Properties

Label 324.2.l.a.143.14
Level $324$
Weight $2$
Character 324.143
Analytic conductor $2.587$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [324,2,Mod(35,324)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(324, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 13])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("324.35"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 324.l (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.58715302549\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(16\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 108)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 143.14
Character \(\chi\) \(=\) 324.143
Dual form 324.2.l.a.179.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.30706 + 0.540000i) q^{2} +(1.41680 + 1.41162i) q^{4} +(-0.137245 + 0.0242000i) q^{5} +(2.98823 - 3.56123i) q^{7} +(1.08956 + 2.61015i) q^{8} +(-0.192456 - 0.0424817i) q^{10} +(-0.182573 + 1.03542i) q^{11} +(-1.46220 - 0.532196i) q^{13} +(5.82886 - 3.04109i) q^{14} +(0.0146392 + 3.99997i) q^{16} +(-5.25631 + 3.03473i) q^{17} +(3.80088 + 2.19444i) q^{19} +(-0.228610 - 0.159452i) q^{20} +(-0.797761 + 1.25477i) q^{22} +(1.94128 - 1.62893i) q^{23} +(-4.68021 + 1.70346i) q^{25} +(-1.62379 - 1.48520i) q^{26} +(9.26084 - 0.827297i) q^{28} +(-0.210458 - 0.578229i) q^{29} +(-3.18818 - 3.79952i) q^{31} +(-2.14085 + 5.23610i) q^{32} +(-8.50906 + 1.12816i) q^{34} +(-0.323938 + 0.561078i) q^{35} +(-1.43991 - 2.49400i) q^{37} +(3.78297 + 4.92073i) q^{38} +(-0.212703 - 0.331863i) q^{40} +(2.25297 - 6.18999i) q^{41} +(-2.15530 - 0.380038i) q^{43} +(-1.72029 + 1.20926i) q^{44} +(3.41698 - 1.08081i) q^{46} +(-8.46639 - 7.10414i) q^{47} +(-2.53733 - 14.3899i) q^{49} +(-7.03718 - 0.300799i) q^{50} +(-1.32038 - 2.81809i) q^{52} +8.73360i q^{53} -0.146525i q^{55} +(12.5512 + 3.91953i) q^{56} +(0.0371630 - 0.869426i) q^{58} +(-1.42477 - 8.08025i) q^{59} +(8.56477 + 7.18670i) q^{61} +(-2.11539 - 6.68781i) q^{62} +(-5.62571 + 5.68782i) q^{64} +(0.213559 + 0.0376562i) q^{65} +(-1.93034 + 5.30357i) q^{67} +(-11.7310 - 3.12033i) q^{68} +(-0.726388 + 0.558434i) q^{70} +(2.33277 + 4.04048i) q^{71} +(-5.64518 + 9.77774i) q^{73} +(-0.535287 - 4.03736i) q^{74} +(2.28736 + 8.47449i) q^{76} +(3.14181 + 3.74426i) q^{77} +(-0.572755 - 1.57363i) q^{79} +(-0.0988087 - 0.548623i) q^{80} +(6.28736 - 6.87406i) q^{82} +(2.20553 - 0.802749i) q^{83} +(0.647964 - 0.543706i) q^{85} +(-2.61188 - 1.66060i) q^{86} +(-2.90152 + 0.651613i) q^{88} +(-7.63741 - 4.40946i) q^{89} +(-6.26466 + 3.61690i) q^{91} +(5.04983 + 0.432493i) q^{92} +(-7.22981 - 13.8574i) q^{94} +(-0.574758 - 0.209195i) q^{95} +(-0.978443 + 5.54902i) q^{97} +(4.45412 - 20.1786i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 6 q^{2} - 6 q^{4} + 12 q^{5} + 9 q^{8} - 3 q^{10} - 12 q^{13} + 21 q^{14} - 6 q^{16} + 18 q^{17} + 27 q^{20} - 6 q^{22} - 12 q^{25} - 12 q^{28} + 24 q^{29} - 24 q^{32} - 12 q^{34} - 6 q^{37} - 18 q^{38}+ \cdots + 180 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/324\mathbb{Z}\right)^\times\).

\(n\) \(163\) \(245\)
\(\chi(n)\) \(-1\) \(e\left(\frac{7}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.30706 + 0.540000i 0.924229 + 0.381838i
\(3\) 0 0
\(4\) 1.41680 + 1.41162i 0.708400 + 0.705812i
\(5\) −0.137245 + 0.0242000i −0.0613780 + 0.0108226i −0.204253 0.978918i \(-0.565476\pi\)
0.142875 + 0.989741i \(0.454365\pi\)
\(6\) 0 0
\(7\) 2.98823 3.56123i 1.12944 1.34602i 0.198824 0.980035i \(-0.436288\pi\)
0.930621 0.365984i \(-0.119268\pi\)
\(8\) 1.08956 + 2.61015i 0.385218 + 0.922826i
\(9\) 0 0
\(10\) −0.192456 0.0424817i −0.0608598 0.0134339i
\(11\) −0.182573 + 1.03542i −0.0550477 + 0.312191i −0.999882 0.0153574i \(-0.995111\pi\)
0.944834 + 0.327549i \(0.106223\pi\)
\(12\) 0 0
\(13\) −1.46220 0.532196i −0.405541 0.147605i 0.131192 0.991357i \(-0.458119\pi\)
−0.536733 + 0.843752i \(0.680342\pi\)
\(14\) 5.82886 3.04109i 1.55783 0.812766i
\(15\) 0 0
\(16\) 0.0146392 + 3.99997i 0.00365980 + 0.999993i
\(17\) −5.25631 + 3.03473i −1.27484 + 0.736031i −0.975895 0.218238i \(-0.929969\pi\)
−0.298948 + 0.954269i \(0.596636\pi\)
\(18\) 0 0
\(19\) 3.80088 + 2.19444i 0.871981 + 0.503439i 0.868006 0.496553i \(-0.165401\pi\)
0.00397518 + 0.999992i \(0.498735\pi\)
\(20\) −0.228610 0.159452i −0.0511188 0.0356546i
\(21\) 0 0
\(22\) −0.797761 + 1.25477i −0.170083 + 0.267517i
\(23\) 1.94128 1.62893i 0.404785 0.339655i −0.417555 0.908652i \(-0.637113\pi\)
0.822340 + 0.568997i \(0.192668\pi\)
\(24\) 0 0
\(25\) −4.68021 + 1.70346i −0.936042 + 0.340692i
\(26\) −1.62379 1.48520i −0.318451 0.291271i
\(27\) 0 0
\(28\) 9.26084 0.827297i 1.75013 0.156345i
\(29\) −0.210458 0.578229i −0.0390811 0.107374i 0.918617 0.395149i \(-0.129307\pi\)
−0.957698 + 0.287774i \(0.907085\pi\)
\(30\) 0 0
\(31\) −3.18818 3.79952i −0.572613 0.682414i 0.399552 0.916711i \(-0.369166\pi\)
−0.972165 + 0.234297i \(0.924721\pi\)
\(32\) −2.14085 + 5.23610i −0.378453 + 0.925621i
\(33\) 0 0
\(34\) −8.50906 + 1.12816i −1.45929 + 0.193478i
\(35\) −0.323938 + 0.561078i −0.0547556 + 0.0948394i
\(36\) 0 0
\(37\) −1.43991 2.49400i −0.236720 0.410012i 0.723051 0.690795i \(-0.242739\pi\)
−0.959771 + 0.280783i \(0.909406\pi\)
\(38\) 3.78297 + 4.92073i 0.613679 + 0.798248i
\(39\) 0 0
\(40\) −0.212703 0.331863i −0.0336313 0.0524721i
\(41\) 2.25297 6.18999i 0.351855 0.966713i −0.629919 0.776661i \(-0.716912\pi\)
0.981774 0.190053i \(-0.0608658\pi\)
\(42\) 0 0
\(43\) −2.15530 0.380038i −0.328681 0.0579553i 0.00687300 0.999976i \(-0.497812\pi\)
−0.335554 + 0.942021i \(0.608923\pi\)
\(44\) −1.72029 + 1.20926i −0.259344 + 0.182303i
\(45\) 0 0
\(46\) 3.41698 1.08081i 0.503807 0.159357i
\(47\) −8.46639 7.10414i −1.23495 1.03625i −0.997902 0.0647475i \(-0.979376\pi\)
−0.237048 0.971498i \(-0.576180\pi\)
\(48\) 0 0
\(49\) −2.53733 14.3899i −0.362476 2.05570i
\(50\) −7.03718 0.300799i −0.995207 0.0425394i
\(51\) 0 0
\(52\) −1.32038 2.81809i −0.183104 0.390798i
\(53\) 8.73360i 1.19965i 0.800130 + 0.599826i \(0.204764\pi\)
−0.800130 + 0.599826i \(0.795236\pi\)
\(54\) 0 0
\(55\) 0.146525i 0.0197574i
\(56\) 12.5512 + 3.91953i 1.67722 + 0.523770i
\(57\) 0 0
\(58\) 0.0371630 0.869426i 0.00487974 0.114161i
\(59\) −1.42477 8.08025i −0.185489 1.05196i −0.925326 0.379173i \(-0.876208\pi\)
0.739837 0.672786i \(-0.234903\pi\)
\(60\) 0 0
\(61\) 8.56477 + 7.18670i 1.09661 + 0.920162i 0.997192 0.0748840i \(-0.0238587\pi\)
0.0994142 + 0.995046i \(0.468303\pi\)
\(62\) −2.11539 6.68781i −0.268654 0.849353i
\(63\) 0 0
\(64\) −5.62571 + 5.68782i −0.703214 + 0.710978i
\(65\) 0.213559 + 0.0376562i 0.0264887 + 0.00467068i
\(66\) 0 0
\(67\) −1.93034 + 5.30357i −0.235829 + 0.647934i 0.764167 + 0.645019i \(0.223150\pi\)
−0.999996 + 0.00291580i \(0.999072\pi\)
\(68\) −11.7310 3.12033i −1.42260 0.378395i
\(69\) 0 0
\(70\) −0.726388 + 0.558434i −0.0868200 + 0.0667456i
\(71\) 2.33277 + 4.04048i 0.276849 + 0.479517i 0.970600 0.240698i \(-0.0773764\pi\)
−0.693751 + 0.720215i \(0.744043\pi\)
\(72\) 0 0
\(73\) −5.64518 + 9.77774i −0.660718 + 1.14440i 0.319709 + 0.947516i \(0.396415\pi\)
−0.980427 + 0.196882i \(0.936918\pi\)
\(74\) −0.535287 4.03736i −0.0622258 0.469334i
\(75\) 0 0
\(76\) 2.28736 + 8.47449i 0.262378 + 0.972090i
\(77\) 3.14181 + 3.74426i 0.358042 + 0.426698i
\(78\) 0 0
\(79\) −0.572755 1.57363i −0.0644400 0.177047i 0.903294 0.429023i \(-0.141142\pi\)
−0.967734 + 0.251975i \(0.918920\pi\)
\(80\) −0.0988087 0.548623i −0.0110471 0.0613379i
\(81\) 0 0
\(82\) 6.28736 6.87406i 0.694322 0.759113i
\(83\) 2.20553 0.802749i 0.242089 0.0881131i −0.218126 0.975921i \(-0.569994\pi\)
0.460215 + 0.887807i \(0.347772\pi\)
\(84\) 0 0
\(85\) 0.647964 0.543706i 0.0702815 0.0589732i
\(86\) −2.61188 1.66060i −0.281647 0.179067i
\(87\) 0 0
\(88\) −2.90152 + 0.651613i −0.309303 + 0.0694622i
\(89\) −7.63741 4.40946i −0.809564 0.467402i 0.0372408 0.999306i \(-0.488143\pi\)
−0.846804 + 0.531905i \(0.821476\pi\)
\(90\) 0 0
\(91\) −6.26466 + 3.61690i −0.656715 + 0.379154i
\(92\) 5.04983 + 0.432493i 0.526481 + 0.0450905i
\(93\) 0 0
\(94\) −7.22981 13.8574i −0.745698 1.42928i
\(95\) −0.574758 0.209195i −0.0589689 0.0214629i
\(96\) 0 0
\(97\) −0.978443 + 5.54902i −0.0993458 + 0.563418i 0.893983 + 0.448101i \(0.147899\pi\)
−0.993329 + 0.115317i \(0.963212\pi\)
\(98\) 4.45412 20.1786i 0.449934 2.03835i
\(99\) 0 0
\(100\) −9.03556 4.19324i −0.903556 0.419324i
\(101\) 6.72190 8.01085i 0.668854 0.797109i −0.319773 0.947494i \(-0.603607\pi\)
0.988628 + 0.150385i \(0.0480512\pi\)
\(102\) 0 0
\(103\) 1.52148 0.268277i 0.149915 0.0264341i −0.0981867 0.995168i \(-0.531304\pi\)
0.248102 + 0.968734i \(0.420193\pi\)
\(104\) −0.204043 4.39641i −0.0200081 0.431103i
\(105\) 0 0
\(106\) −4.71615 + 11.4153i −0.458073 + 1.10875i
\(107\) 7.89051 0.762805 0.381402 0.924409i \(-0.375441\pi\)
0.381402 + 0.924409i \(0.375441\pi\)
\(108\) 0 0
\(109\) 1.78550 0.171020 0.0855098 0.996337i \(-0.472748\pi\)
0.0855098 + 0.996337i \(0.472748\pi\)
\(110\) 0.0791235 0.191516i 0.00754413 0.0182604i
\(111\) 0 0
\(112\) 14.2886 + 11.9007i 1.35014 + 1.12451i
\(113\) 10.4607 1.84450i 0.984057 0.173516i 0.341607 0.939843i \(-0.389029\pi\)
0.642451 + 0.766327i \(0.277918\pi\)
\(114\) 0 0
\(115\) −0.227011 + 0.270542i −0.0211689 + 0.0252281i
\(116\) 0.518064 1.11632i 0.0481011 0.103648i
\(117\) 0 0
\(118\) 2.50109 11.3307i 0.230244 1.04308i
\(119\) −4.89968 + 27.7874i −0.449152 + 2.54727i
\(120\) 0 0
\(121\) 9.29786 + 3.38414i 0.845260 + 0.307649i
\(122\) 7.31383 + 14.0184i 0.662163 + 1.26917i
\(123\) 0 0
\(124\) 0.846487 9.88366i 0.0760167 0.887579i
\(125\) 1.20457 0.695459i 0.107740 0.0622038i
\(126\) 0 0
\(127\) 2.89596 + 1.67198i 0.256975 + 0.148364i 0.622954 0.782259i \(-0.285933\pi\)
−0.365979 + 0.930623i \(0.619266\pi\)
\(128\) −10.4246 + 4.39642i −0.921410 + 0.388593i
\(129\) 0 0
\(130\) 0.258799 + 0.164541i 0.0226982 + 0.0144312i
\(131\) 2.00847 1.68531i 0.175481 0.147246i −0.550817 0.834626i \(-0.685684\pi\)
0.726298 + 0.687380i \(0.241239\pi\)
\(132\) 0 0
\(133\) 19.1728 6.97833i 1.66249 0.605098i
\(134\) −5.38700 + 5.88969i −0.465366 + 0.508791i
\(135\) 0 0
\(136\) −13.6482 10.4132i −1.17032 0.892926i
\(137\) −3.04906 8.37723i −0.260499 0.715715i −0.999134 0.0416094i \(-0.986752\pi\)
0.738635 0.674106i \(-0.235471\pi\)
\(138\) 0 0
\(139\) −9.64531 11.4948i −0.818105 0.974979i 0.181860 0.983324i \(-0.441788\pi\)
−0.999965 + 0.00834505i \(0.997344\pi\)
\(140\) −1.25099 + 0.337655i −0.105728 + 0.0285371i
\(141\) 0 0
\(142\) 0.867207 + 6.54084i 0.0727744 + 0.548895i
\(143\) 0.818005 1.41683i 0.0684050 0.118481i
\(144\) 0 0
\(145\) 0.0428775 + 0.0742661i 0.00356079 + 0.00616746i
\(146\) −12.6586 + 9.73167i −1.04763 + 0.805398i
\(147\) 0 0
\(148\) 1.48053 5.56612i 0.121698 0.457532i
\(149\) −6.19266 + 17.0142i −0.507323 + 1.39386i 0.376666 + 0.926349i \(0.377071\pi\)
−0.883989 + 0.467509i \(0.845152\pi\)
\(150\) 0 0
\(151\) 14.3804 + 2.53565i 1.17026 + 0.206348i 0.724803 0.688956i \(-0.241931\pi\)
0.445456 + 0.895304i \(0.353042\pi\)
\(152\) −1.58651 + 12.3118i −0.128683 + 0.998620i
\(153\) 0 0
\(154\) 2.08462 + 6.59054i 0.167983 + 0.531081i
\(155\) 0.529511 + 0.444312i 0.0425313 + 0.0356880i
\(156\) 0 0
\(157\) 0.0237965 + 0.134957i 0.00189917 + 0.0107707i 0.985743 0.168260i \(-0.0538149\pi\)
−0.983843 + 0.179031i \(0.942704\pi\)
\(158\) 0.101138 2.36612i 0.00804610 0.188238i
\(159\) 0 0
\(160\) 0.167108 0.770439i 0.0132111 0.0609085i
\(161\) 11.7810i 0.928469i
\(162\) 0 0
\(163\) 12.0210i 0.941554i 0.882252 + 0.470777i \(0.156026\pi\)
−0.882252 + 0.470777i \(0.843974\pi\)
\(164\) 11.9299 5.58962i 0.931571 0.436476i
\(165\) 0 0
\(166\) 3.31624 + 0.141750i 0.257390 + 0.0110020i
\(167\) 1.95387 + 11.0810i 0.151195 + 0.857471i 0.962182 + 0.272407i \(0.0878196\pi\)
−0.810987 + 0.585064i \(0.801069\pi\)
\(168\) 0 0
\(169\) −8.10379 6.79989i −0.623368 0.523068i
\(170\) 1.14053 0.360754i 0.0874744 0.0276686i
\(171\) 0 0
\(172\) −2.51716 3.58091i −0.191932 0.273042i
\(173\) −5.61630 0.990305i −0.426999 0.0752915i −0.0439813 0.999032i \(-0.514004\pi\)
−0.383018 + 0.923741i \(0.625115\pi\)
\(174\) 0 0
\(175\) −7.91914 + 21.7577i −0.598631 + 1.64472i
\(176\) −4.14433 0.715128i −0.312391 0.0539048i
\(177\) 0 0
\(178\) −7.60142 9.88762i −0.569751 0.741108i
\(179\) 6.20187 + 10.7419i 0.463549 + 0.802891i 0.999135 0.0415901i \(-0.0132424\pi\)
−0.535585 + 0.844481i \(0.679909\pi\)
\(180\) 0 0
\(181\) 0.582122 1.00827i 0.0432688 0.0749437i −0.843580 0.537004i \(-0.819556\pi\)
0.886849 + 0.462060i \(0.152889\pi\)
\(182\) −10.1414 + 1.34458i −0.751730 + 0.0996670i
\(183\) 0 0
\(184\) 6.36688 + 3.29221i 0.469372 + 0.242705i
\(185\) 0.257976 + 0.307444i 0.0189668 + 0.0226037i
\(186\) 0 0
\(187\) −2.18257 5.99656i −0.159605 0.438512i
\(188\) −1.96680 22.0165i −0.143443 1.60572i
\(189\) 0 0
\(190\) −0.638277 0.583799i −0.0463055 0.0423533i
\(191\) 13.5161 4.91947i 0.977993 0.355960i 0.196934 0.980417i \(-0.436902\pi\)
0.781060 + 0.624456i \(0.214679\pi\)
\(192\) 0 0
\(193\) −14.0915 + 11.8242i −1.01433 + 0.851125i −0.988905 0.148551i \(-0.952539\pi\)
−0.0254271 + 0.999677i \(0.508095\pi\)
\(194\) −4.27536 + 6.72453i −0.306953 + 0.482793i
\(195\) 0 0
\(196\) 16.7182 23.9694i 1.19416 1.71210i
\(197\) 18.3471 + 10.5927i 1.30718 + 0.754699i 0.981624 0.190825i \(-0.0611163\pi\)
0.325553 + 0.945524i \(0.394450\pi\)
\(198\) 0 0
\(199\) 5.80763 3.35304i 0.411692 0.237691i −0.279824 0.960051i \(-0.590276\pi\)
0.691517 + 0.722361i \(0.256943\pi\)
\(200\) −9.54565 10.3600i −0.674979 0.732564i
\(201\) 0 0
\(202\) 13.1118 6.84081i 0.922541 0.481318i
\(203\) −2.68810 0.978390i −0.188668 0.0686695i
\(204\) 0 0
\(205\) −0.159412 + 0.904068i −0.0111338 + 0.0631429i
\(206\) 2.13353 + 0.470944i 0.148650 + 0.0328122i
\(207\) 0 0
\(208\) 2.10737 5.85654i 0.146120 0.406078i
\(209\) −2.96610 + 3.53486i −0.205170 + 0.244512i
\(210\) 0 0
\(211\) 17.3303 3.05581i 1.19307 0.210370i 0.458369 0.888762i \(-0.348434\pi\)
0.734701 + 0.678391i \(0.237323\pi\)
\(212\) −12.3286 + 12.3738i −0.846729 + 0.849833i
\(213\) 0 0
\(214\) 10.3134 + 4.26088i 0.705006 + 0.291268i
\(215\) 0.305002 0.0208010
\(216\) 0 0
\(217\) −23.0580 −1.56528
\(218\) 2.33375 + 0.964170i 0.158061 + 0.0653018i
\(219\) 0 0
\(220\) 0.206838 0.207596i 0.0139450 0.0139961i
\(221\) 9.30084 1.63999i 0.625643 0.110318i
\(222\) 0 0
\(223\) −5.95915 + 7.10184i −0.399054 + 0.475574i −0.927731 0.373249i \(-0.878244\pi\)
0.528677 + 0.848823i \(0.322688\pi\)
\(224\) 12.2496 + 23.2707i 0.818462 + 1.55484i
\(225\) 0 0
\(226\) 14.6687 + 3.23790i 0.975749 + 0.215382i
\(227\) 3.87558 21.9795i 0.257231 1.45883i −0.533049 0.846085i \(-0.678954\pi\)
0.790280 0.612746i \(-0.209935\pi\)
\(228\) 0 0
\(229\) 24.7476 + 9.00740i 1.63537 + 0.595226i 0.986221 0.165435i \(-0.0529028\pi\)
0.649149 + 0.760661i \(0.275125\pi\)
\(230\) −0.442809 + 0.231027i −0.0291980 + 0.0152335i
\(231\) 0 0
\(232\) 1.27995 1.17934i 0.0840331 0.0774276i
\(233\) 6.49629 3.75063i 0.425586 0.245712i −0.271878 0.962332i \(-0.587645\pi\)
0.697464 + 0.716619i \(0.254312\pi\)
\(234\) 0 0
\(235\) 1.33389 + 0.770123i 0.0870135 + 0.0502373i
\(236\) 9.38767 13.4593i 0.611085 0.876128i
\(237\) 0 0
\(238\) −21.4094 + 33.6740i −1.38776 + 2.18276i
\(239\) 2.63068 2.20740i 0.170165 0.142785i −0.553728 0.832697i \(-0.686795\pi\)
0.723893 + 0.689912i \(0.242351\pi\)
\(240\) 0 0
\(241\) 1.59962 0.582213i 0.103040 0.0375036i −0.289986 0.957031i \(-0.593650\pi\)
0.393026 + 0.919527i \(0.371428\pi\)
\(242\) 10.3254 + 9.44411i 0.663741 + 0.607091i
\(243\) 0 0
\(244\) 1.98965 + 22.2723i 0.127374 + 1.42584i
\(245\) 0.696473 + 1.91354i 0.0444960 + 0.122252i
\(246\) 0 0
\(247\) −4.38976 5.23152i −0.279314 0.332873i
\(248\) 6.44359 12.4614i 0.409168 0.791300i
\(249\) 0 0
\(250\) 1.94999 0.258537i 0.123328 0.0163513i
\(251\) −7.79783 + 13.5062i −0.492195 + 0.852506i −0.999960 0.00898943i \(-0.997139\pi\)
0.507765 + 0.861496i \(0.330472\pi\)
\(252\) 0 0
\(253\) 1.33220 + 2.30744i 0.0837547 + 0.145067i
\(254\) 2.88231 + 3.74919i 0.180852 + 0.235245i
\(255\) 0 0
\(256\) −15.9996 + 0.117113i −0.999973 + 0.00731954i
\(257\) 3.39598 9.33039i 0.211836 0.582014i −0.787579 0.616213i \(-0.788666\pi\)
0.999415 + 0.0341995i \(0.0108882\pi\)
\(258\) 0 0
\(259\) −13.1845 2.32479i −0.819246 0.144455i
\(260\) 0.249414 + 0.354816i 0.0154680 + 0.0220048i
\(261\) 0 0
\(262\) 3.53526 1.11822i 0.218409 0.0690839i
\(263\) −20.0312 16.8082i −1.23518 1.03644i −0.997885 0.0649985i \(-0.979296\pi\)
−0.237292 0.971438i \(-0.576260\pi\)
\(264\) 0 0
\(265\) −0.211354 1.19865i −0.0129833 0.0736322i
\(266\) 28.8283 + 1.23224i 1.76757 + 0.0755537i
\(267\) 0 0
\(268\) −10.2216 + 4.78918i −0.624381 + 0.292546i
\(269\) 0.465194i 0.0283634i −0.999899 0.0141817i \(-0.995486\pi\)
0.999899 0.0141817i \(-0.00451432\pi\)
\(270\) 0 0
\(271\) 15.6578i 0.951143i −0.879677 0.475571i \(-0.842241\pi\)
0.879677 0.475571i \(-0.157759\pi\)
\(272\) −12.2158 20.9807i −0.740692 1.27214i
\(273\) 0 0
\(274\) 0.538408 12.5960i 0.0325264 0.760953i
\(275\) −0.909317 5.15699i −0.0548339 0.310978i
\(276\) 0 0
\(277\) −7.55460 6.33906i −0.453912 0.380877i 0.386973 0.922091i \(-0.373521\pi\)
−0.840885 + 0.541214i \(0.817965\pi\)
\(278\) −6.39976 20.2329i −0.383832 1.21349i
\(279\) 0 0
\(280\) −1.81744 0.234198i −0.108613 0.0139960i
\(281\) −16.8051 2.96320i −1.00251 0.176770i −0.351783 0.936081i \(-0.614425\pi\)
−0.650727 + 0.759312i \(0.725536\pi\)
\(282\) 0 0
\(283\) 3.24599 8.91828i 0.192954 0.530137i −0.805056 0.593199i \(-0.797865\pi\)
0.998010 + 0.0630625i \(0.0200868\pi\)
\(284\) −2.39857 + 9.01754i −0.142329 + 0.535093i
\(285\) 0 0
\(286\) 1.83427 1.41015i 0.108462 0.0833839i
\(287\) −15.3116 26.5204i −0.903814 1.56545i
\(288\) 0 0
\(289\) 9.91922 17.1806i 0.583484 1.01062i
\(290\) 0.0159397 + 0.120224i 0.000936011 + 0.00705979i
\(291\) 0 0
\(292\) −21.8006 + 5.88422i −1.27578 + 0.344348i
\(293\) −1.45797 1.73754i −0.0851753 0.101508i 0.721774 0.692129i \(-0.243327\pi\)
−0.806949 + 0.590621i \(0.798883\pi\)
\(294\) 0 0
\(295\) 0.391085 + 1.07450i 0.0227699 + 0.0625597i
\(296\) 4.94084 6.47575i 0.287180 0.376395i
\(297\) 0 0
\(298\) −17.2818 + 18.8945i −1.00111 + 1.09453i
\(299\) −3.70544 + 1.34867i −0.214291 + 0.0779957i
\(300\) 0 0
\(301\) −7.79394 + 6.53989i −0.449235 + 0.376953i
\(302\) 17.4267 + 11.0797i 1.00280 + 0.637562i
\(303\) 0 0
\(304\) −8.72205 + 15.2355i −0.500244 + 0.873818i
\(305\) −1.34939 0.779072i −0.0772660 0.0446095i
\(306\) 0 0
\(307\) 10.5153 6.07100i 0.600138 0.346490i −0.168958 0.985623i \(-0.554040\pi\)
0.769096 + 0.639133i \(0.220707\pi\)
\(308\) −0.834175 + 9.73991i −0.0475315 + 0.554983i
\(309\) 0 0
\(310\) 0.452172 + 0.866678i 0.0256817 + 0.0492240i
\(311\) 16.3253 + 5.94192i 0.925723 + 0.336936i 0.760513 0.649323i \(-0.224948\pi\)
0.165210 + 0.986258i \(0.447170\pi\)
\(312\) 0 0
\(313\) 2.82602 16.0272i 0.159736 0.905909i −0.794591 0.607145i \(-0.792315\pi\)
0.954327 0.298764i \(-0.0965743\pi\)
\(314\) −0.0417733 + 0.189246i −0.00235740 + 0.0106798i
\(315\) 0 0
\(316\) 1.40990 3.03804i 0.0793129 0.170903i
\(317\) −18.7298 + 22.3213i −1.05197 + 1.25369i −0.0856578 + 0.996325i \(0.527299\pi\)
−0.966314 + 0.257366i \(0.917145\pi\)
\(318\) 0 0
\(319\) 0.637134 0.112344i 0.0356727 0.00629005i
\(320\) 0.634457 0.916769i 0.0354672 0.0512490i
\(321\) 0 0
\(322\) 6.36172 15.3984i 0.354525 0.858118i
\(323\) −26.6381 −1.48219
\(324\) 0 0
\(325\) 7.74997 0.429891
\(326\) −6.49132 + 15.7121i −0.359521 + 0.870212i
\(327\) 0 0
\(328\) 18.6115 0.863785i 1.02765 0.0476946i
\(329\) −50.5990 + 8.92197i −2.78961 + 0.491884i
\(330\) 0 0
\(331\) 1.75836 2.09553i 0.0966481 0.115181i −0.715553 0.698559i \(-0.753825\pi\)
0.812201 + 0.583378i \(0.198269\pi\)
\(332\) 4.25798 + 1.97605i 0.233687 + 0.108450i
\(333\) 0 0
\(334\) −3.42990 + 15.5386i −0.187676 + 0.850232i
\(335\) 0.136584 0.774604i 0.00746236 0.0423212i
\(336\) 0 0
\(337\) −6.48096 2.35888i −0.353040 0.128496i 0.159411 0.987212i \(-0.449040\pi\)
−0.512452 + 0.858716i \(0.671263\pi\)
\(338\) −6.92018 13.2639i −0.376408 0.721461i
\(339\) 0 0
\(340\) 1.68554 + 0.144358i 0.0914114 + 0.00782893i
\(341\) 4.51618 2.60742i 0.244565 0.141199i
\(342\) 0 0
\(343\) −30.6457 17.6933i −1.65471 0.955349i
\(344\) −1.35638 6.03973i −0.0731310 0.325640i
\(345\) 0 0
\(346\) −6.80606 4.32719i −0.365896 0.232631i
\(347\) −17.5469 + 14.7236i −0.941964 + 0.790402i −0.977926 0.208951i \(-0.932995\pi\)
0.0359618 + 0.999353i \(0.488551\pi\)
\(348\) 0 0
\(349\) −25.4917 + 9.27824i −1.36454 + 0.496653i −0.917456 0.397838i \(-0.869760\pi\)
−0.447086 + 0.894491i \(0.647538\pi\)
\(350\) −22.0999 + 24.1622i −1.18129 + 1.29152i
\(351\) 0 0
\(352\) −5.03071 3.17265i −0.268138 0.169103i
\(353\) 2.30370 + 6.32935i 0.122613 + 0.336877i 0.985780 0.168042i \(-0.0537444\pi\)
−0.863166 + 0.504919i \(0.831522\pi\)
\(354\) 0 0
\(355\) −0.417942 0.498084i −0.0221820 0.0264355i
\(356\) −4.59618 17.0285i −0.243597 0.902507i
\(357\) 0 0
\(358\) 2.30554 + 17.3894i 0.121852 + 0.919056i
\(359\) 14.3604 24.8729i 0.757913 1.31274i −0.186000 0.982550i \(-0.559552\pi\)
0.943913 0.330194i \(-0.107114\pi\)
\(360\) 0 0
\(361\) 0.131118 + 0.227104i 0.00690097 + 0.0119528i
\(362\) 1.30533 1.00351i 0.0686067 0.0527435i
\(363\) 0 0
\(364\) −13.9815 3.71891i −0.732828 0.194924i
\(365\) 0.538153 1.47856i 0.0281682 0.0773915i
\(366\) 0 0
\(367\) 3.84637 + 0.678219i 0.200779 + 0.0354027i 0.273133 0.961976i \(-0.411940\pi\)
−0.0723541 + 0.997379i \(0.523051\pi\)
\(368\) 6.54408 + 7.74122i 0.341134 + 0.403539i
\(369\) 0 0
\(370\) 0.171170 + 0.541155i 0.00889870 + 0.0281333i
\(371\) 31.1024 + 26.0980i 1.61476 + 1.35494i
\(372\) 0 0
\(373\) −1.89369 10.7397i −0.0980518 0.556079i −0.993769 0.111456i \(-0.964449\pi\)
0.895718 0.444623i \(-0.146662\pi\)
\(374\) 0.385401 9.01643i 0.0199286 0.466229i
\(375\) 0 0
\(376\) 9.31820 29.8389i 0.480549 1.53882i
\(377\) 0.957490i 0.0493132i
\(378\) 0 0
\(379\) 5.95264i 0.305766i 0.988244 + 0.152883i \(0.0488558\pi\)
−0.988244 + 0.152883i \(0.951144\pi\)
\(380\) −0.519012 1.10773i −0.0266248 0.0568253i
\(381\) 0 0
\(382\) 20.3229 + 0.868687i 1.03981 + 0.0444459i
\(383\) −1.15926 6.57451i −0.0592356 0.335942i 0.940759 0.339075i \(-0.110114\pi\)
−0.999995 + 0.00313275i \(0.999003\pi\)
\(384\) 0 0
\(385\) −0.521809 0.437850i −0.0265939 0.0223149i
\(386\) −24.8035 + 7.84548i −1.26247 + 0.399325i
\(387\) 0 0
\(388\) −9.21939 + 6.48066i −0.468043 + 0.329006i
\(389\) 30.0164 + 5.29270i 1.52189 + 0.268351i 0.871176 0.490970i \(-0.163358\pi\)
0.650716 + 0.759321i \(0.274469\pi\)
\(390\) 0 0
\(391\) −5.26061 + 14.4534i −0.266041 + 0.730941i
\(392\) 34.7952 22.3015i 1.75742 1.12639i
\(393\) 0 0
\(394\) 18.2607 + 23.7527i 0.919958 + 1.19664i
\(395\) 0.116690 + 0.202113i 0.00587131 + 0.0101694i
\(396\) 0 0
\(397\) 7.87633 13.6422i 0.395302 0.684683i −0.597838 0.801617i \(-0.703973\pi\)
0.993140 + 0.116934i \(0.0373067\pi\)
\(398\) 9.40155 1.24649i 0.471257 0.0624809i
\(399\) 0 0
\(400\) −6.88230 18.6958i −0.344115 0.934789i
\(401\) 1.99200 + 2.37398i 0.0994758 + 0.118551i 0.813486 0.581585i \(-0.197567\pi\)
−0.714010 + 0.700136i \(0.753123\pi\)
\(402\) 0 0
\(403\) 2.63965 + 7.25239i 0.131490 + 0.361267i
\(404\) 20.8319 1.86097i 1.03643 0.0925868i
\(405\) 0 0
\(406\) −2.98518 2.73039i −0.148152 0.135507i
\(407\) 2.84523 1.03558i 0.141033 0.0513318i
\(408\) 0 0
\(409\) −20.1116 + 16.8756i −0.994454 + 0.834446i −0.986206 0.165520i \(-0.947070\pi\)
−0.00824757 + 0.999966i \(0.502625\pi\)
\(410\) −0.696557 + 1.09559i −0.0344005 + 0.0541072i
\(411\) 0 0
\(412\) 2.53433 + 1.76766i 0.124858 + 0.0870862i
\(413\) −33.0332 19.0717i −1.62546 0.938458i
\(414\) 0 0
\(415\) −0.283273 + 0.163547i −0.0139053 + 0.00802823i
\(416\) 5.91698 6.51686i 0.290104 0.319515i
\(417\) 0 0
\(418\) −5.78570 + 3.01857i −0.282988 + 0.147643i
\(419\) −33.9869 12.3702i −1.66037 0.604325i −0.669949 0.742407i \(-0.733684\pi\)
−0.990421 + 0.138082i \(0.955906\pi\)
\(420\) 0 0
\(421\) 2.20155 12.4856i 0.107297 0.608511i −0.882981 0.469409i \(-0.844467\pi\)
0.990278 0.139103i \(-0.0444218\pi\)
\(422\) 24.3019 + 5.36428i 1.18300 + 0.261129i
\(423\) 0 0
\(424\) −22.7960 + 9.51579i −1.10707 + 0.462128i
\(425\) 19.4311 23.1571i 0.942548 1.12328i
\(426\) 0 0
\(427\) 51.1870 9.02565i 2.47711 0.436782i
\(428\) 11.1793 + 11.1384i 0.540370 + 0.538396i
\(429\) 0 0
\(430\) 0.398655 + 0.164701i 0.0192249 + 0.00794260i
\(431\) 11.3033 0.544463 0.272231 0.962232i \(-0.412238\pi\)
0.272231 + 0.962232i \(0.412238\pi\)
\(432\) 0 0
\(433\) 18.1058 0.870111 0.435056 0.900404i \(-0.356729\pi\)
0.435056 + 0.900404i \(0.356729\pi\)
\(434\) −30.1381 12.4513i −1.44668 0.597682i
\(435\) 0 0
\(436\) 2.52969 + 2.52045i 0.121150 + 0.120708i
\(437\) 10.9531 1.93133i 0.523960 0.0923883i
\(438\) 0 0
\(439\) 8.79038 10.4760i 0.419542 0.499991i −0.514333 0.857591i \(-0.671960\pi\)
0.933875 + 0.357600i \(0.116405\pi\)
\(440\) 0.382451 0.159648i 0.0182326 0.00761091i
\(441\) 0 0
\(442\) 13.0423 + 2.87890i 0.620361 + 0.136935i
\(443\) 1.88953 10.7160i 0.0897742 0.509135i −0.906450 0.422314i \(-0.861218\pi\)
0.996224 0.0868210i \(-0.0276708\pi\)
\(444\) 0 0
\(445\) 1.15491 + 0.420352i 0.0547479 + 0.0199266i
\(446\) −11.6239 + 6.06457i −0.550410 + 0.287166i
\(447\) 0 0
\(448\) 3.44474 + 37.0310i 0.162749 + 1.74955i
\(449\) 6.10203 3.52301i 0.287973 0.166261i −0.349055 0.937102i \(-0.613497\pi\)
0.637027 + 0.770841i \(0.280164\pi\)
\(450\) 0 0
\(451\) 5.99791 + 3.46289i 0.282431 + 0.163061i
\(452\) 17.4244 + 12.1532i 0.819575 + 0.571641i
\(453\) 0 0
\(454\) 16.9345 26.6357i 0.794778 1.25007i
\(455\) 0.772266 0.648008i 0.0362044 0.0303791i
\(456\) 0 0
\(457\) −23.9184 + 8.70557i −1.11885 + 0.407229i −0.834234 0.551411i \(-0.814090\pi\)
−0.284620 + 0.958641i \(0.591867\pi\)
\(458\) 27.4826 + 25.1369i 1.28418 + 1.17457i
\(459\) 0 0
\(460\) −0.703532 + 0.0628485i −0.0328024 + 0.00293033i
\(461\) 13.4094 + 36.8420i 0.624538 + 1.71590i 0.695597 + 0.718432i \(0.255140\pi\)
−0.0710586 + 0.997472i \(0.522638\pi\)
\(462\) 0 0
\(463\) −4.80801 5.72997i −0.223447 0.266294i 0.642661 0.766151i \(-0.277830\pi\)
−0.866108 + 0.499857i \(0.833386\pi\)
\(464\) 2.30982 0.850291i 0.107231 0.0394738i
\(465\) 0 0
\(466\) 10.5164 1.39430i 0.487161 0.0645895i
\(467\) 0.689932 1.19500i 0.0319262 0.0552979i −0.849621 0.527394i \(-0.823169\pi\)
0.881547 + 0.472096i \(0.156502\pi\)
\(468\) 0 0
\(469\) 13.1189 + 22.7227i 0.605777 + 1.04924i
\(470\) 1.32761 + 1.72690i 0.0612379 + 0.0796558i
\(471\) 0 0
\(472\) 19.5383 12.5228i 0.899322 0.576408i
\(473\) 0.786999 2.16226i 0.0361862 0.0994209i
\(474\) 0 0
\(475\) −21.5271 3.79580i −0.987729 0.174163i
\(476\) −46.1673 + 32.4527i −2.11607 + 1.48747i
\(477\) 0 0
\(478\) 4.63045 1.46463i 0.211792 0.0669908i
\(479\) 9.74905 + 8.18042i 0.445445 + 0.373773i 0.837742 0.546066i \(-0.183875\pi\)
−0.392297 + 0.919839i \(0.628319\pi\)
\(480\) 0 0
\(481\) 0.778139 + 4.41304i 0.0354801 + 0.201217i
\(482\) 2.40519 + 0.102808i 0.109553 + 0.00468277i
\(483\) 0 0
\(484\) 8.39606 + 17.9197i 0.381639 + 0.814533i
\(485\) 0.785256i 0.0356566i
\(486\) 0 0
\(487\) 12.3932i 0.561588i −0.959768 0.280794i \(-0.909402\pi\)
0.959768 0.280794i \(-0.0905979\pi\)
\(488\) −9.42648 + 30.1856i −0.426717 + 1.36644i
\(489\) 0 0
\(490\) −0.122984 + 2.87721i −0.00555586 + 0.129979i
\(491\) 4.61221 + 26.1572i 0.208146 + 1.18046i 0.892411 + 0.451223i \(0.149012\pi\)
−0.684265 + 0.729233i \(0.739877\pi\)
\(492\) 0 0
\(493\) 2.86100 + 2.40067i 0.128853 + 0.108121i
\(494\) −2.91265 9.20837i −0.131046 0.414304i
\(495\) 0 0
\(496\) 15.1513 12.8082i 0.680314 0.575107i
\(497\) 21.3599 + 3.76634i 0.958125 + 0.168943i
\(498\) 0 0
\(499\) 3.29755 9.05994i 0.147619 0.405579i −0.843741 0.536750i \(-0.819652\pi\)
0.991360 + 0.131172i \(0.0418739\pi\)
\(500\) 2.68836 + 0.715074i 0.120227 + 0.0319791i
\(501\) 0 0
\(502\) −17.4856 + 13.4426i −0.780420 + 0.599973i
\(503\) −4.28642 7.42429i −0.191122 0.331033i 0.754500 0.656300i \(-0.227879\pi\)
−0.945622 + 0.325267i \(0.894546\pi\)
\(504\) 0 0
\(505\) −0.728686 + 1.26212i −0.0324261 + 0.0561637i
\(506\) 0.495245 + 3.73534i 0.0220163 + 0.166056i
\(507\) 0 0
\(508\) 1.74278 + 6.45686i 0.0773234 + 0.286477i
\(509\) −19.9295 23.7511i −0.883360 1.05275i −0.998236 0.0593674i \(-0.981092\pi\)
0.114876 0.993380i \(-0.463353\pi\)
\(510\) 0 0
\(511\) 17.9517 + 49.3219i 0.794137 + 2.18187i
\(512\) −20.9756 8.48670i −0.926999 0.375063i
\(513\) 0 0
\(514\) 9.47716 10.3615i 0.418020 0.457027i
\(515\) −0.202323 + 0.0736396i −0.00891542 + 0.00324495i
\(516\) 0 0
\(517\) 8.90151 7.46925i 0.391488 0.328497i
\(518\) −15.9775 10.1583i −0.702013 0.446329i
\(519\) 0 0
\(520\) 0.134397 + 0.598448i 0.00589371 + 0.0262437i
\(521\) 25.2374 + 14.5708i 1.10567 + 0.638359i 0.937705 0.347433i \(-0.112947\pi\)
0.167966 + 0.985793i \(0.446280\pi\)
\(522\) 0 0
\(523\) 4.50959 2.60361i 0.197190 0.113848i −0.398154 0.917319i \(-0.630349\pi\)
0.595344 + 0.803471i \(0.297016\pi\)
\(524\) 5.22463 + 0.447464i 0.228239 + 0.0195475i
\(525\) 0 0
\(526\) −17.1055 32.7861i −0.745836 1.42954i
\(527\) 28.2886 + 10.2962i 1.23227 + 0.448510i
\(528\) 0 0
\(529\) −2.87875 + 16.3262i −0.125163 + 0.709834i
\(530\) 0.371018 1.68083i 0.0161160 0.0730106i
\(531\) 0 0
\(532\) 37.0148 + 17.1779i 1.60479 + 0.744756i
\(533\) −6.58858 + 7.85196i −0.285383 + 0.340106i
\(534\) 0 0
\(535\) −1.08294 + 0.190951i −0.0468194 + 0.00825552i
\(536\) −15.9463 + 0.740090i −0.688776 + 0.0319670i
\(537\) 0 0
\(538\) 0.251205 0.608035i 0.0108302 0.0262143i
\(539\) 15.3629 0.661725
\(540\) 0 0
\(541\) 24.3664 1.04759 0.523797 0.851843i \(-0.324515\pi\)
0.523797 + 0.851843i \(0.324515\pi\)
\(542\) 8.45521 20.4656i 0.363182 0.879074i
\(543\) 0 0
\(544\) −4.63718 34.0195i −0.198817 1.45857i
\(545\) −0.245051 + 0.0432091i −0.0104968 + 0.00185088i
\(546\) 0 0
\(547\) −22.9927 + 27.4016i −0.983097 + 1.17161i 0.00206780 + 0.999998i \(0.499342\pi\)
−0.985165 + 0.171611i \(0.945103\pi\)
\(548\) 7.50558 16.1730i 0.320623 0.690875i
\(549\) 0 0
\(550\) 1.59625 7.23152i 0.0680643 0.308353i
\(551\) 0.468962 2.65961i 0.0199784 0.113303i
\(552\) 0 0
\(553\) −7.31560 2.66266i −0.311091 0.113228i
\(554\) −6.45120 12.3650i −0.274085 0.525339i
\(555\) 0 0
\(556\) 2.56091 29.9014i 0.108607 1.26810i
\(557\) −10.4040 + 6.00674i −0.440831 + 0.254514i −0.703950 0.710250i \(-0.748582\pi\)
0.263119 + 0.964763i \(0.415249\pi\)
\(558\) 0 0
\(559\) 2.94922 + 1.70274i 0.124739 + 0.0720180i
\(560\) −2.24904 1.28753i −0.0950392 0.0544081i
\(561\) 0 0
\(562\) −20.3651 12.9478i −0.859052 0.546172i
\(563\) 3.65854 3.06988i 0.154189 0.129380i −0.562430 0.826845i \(-0.690133\pi\)
0.716619 + 0.697465i \(0.245689\pi\)
\(564\) 0 0
\(565\) −1.39104 + 0.506297i −0.0585215 + 0.0213001i
\(566\) 9.05857 9.90387i 0.380760 0.416291i
\(567\) 0 0
\(568\) −8.00454 + 10.4912i −0.335863 + 0.440202i
\(569\) −2.71384 7.45620i −0.113770 0.312580i 0.869719 0.493547i \(-0.164300\pi\)
−0.983489 + 0.180966i \(0.942078\pi\)
\(570\) 0 0
\(571\) 10.4105 + 12.4067i 0.435666 + 0.519206i 0.938548 0.345149i \(-0.112172\pi\)
−0.502882 + 0.864355i \(0.667727\pi\)
\(572\) 3.15897 0.852643i 0.132083 0.0356508i
\(573\) 0 0
\(574\) −5.69207 42.9320i −0.237583 1.79195i
\(575\) −6.31079 + 10.9306i −0.263178 + 0.455838i
\(576\) 0 0
\(577\) −8.09164 14.0151i −0.336859 0.583458i 0.646981 0.762506i \(-0.276031\pi\)
−0.983840 + 0.179049i \(0.942698\pi\)
\(578\) 22.2425 17.0996i 0.925167 0.711251i
\(579\) 0 0
\(580\) −0.0440869 + 0.165747i −0.00183061 + 0.00688227i
\(581\) 3.73187 10.2532i 0.154824 0.425375i
\(582\) 0 0
\(583\) −9.04295 1.59452i −0.374521 0.0660381i
\(584\) −31.6721 4.08130i −1.31060 0.168885i
\(585\) 0 0
\(586\) −0.967376 3.05836i −0.0399619 0.126340i
\(587\) 19.9180 + 16.7132i 0.822103 + 0.689826i 0.953464 0.301508i \(-0.0974901\pi\)
−0.131361 + 0.991335i \(0.541935\pi\)
\(588\) 0 0
\(589\) −3.78006 21.4378i −0.155755 0.883328i
\(590\) −0.0690583 + 1.61562i −0.00284309 + 0.0665139i
\(591\) 0 0
\(592\) 9.95487 5.79613i 0.409143 0.238219i
\(593\) 7.68968i 0.315778i −0.987457 0.157889i \(-0.949531\pi\)
0.987457 0.157889i \(-0.0504687\pi\)
\(594\) 0 0
\(595\) 3.93227i 0.161207i
\(596\) −32.7914 + 15.3640i −1.34319 + 0.629334i
\(597\) 0 0
\(598\) −5.57151 0.238150i −0.227836 0.00973869i
\(599\) 5.26567 + 29.8631i 0.215150 + 1.22017i 0.880647 + 0.473773i \(0.157108\pi\)
−0.665497 + 0.746400i \(0.731780\pi\)
\(600\) 0 0
\(601\) 14.0780 + 11.8129i 0.574254 + 0.481857i 0.883055 0.469270i \(-0.155483\pi\)
−0.308800 + 0.951127i \(0.599927\pi\)
\(602\) −13.7187 + 4.33929i −0.559132 + 0.176856i
\(603\) 0 0
\(604\) 16.7947 + 23.8922i 0.683368 + 0.972159i
\(605\) −1.35798 0.239449i −0.0552099 0.00973499i
\(606\) 0 0
\(607\) −1.94501 + 5.34387i −0.0789455 + 0.216901i −0.972886 0.231284i \(-0.925707\pi\)
0.893941 + 0.448185i \(0.147930\pi\)
\(608\) −19.6274 + 15.2038i −0.795997 + 0.616596i
\(609\) 0 0
\(610\) −1.34303 1.74696i −0.0543779 0.0707325i
\(611\) 8.59873 + 14.8934i 0.347867 + 0.602524i
\(612\) 0 0
\(613\) −4.98728 + 8.63823i −0.201434 + 0.348895i −0.948991 0.315304i \(-0.897894\pi\)
0.747556 + 0.664198i \(0.231227\pi\)
\(614\) 17.0224 2.25689i 0.686969 0.0910806i
\(615\) 0 0
\(616\) −6.34987 + 12.2802i −0.255844 + 0.494782i
\(617\) −12.6243 15.0451i −0.508236 0.605692i 0.449521 0.893270i \(-0.351595\pi\)
−0.957757 + 0.287577i \(0.907150\pi\)
\(618\) 0 0
\(619\) −11.9916 32.9466i −0.481983 1.32424i −0.907791 0.419423i \(-0.862232\pi\)
0.425808 0.904814i \(-0.359990\pi\)
\(620\) 0.123009 + 1.37697i 0.00494015 + 0.0553005i
\(621\) 0 0
\(622\) 18.1295 + 16.5821i 0.726926 + 0.664882i
\(623\) −38.5254 + 14.0221i −1.54349 + 0.561784i
\(624\) 0 0
\(625\) 18.9282 15.8827i 0.757129 0.635307i
\(626\) 12.3485 19.4224i 0.493543 0.776274i
\(627\) 0 0
\(628\) −0.156793 + 0.224798i −0.00625673 + 0.00897043i
\(629\) 15.1373 + 8.73951i 0.603563 + 0.348467i
\(630\) 0 0
\(631\) −20.6478 + 11.9210i −0.821976 + 0.474568i −0.851097 0.525008i \(-0.824062\pi\)
0.0291214 + 0.999576i \(0.490729\pi\)
\(632\) 3.48336 3.20954i 0.138561 0.127669i
\(633\) 0 0
\(634\) −36.5345 + 19.0612i −1.45097 + 0.757015i
\(635\) −0.437918 0.159389i −0.0173783 0.00632517i
\(636\) 0 0
\(637\) −3.94818 + 22.3913i −0.156433 + 0.887174i
\(638\) 0.893437 + 0.197213i 0.0353715 + 0.00780772i
\(639\) 0 0
\(640\) 1.32433 0.855663i 0.0523487 0.0338231i
\(641\) −11.9138 + 14.1983i −0.470568 + 0.560801i −0.948165 0.317778i \(-0.897063\pi\)
0.477598 + 0.878579i \(0.341508\pi\)
\(642\) 0 0
\(643\) −35.2470 + 6.21500i −1.39001 + 0.245096i −0.818031 0.575175i \(-0.804934\pi\)
−0.571976 + 0.820270i \(0.693823\pi\)
\(644\) 16.6303 16.6912i 0.655324 0.657727i
\(645\) 0 0
\(646\) −34.8176 14.3846i −1.36988 0.565955i
\(647\) −31.4863 −1.23785 −0.618926 0.785449i \(-0.712432\pi\)
−0.618926 + 0.785449i \(0.712432\pi\)
\(648\) 0 0
\(649\) 8.62659 0.338623
\(650\) 10.1297 + 4.18499i 0.397318 + 0.164149i
\(651\) 0 0
\(652\) −16.9691 + 17.0313i −0.664560 + 0.666996i
\(653\) 26.5025 4.67310i 1.03712 0.182873i 0.370936 0.928658i \(-0.379037\pi\)
0.666186 + 0.745786i \(0.267926\pi\)
\(654\) 0 0
\(655\) −0.234869 + 0.279906i −0.00917709 + 0.0109368i
\(656\) 24.7928 + 8.92121i 0.967995 + 0.348315i
\(657\) 0 0
\(658\) −70.9537 15.6620i −2.76606 0.610567i
\(659\) 7.78431 44.1470i 0.303234 1.71972i −0.328471 0.944514i \(-0.606533\pi\)
0.631705 0.775209i \(-0.282355\pi\)
\(660\) 0 0
\(661\) 19.0048 + 6.91718i 0.739201 + 0.269047i 0.684054 0.729431i \(-0.260215\pi\)
0.0551465 + 0.998478i \(0.482437\pi\)
\(662\) 3.42986 1.78946i 0.133305 0.0695495i
\(663\) 0 0
\(664\) 4.49835 + 4.88212i 0.174570 + 0.189463i
\(665\) −2.46250 + 1.42173i −0.0954917 + 0.0551322i
\(666\) 0 0
\(667\) −1.35045 0.779683i −0.0522896 0.0301894i
\(668\) −12.8739 + 18.4576i −0.498106 + 0.714147i
\(669\) 0 0
\(670\) 0.596809 0.938697i 0.0230568 0.0362650i
\(671\) −9.00495 + 7.55605i −0.347632 + 0.291698i
\(672\) 0 0
\(673\) 40.4201 14.7117i 1.55808 0.567094i 0.587784 0.809018i \(-0.300001\pi\)
0.970295 + 0.241924i \(0.0777784\pi\)
\(674\) −7.19720 6.58291i −0.277226 0.253564i
\(675\) 0 0
\(676\) −1.88256 21.0736i −0.0724062 0.810522i
\(677\) −6.79083 18.6577i −0.260993 0.717072i −0.999101 0.0423898i \(-0.986503\pi\)
0.738108 0.674682i \(-0.235719\pi\)
\(678\) 0 0
\(679\) 16.8376 + 20.0662i 0.646166 + 0.770071i
\(680\) 2.12515 + 1.09888i 0.0814957 + 0.0421401i
\(681\) 0 0
\(682\) 7.31091 0.969305i 0.279949 0.0371166i
\(683\) −16.6637 + 28.8624i −0.637618 + 1.10439i 0.348336 + 0.937370i \(0.386747\pi\)
−0.985954 + 0.167017i \(0.946586\pi\)
\(684\) 0 0
\(685\) 0.621199 + 1.07595i 0.0237348 + 0.0411098i
\(686\) −30.5013 39.6749i −1.16455 1.51479i
\(687\) 0 0
\(688\) 1.48859 8.62672i 0.0567520 0.328890i
\(689\) 4.64799 12.7703i 0.177074 0.486508i
\(690\) 0 0
\(691\) 1.92394 + 0.339243i 0.0731902 + 0.0129054i 0.210123 0.977675i \(-0.432613\pi\)
−0.136933 + 0.990580i \(0.543725\pi\)
\(692\) −6.55923 9.33116i −0.249345 0.354718i
\(693\) 0 0
\(694\) −30.8855 + 9.76923i −1.17240 + 0.370835i
\(695\) 1.60195 + 1.34420i 0.0607654 + 0.0509882i
\(696\) 0 0
\(697\) 6.94264 + 39.3737i 0.262971 + 1.49138i
\(698\) −38.3294 1.63836i −1.45079 0.0620130i
\(699\) 0 0
\(700\) −41.9334 + 19.6474i −1.58493 + 0.742601i
\(701\) 15.9132i 0.601032i −0.953777 0.300516i \(-0.902841\pi\)
0.953777 0.300516i \(-0.0971588\pi\)
\(702\) 0 0
\(703\) 12.6392i 0.476697i
\(704\) −4.86219 6.86342i −0.183251 0.258675i
\(705\) 0 0
\(706\) −0.406790 + 9.51682i −0.0153097 + 0.358170i
\(707\) −8.44192 47.8765i −0.317491 1.80058i
\(708\) 0 0
\(709\) −25.2965 21.2262i −0.950028 0.797169i 0.0292739 0.999571i \(-0.490681\pi\)
−0.979302 + 0.202403i \(0.935125\pi\)
\(710\) −0.277309 0.876713i −0.0104072 0.0329024i
\(711\) 0 0
\(712\) 3.18791 24.7391i 0.119472 0.927137i
\(713\) −12.3783 2.18262i −0.463570 0.0817399i
\(714\) 0 0
\(715\) −0.0779800 + 0.214248i −0.00291629 + 0.00801244i
\(716\) −6.37679 + 23.9739i −0.238312 + 0.895946i
\(717\) 0 0
\(718\) 32.2013 24.7558i 1.20174 0.923876i
\(719\) 4.06158 + 7.03487i 0.151471 + 0.262356i 0.931769 0.363053i \(-0.118266\pi\)
−0.780297 + 0.625409i \(0.784932\pi\)
\(720\) 0 0
\(721\) 3.59112 6.22000i 0.133740 0.231645i
\(722\) 0.0487432 + 0.367642i 0.00181403 + 0.0136822i
\(723\) 0 0
\(724\) 2.24804 0.606772i 0.0835478 0.0225505i
\(725\) 1.96998 + 2.34773i 0.0731631 + 0.0871924i
\(726\) 0 0
\(727\) −12.8952 35.4294i −0.478258 1.31400i −0.910971 0.412470i \(-0.864666\pi\)
0.432713 0.901532i \(-0.357556\pi\)
\(728\) −16.2664 12.4108i −0.602872 0.459976i
\(729\) 0 0
\(730\) 1.50182 1.64196i 0.0555849 0.0607718i
\(731\) 12.4823 4.54317i 0.461673 0.168035i
\(732\) 0 0
\(733\) −22.3955 + 18.7921i −0.827198 + 0.694101i −0.954646 0.297744i \(-0.903766\pi\)
0.127448 + 0.991845i \(0.459321\pi\)
\(734\) 4.66119 + 2.96351i 0.172048 + 0.109385i
\(735\) 0 0
\(736\) 4.37323 + 13.6520i 0.161199 + 0.503220i
\(737\) −5.13900 2.96700i −0.189298 0.109291i
\(738\) 0 0
\(739\) −34.0829 + 19.6778i −1.25376 + 0.723858i −0.971854 0.235584i \(-0.924300\pi\)
−0.281905 + 0.959442i \(0.590966\pi\)
\(740\) −0.0684948 + 0.799752i −0.00251792 + 0.0293995i
\(741\) 0 0
\(742\) 26.5597 + 50.9069i 0.975036 + 1.86885i
\(743\) 10.4717 + 3.81140i 0.384171 + 0.139827i 0.526884 0.849937i \(-0.323360\pi\)
−0.142713 + 0.989764i \(0.545583\pi\)
\(744\) 0 0
\(745\) 0.438169 2.48498i 0.0160533 0.0910427i
\(746\) 3.32426 15.0600i 0.121710 0.551385i
\(747\) 0 0
\(748\) 5.37262 11.5769i 0.196442 0.423293i
\(749\) 23.5787 28.0999i 0.861545 1.02675i
\(750\) 0 0
\(751\) −28.7902 + 5.07650i −1.05057 + 0.185244i −0.672169 0.740397i \(-0.734637\pi\)
−0.378402 + 0.925641i \(0.623526\pi\)
\(752\) 28.2924 33.9693i 1.03172 1.23873i
\(753\) 0 0
\(754\) −0.517045 + 1.25149i −0.0188297 + 0.0455767i
\(755\) −2.03500 −0.0740613
\(756\) 0 0
\(757\) −8.57552 −0.311682 −0.155841 0.987782i \(-0.549809\pi\)
−0.155841 + 0.987782i \(0.549809\pi\)
\(758\) −3.21443 + 7.78044i −0.116753 + 0.282598i
\(759\) 0 0
\(760\) −0.0802050 1.72813i −0.00290934 0.0626860i
\(761\) 5.54033 0.976910i 0.200837 0.0354130i −0.0723247 0.997381i \(-0.523042\pi\)
0.273161 + 0.961968i \(0.411931\pi\)
\(762\) 0 0
\(763\) 5.33548 6.35857i 0.193157 0.230196i
\(764\) 26.0941 + 12.1098i 0.944051 + 0.438117i
\(765\) 0 0
\(766\) 2.03501 9.21927i 0.0735281 0.333106i
\(767\) −2.21699 + 12.5732i −0.0800509 + 0.453991i
\(768\) 0 0
\(769\) −2.35854 0.858439i −0.0850512 0.0309561i 0.299144 0.954208i \(-0.403299\pi\)
−0.384195 + 0.923252i \(0.625521\pi\)
\(770\) −0.445596 0.854072i −0.0160582 0.0307786i
\(771\) 0 0
\(772\) −36.6562 3.13942i −1.31929 0.112990i
\(773\) −0.0355587 + 0.0205298i −0.00127896 + 0.000738407i −0.500639 0.865656i \(-0.666902\pi\)
0.499360 + 0.866394i \(0.333568\pi\)
\(774\) 0 0
\(775\) 21.3937 + 12.3516i 0.768483 + 0.443684i
\(776\) −15.5498 + 3.49212i −0.558206 + 0.125360i
\(777\) 0 0
\(778\) 36.3751 + 23.1267i 1.30411 + 0.829134i
\(779\) 22.1468 18.5834i 0.793492 0.665819i
\(780\) 0 0
\(781\) −4.60950 + 1.67772i −0.164941 + 0.0600335i
\(782\) −14.6808 + 16.0507i −0.524983 + 0.573972i
\(783\) 0 0
\(784\) 57.5221 10.3599i 2.05436 0.369997i
\(785\) −0.00653192 0.0179463i −0.000233134 0.000640531i
\(786\) 0 0
\(787\) −27.9726 33.3365i −0.997116 1.18832i −0.982087 0.188429i \(-0.939660\pi\)
−0.0150289 0.999887i \(-0.504784\pi\)
\(788\) 11.0412 + 40.9069i 0.393328 + 1.45725i
\(789\) 0 0
\(790\) 0.0433794 + 0.327186i 0.00154337 + 0.0116407i
\(791\) 24.6902 42.7647i 0.877882 1.52054i
\(792\) 0 0
\(793\) −8.69865 15.0665i −0.308898 0.535028i
\(794\) 17.6616 13.5779i 0.626787 0.481863i
\(795\) 0 0
\(796\) 12.9615 + 3.44761i 0.459407 + 0.122197i
\(797\) −15.3705 + 42.2300i −0.544450 + 1.49586i 0.296652 + 0.954986i \(0.404130\pi\)
−0.841102 + 0.540877i \(0.818092\pi\)
\(798\) 0 0
\(799\) 66.0612 + 11.6484i 2.33708 + 0.412090i
\(800\) 1.10017 28.1529i 0.0388969 0.995356i
\(801\) 0 0
\(802\) 1.32171 + 4.17860i 0.0466713 + 0.147552i
\(803\) −9.09342 7.63028i −0.320900 0.269267i
\(804\) 0 0
\(805\) 0.285100 + 1.61688i 0.0100484 + 0.0569875i
\(806\) −0.466114 + 10.9047i −0.0164182 + 0.384102i
\(807\) 0 0
\(808\) 28.2334 + 8.81683i 0.993248 + 0.310175i
\(809\) 39.4534i 1.38711i 0.720405 + 0.693553i \(0.243956\pi\)
−0.720405 + 0.693553i \(0.756044\pi\)
\(810\) 0 0
\(811\) 49.4348i 1.73589i 0.496659 + 0.867946i \(0.334560\pi\)
−0.496659 + 0.867946i \(0.665440\pi\)
\(812\) −2.42739 5.18077i −0.0851845 0.181809i
\(813\) 0 0
\(814\) 4.27810 + 0.182864i 0.149947 + 0.00640938i
\(815\) −0.290908 1.64982i −0.0101900 0.0577906i
\(816\) 0 0
\(817\) −7.35807 6.17416i −0.257426 0.216006i
\(818\) −35.3998 + 11.1971i −1.23773 + 0.391499i
\(819\) 0 0
\(820\) −1.50206 + 1.05585i −0.0524541 + 0.0368720i
\(821\) −21.7656 3.83786i −0.759624 0.133942i −0.219598 0.975590i \(-0.570475\pi\)
−0.540026 + 0.841648i \(0.681586\pi\)
\(822\) 0 0
\(823\) −6.69131 + 18.3842i −0.233244 + 0.640833i −0.999999 0.00110635i \(-0.999648\pi\)
0.766755 + 0.641940i \(0.221870\pi\)
\(824\) 2.35798 + 3.67897i 0.0821442 + 0.128163i
\(825\) 0 0
\(826\) −32.8776 42.7658i −1.14396 1.48801i
\(827\) −8.39197 14.5353i −0.291817 0.505442i 0.682422 0.730958i \(-0.260927\pi\)
−0.974239 + 0.225516i \(0.927593\pi\)
\(828\) 0 0
\(829\) −18.8116 + 32.5827i −0.653355 + 1.13164i 0.328949 + 0.944348i \(0.393306\pi\)
−0.982304 + 0.187296i \(0.940028\pi\)
\(830\) −0.458569 + 0.0607987i −0.0159172 + 0.00211035i
\(831\) 0 0
\(832\) 11.2529 5.32274i 0.390126 0.184533i
\(833\) 57.0065 + 67.9377i 1.97516 + 2.35390i
\(834\) 0 0
\(835\) −0.536320 1.47353i −0.0185601 0.0509935i
\(836\) −9.19227 + 0.821172i −0.317921 + 0.0284008i
\(837\) 0 0
\(838\) −37.7429 34.5215i −1.30381 1.19253i
\(839\) −51.7302 + 18.8283i −1.78592 + 0.650024i −0.786449 + 0.617655i \(0.788083\pi\)
−0.999476 + 0.0323683i \(0.989695\pi\)
\(840\) 0 0
\(841\) 21.9252 18.3975i 0.756043 0.634395i
\(842\) 9.61979 15.1306i 0.331520 0.521434i
\(843\) 0 0
\(844\) 28.8673 + 20.1345i 0.993652 + 0.693057i
\(845\) 1.27676 + 0.737140i 0.0439220 + 0.0253584i
\(846\) 0 0
\(847\) 39.8358 22.9992i 1.36878 0.790263i
\(848\) −34.9342 + 0.127853i −1.19964 + 0.00439048i
\(849\) 0 0
\(850\) 37.9024 19.7749i 1.30004 0.678272i
\(851\) −6.85782 2.49604i −0.235083 0.0855633i
\(852\) 0 0
\(853\) 1.97889 11.2229i 0.0677560 0.384263i −0.932006 0.362443i \(-0.881943\pi\)
0.999762 0.0218204i \(-0.00694619\pi\)
\(854\) 71.7782 + 15.8440i 2.45620 + 0.542169i
\(855\) 0 0
\(856\) 8.59719 + 20.5954i 0.293846 + 0.703936i
\(857\) −17.0466 + 20.3153i −0.582300 + 0.693958i −0.974106 0.226090i \(-0.927406\pi\)
0.391807 + 0.920048i \(0.371850\pi\)
\(858\) 0 0
\(859\) −7.71712 + 1.36074i −0.263305 + 0.0464277i −0.303742 0.952754i \(-0.598236\pi\)
0.0404372 + 0.999182i \(0.487125\pi\)
\(860\) 0.432127 + 0.430548i 0.0147354 + 0.0146816i
\(861\) 0 0
\(862\) 14.7741 + 6.10381i 0.503208 + 0.207896i
\(863\) 32.9090 1.12023 0.560117 0.828413i \(-0.310756\pi\)
0.560117 + 0.828413i \(0.310756\pi\)
\(864\) 0 0
\(865\) 0.794776 0.0270232
\(866\) 23.6654 + 9.77716i 0.804182 + 0.332242i
\(867\) 0 0
\(868\) −32.6685 32.5492i −1.10884 1.10479i
\(869\) 1.73394 0.305741i 0.0588199 0.0103715i
\(870\) 0 0
\(871\) 5.64508 6.72755i 0.191276 0.227954i
\(872\) 1.94541 + 4.66041i 0.0658798 + 0.157821i
\(873\) 0 0
\(874\) 15.3593 + 3.39034i 0.519536 + 0.114680i
\(875\) 1.12284 6.36795i 0.0379590 0.215276i
\(876\) 0 0
\(877\) −37.2032 13.5408i −1.25626 0.457242i −0.373748 0.927530i \(-0.621928\pi\)
−0.882513 + 0.470288i \(0.844150\pi\)
\(878\) 17.1466 8.94588i 0.578668 0.301909i
\(879\) 0 0
\(880\) 0.586096 0.00214500i 0.0197573 7.23081e-5i
\(881\) 20.1797 11.6507i 0.679870 0.392523i −0.119936 0.992782i \(-0.538269\pi\)
0.799806 + 0.600259i \(0.204936\pi\)
\(882\) 0 0
\(883\) 44.2753 + 25.5624i 1.48998 + 0.860242i 0.999934 0.0114524i \(-0.00364550\pi\)
0.490049 + 0.871695i \(0.336979\pi\)
\(884\) 15.4925 + 10.8058i 0.521068 + 0.363437i
\(885\) 0 0
\(886\) 8.25639 12.9861i 0.277379 0.436278i
\(887\) −5.23482 + 4.39254i −0.175768 + 0.147487i −0.726428 0.687243i \(-0.758821\pi\)
0.550659 + 0.834730i \(0.314376\pi\)
\(888\) 0 0
\(889\) 14.6081 5.31691i 0.489940 0.178324i
\(890\) 1.28254 + 1.17307i 0.0429908 + 0.0393215i
\(891\) 0 0
\(892\) −18.4680 + 1.64980i −0.618356 + 0.0552395i
\(893\) −16.5901 45.5809i −0.555167 1.52531i
\(894\) 0 0
\(895\) −1.11113 1.32420i −0.0371411 0.0442630i
\(896\) −15.4943 + 50.2618i −0.517628 + 1.67913i
\(897\) 0 0
\(898\) 9.87813 1.30968i 0.329638 0.0437045i
\(899\) −1.52601 + 2.64313i −0.0508954 + 0.0881535i
\(900\) 0 0
\(901\) −26.5042 45.9065i −0.882981 1.52937i
\(902\) 5.96965 + 7.76508i 0.198768 + 0.258549i
\(903\) 0 0
\(904\) 16.2119 + 25.2942i 0.539201 + 0.841272i
\(905\) −0.0554934 + 0.152467i −0.00184466 + 0.00506817i
\(906\) 0 0
\(907\) −7.37773 1.30089i −0.244974 0.0431955i 0.0498130 0.998759i \(-0.484137\pi\)
−0.294787 + 0.955563i \(0.595249\pi\)
\(908\) 36.5177 25.6697i 1.21188 0.851878i
\(909\) 0 0
\(910\) 1.35932 0.429960i 0.0450610 0.0142530i
\(911\) 19.8453 + 16.6521i 0.657503 + 0.551710i 0.909337 0.416060i \(-0.136589\pi\)
−0.251835 + 0.967770i \(0.581034\pi\)
\(912\) 0 0
\(913\) 0.428513 + 2.43022i 0.0141817 + 0.0804284i
\(914\) −35.9637 1.53724i −1.18957 0.0508474i
\(915\) 0 0
\(916\) 22.3474 + 47.6960i 0.738378 + 1.57592i
\(917\) 12.1887i 0.402508i
\(918\) 0 0
\(919\) 37.4197i 1.23436i −0.786821 0.617182i \(-0.788274\pi\)
0.786821 0.617182i \(-0.211726\pi\)
\(920\) −0.953495 0.297761i −0.0314358 0.00981689i
\(921\) 0 0
\(922\) −2.36785 + 55.3957i −0.0779810 + 1.82436i
\(923\) −1.26065 7.14947i −0.0414946 0.235328i
\(924\) 0 0
\(925\) 10.9875 + 9.21963i 0.361268 + 0.303140i
\(926\) −3.19017 10.0857i −0.104835 0.331438i
\(927\) 0 0
\(928\) 3.47822 + 0.135923i 0.114178 + 0.00446190i
\(929\) 12.0979 + 2.13318i 0.396919 + 0.0699875i 0.368545 0.929610i \(-0.379856\pi\)
0.0283738 + 0.999597i \(0.490967\pi\)
\(930\) 0 0
\(931\) 21.9337 60.2623i 0.718848 1.97502i
\(932\) 14.4984 + 3.85642i 0.474911 + 0.126321i
\(933\) 0 0
\(934\) 1.54708 1.18937i 0.0506220 0.0389173i
\(935\) 0.444664 + 0.770181i 0.0145421 + 0.0251876i
\(936\) 0 0
\(937\) −20.8028 + 36.0316i −0.679599 + 1.17710i 0.295503 + 0.955342i \(0.404513\pi\)
−0.975102 + 0.221758i \(0.928821\pi\)
\(938\) 4.87696 + 36.7841i 0.159238 + 1.20104i
\(939\) 0 0
\(940\) 0.802734 + 2.97406i 0.0261823 + 0.0970032i
\(941\) −33.5803 40.0194i −1.09469 1.30460i −0.949004 0.315265i \(-0.897907\pi\)
−0.145682 0.989331i \(-0.546538\pi\)
\(942\) 0 0
\(943\) −5.70939 15.6864i −0.185923 0.510820i
\(944\) 32.2999 5.81732i 1.05127 0.189338i
\(945\) 0 0
\(946\) 2.19627 2.40122i 0.0714070 0.0780704i
\(947\) 16.5986 6.04138i 0.539380 0.196318i −0.0579415 0.998320i \(-0.518454\pi\)
0.597322 + 0.802002i \(0.296231\pi\)
\(948\) 0 0
\(949\) 13.4580 11.2926i 0.436867 0.366575i
\(950\) −26.0874 16.5859i −0.846386 0.538119i
\(951\) 0 0
\(952\) −77.8677 + 17.4872i −2.52371 + 0.566765i
\(953\) −47.6750 27.5252i −1.54435 0.891628i −0.998557 0.0537052i \(-0.982897\pi\)
−0.545788 0.837923i \(-0.683770\pi\)
\(954\) 0 0
\(955\) −1.73597 + 1.00227i −0.0561748 + 0.0324325i
\(956\) 6.84317 + 0.586084i 0.221324 + 0.0189553i
\(957\) 0 0
\(958\) 8.32514 + 15.9568i 0.268973 + 0.515540i
\(959\) −38.9446 14.1747i −1.25759 0.457724i
\(960\) 0 0
\(961\) 1.11121 6.30196i 0.0358453 0.203289i
\(962\) −1.36597 + 6.18830i −0.0440407 + 0.199519i
\(963\) 0 0
\(964\) 3.08820 + 1.43318i 0.0994642 + 0.0461595i
\(965\) 1.64785 1.96383i 0.0530462 0.0632180i
\(966\) 0 0
\(967\) −16.5590 + 2.91980i −0.532502 + 0.0938945i −0.433433 0.901186i \(-0.642698\pi\)
−0.0990696 + 0.995081i \(0.531587\pi\)
\(968\) 1.29748 + 27.9560i 0.0417024 + 0.898539i
\(969\) 0 0
\(970\) 0.424038 1.02637i 0.0136151 0.0329549i
\(971\) 22.4986 0.722013 0.361007 0.932563i \(-0.382433\pi\)
0.361007 + 0.932563i \(0.382433\pi\)
\(972\) 0 0
\(973\) −69.7582 −2.23635
\(974\) 6.69232 16.1986i 0.214436 0.519037i
\(975\) 0 0
\(976\) −28.6212 + 34.3641i −0.916143 + 1.09997i
\(977\) −8.62912 + 1.52155i −0.276070 + 0.0486786i −0.309969 0.950747i \(-0.600319\pi\)
0.0338989 + 0.999425i \(0.489208\pi\)
\(978\) 0 0
\(979\) 5.96003 7.10288i 0.190483 0.227009i
\(980\) −1.71444 + 3.69426i −0.0547658 + 0.118009i
\(981\) 0 0
\(982\) −8.09645 + 36.6795i −0.258368 + 1.17049i
\(983\) 1.90169 10.7850i 0.0606544 0.343988i −0.939345 0.342973i \(-0.888566\pi\)
0.999999 0.00101465i \(-0.000322973\pi\)
\(984\) 0 0
\(985\) −2.77440 1.00980i −0.0883996 0.0321748i
\(986\) 2.44314 + 4.68275i 0.0778053 + 0.149129i
\(987\) 0 0
\(988\) 1.16552 13.6087i 0.0370801 0.432950i
\(989\) −4.80310 + 2.77307i −0.152730 + 0.0881785i
\(990\) 0 0
\(991\) −31.9842 18.4661i −1.01601 0.586594i −0.103065 0.994675i \(-0.532865\pi\)
−0.912946 + 0.408081i \(0.866198\pi\)
\(992\) 26.7201 8.55940i 0.848364 0.271761i
\(993\) 0 0
\(994\) 25.8849 + 16.4572i 0.821018 + 0.521991i
\(995\) −0.715926 + 0.600734i −0.0226964 + 0.0190445i
\(996\) 0 0
\(997\) 35.4190 12.8915i 1.12173 0.408276i 0.286447 0.958096i \(-0.407526\pi\)
0.835283 + 0.549820i \(0.185304\pi\)
\(998\) 9.20246 10.0612i 0.291299 0.318481i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 324.2.l.a.143.14 96
3.2 odd 2 108.2.l.a.47.3 yes 96
4.3 odd 2 inner 324.2.l.a.143.6 96
9.2 odd 6 972.2.l.d.107.9 96
9.4 even 3 972.2.l.b.755.4 96
9.5 odd 6 972.2.l.c.755.13 96
9.7 even 3 972.2.l.a.107.8 96
12.11 even 2 108.2.l.a.47.11 yes 96
27.4 even 9 108.2.l.a.23.11 yes 96
27.5 odd 18 972.2.l.b.215.6 96
27.13 even 9 972.2.l.d.863.1 96
27.14 odd 18 972.2.l.a.863.16 96
27.22 even 9 972.2.l.c.215.11 96
27.23 odd 18 inner 324.2.l.a.179.6 96
36.7 odd 6 972.2.l.a.107.16 96
36.11 even 6 972.2.l.d.107.1 96
36.23 even 6 972.2.l.c.755.11 96
36.31 odd 6 972.2.l.b.755.6 96
108.23 even 18 inner 324.2.l.a.179.14 96
108.31 odd 18 108.2.l.a.23.3 96
108.59 even 18 972.2.l.b.215.4 96
108.67 odd 18 972.2.l.d.863.9 96
108.95 even 18 972.2.l.a.863.8 96
108.103 odd 18 972.2.l.c.215.13 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
108.2.l.a.23.3 96 108.31 odd 18
108.2.l.a.23.11 yes 96 27.4 even 9
108.2.l.a.47.3 yes 96 3.2 odd 2
108.2.l.a.47.11 yes 96 12.11 even 2
324.2.l.a.143.6 96 4.3 odd 2 inner
324.2.l.a.143.14 96 1.1 even 1 trivial
324.2.l.a.179.6 96 27.23 odd 18 inner
324.2.l.a.179.14 96 108.23 even 18 inner
972.2.l.a.107.8 96 9.7 even 3
972.2.l.a.107.16 96 36.7 odd 6
972.2.l.a.863.8 96 108.95 even 18
972.2.l.a.863.16 96 27.14 odd 18
972.2.l.b.215.4 96 108.59 even 18
972.2.l.b.215.6 96 27.5 odd 18
972.2.l.b.755.4 96 9.4 even 3
972.2.l.b.755.6 96 36.31 odd 6
972.2.l.c.215.11 96 27.22 even 9
972.2.l.c.215.13 96 108.103 odd 18
972.2.l.c.755.11 96 36.23 even 6
972.2.l.c.755.13 96 9.5 odd 6
972.2.l.d.107.1 96 36.11 even 6
972.2.l.d.107.9 96 9.2 odd 6
972.2.l.d.863.1 96 27.13 even 9
972.2.l.d.863.9 96 108.67 odd 18