i 0.00407408 + 0.00584111i
\(581\) −7.01361 8.35850i −0.290974 0.346769i
\(582\) 0 0
\(583\) −3.14058 8.62868i −0.130070 0.357364i
\(584\) 12.3015 29.4695i 0.509041 1.21946i
\(585\) 0 0
\(586\) 3.13231 0.691410i 0.129394 0.0285619i
\(587\) 4.51504 25.6061i 0.186356 1.05688i −0.737846 0.674969i \(-0.764157\pi\)
0.924201 0.381906i \(-0.124732\pi\)
\(588\) 0 0
\(589\) 20.4557 + 7.44526i 0.842862 + 0.306777i
\(590\) 0.985596 1.28202i 0.0405764 0.0527801i
\(591\) 0 0
\(592\) −7.37212 8.85134i −0.302992 0.363788i
\(593\) 7.68968i 0.315778i 0.987457 + 0.157889i \(0.0504687\pi\)
−0.987457 + 0.157889i \(0.949531\pi\)
\(594\) 0 0
\(595\) 3.93227i 0.161207i
\(596\) 25.5590 + 25.6528i 1.04694 + 1.05078i
\(597\) 0 0
\(598\) −4.42110 3.39886i −0.180792 0.138990i
\(599\) −28.4951 10.3714i −1.16428 0.423762i −0.313653 0.949538i \(-0.601553\pi\)
−0.850623 + 0.525776i \(0.823775\pi\)
\(600\) 0 0
\(601\) 3.19123 18.0984i 0.130173 0.738247i −0.847927 0.530113i \(-0.822150\pi\)
0.978100 0.208135i \(-0.0667392\pi\)
\(602\) 3.10141 + 14.0504i 0.126404 + 0.572650i
\(603\) 0 0
\(604\) 12.2939 + 26.4908i 0.500231 + 1.07789i
\(605\) −0.471623 1.29577i −0.0191742 0.0526806i
\(606\) 0 0
\(607\) 3.65542 + 4.35636i 0.148369 + 0.176819i 0.835110 0.550083i \(-0.185404\pi\)
−0.686741 + 0.726902i \(0.740959\pi\)
\(608\) 23.6438 + 7.57394i 0.958881 + 0.307164i
\(609\) 0 0
\(610\) −1.95364 1.01927i −0.0791006 0.0412692i
\(611\) 8.59873 + 14.8934i 0.347867 + 0.602524i
\(612\) 0 0
\(613\) −4.98728 + 8.63823i −0.201434 + 0.348895i −0.948991 0.315304i \(-0.897894\pi\)
0.747556 + 0.664198i \(0.231227\pi\)
\(614\) 14.4906 9.21292i 0.584794 0.371803i
\(615\) 0 0
\(616\) −13.1962 + 4.12097i −0.531692 + 0.166039i
\(617\) −19.3416 + 3.41044i −0.778663 + 0.137299i −0.548834 0.835932i \(-0.684928\pi\)
−0.229830 + 0.973231i \(0.573817\pi\)
\(618\) 0 0
\(619\) 22.5368 26.8583i 0.905831 1.07953i −0.0906642 0.995882i \(-0.528899\pi\)
0.996496 0.0836462i \(-0.0266566\pi\)
\(620\) 0.123009 1.37697i 0.00494015 0.0553005i
\(621\) 0 0
\(622\) 18.1295 16.5821i 0.726926 0.664882i
\(623\) 31.4062 + 26.3530i 1.25826 + 1.05581i
\(624\) 0 0
\(625\) 4.29068 + 24.3337i 0.171627 + 0.973347i
\(626\) 21.2716 8.78819i 0.850184 0.351247i
\(627\) 0 0
\(628\) −0.264608 0.0714208i −0.0105590 0.00285000i
\(629\) −15.1373 8.73951i −0.603563 0.348467i
\(630\) 0 0
\(631\) 20.6478 11.9210i 0.821976 0.474568i −0.0291214 0.999576i \(-0.509271\pi\)
0.851097 + 0.525008i \(0.175938\pi\)
\(632\) −2.55590 + 3.98777i −0.101668 + 0.158625i
\(633\) 0 0
\(634\) 40.8505 + 5.41610i 1.62238 + 0.215101i
\(635\) 0.356994 0.299554i 0.0141669 0.0118874i
\(636\) 0 0
\(637\) 21.3655 7.77640i 0.846531 0.308112i
\(638\) −0.275927 + 0.872345i −0.0109241 + 0.0345365i
\(639\) 0 0
\(640\) 0.0788622 1.57473i 0.00311730 0.0622468i
\(641\) −18.2530 3.21850i −0.720951 0.127123i −0.198879 0.980024i \(-0.563730\pi\)
−0.522073 + 0.852901i \(0.674841\pi\)
\(642\) 0 0
\(643\) −12.2412 + 33.6323i −0.482744 + 1.32633i 0.424387 + 0.905481i \(0.360490\pi\)
−0.907131 + 0.420848i \(0.861733\pi\)
\(644\) 2.01060 + 23.4760i 0.0792287 + 0.925083i
\(645\) 0 0
\(646\) 37.6377 1.60879i 1.48083 0.0632972i
\(647\) −31.4863 −1.23785 −0.618926 0.785449i \(-0.712432\pi\)
−0.618926 + 0.785449i \(0.712432\pi\)
\(648\) 0 0
\(649\) 8.62659 0.338623
\(650\) −10.9501 + 0.468055i −0.429499 + 0.0183586i
\(651\) 0 0
\(652\) −2.05156 23.9542i −0.0803453 0.938119i
\(653\) 9.20421 25.2884i 0.360189 0.989610i −0.618774 0.785569i \(-0.712370\pi\)
0.978962 0.204041i \(-0.0654076\pi\)
\(654\) 0 0
\(655\) −0.359840 0.0634495i −0.0140601 0.00247918i
\(656\) −20.1224 17.0106i −0.785647 0.664151i
\(657\) 0 0
\(658\) 21.9132 69.2787i 0.854265 2.70076i
\(659\) −42.1246 + 15.3321i −1.64094 + 0.597253i −0.987203 0.159468i \(-0.949022\pi\)
−0.653737 + 0.756722i \(0.726800\pi\)
\(660\) 0 0
\(661\) −15.4928 + 13.0000i −0.602602 + 0.505643i −0.892281 0.451481i \(-0.850896\pi\)
0.289679 + 0.957124i \(0.406451\pi\)
\(662\) −3.83505 0.508464i −0.149053 0.0197620i
\(663\) 0 0
\(664\) 5.58908 + 3.58224i 0.216898 + 0.139018i
\(665\) 2.46250 1.42173i 0.0954917 0.0551322i
\(666\) 0 0
\(667\) 1.35045 + 0.779683i 0.0522896 + 0.0301894i
\(668\) −21.7263 5.86418i −0.840617 0.226892i
\(669\) 0 0
\(670\) 1.02807 0.424739i 0.0397179 0.0164091i
\(671\) −2.04126 11.5765i −0.0788018 0.446907i
\(672\) 0 0
\(673\) −32.9507 27.6490i −1.27016 1.06579i −0.994522 0.104527i \(-0.966667\pi\)
−0.275636 0.961262i \(-0.588888\pi\)
\(674\) −7.19720 + 6.58291i −0.277226 + 0.253564i
\(675\) 0 0
\(676\) −1.88256 + 21.0736i −0.0724062 + 0.810522i
\(677\) 12.7626 15.2099i 0.490506 0.584563i −0.462840 0.886442i \(-0.653170\pi\)
0.953346 + 0.301879i \(0.0976140\pi\)
\(678\) 0 0
\(679\) 25.7966 4.54864i 0.989984 0.174561i
\(680\) −0.713156 2.28368i −0.0273483 0.0875751i
\(681\) 0 0
\(682\) 6.22354 3.95683i 0.238312 0.151515i
\(683\) −16.6637 + 28.8624i −0.637618 + 1.10439i 0.348336 + 0.937370i \(0.386747\pi\)
−0.985954 + 0.167017i \(0.946586\pi\)
\(684\) 0 0
\(685\) 0.621199 + 1.07595i 0.0237348 + 0.0411098i
\(686\) −44.3686 23.1485i −1.69400 0.883813i
\(687\) 0 0
\(688\) −4.34933 7.59733i −0.165817 0.289646i
\(689\) −8.73537 10.4104i −0.332791 0.396605i
\(690\) 0 0
\(691\) 0.668178 + 1.83580i 0.0254187 + 0.0698373i 0.951753 0.306865i \(-0.0992801\pi\)
−0.926334 + 0.376703i \(0.877058\pi\)
\(692\) −4.80141 10.3460i −0.182522 0.393297i
\(693\) 0 0
\(694\) 6.98234 + 31.6322i 0.265046 + 1.20074i
\(695\) 0.363132 2.05943i 0.0137744 0.0781185i
\(696\) 0 0
\(697\) −37.5699 13.6743i −1.42306 0.517952i
\(698\) −30.4152 23.3826i −1.15123 0.885045i
\(699\) 0 0
\(700\) 32.6847 + 32.8046i 1.23537 + 1.23990i
\(701\) 15.9132i 0.601032i 0.953777 + 0.300516i \(0.0971588\pi\)
−0.953777 + 0.300516i \(0.902841\pi\)
\(702\) 0 0
\(703\) 12.6392i 0.476697i
\(704\) 6.91639 4.78654i 0.260671 0.180400i
\(705\) 0 0
\(706\) 5.80568 7.55179i 0.218500 0.284215i
\(707\) 45.6832 + 16.6273i 1.71810 + 0.625335i
\(708\) 0 0
\(709\) −5.73424 + 32.5205i −0.215354 + 1.22133i 0.664937 + 0.746899i \(0.268458\pi\)
−0.880291 + 0.474434i \(0.842653\pi\)
\(710\) 0.897910 0.198200i 0.0336980 0.00743832i
\(711\) 0 0
\(712\) −23.0187 9.60875i −0.862661 0.360103i
\(713\) −4.29893 11.8112i −0.160996 0.442334i
\(714\) 0 0
\(715\) 0.146555 + 0.174657i 0.00548083 + 0.00653180i
\(716\) 14.1918 + 20.3471i 0.530371 + 0.760406i
\(717\) 0 0
\(718\) −18.7880 + 36.0109i −0.701161 + 1.34391i
\(719\) 4.06158 + 7.03487i 0.151471 + 0.262356i 0.931769 0.363053i \(-0.118266\pi\)
−0.780297 + 0.625409i \(0.784932\pi\)
\(720\) 0 0
\(721\) 3.59112 6.22000i 0.133740 0.231645i
\(722\) −0.198976 0.312961i −0.00740512 0.0116472i
\(723\) 0 0
\(724\) 0.987922 2.10852i 0.0367158 0.0783626i
\(725\) 3.01818 0.532186i 0.112092 0.0197649i
\(726\) 0 0
\(727\) 24.2351 28.8823i 0.898830 1.07118i −0.0982756 0.995159i \(-0.531333\pi\)
0.997106 0.0760250i \(-0.0242229\pi\)
\(728\) −16.2664 + 12.4108i −0.602872 + 0.459976i
\(729\) 0 0
\(730\) 1.50182 + 1.64196i 0.0555849 + 0.0607718i
\(731\) −10.1756 8.53837i −0.376359 0.315803i
\(732\) 0 0
\(733\) −5.07665 28.7911i −0.187510 1.06342i −0.922687 0.385549i \(-0.874012\pi\)
0.735177 0.677875i \(-0.237099\pi\)
\(734\) −2.10908 5.10498i −0.0778477 0.188428i
\(735\) 0 0
\(736\) −5.42526 13.2691i −0.199978 0.489106i
\(737\) 5.13900 + 2.96700i 0.189298 + 0.109291i
\(738\) 0 0
\(739\) 34.0829 19.6778i 1.25376 0.723858i 0.281905 0.959442i \(-0.409034\pi\)
0.971854 + 0.235584i \(0.0757002\pi\)
\(740\) 0.775708 0.206330i 0.0285156 0.00758483i
\(741\) 0 0
\(742\) −7.54675 + 56.9208i −0.277050 + 2.08963i
\(743\) −8.53663 + 7.16309i −0.313179 + 0.262788i −0.785804 0.618475i \(-0.787751\pi\)
0.472626 + 0.881263i \(0.343306\pi\)
\(744\) 0 0
\(745\) −2.37114 + 0.863025i −0.0868719 + 0.0316188i
\(746\) −14.7044 4.65109i −0.538368 0.170288i
\(747\) 0 0
\(748\) 7.33956 10.4413i 0.268361 0.381770i
\(749\) 36.1246 + 6.36974i 1.31996 + 0.232745i
\(750\) 0 0
\(751\) −9.99875 + 27.4713i −0.364860 + 1.00244i 0.612428 + 0.790526i \(0.290193\pi\)
−0.977288 + 0.211917i \(0.932029\pi\)
\(752\) −0.161793 + 44.2080i −0.00590000 + 1.61210i
\(753\) 0 0
\(754\) 0.0578270 + 1.35286i 0.00210594 + 0.0492682i
\(755\) −2.03500 −0.0740613
\(756\) 0 0
\(757\) −8.57552 −0.311682 −0.155841 0.987782i \(-0.549809\pi\)
−0.155841 + 0.987782i \(0.549809\pi\)
\(758\) 0.359506 + 8.41062i 0.0130578 + 0.305487i
\(759\) 0 0
\(760\) −1.17226 + 1.27227i −0.0425224 + 0.0461501i
\(761\) 1.92414 5.28652i 0.0697499 0.191636i −0.899920 0.436056i \(-0.856375\pi\)
0.969670 + 0.244419i \(0.0785973\pi\)
\(762\) 0 0
\(763\) 8.17443 + 1.44137i 0.295934 + 0.0521812i
\(764\) −23.5344 16.5432i −0.851446 0.598514i
\(765\) 0 0
\(766\) −9.00163 2.84726i −0.325242 0.102876i
\(767\) 11.9972 4.36662i 0.433194 0.157670i
\(768\) 0 0
\(769\) 1.92270 1.61334i 0.0693344 0.0581784i −0.607462 0.794349i \(-0.707812\pi\)
0.676796 + 0.736170i \(0.263368\pi\)
\(770\) 0.126613 0.954968i 0.00456281 0.0344147i
\(771\) 0 0
\(772\) −9.45702 35.5542i −0.340365 1.27962i
\(773\) 0.0355587 0.0205298i 0.00127896 0.000738407i −0.499360 0.866394i \(-0.666432\pi\)
0.500639 + 0.865656i \(0.333098\pi\)
\(774\) 0 0
\(775\) −21.3937 12.3516i −0.768483 0.443684i
\(776\) −14.1566 + 7.32012i −0.508191 + 0.262777i
\(777\) 0 0
\(778\) −16.4589 39.8384i −0.590081 1.42828i
\(779\) 5.02027 + 28.4714i 0.179870 + 1.02009i
\(780\) 0 0
\(781\) 3.75770 + 3.15308i 0.134461 + 0.112826i
\(782\) −14.6808 16.0507i −0.524983 0.573972i
\(783\) 0 0
\(784\) 57.5221 + 10.3599i 2.05436 + 0.369997i
\(785\) 0.0122760 0.0146300i 0.000438149 0.000522166i
\(786\) 0 0
\(787\) −42.8565 + 7.55676i −1.52767 + 0.269369i −0.873442 0.486928i \(-0.838117\pi\)
−0.654228 + 0.756298i \(0.727006\pi\)
\(788\) −38.3682 17.9769i −1.36681 0.640401i
\(789\) 0 0
\(790\) −0.177080 0.278523i −0.00630024 0.00990939i
\(791\) 24.6902 42.7647i 0.877882 1.52054i
\(792\) 0 0
\(793\) −8.69865 15.0665i −0.308898 0.535028i
\(794\) −10.3047 + 19.7511i −0.365702 + 0.700940i
\(795\) 0 0
\(796\) −11.0006 + 7.67278i −0.389908 + 0.271954i
\(797\) 28.8870 + 34.4262i 1.02323 + 1.21944i 0.975368 + 0.220585i \(0.0707966\pi\)
0.0478627 + 0.998854i \(0.484759\pi\)
\(798\) 0 0
\(799\) 22.9428 + 63.0348i 0.811658 + 2.23001i
\(800\) −24.9312 13.1237i −0.881452 0.463992i
\(801\) 0 0
\(802\) −4.27963 + 0.944665i −0.151119 + 0.0333573i
\(803\) −2.06131 + 11.6903i −0.0727421 + 0.412541i
\(804\) 0 0
\(805\) −1.54281 0.561537i −0.0543769 0.0197916i
\(806\) 6.65234 8.65310i 0.234319 0.304792i
\(807\) 0 0
\(808\) −29.5463 1.37128i −1.03943 0.0482415i
\(809\) 39.4534i 1.38711i −0.720405 0.693553i \(-0.756044\pi\)
0.720405 0.693553i \(-0.243956\pi\)
\(810\) 0 0
\(811\) 49.4348i 1.73589i −0.496659 0.867946i \(-0.665440\pi\)
0.496659 0.867946i \(-0.334560\pi\)
\(812\) 4.05292 4.03812i 0.142230 0.141710i
\(813\) 0 0
\(814\) 3.39475 + 2.60982i 0.118986 + 0.0914743i
\(815\) 1.57424 + 0.572976i 0.0551432 + 0.0200705i
\(816\) 0 0
\(817\) −1.66794 + 9.45936i −0.0583538 + 0.330941i
\(818\) 8.00291 + 36.2557i 0.279815 + 1.26765i
\(819\) 0 0
\(820\) 1.66543 0.772894i 0.0581592 0.0269906i
\(821\) −7.55911 20.7685i −0.263815 0.724825i −0.998902 0.0468524i \(-0.985081\pi\)
0.735087 0.677973i \(-0.237141\pi\)
\(822\) 0 0
\(823\) 12.5755 + 14.9869i 0.438356 + 0.522412i 0.939314 0.343060i \(-0.111463\pi\)
−0.500958 + 0.865472i \(0.667019\pi\)
\(824\) −0.957498 + 4.26358i −0.0333560 + 0.148529i
\(825\) 0 0
\(826\) −47.8252 24.9519i −1.66405 0.868187i
\(827\) −8.39197 14.5353i −0.291817 0.505442i 0.682422 0.730958i \(-0.260927\pi\)
−0.974239 + 0.225516i \(0.927593\pi\)
\(828\) 0 0
\(829\) −18.8116 + 32.5827i −0.653355 + 1.13164i 0.328949 + 0.944348i \(0.393306\pi\)
−0.982304 + 0.187296i \(0.940028\pi\)
\(830\) −0.390365 + 0.248188i −0.0135498 + 0.00861474i
\(831\) 0 0
\(832\) 7.19593 10.1577i 0.249474 0.352155i
\(833\) 87.3391 15.4002i 3.02612 0.533587i
\(834\) 0 0
\(835\) 1.00795 1.20123i 0.0348816 0.0415703i
\(836\) −9.19227 0.821172i −0.317921 0.0284008i
\(837\) 0 0
\(838\) −37.7429 + 34.5215i −1.30381 + 1.19253i
\(839\) 42.1708 + 35.3855i 1.45590 + 1.22164i 0.928130 + 0.372257i \(0.121416\pi\)
0.527770 + 0.849387i \(0.323028\pi\)
\(840\) 0 0
\(841\) 4.97005 + 28.1865i 0.171381 + 0.971950i
\(842\) 16.5712 6.84625i 0.571080 0.235937i
\(843\) 0 0
\(844\) 9.17143 33.9794i 0.315694 1.16962i
\(845\) −1.27676 0.737140i −0.0439220 0.0253584i
\(846\) 0 0
\(847\) −39.8358 + 22.9992i −1.36878 + 0.790263i
\(848\) −5.94034 34.4256i −0.203992 1.18218i
\(849\) 0 0
\(850\) −42.3800 5.61889i −1.45362 0.192726i
\(851\) 5.59055 4.69103i 0.191642 0.160806i
\(852\) 0 0
\(853\) −10.7087 + 3.89766i −0.366660 + 0.133453i −0.518778 0.854909i \(-0.673613\pi\)
0.152118 + 0.988362i \(0.451391\pi\)
\(854\) −22.1678 + 70.0837i −0.758568 + 2.39822i
\(855\) 0 0
\(856\) −22.1347 + 2.85230i −0.756549 + 0.0974897i
\(857\) −26.1169 4.60511i −0.892135 0.157307i −0.291254 0.956646i \(-0.594072\pi\)
−0.600881 + 0.799338i \(0.705184\pi\)
\(858\) 0 0
\(859\) −2.68013 + 7.36359i −0.0914447 + 0.251242i −0.976980 0.213329i \(-0.931569\pi\)
0.885536 + 0.464571i \(0.153792\pi\)
\(860\) 0.607779 0.0520533i 0.0207251 0.00177500i
\(861\) 0 0
\(862\) −15.9707 + 0.682658i −0.543966 + 0.0232514i
\(863\) 32.9090 1.12023 0.560117 0.828413i \(-0.310756\pi\)
0.560117 + 0.828413i \(0.310756\pi\)
\(864\) 0 0
\(865\) 0.794776 0.0270232
\(866\) −25.5822 + 1.09349i −0.869317 + 0.0371584i
\(867\) 0 0
\(868\) −45.9478 + 3.93520i −1.55957 + 0.133569i
\(869\) 0.602192 1.65451i 0.0204279 0.0561253i
\(870\) 0 0
\(871\) 8.64877 + 1.52501i 0.293052 + 0.0516730i
\(872\) −5.00874 + 0.645431i −0.169617 + 0.0218571i
\(873\) 0 0
\(874\) −4.74354 + 14.9967i −0.160453 + 0.507272i
\(875\) −6.07623 + 2.21157i −0.205414 + 0.0747646i
\(876\) 0 0
\(877\) 30.3283 25.4485i 1.02411 0.859333i 0.0339746 0.999423i \(-0.489183\pi\)
0.990139 + 0.140089i \(0.0447390\pi\)
\(878\) −19.1722 2.54191i −0.647029 0.0857854i
\(879\) 0 0
\(880\) 0.0996620 + 0.577564i 0.00335961 + 0.0194697i
\(881\) −20.1797 + 11.6507i −0.679870 + 0.392523i −0.799806 0.600259i \(-0.795064\pi\)
0.119936 + 0.992782i \(0.461731\pi\)
\(882\) 0 0
\(883\) −44.2753 25.5624i −1.48998 0.860242i −0.490049 0.871695i \(-0.663021\pi\)
−0.999934 + 0.0114524i \(0.996355\pi\)
\(884\) 4.92212 18.2361i 0.165549 0.613345i
\(885\) 0 0
\(886\) 14.2226 5.87594i 0.477816 0.197406i
\(887\) −1.18664 6.72976i −0.0398434 0.225963i 0.958384 0.285483i \(-0.0921541\pi\)
−0.998227 + 0.0595201i \(0.981043\pi\)
\(888\) 0 0
\(889\) −11.9086 9.99253i −0.399403 0.335139i
\(890\) 1.28254 1.17307i 0.0429908 0.0393215i
\(891\) 0 0
\(892\) −18.4680 1.64980i −0.618356 0.0552395i
\(893\) 31.1792 37.1579i 1.04337 1.24344i
\(894\) 0 0
\(895\) −1.70235 + 0.300171i −0.0569034 + 0.0100336i
\(896\) −52.1888 + 6.53102i −1.74350 + 0.218186i
\(897\) 0 0
\(898\) 8.40893 5.34627i 0.280610 0.178407i
\(899\) −1.52601 + 2.64313i −0.0508954 + 0.0881535i
\(900\) 0 0
\(901\) −26.5042 45.9065i −0.882981 1.52937i
\(902\) 8.68373 + 4.53056i 0.289136 + 0.150851i
\(903\) 0 0
\(904\) −6.58313 + 29.3136i −0.218952 + 0.974955i
\(905\) 0.104294 + 0.124292i 0.00346684 + 0.00413161i
\(906\) 0 0
\(907\) −2.56226 7.03975i −0.0850784 0.233751i 0.889857 0.456240i \(-0.150804\pi\)
−0.974935 + 0.222489i \(0.928582\pi\)
\(908\) −40.4894 + 18.7904i −1.34369 + 0.623582i
\(909\) 0 0
\(910\) −0.307304 1.39219i −0.0101870 0.0461505i
\(911\) 4.49855 25.5126i 0.149044 0.845269i −0.814987 0.579479i \(-0.803256\pi\)
0.964031 0.265790i \(-0.0856328\pi\)
\(912\) 0 0
\(913\) −2.31889 0.844005i −0.0767439 0.0279325i
\(914\) −28.5379 21.9394i −0.943950 0.725691i
\(915\) 0 0
\(916\) −37.3127 + 37.1764i −1.23285 + 1.22834i
\(917\) 12.1887i 0.402508i
\(918\) 0 0
\(919\) 37.4197i 1.23436i 0.786821 + 0.617182i \(0.211726\pi\)
−0.786821 + 0.617182i \(0.788274\pi\)
\(920\) 0.997833 + 0.0463108i 0.0328976 + 0.00152682i
\(921\) 0 0
\(922\) 33.7938 43.9576i 1.11294 1.44767i
\(923\) 6.82195 + 2.48299i 0.224547 + 0.0817285i
\(924\) 0 0
\(925\) 2.49067 14.1253i 0.0818928 0.464437i
\(926\) 10.3296 2.28010i 0.339451 0.0749287i
\(927\) 0 0
\(928\) −1.62140 + 3.08019i −0.0532250 + 0.101112i
\(929\) 4.20155 + 11.5437i 0.137848 + 0.378736i 0.989338 0.145636i \(-0.0465227\pi\)
−0.851490 + 0.524371i \(0.824300\pi\)
\(930\) 0 0
\(931\) −41.2218 49.1263i −1.35099 1.61005i
\(932\) −12.3051 + 8.58260i −0.403066 + 0.281132i
\(933\) 0 0
\(934\) −0.902650 + 1.73011i −0.0295356 + 0.0566109i
\(935\) 0.444664 + 0.770181i 0.0145421 + 0.0251876i
\(936\) 0 0
\(937\) −20.8028 + 36.0316i −0.679599 + 1.17710i 0.295503 + 0.955342i \(0.404513\pi\)
−0.975102 + 0.221758i \(0.928821\pi\)
\(938\) −19.9084 31.3131i −0.650032 1.02241i
\(939\) 0 0
\(940\) −2.78949 1.30698i −0.0909830 0.0426289i
\(941\) −51.4480 + 9.07167i −1.67716 + 0.295728i −0.929627 0.368501i \(-0.879871\pi\)
−0.747529 + 0.664229i \(0.768760\pi\)
\(942\) 0 0
\(943\) 10.7301 12.7877i 0.349421 0.416424i
\(944\) 32.2999 + 5.81732i 1.05127 + 0.189338i
\(945\) 0 0
\(946\) 2.19627 + 2.40122i 0.0714070 + 0.0780704i
\(947\) −13.5313 11.3541i −0.439707 0.368958i 0.395893 0.918297i \(-0.370435\pi\)
−0.835600 + 0.549339i \(0.814880\pi\)
\(948\) 0 0
\(949\) 3.05069 + 17.3013i 0.0990296 + 0.561625i
\(950\) 11.8039 + 28.5712i 0.382971 + 0.926971i
\(951\) 0 0
\(952\) −70.8907 + 36.6564i −2.29758 + 1.18804i
\(953\) 47.6750 + 27.5252i 1.54435 + 0.891628i 0.998557 + 0.0537052i \(0.0171031\pi\)
0.545788 + 0.837923i \(0.316230\pi\)
\(954\) 0 0
\(955\) 1.73597 1.00227i 0.0561748 0.0324325i
\(956\) 1.76548 + 6.63743i 0.0570998 + 0.214670i
\(957\) 0 0
\(958\) −2.36553 + 17.8418i −0.0764268 + 0.576443i
\(959\) 31.7479 26.6396i 1.02519 0.860239i
\(960\) 0 0
\(961\) −6.01326 + 2.18865i −0.193976 + 0.0706015i
\(962\) 6.04221 + 1.91118i 0.194809 + 0.0616189i
\(963\) 0 0
\(964\) −2.78527 1.95787i −0.0897075 0.0630588i
\(965\) 2.52466 + 0.445165i 0.0812715 + 0.0143304i
\(966\) 0 0
\(967\) −5.75089 + 15.8004i −0.184936 + 0.508108i −0.997166 0.0752294i \(-0.976031\pi\)
0.812230 + 0.583337i \(0.198253\pi\)
\(968\) 18.9637 20.5815i 0.609516 0.661515i
\(969\) 0 0
\(970\) −0.0474250 1.10951i −0.00152273 0.0356241i
\(971\) 22.4986 0.722013 0.361007 0.932563i \(-0.382433\pi\)
0.361007 + 0.932563i \(0.382433\pi\)
\(972\) 0 0
\(973\) −69.7582 −2.23635
\(974\) −0.748479 17.5106i −0.0239828 0.561076i
\(975\) 0 0
\(976\) 0.163674 44.7218i 0.00523906 1.43151i
\(977\) −2.99686 + 8.23381i −0.0958781 + 0.263423i −0.978355 0.206932i \(-0.933652\pi\)
0.882477 + 0.470355i \(0.155874\pi\)
\(978\) 0 0
\(979\) 9.13129 + 1.61009i 0.291837 + 0.0514588i
\(980\) −2.34211 + 3.33188i −0.0748158 + 0.106433i
\(981\) 0 0
\(982\) 35.8136 + 11.3280i 1.14286 + 0.361492i
\(983\) −10.2909 + 3.74559i −0.328230 + 0.119466i −0.500878 0.865518i \(-0.666990\pi\)
0.172649 + 0.984983i \(0.444767\pi\)
\(984\) 0 0
\(985\) 2.26171 1.89780i 0.0720640 0.0604689i
\(986\) −0.694200 + 5.23595i −0.0221078 + 0.166747i
\(987\) 0 0
\(988\) −13.1996 + 3.51094i −0.419934 + 0.111698i
\(989\) 4.80310 2.77307i 0.152730 0.0881785i
\(990\) 0 0
\(991\) 31.9842 + 18.4661i 1.01601 + 0.586594i 0.912946 0.408081i \(-0.133802\pi\)
0.103065 + 0.994675i \(0.467135\pi\)
\(992\) 25.9706 10.6185i 0.824569 0.337137i
\(993\) 0 0
\(994\) −11.7123 28.3494i −0.371492 0.899188i
\(995\) −0.162287 0.920377i −0.00514485 0.0291779i
\(996\) 0 0
\(997\) −28.8738 24.2280i −0.914443 0.767309i 0.0585161 0.998286i \(-0.481363\pi\)
−0.972959 + 0.230978i \(0.925808\pi\)
\(998\) 9.20246 + 10.0612i 0.291299 + 0.318481i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 972.2.l.d.107.1 96
3.2 odd 2 972.2.l.a.107.16 96
4.3 odd 2 inner 972.2.l.d.107.9 96
9.2 odd 6 972.2.l.b.755.6 96
9.4 even 3 108.2.l.a.47.11 yes 96
9.5 odd 6 324.2.l.a.143.6 96
9.7 even 3 972.2.l.c.755.11 96
12.11 even 2 972.2.l.a.107.8 96
27.4 even 9 972.2.l.b.215.4 96
27.5 odd 18 inner 972.2.l.d.863.9 96
27.13 even 9 324.2.l.a.179.14 96
27.14 odd 18 108.2.l.a.23.3 96
27.22 even 9 972.2.l.a.863.8 96
27.23 odd 18 972.2.l.c.215.13 96
36.7 odd 6 972.2.l.c.755.13 96
36.11 even 6 972.2.l.b.755.4 96
36.23 even 6 324.2.l.a.143.14 96
36.31 odd 6 108.2.l.a.47.3 yes 96
108.23 even 18 972.2.l.c.215.11 96
108.31 odd 18 972.2.l.b.215.6 96
108.59 even 18 inner 972.2.l.d.863.1 96
108.67 odd 18 324.2.l.a.179.6 96
108.95 even 18 108.2.l.a.23.11 yes 96
108.103 odd 18 972.2.l.a.863.16 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
108.2.l.a.23.3 96 27.14 odd 18
108.2.l.a.23.11 yes 96 108.95 even 18
108.2.l.a.47.3 yes 96 36.31 odd 6
108.2.l.a.47.11 yes 96 9.4 even 3
324.2.l.a.143.6 96 9.5 odd 6
324.2.l.a.143.14 96 36.23 even 6
324.2.l.a.179.6 96 108.67 odd 18
324.2.l.a.179.14 96 27.13 even 9
972.2.l.a.107.8 96 12.11 even 2
972.2.l.a.107.16 96 3.2 odd 2
972.2.l.a.863.8 96 27.22 even 9
972.2.l.a.863.16 96 108.103 odd 18
972.2.l.b.215.4 96 27.4 even 9
972.2.l.b.215.6 96 108.31 odd 18
972.2.l.b.755.4 96 36.11 even 6
972.2.l.b.755.6 96 9.2 odd 6
972.2.l.c.215.11 96 108.23 even 18
972.2.l.c.215.13 96 27.23 odd 18
972.2.l.c.755.11 96 9.7 even 3
972.2.l.c.755.13 96 36.7 odd 6
972.2.l.d.107.1 96 1.1 even 1 trivial
972.2.l.d.107.9 96 4.3 odd 2 inner
972.2.l.d.863.1 96 108.59 even 18 inner
972.2.l.d.863.9 96 27.5 odd 18 inner