Properties

Label 97.6.b.a.96.4
Level $97$
Weight $6$
Character 97.96
Analytic conductor $15.557$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [97,6,Mod(96,97)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(97, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("97.96"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 97 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 97.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.5572305219\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 96.4
Character \(\chi\) \(=\) 97.96
Dual form 97.6.b.a.96.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.84944 q^{2} -20.3089 q^{3} +65.0114 q^{4} +53.6529i q^{5} +200.031 q^{6} +56.8568i q^{7} -325.144 q^{8} +169.450 q^{9} -528.451i q^{10} +27.0752 q^{11} -1320.31 q^{12} -1023.69i q^{13} -560.007i q^{14} -1089.63i q^{15} +1122.12 q^{16} -221.046i q^{17} -1668.99 q^{18} +216.145i q^{19} +3488.05i q^{20} -1154.70i q^{21} -266.676 q^{22} -1613.08i q^{23} +6603.30 q^{24} +246.365 q^{25} +10082.7i q^{26} +1493.72 q^{27} +3696.34i q^{28} +4691.91i q^{29} +10732.2i q^{30} +186.878 q^{31} -647.628 q^{32} -549.867 q^{33} +2177.18i q^{34} -3050.53 q^{35} +11016.2 q^{36} -13902.2i q^{37} -2128.91i q^{38} +20789.9i q^{39} -17444.9i q^{40} +10059.8i q^{41} +11373.1i q^{42} -7968.97 q^{43} +1760.20 q^{44} +9091.48i q^{45} +15887.9i q^{46} +15189.1 q^{47} -22788.9 q^{48} +13574.3 q^{49} -2426.56 q^{50} +4489.20i q^{51} -66551.4i q^{52} -1616.19 q^{53} -14712.3 q^{54} +1452.66i q^{55} -18486.6i q^{56} -4389.66i q^{57} -46212.7i q^{58} +11300.6i q^{59} -70838.4i q^{60} -12641.6 q^{61} -1840.64 q^{62} +9634.37i q^{63} -29529.0 q^{64} +54923.8 q^{65} +5415.88 q^{66} +31988.1i q^{67} -14370.5i q^{68} +32759.8i q^{69} +30046.0 q^{70} +36346.6i q^{71} -55095.6 q^{72} -86187.4 q^{73} +136929. i q^{74} -5003.40 q^{75} +14051.9i q^{76} +1539.41i q^{77} -204769. i q^{78} +93058.4 q^{79} +60204.9i q^{80} -71512.1 q^{81} -99083.8i q^{82} +47630.2i q^{83} -75068.4i q^{84} +11859.8 q^{85} +78489.8 q^{86} -95287.3i q^{87} -8803.34 q^{88} -9609.52 q^{89} -89546.0i q^{90} +58203.6 q^{91} -104869. i q^{92} -3795.28 q^{93} -149604. q^{94} -11596.8 q^{95} +13152.6 q^{96} +(-30179.2 + 87616.0i) q^{97} -133699. q^{98} +4587.89 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 2 q^{2} + 40 q^{3} + 638 q^{4} - 130 q^{6} + 180 q^{8} + 3300 q^{9} + 382 q^{11} + 2586 q^{12} + 10174 q^{16} + 4738 q^{18} + 1996 q^{22} - 3102 q^{24} - 25178 q^{25} + 3046 q^{27} + 14796 q^{31}+ \cdots - 562238 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/97\mathbb{Z}\right)^\times\).

\(n\) \(5\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −9.84944 −1.74115 −0.870575 0.492035i \(-0.836253\pi\)
−0.870575 + 0.492035i \(0.836253\pi\)
\(3\) −20.3089 −1.30281 −0.651407 0.758728i \(-0.725821\pi\)
−0.651407 + 0.758728i \(0.725821\pi\)
\(4\) 65.0114 2.03161
\(5\) 53.6529i 0.959772i 0.877331 + 0.479886i \(0.159322\pi\)
−0.877331 + 0.479886i \(0.840678\pi\)
\(6\) 200.031 2.26840
\(7\) 56.8568i 0.438568i 0.975661 + 0.219284i \(0.0703721\pi\)
−0.975661 + 0.219284i \(0.929628\pi\)
\(8\) −325.144 −1.79618
\(9\) 169.450 0.697325
\(10\) 528.451i 1.67111i
\(11\) 27.0752 0.0674668 0.0337334 0.999431i \(-0.489260\pi\)
0.0337334 + 0.999431i \(0.489260\pi\)
\(12\) −1320.31 −2.64681
\(13\) 1023.69i 1.68000i −0.542587 0.840000i \(-0.682555\pi\)
0.542587 0.840000i \(-0.317445\pi\)
\(14\) 560.007i 0.763613i
\(15\) 1089.63i 1.25041i
\(16\) 1122.12 1.09582
\(17\) 221.046i 0.185507i −0.995689 0.0927536i \(-0.970433\pi\)
0.995689 0.0927536i \(-0.0295669\pi\)
\(18\) −1668.99 −1.21415
\(19\) 216.145i 0.137360i 0.997639 + 0.0686802i \(0.0218788\pi\)
−0.997639 + 0.0686802i \(0.978121\pi\)
\(20\) 3488.05i 1.94988i
\(21\) 1154.70i 0.571373i
\(22\) −266.676 −0.117470
\(23\) 1613.08i 0.635824i −0.948120 0.317912i \(-0.897018\pi\)
0.948120 0.317912i \(-0.102982\pi\)
\(24\) 6603.30 2.34009
\(25\) 246.365 0.0788368
\(26\) 10082.7i 2.92513i
\(27\) 1493.72 0.394330
\(28\) 3696.34i 0.890998i
\(29\) 4691.91i 1.03599i 0.855384 + 0.517994i \(0.173321\pi\)
−0.855384 + 0.517994i \(0.826679\pi\)
\(30\) 10732.2i 2.17714i
\(31\) 186.878 0.0349264 0.0174632 0.999848i \(-0.494441\pi\)
0.0174632 + 0.999848i \(0.494441\pi\)
\(32\) −647.628 −0.111802
\(33\) −549.867 −0.0878967
\(34\) 2177.18i 0.322996i
\(35\) −3050.53 −0.420926
\(36\) 11016.2 1.41669
\(37\) 13902.2i 1.66947i −0.550651 0.834735i \(-0.685621\pi\)
0.550651 0.834735i \(-0.314379\pi\)
\(38\) 2128.91i 0.239165i
\(39\) 20789.9i 2.18873i
\(40\) 17444.9i 1.72393i
\(41\) 10059.8i 0.934612i 0.884096 + 0.467306i \(0.154775\pi\)
−0.884096 + 0.467306i \(0.845225\pi\)
\(42\) 11373.1i 0.994846i
\(43\) −7968.97 −0.657250 −0.328625 0.944460i \(-0.606585\pi\)
−0.328625 + 0.944460i \(0.606585\pi\)
\(44\) 1760.20 0.137066
\(45\) 9091.48i 0.669273i
\(46\) 15887.9i 1.10706i
\(47\) 15189.1 1.00297 0.501484 0.865167i \(-0.332788\pi\)
0.501484 + 0.865167i \(0.332788\pi\)
\(48\) −22788.9 −1.42765
\(49\) 13574.3 0.807658
\(50\) −2426.56 −0.137267
\(51\) 4489.20i 0.241681i
\(52\) 66551.4i 3.41310i
\(53\) −1616.19 −0.0790320 −0.0395160 0.999219i \(-0.512582\pi\)
−0.0395160 + 0.999219i \(0.512582\pi\)
\(54\) −14712.3 −0.686587
\(55\) 1452.66i 0.0647528i
\(56\) 18486.6i 0.787748i
\(57\) 4389.66i 0.178955i
\(58\) 46212.7i 1.80381i
\(59\) 11300.6i 0.422640i 0.977417 + 0.211320i \(0.0677762\pi\)
−0.977417 + 0.211320i \(0.932224\pi\)
\(60\) 70838.4i 2.54033i
\(61\) −12641.6 −0.434988 −0.217494 0.976062i \(-0.569788\pi\)
−0.217494 + 0.976062i \(0.569788\pi\)
\(62\) −1840.64 −0.0608121
\(63\) 9634.37i 0.305824i
\(64\) −29529.0 −0.901153
\(65\) 54923.8 1.61242
\(66\) 5415.88 0.153041
\(67\) 31988.1i 0.870566i 0.900294 + 0.435283i \(0.143352\pi\)
−0.900294 + 0.435283i \(0.856648\pi\)
\(68\) 14370.5i 0.376878i
\(69\) 32759.8i 0.828360i
\(70\) 30046.0 0.732895
\(71\) 36346.6i 0.855692i 0.903852 + 0.427846i \(0.140727\pi\)
−0.903852 + 0.427846i \(0.859273\pi\)
\(72\) −55095.6 −1.25252
\(73\) −86187.4 −1.89294 −0.946469 0.322795i \(-0.895378\pi\)
−0.946469 + 0.322795i \(0.895378\pi\)
\(74\) 136929.i 2.90680i
\(75\) −5003.40 −0.102710
\(76\) 14051.9i 0.279062i
\(77\) 1539.41i 0.0295888i
\(78\) 204769.i 3.81090i
\(79\) 93058.4 1.67760 0.838799 0.544442i \(-0.183258\pi\)
0.838799 + 0.544442i \(0.183258\pi\)
\(80\) 60204.9i 1.05174i
\(81\) −71512.1 −1.21106
\(82\) 99083.8i 1.62730i
\(83\) 47630.2i 0.758904i 0.925211 + 0.379452i \(0.123888\pi\)
−0.925211 + 0.379452i \(0.876112\pi\)
\(84\) 75068.4i 1.16080i
\(85\) 11859.8 0.178045
\(86\) 78489.8 1.14437
\(87\) 95287.3i 1.34970i
\(88\) −8803.34 −0.121183
\(89\) −9609.52 −0.128596 −0.0642979 0.997931i \(-0.520481\pi\)
−0.0642979 + 0.997931i \(0.520481\pi\)
\(90\) 89546.0i 1.16531i
\(91\) 58203.6 0.736794
\(92\) 104869.i 1.29174i
\(93\) −3795.28 −0.0455026
\(94\) −149604. −1.74632
\(95\) −11596.8 −0.131835
\(96\) 13152.6 0.145658
\(97\) −30179.2 + 87616.0i −0.325670 + 0.945483i
\(98\) −133699. −1.40625
\(99\) 4587.89 0.0470463
\(100\) 16016.5 0.160165
\(101\) 89880.8 0.876725 0.438363 0.898798i \(-0.355559\pi\)
0.438363 + 0.898798i \(0.355559\pi\)
\(102\) 44216.1i 0.420804i
\(103\) 82886.9 0.769826 0.384913 0.922953i \(-0.374231\pi\)
0.384913 + 0.922953i \(0.374231\pi\)
\(104\) 332846.i 3.01759i
\(105\) 61952.8 0.548388
\(106\) 15918.6 0.137607
\(107\) 210548.i 1.77784i 0.458065 + 0.888919i \(0.348543\pi\)
−0.458065 + 0.888919i \(0.651457\pi\)
\(108\) 97108.8 0.801123
\(109\) 160830. 1.29658 0.648291 0.761393i \(-0.275484\pi\)
0.648291 + 0.761393i \(0.275484\pi\)
\(110\) 14307.9i 0.112744i
\(111\) 282338.i 2.17501i
\(112\) 63800.0i 0.480591i
\(113\) −150009. −1.10515 −0.552574 0.833464i \(-0.686354\pi\)
−0.552574 + 0.833464i \(0.686354\pi\)
\(114\) 43235.7i 0.311588i
\(115\) 86546.5 0.610246
\(116\) 305028.i 2.10472i
\(117\) 173464.i 1.17151i
\(118\) 111304.i 0.735880i
\(119\) 12568.0 0.0813575
\(120\) 354286.i 2.24596i
\(121\) −160318. −0.995448
\(122\) 124512. 0.757379
\(123\) 204304.i 1.21763i
\(124\) 12149.2 0.0709567
\(125\) 180884.i 1.03544i
\(126\) 94893.1i 0.532486i
\(127\) 45050.3i 0.247850i 0.992292 + 0.123925i \(0.0395482\pi\)
−0.992292 + 0.123925i \(0.960452\pi\)
\(128\) 311568. 1.68085
\(129\) 161841. 0.856275
\(130\) −540969. −2.80746
\(131\) 132471.i 0.674437i 0.941426 + 0.337218i \(0.109486\pi\)
−0.941426 + 0.337218i \(0.890514\pi\)
\(132\) −35747.6 −0.178572
\(133\) −12289.3 −0.0602419
\(134\) 315065.i 1.51579i
\(135\) 80142.4i 0.378467i
\(136\) 71871.8i 0.333205i
\(137\) 179400.i 0.816622i −0.912843 0.408311i \(-0.866118\pi\)
0.912843 0.408311i \(-0.133882\pi\)
\(138\) 322666.i 1.44230i
\(139\) 296979.i 1.30373i −0.758334 0.651866i \(-0.773986\pi\)
0.758334 0.651866i \(-0.226014\pi\)
\(140\) −198319. −0.855155
\(141\) −308473. −1.30668
\(142\) 357993.i 1.48989i
\(143\) 27716.6i 0.113344i
\(144\) 190143. 0.764141
\(145\) −251735. −0.994312
\(146\) 848897. 3.29589
\(147\) −275679. −1.05223
\(148\) 903801.i 3.39171i
\(149\) 322988.i 1.19185i −0.803041 0.595924i \(-0.796786\pi\)
0.803041 0.595924i \(-0.203214\pi\)
\(150\) 49280.6 0.178833
\(151\) 171009. 0.610348 0.305174 0.952297i \(-0.401285\pi\)
0.305174 + 0.952297i \(0.401285\pi\)
\(152\) 70278.3i 0.246724i
\(153\) 37456.3i 0.129359i
\(154\) 15162.3i 0.0515185i
\(155\) 10026.5i 0.0335214i
\(156\) 1.35158e6i 4.44663i
\(157\) 209963.i 0.679818i 0.940458 + 0.339909i \(0.110396\pi\)
−0.940458 + 0.339909i \(0.889604\pi\)
\(158\) −916573. −2.92095
\(159\) 32823.0 0.102964
\(160\) 34747.1i 0.107305i
\(161\) 91714.6 0.278852
\(162\) 704353. 2.10864
\(163\) 55510.4 0.163646 0.0818230 0.996647i \(-0.473926\pi\)
0.0818230 + 0.996647i \(0.473926\pi\)
\(164\) 654004.i 1.89876i
\(165\) 29502.0i 0.0843609i
\(166\) 469131.i 1.32137i
\(167\) 339558. 0.942155 0.471078 0.882092i \(-0.343865\pi\)
0.471078 + 0.882092i \(0.343865\pi\)
\(168\) 375442.i 1.02629i
\(169\) −676644. −1.82240
\(170\) −116812. −0.310003
\(171\) 36625.8i 0.0957848i
\(172\) −518074. −1.33527
\(173\) 658685.i 1.67326i −0.547772 0.836628i \(-0.684524\pi\)
0.547772 0.836628i \(-0.315476\pi\)
\(174\) 938527.i 2.35003i
\(175\) 14007.5i 0.0345753i
\(176\) 30381.6 0.0739314
\(177\) 229502.i 0.550622i
\(178\) 94648.4 0.223905
\(179\) 424590.i 0.990460i 0.868762 + 0.495230i \(0.164916\pi\)
−0.868762 + 0.495230i \(0.835084\pi\)
\(180\) 591050.i 1.35970i
\(181\) 401114.i 0.910062i −0.890475 0.455031i \(-0.849628\pi\)
0.890475 0.455031i \(-0.150372\pi\)
\(182\) −573272. −1.28287
\(183\) 256736. 0.566708
\(184\) 524483.i 1.14206i
\(185\) 745893. 1.60231
\(186\) 37381.3 0.0792269
\(187\) 5984.87i 0.0125156i
\(188\) 987464. 2.03764
\(189\) 84928.0i 0.172940i
\(190\) 114222. 0.229544
\(191\) −336542. −0.667507 −0.333753 0.942660i \(-0.608315\pi\)
−0.333753 + 0.942660i \(0.608315\pi\)
\(192\) 599700. 1.17404
\(193\) 702926. 1.35837 0.679183 0.733969i \(-0.262334\pi\)
0.679183 + 0.733969i \(0.262334\pi\)
\(194\) 297248. 862968.i 0.567041 1.64623i
\(195\) −1.11544e6 −2.10068
\(196\) 882485. 1.64084
\(197\) 317036. 0.582026 0.291013 0.956719i \(-0.406008\pi\)
0.291013 + 0.956719i \(0.406008\pi\)
\(198\) −45188.2 −0.0819147
\(199\) 644760.i 1.15416i 0.816688 + 0.577079i \(0.195808\pi\)
−0.816688 + 0.577079i \(0.804192\pi\)
\(200\) −80104.1 −0.141605
\(201\) 649642.i 1.13419i
\(202\) −885275. −1.52651
\(203\) −266767. −0.454351
\(204\) 291849.i 0.491002i
\(205\) −539740. −0.897015
\(206\) −816389. −1.34038
\(207\) 273336.i 0.443375i
\(208\) 1.14870e6i 1.84097i
\(209\) 5852.18i 0.00926727i
\(210\) −610200. −0.954826
\(211\) 432926.i 0.669433i 0.942319 + 0.334717i \(0.108641\pi\)
−0.942319 + 0.334717i \(0.891359\pi\)
\(212\) −105071. −0.160562
\(213\) 738157.i 1.11481i
\(214\) 2.07378e6i 3.09548i
\(215\) 427558.i 0.630811i
\(216\) −485673. −0.708288
\(217\) 10625.3i 0.0153176i
\(218\) −1.58408e6 −2.25754
\(219\) 1.75037e6 2.46615
\(220\) 94439.7i 0.131552i
\(221\) −226282. −0.311652
\(222\) 2.78087e6i 3.78702i
\(223\) 1.39579e6i 1.87956i 0.341777 + 0.939781i \(0.388971\pi\)
−0.341777 + 0.939781i \(0.611029\pi\)
\(224\) 36822.0i 0.0490329i
\(225\) 41746.5 0.0549749
\(226\) 1.47750e6 1.92423
\(227\) −886828. −1.14229 −0.571143 0.820851i \(-0.693500\pi\)
−0.571143 + 0.820851i \(0.693500\pi\)
\(228\) 285378.i 0.363566i
\(229\) 312844. 0.394220 0.197110 0.980381i \(-0.436844\pi\)
0.197110 + 0.980381i \(0.436844\pi\)
\(230\) −852434. −1.06253
\(231\) 31263.6i 0.0385487i
\(232\) 1.52554e6i 1.86082i
\(233\) 1.26963e6i 1.53211i 0.642778 + 0.766053i \(0.277782\pi\)
−0.642778 + 0.766053i \(0.722218\pi\)
\(234\) 1.70852e6i 2.03977i
\(235\) 814939.i 0.962621i
\(236\) 734667.i 0.858638i
\(237\) −1.88991e6 −2.18560
\(238\) −123787. −0.141656
\(239\) 540790.i 0.612398i 0.951967 + 0.306199i \(0.0990573\pi\)
−0.951967 + 0.306199i \(0.900943\pi\)
\(240\) 1.22269e6i 1.37022i
\(241\) 1.40246e6 1.55542 0.777710 0.628623i \(-0.216381\pi\)
0.777710 + 0.628623i \(0.216381\pi\)
\(242\) 1.57904e6 1.73323
\(243\) 1.08935e6 1.18346
\(244\) −821847. −0.883724
\(245\) 728301.i 0.775168i
\(246\) 2.01228e6i 2.12007i
\(247\) 221265. 0.230765
\(248\) −60762.2 −0.0627342
\(249\) 967315.i 0.988711i
\(250\) 1.78160e6i 1.80285i
\(251\) 161412.i 0.161715i 0.996726 + 0.0808576i \(0.0257659\pi\)
−0.996726 + 0.0808576i \(0.974234\pi\)
\(252\) 626344.i 0.621315i
\(253\) 43674.5i 0.0428970i
\(254\) 443721.i 0.431544i
\(255\) −240859. −0.231959
\(256\) −2.12384e6 −2.02545
\(257\) 1.03503e6i 0.977505i −0.872422 0.488753i \(-0.837452\pi\)
0.872422 0.488753i \(-0.162548\pi\)
\(258\) −1.59404e6 −1.49090
\(259\) 790433. 0.732177
\(260\) 3.57068e6 3.27580
\(261\) 795044.i 0.722420i
\(262\) 1.30476e6i 1.17430i
\(263\) 1.00345e6i 0.894552i 0.894396 + 0.447276i \(0.147606\pi\)
−0.894396 + 0.447276i \(0.852394\pi\)
\(264\) 178786. 0.157879
\(265\) 86713.4i 0.0758527i
\(266\) 121043. 0.104890
\(267\) 195158. 0.167536
\(268\) 2.07959e6i 1.76865i
\(269\) −467877. −0.394231 −0.197116 0.980380i \(-0.563157\pi\)
−0.197116 + 0.980380i \(0.563157\pi\)
\(270\) 789357.i 0.658968i
\(271\) 181352.i 0.150002i −0.997183 0.0750012i \(-0.976104\pi\)
0.997183 0.0750012i \(-0.0238961\pi\)
\(272\) 248040.i 0.203282i
\(273\) −1.18205e6 −0.959906
\(274\) 1.76699e6i 1.42186i
\(275\) 6670.39 0.00531887
\(276\) 2.12976e6i 1.68290i
\(277\) 463196.i 0.362715i −0.983417 0.181357i \(-0.941951\pi\)
0.983417 0.181357i \(-0.0580491\pi\)
\(278\) 2.92508e6i 2.27000i
\(279\) 31666.4 0.0243550
\(280\) 991861. 0.756059
\(281\) 1.38758e6i 1.04832i 0.851621 + 0.524158i \(0.175620\pi\)
−0.851621 + 0.524158i \(0.824380\pi\)
\(282\) 3.03829e6 2.27513
\(283\) 312588. 0.232010 0.116005 0.993249i \(-0.462991\pi\)
0.116005 + 0.993249i \(0.462991\pi\)
\(284\) 2.36294e6i 1.73843i
\(285\) 235518. 0.171756
\(286\) 272993.i 0.197349i
\(287\) −571970. −0.409891
\(288\) −109740. −0.0779625
\(289\) 1.37100e6 0.965587
\(290\) 2.47944e6 1.73125
\(291\) 612905. 1.77938e6i 0.424288 1.23179i
\(292\) −5.60316e6 −3.84570
\(293\) 2.32564e6 1.58261 0.791305 0.611421i \(-0.209402\pi\)
0.791305 + 0.611421i \(0.209402\pi\)
\(294\) 2.71528e6 1.83209
\(295\) −606309. −0.405638
\(296\) 4.52021e6i 2.99867i
\(297\) 40442.8 0.0266042
\(298\) 3.18125e6i 2.07519i
\(299\) −1.65129e6 −1.06818
\(300\) −325278. −0.208666
\(301\) 453090.i 0.288249i
\(302\) −1.68435e6 −1.06271
\(303\) −1.82538e6 −1.14221
\(304\) 242540.i 0.150522i
\(305\) 678258.i 0.417489i
\(306\) 368923.i 0.225233i
\(307\) 1.47323e6 0.892124 0.446062 0.895002i \(-0.352826\pi\)
0.446062 + 0.895002i \(0.352826\pi\)
\(308\) 100079.i 0.0601128i
\(309\) −1.68334e6 −1.00294
\(310\) 98755.8i 0.0583658i
\(311\) 2.49814e6i 1.46459i 0.680988 + 0.732294i \(0.261550\pi\)
−0.680988 + 0.732294i \(0.738450\pi\)
\(312\) 6.75972e6i 3.93135i
\(313\) −634039. −0.365810 −0.182905 0.983131i \(-0.558550\pi\)
−0.182905 + 0.983131i \(0.558550\pi\)
\(314\) 2.06801e6i 1.18367i
\(315\) −516912. −0.293522
\(316\) 6.04986e6 3.40822
\(317\) 1.27336e6i 0.711707i −0.934542 0.355854i \(-0.884190\pi\)
0.934542 0.355854i \(-0.115810\pi\)
\(318\) −323288. −0.179276
\(319\) 127034.i 0.0698948i
\(320\) 1.58432e6i 0.864902i
\(321\) 4.27599e6i 2.31619i
\(322\) −903337. −0.485523
\(323\) 47778.1 0.0254813
\(324\) −4.64910e6 −2.46040
\(325\) 252201.i 0.132446i
\(326\) −546746. −0.284932
\(327\) −3.26627e6 −1.68920
\(328\) 3.27089e6i 1.67873i
\(329\) 863602.i 0.439870i
\(330\) 290578.i 0.146885i
\(331\) 3.20956e6i 1.61018i −0.593149 0.805092i \(-0.702116\pi\)
0.593149 0.805092i \(-0.297884\pi\)
\(332\) 3.09651e6i 1.54179i
\(333\) 2.35572e6i 1.16416i
\(334\) −3.34445e6 −1.64043
\(335\) −1.71626e6 −0.835545
\(336\) 1.29570e6i 0.626120i
\(337\) 2.89131e6i 1.38682i 0.720543 + 0.693410i \(0.243892\pi\)
−0.720543 + 0.693410i \(0.756108\pi\)
\(338\) 6.66456e6 3.17307
\(339\) 3.04650e6 1.43980
\(340\) 771021. 0.361717
\(341\) 5059.76 0.00235637
\(342\) 360743.i 0.166776i
\(343\) 1.72738e6i 0.792781i
\(344\) 2.59106e6 1.18054
\(345\) −1.75766e6 −0.795037
\(346\) 6.48767e6i 2.91339i
\(347\) 3.62569e6i 1.61647i −0.588860 0.808235i \(-0.700423\pi\)
0.588860 0.808235i \(-0.299577\pi\)
\(348\) 6.19476e6i 2.74206i
\(349\) 1.35725e6i 0.596481i 0.954491 + 0.298241i \(0.0963998\pi\)
−0.954491 + 0.298241i \(0.903600\pi\)
\(350\) 137966.i 0.0602008i
\(351\) 1.52910e6i 0.662474i
\(352\) −17534.7 −0.00754294
\(353\) −2.73892e6 −1.16988 −0.584942 0.811075i \(-0.698883\pi\)
−0.584942 + 0.811075i \(0.698883\pi\)
\(354\) 2.26046e6i 0.958715i
\(355\) −1.95010e6 −0.821269
\(356\) −624729. −0.261256
\(357\) −255241. −0.105994
\(358\) 4.18197e6i 1.72454i
\(359\) 1.00251e6i 0.410537i −0.978706 0.205268i \(-0.934193\pi\)
0.978706 0.205268i \(-0.0658067\pi\)
\(360\) 2.95604e6i 1.20214i
\(361\) 2.42938e6 0.981132
\(362\) 3.95075e6i 1.58456i
\(363\) 3.25587e6 1.29688
\(364\) 3.78390e6 1.49688
\(365\) 4.62420e6i 1.81679i
\(366\) −2.52871e6 −0.986724
\(367\) 295514.i 0.114528i −0.998359 0.0572642i \(-0.981762\pi\)
0.998359 0.0572642i \(-0.0182377\pi\)
\(368\) 1.81007e6i 0.696747i
\(369\) 1.70464e6i 0.651728i
\(370\) −7.34663e6 −2.78987
\(371\) 91891.4i 0.0346609i
\(372\) −246736. −0.0924433
\(373\) 1.39611e6i 0.519572i 0.965666 + 0.259786i \(0.0836521\pi\)
−0.965666 + 0.259786i \(0.916348\pi\)
\(374\) 58947.6i 0.0217915i
\(375\) 3.67354e6i 1.34898i
\(376\) −4.93864e6 −1.80151
\(377\) 4.80305e6 1.74046
\(378\) 836493.i 0.301115i
\(379\) 2.76544e6 0.988932 0.494466 0.869197i \(-0.335364\pi\)
0.494466 + 0.869197i \(0.335364\pi\)
\(380\) −753925. −0.267836
\(381\) 914921.i 0.322902i
\(382\) 3.31475e6 1.16223
\(383\) 2.19818e6i 0.765713i −0.923808 0.382857i \(-0.874940\pi\)
0.923808 0.382857i \(-0.125060\pi\)
\(384\) −6.32759e6 −2.18983
\(385\) −82593.8 −0.0283985
\(386\) −6.92343e6 −2.36512
\(387\) −1.35034e6 −0.458317
\(388\) −1.96199e6 + 5.69604e6i −0.661634 + 1.92085i
\(389\) −3.82768e6 −1.28251 −0.641256 0.767327i \(-0.721586\pi\)
−0.641256 + 0.767327i \(0.721586\pi\)
\(390\) 1.09865e7 3.65760
\(391\) −356566. −0.117950
\(392\) −4.41360e6 −1.45070
\(393\) 2.69033e6i 0.878666i
\(394\) −3.12262e6 −1.01340
\(395\) 4.99285e6i 1.61011i
\(396\) 298265. 0.0955795
\(397\) 1.39213e6 0.443305 0.221653 0.975126i \(-0.428855\pi\)
0.221653 + 0.975126i \(0.428855\pi\)
\(398\) 6.35052e6i 2.00956i
\(399\) 249582. 0.0784840
\(400\) 276451. 0.0863908
\(401\) 4.42318e6i 1.37364i −0.726827 0.686821i \(-0.759006\pi\)
0.726827 0.686821i \(-0.240994\pi\)
\(402\) 6.39861e6i 1.97479i
\(403\) 191305.i 0.0586763i
\(404\) 5.84328e6 1.78116
\(405\) 3.83683e6i 1.16234i
\(406\) 2.62750e6 0.791094
\(407\) 376405.i 0.112634i
\(408\) 1.45963e6i 0.434104i
\(409\) 4.36639e6i 1.29067i 0.763901 + 0.645333i \(0.223282\pi\)
−0.763901 + 0.645333i \(0.776718\pi\)
\(410\) 5.31613e6 1.56184
\(411\) 3.64341e6i 1.06391i
\(412\) 5.38859e6 1.56398
\(413\) −642514. −0.185356
\(414\) 2.69221e6i 0.771984i
\(415\) −2.55550e6 −0.728376
\(416\) 662969.i 0.187828i
\(417\) 6.03130e6i 1.69852i
\(418\) 57640.7i 0.0161357i
\(419\) 1.29627e6 0.360713 0.180357 0.983601i \(-0.442275\pi\)
0.180357 + 0.983601i \(0.442275\pi\)
\(420\) 4.02764e6 1.11411
\(421\) −5.08746e6 −1.39893 −0.699465 0.714667i \(-0.746578\pi\)
−0.699465 + 0.714667i \(0.746578\pi\)
\(422\) 4.26407e6i 1.16558i
\(423\) 2.57379e6 0.699394
\(424\) 525494. 0.141956
\(425\) 54458.1i 0.0146248i
\(426\) 7.27043e6i 1.94105i
\(427\) 718760.i 0.190772i
\(428\) 1.36880e7i 3.61187i
\(429\) 562892.i 0.147666i
\(430\) 4.21121e6i 1.09834i
\(431\) −1.80275e6 −0.467458 −0.233729 0.972302i \(-0.575093\pi\)
−0.233729 + 0.972302i \(0.575093\pi\)
\(432\) 1.67613e6 0.432114
\(433\) 4.64188e6i 1.18980i 0.803799 + 0.594901i \(0.202809\pi\)
−0.803799 + 0.594901i \(0.797191\pi\)
\(434\) 104653.i 0.0266702i
\(435\) 5.11244e6 1.29540
\(436\) 1.04558e7 2.63414
\(437\) 348660. 0.0873370
\(438\) −1.72401e7 −4.29393
\(439\) 3.60581e6i 0.892979i 0.894789 + 0.446490i \(0.147326\pi\)
−0.894789 + 0.446490i \(0.852674\pi\)
\(440\) 472325.i 0.116308i
\(441\) 2.30017e6 0.563200
\(442\) 2.22875e6 0.542633
\(443\) 5.70113e6i 1.38023i −0.723699 0.690116i \(-0.757560\pi\)
0.723699 0.690116i \(-0.242440\pi\)
\(444\) 1.83552e7i 4.41877i
\(445\) 515579.i 0.123423i
\(446\) 1.37477e7i 3.27260i
\(447\) 6.55952e6i 1.55276i
\(448\) 1.67892e6i 0.395217i
\(449\) 783588. 0.183431 0.0917154 0.995785i \(-0.470765\pi\)
0.0917154 + 0.995785i \(0.470765\pi\)
\(450\) −411180. −0.0957196
\(451\) 272372.i 0.0630553i
\(452\) −9.75227e6 −2.24522
\(453\) −3.47301e6 −0.795170
\(454\) 8.73476e6 1.98889
\(455\) 3.12279e6i 0.707155i
\(456\) 1.42727e6i 0.321436i
\(457\) 3.01387e6i 0.675046i −0.941317 0.337523i \(-0.890411\pi\)
0.941317 0.337523i \(-0.109589\pi\)
\(458\) −3.08134e6 −0.686397
\(459\) 330181.i 0.0731510i
\(460\) 5.62651e6 1.23978
\(461\) 219342. 0.0480694 0.0240347 0.999711i \(-0.492349\pi\)
0.0240347 + 0.999711i \(0.492349\pi\)
\(462\) 307929.i 0.0671191i
\(463\) 6.70534e6 1.45368 0.726840 0.686807i \(-0.240988\pi\)
0.726840 + 0.686807i \(0.240988\pi\)
\(464\) 5.26487e6i 1.13525i
\(465\) 203628.i 0.0436721i
\(466\) 1.25052e7i 2.66763i
\(467\) −4.94032e6 −1.04824 −0.524122 0.851643i \(-0.675607\pi\)
−0.524122 + 0.851643i \(0.675607\pi\)
\(468\) 1.12771e7i 2.38004i
\(469\) −1.81874e6 −0.381803
\(470\) 8.02669e6i 1.67607i
\(471\) 4.26410e6i 0.885677i
\(472\) 3.67431e6i 0.759139i
\(473\) −215761. −0.0443426
\(474\) 1.86145e7 3.80546
\(475\) 53250.6i 0.0108291i
\(476\) 817061. 0.165286
\(477\) −273863. −0.0551110
\(478\) 5.32648e6i 1.06628i
\(479\) 4.45638e6 0.887449 0.443724 0.896163i \(-0.353657\pi\)
0.443724 + 0.896163i \(0.353657\pi\)
\(480\) 705674.i 0.139798i
\(481\) −1.42315e7 −2.80471
\(482\) −1.38134e7 −2.70822
\(483\) −1.86262e6 −0.363292
\(484\) −1.04225e7 −2.02236
\(485\) −4.70085e6 1.61920e6i −0.907449 0.312569i
\(486\) −1.07295e7 −2.06058
\(487\) 3.85763e6 0.737053 0.368526 0.929617i \(-0.379862\pi\)
0.368526 + 0.929617i \(0.379862\pi\)
\(488\) 4.11033e6 0.781317
\(489\) −1.12735e6 −0.213200
\(490\) 7.17336e6i 1.34968i
\(491\) −613010. −0.114753 −0.0573765 0.998353i \(-0.518274\pi\)
−0.0573765 + 0.998353i \(0.518274\pi\)
\(492\) 1.32821e7i 2.47374i
\(493\) 1.03713e6 0.192183
\(494\) −2.17934e6 −0.401797
\(495\) 246154.i 0.0451537i
\(496\) 209699. 0.0382730
\(497\) −2.06655e6 −0.375279
\(498\) 9.52751e6i 1.72150i
\(499\) 7.76214e6i 1.39550i 0.716341 + 0.697750i \(0.245815\pi\)
−0.716341 + 0.697750i \(0.754185\pi\)
\(500\) 1.17595e7i 2.10360i
\(501\) −6.89603e6 −1.22745
\(502\) 1.58982e6i 0.281571i
\(503\) 2.37672e6 0.418849 0.209425 0.977825i \(-0.432841\pi\)
0.209425 + 0.977825i \(0.432841\pi\)
\(504\) 3.13256e6i 0.549316i
\(505\) 4.82237e6i 0.841457i
\(506\) 430169.i 0.0746901i
\(507\) 1.37419e7 2.37425
\(508\) 2.92879e6i 0.503533i
\(509\) 1.13070e7 1.93443 0.967213 0.253967i \(-0.0817356\pi\)
0.967213 + 0.253967i \(0.0817356\pi\)
\(510\) 2.37232e6 0.403876
\(511\) 4.90033e6i 0.830182i
\(512\) 1.09485e7 1.84577
\(513\) 322860.i 0.0541653i
\(514\) 1.01944e7i 1.70198i
\(515\) 4.44712e6i 0.738858i
\(516\) 1.05215e7 1.73961
\(517\) 411248. 0.0676671
\(518\) −7.78532e6 −1.27483
\(519\) 1.33771e7i 2.17994i
\(520\) −1.78581e7 −2.89620
\(521\) 7.15599e6 1.15498 0.577492 0.816397i \(-0.304032\pi\)
0.577492 + 0.816397i \(0.304032\pi\)
\(522\) 7.83073e6i 1.25784i
\(523\) 6.14699e6i 0.982671i 0.870970 + 0.491336i \(0.163491\pi\)
−0.870970 + 0.491336i \(0.836509\pi\)
\(524\) 8.61210e6i 1.37019i
\(525\) 284477.i 0.0450452i
\(526\) 9.88340e6i 1.55755i
\(527\) 41308.6i 0.00647910i
\(528\) −617015. −0.0963188
\(529\) 3.83431e6 0.595728
\(530\) 854078.i 0.132071i
\(531\) 1.91488e6i 0.294717i
\(532\) −798946. −0.122388
\(533\) 1.02981e7 1.57015
\(534\) −1.92220e6 −0.291706
\(535\) −1.12965e7 −1.70632
\(536\) 1.04007e7i 1.56370i
\(537\) 8.62294e6i 1.29039i
\(538\) 4.60832e6 0.686416
\(539\) 367527. 0.0544901
\(540\) 5.21017e6i 0.768895i
\(541\) 6.71070e6i 0.985768i −0.870095 0.492884i \(-0.835943\pi\)
0.870095 0.492884i \(-0.164057\pi\)
\(542\) 1.78621e6i 0.261177i
\(543\) 8.14617e6i 1.18564i
\(544\) 143156.i 0.0207401i
\(545\) 8.62897e6i 1.24442i
\(546\) 1.16425e7 1.67134
\(547\) 1.05907e7 1.51341 0.756706 0.653755i \(-0.226807\pi\)
0.756706 + 0.653755i \(0.226807\pi\)
\(548\) 1.16630e7i 1.65905i
\(549\) −2.14212e6 −0.303328
\(550\) −65699.6 −0.00926096
\(551\) −1.01413e6 −0.142304
\(552\) 1.06517e7i 1.48789i
\(553\) 5.29100e6i 0.735741i
\(554\) 4.56222e6i 0.631541i
\(555\) −1.51482e7 −2.08752
\(556\) 1.93070e7i 2.64867i
\(557\) 6.72290e6 0.918160 0.459080 0.888395i \(-0.348179\pi\)
0.459080 + 0.888395i \(0.348179\pi\)
\(558\) −311897. −0.0424058
\(559\) 8.15773e6i 1.10418i
\(560\) −3.42305e6 −0.461258
\(561\) 121546.i 0.0163055i
\(562\) 1.36669e7i 1.82528i
\(563\) 1.27501e7i 1.69529i 0.530564 + 0.847645i \(0.321980\pi\)
−0.530564 + 0.847645i \(0.678020\pi\)
\(564\) −2.00543e7 −2.65466
\(565\) 8.04840e6i 1.06069i
\(566\) −3.07882e6 −0.403964
\(567\) 4.06594e6i 0.531134i
\(568\) 1.18179e7i 1.53698i
\(569\) 7.64909e6i 0.990443i 0.868767 + 0.495221i \(0.164913\pi\)
−0.868767 + 0.495221i \(0.835087\pi\)
\(570\) −2.31972e6 −0.299053
\(571\) 1.31819e7 1.69195 0.845977 0.533219i \(-0.179018\pi\)
0.845977 + 0.533219i \(0.179018\pi\)
\(572\) 1.80189e6i 0.230271i
\(573\) 6.83478e6 0.869637
\(574\) 5.63358e6 0.713682
\(575\) 397407.i 0.0501263i
\(576\) −5.00369e6 −0.628397
\(577\) 8.48401e6i 1.06087i 0.847726 + 0.530434i \(0.177971\pi\)
−0.847726 + 0.530434i \(0.822029\pi\)
\(578\) −1.35035e7 −1.68123
\(579\) −1.42756e7 −1.76970
\(580\) −1.63656e7 −2.02005
\(581\) −2.70810e6 −0.332831
\(582\) −6.03677e6 + 1.75259e7i −0.738749 + 2.14473i
\(583\) −43758.7 −0.00533204
\(584\) 2.80233e7 3.40006
\(585\) 9.30684e6 1.12438
\(586\) −2.29063e7 −2.75556
\(587\) 1.07814e7i 1.29145i 0.763568 + 0.645727i \(0.223446\pi\)
−0.763568 + 0.645727i \(0.776554\pi\)
\(588\) −1.79223e7 −2.13771
\(589\) 40392.7i 0.00479750i
\(590\) 5.97180e6 0.706278
\(591\) −6.43863e6 −0.758272
\(592\) 1.55999e7i 1.82944i
\(593\) 2.74665e6 0.320750 0.160375 0.987056i \(-0.448730\pi\)
0.160375 + 0.987056i \(0.448730\pi\)
\(594\) −398338. −0.0463219
\(595\) 674308.i 0.0780847i
\(596\) 2.09979e7i 2.42136i
\(597\) 1.30943e7i 1.50365i
\(598\) 1.62643e7 1.85987
\(599\) 3.05676e6i 0.348092i 0.984738 + 0.174046i \(0.0556842\pi\)
−0.984738 + 0.174046i \(0.944316\pi\)
\(600\) 1.62682e6 0.184485
\(601\) 5.16646e6i 0.583454i −0.956502 0.291727i \(-0.905770\pi\)
0.956502 0.291727i \(-0.0942300\pi\)
\(602\) 4.46268e6i 0.501885i
\(603\) 5.42038e6i 0.607067i
\(604\) 1.11176e7 1.23999
\(605\) 8.60152e6i 0.955404i
\(606\) 1.79789e7 1.98876
\(607\) −1.03671e7 −1.14206 −0.571028 0.820931i \(-0.693455\pi\)
−0.571028 + 0.820931i \(0.693455\pi\)
\(608\) 139982.i 0.0153572i
\(609\) 5.41773e6 0.591935
\(610\) 6.68046e6i 0.726912i
\(611\) 1.55489e7i 1.68499i
\(612\) 2.43508e6i 0.262806i
\(613\) 8.49591e6 0.913185 0.456592 0.889676i \(-0.349070\pi\)
0.456592 + 0.889676i \(0.349070\pi\)
\(614\) −1.45105e7 −1.55332
\(615\) 1.09615e7 1.16864
\(616\) 500529.i 0.0531469i
\(617\) −3.62235e6 −0.383070 −0.191535 0.981486i \(-0.561347\pi\)
−0.191535 + 0.981486i \(0.561347\pi\)
\(618\) 1.65799e7 1.74627
\(619\) 3.27287e6i 0.343323i 0.985156 + 0.171661i \(0.0549135\pi\)
−0.985156 + 0.171661i \(0.945087\pi\)
\(620\) 651840.i 0.0681022i
\(621\) 2.40949e6i 0.250724i
\(622\) 2.46053e7i 2.55007i
\(623\) 546366.i 0.0563980i
\(624\) 2.33288e7i 2.39845i
\(625\) −8.93504e6 −0.914948
\(626\) 6.24493e6 0.636930
\(627\) 118851.i 0.0120735i
\(628\) 1.36500e7i 1.38112i
\(629\) −3.07303e6 −0.309699
\(630\) 5.09129e6 0.511066
\(631\) −3.30474e6 −0.330418 −0.165209 0.986259i \(-0.552830\pi\)
−0.165209 + 0.986259i \(0.552830\pi\)
\(632\) −3.02574e7 −3.01327
\(633\) 8.79223e6i 0.872147i
\(634\) 1.25418e7i 1.23919i
\(635\) −2.41708e6 −0.237880
\(636\) 2.13387e6 0.209182
\(637\) 1.38959e7i 1.35687i
\(638\) 1.25122e6i 0.121697i
\(639\) 6.15892e6i 0.596695i
\(640\) 1.67165e7i 1.61323i
\(641\) 1.03519e7i 0.995119i −0.867430 0.497560i \(-0.834230\pi\)
0.867430 0.497560i \(-0.165770\pi\)
\(642\) 4.21161e7i 4.03284i
\(643\) 936990. 0.0893733 0.0446866 0.999001i \(-0.485771\pi\)
0.0446866 + 0.999001i \(0.485771\pi\)
\(644\) 5.96249e6 0.566517
\(645\) 8.68322e6i 0.821829i
\(646\) −470587. −0.0443669
\(647\) −166064. −0.0155961 −0.00779804 0.999970i \(-0.502482\pi\)
−0.00779804 + 0.999970i \(0.502482\pi\)
\(648\) 2.32517e7 2.17529
\(649\) 305966.i 0.0285142i
\(650\) 2.48404e6i 0.230608i
\(651\) 215787.i 0.0199560i
\(652\) 3.60881e6 0.332464
\(653\) 2.72073e6i 0.249690i −0.992176 0.124845i \(-0.960157\pi\)
0.992176 0.124845i \(-0.0398434\pi\)
\(654\) 3.21709e7 2.94116
\(655\) −7.10743e6 −0.647306
\(656\) 1.12883e7i 1.02417i
\(657\) −1.46044e7 −1.31999
\(658\) 8.50600e6i 0.765880i
\(659\) 9.12292e6i 0.818315i −0.912464 0.409157i \(-0.865823\pi\)
0.912464 0.409157i \(-0.134177\pi\)
\(660\) 1.91796e6i 0.171388i
\(661\) −1.72620e7 −1.53669 −0.768347 0.640034i \(-0.778920\pi\)
−0.768347 + 0.640034i \(0.778920\pi\)
\(662\) 3.16124e7i 2.80357i
\(663\) 4.59554e6 0.406025
\(664\) 1.54867e7i 1.36313i
\(665\) 659358.i 0.0578185i
\(666\) 2.32026e7i 2.02698i
\(667\) 7.56843e6 0.658705
\(668\) 2.20751e7 1.91409
\(669\) 2.83468e7i 2.44872i
\(670\) 1.69042e7 1.45481
\(671\) −342274. −0.0293472
\(672\) 747813.i 0.0638807i
\(673\) −1.87435e7 −1.59519 −0.797595 0.603194i \(-0.793895\pi\)
−0.797595 + 0.603194i \(0.793895\pi\)
\(674\) 2.84778e7i 2.41466i
\(675\) 368000. 0.0310877
\(676\) −4.39895e7 −3.70240
\(677\) −5.90068e6 −0.494801 −0.247401 0.968913i \(-0.579576\pi\)
−0.247401 + 0.968913i \(0.579576\pi\)
\(678\) −3.00064e7 −2.50691
\(679\) −4.98156e6 1.71589e6i −0.414659 0.142829i
\(680\) −3.85613e6 −0.319801
\(681\) 1.80105e7 1.48819
\(682\) −49835.8 −0.00410280
\(683\) −2.08087e7 −1.70684 −0.853420 0.521224i \(-0.825476\pi\)
−0.853420 + 0.521224i \(0.825476\pi\)
\(684\) 2.38109e6i 0.194597i
\(685\) 9.62533e6 0.783771
\(686\) 1.70137e7i 1.38035i
\(687\) −6.35350e6 −0.513596
\(688\) −8.94212e6 −0.720227
\(689\) 1.65448e6i 0.132774i
\(690\) 1.73120e7 1.38428
\(691\) 7.74942e6 0.617411 0.308705 0.951158i \(-0.400104\pi\)
0.308705 + 0.951158i \(0.400104\pi\)
\(692\) 4.28220e7i 3.39940i
\(693\) 260853.i 0.0206330i
\(694\) 3.57110e7i 2.81452i
\(695\) 1.59338e7 1.25129
\(696\) 3.09821e7i 2.42431i
\(697\) 2.22369e6 0.173377
\(698\) 1.33682e7i 1.03856i
\(699\) 2.57848e7i 1.99605i
\(700\) 910649.i 0.0702434i
\(701\) −2.04705e7 −1.57338 −0.786690 0.617349i \(-0.788207\pi\)
−0.786690 + 0.617349i \(0.788207\pi\)
\(702\) 1.50608e7i 1.15347i
\(703\) 3.00489e6 0.229319
\(704\) −799504. −0.0607980
\(705\) 1.65505e7i 1.25412i
\(706\) 2.69768e7 2.03694
\(707\) 5.11033e6i 0.384504i
\(708\) 1.49202e7i 1.11865i
\(709\) 86165.3i 0.00643749i 0.999995 + 0.00321875i \(0.00102456\pi\)
−0.999995 + 0.00321875i \(0.998975\pi\)
\(710\) 1.92074e7 1.42995
\(711\) 1.57687e7 1.16983
\(712\) 3.12448e6 0.230981
\(713\) 301449.i 0.0222070i
\(714\) 2.51398e6 0.184551
\(715\) 1.48707e6 0.108785
\(716\) 2.76032e7i 2.01223i
\(717\) 1.09828e7i 0.797841i
\(718\) 9.87414e6i 0.714806i
\(719\) 1.72158e7i 1.24195i 0.783830 + 0.620976i \(0.213264\pi\)
−0.783830 + 0.620976i \(0.786736\pi\)
\(720\) 1.02017e7i 0.733401i
\(721\) 4.71268e6i 0.337621i
\(722\) −2.39280e7 −1.70830
\(723\) −2.84824e7 −2.02642
\(724\) 2.60770e7i 1.84889i
\(725\) 1.15592e6i 0.0816740i
\(726\) −3.20685e7 −2.25807
\(727\) 1.35156e6 0.0948418 0.0474209 0.998875i \(-0.484900\pi\)
0.0474209 + 0.998875i \(0.484900\pi\)
\(728\) −1.89245e7 −1.32342
\(729\) −4.74613e6 −0.330766
\(730\) 4.55458e7i 3.16330i
\(731\) 1.76151e6i 0.121925i
\(732\) 1.66908e7 1.15133
\(733\) 1.33666e7 0.918888 0.459444 0.888207i \(-0.348049\pi\)
0.459444 + 0.888207i \(0.348049\pi\)
\(734\) 2.91065e6i 0.199411i
\(735\) 1.47910e7i 1.00990i
\(736\) 1.04468e6i 0.0710865i
\(737\) 866085.i 0.0587343i
\(738\) 1.67897e7i 1.13476i
\(739\) 1.42800e7i 0.961874i −0.876755 0.480937i \(-0.840297\pi\)
0.876755 0.480937i \(-0.159703\pi\)
\(740\) 4.84915e7 3.25527
\(741\) −4.49364e6 −0.300644
\(742\) 905078.i 0.0603499i
\(743\) 2.03063e7 1.34946 0.674728 0.738066i \(-0.264261\pi\)
0.674728 + 0.738066i \(0.264261\pi\)
\(744\) 1.23401e6 0.0817309
\(745\) 1.73292e7 1.14390
\(746\) 1.37509e7i 0.904654i
\(747\) 8.07093e6i 0.529203i
\(748\) 389085.i 0.0254267i
\(749\) −1.19711e7 −0.779703
\(750\) 3.61823e7i 2.34878i
\(751\) 2.71822e7 1.75867 0.879334 0.476205i \(-0.157988\pi\)
0.879334 + 0.476205i \(0.157988\pi\)
\(752\) 1.70439e7 1.09907
\(753\) 3.27809e6i 0.210685i
\(754\) −4.73073e7 −3.03040
\(755\) 9.17515e6i 0.585795i
\(756\) 5.52129e6i 0.351347i
\(757\) 1.84541e6i 0.117045i 0.998286 + 0.0585224i \(0.0186389\pi\)
−0.998286 + 0.0585224i \(0.981361\pi\)
\(758\) −2.72380e7 −1.72188
\(759\) 886980.i 0.0558868i
\(760\) 3.77063e6 0.236799
\(761\) 1.13627e7i 0.711247i 0.934629 + 0.355624i \(0.115731\pi\)
−0.934629 + 0.355624i \(0.884269\pi\)
\(762\) 9.01146e6i 0.562222i
\(763\) 9.14425e6i 0.568639i
\(764\) −2.18791e7 −1.35611
\(765\) 2.00964e6 0.124155
\(766\) 2.16508e7i 1.33322i
\(767\) 1.15683e7 0.710035
\(768\) 4.31328e7 2.63879
\(769\) 4.61827e6i 0.281620i 0.990037 + 0.140810i \(0.0449707\pi\)
−0.990037 + 0.140810i \(0.955029\pi\)
\(770\) 813502. 0.0494461
\(771\) 2.10202e7i 1.27351i
\(772\) 4.56982e7 2.75966
\(773\) −1.89047e7 −1.13795 −0.568973 0.822356i \(-0.692659\pi\)
−0.568973 + 0.822356i \(0.692659\pi\)
\(774\) 1.33001e7 0.797999
\(775\) 46040.2 0.00275349
\(776\) 9.81257e6 2.84878e7i 0.584963 1.69826i
\(777\) −1.60528e7 −0.953890
\(778\) 3.77005e7 2.23305
\(779\) −2.17439e6 −0.128379
\(780\) −7.25163e7 −4.26775
\(781\) 984091.i 0.0577308i
\(782\) 3.51197e6 0.205369
\(783\) 7.00839e6i 0.408521i
\(784\) 1.52320e7 0.885046
\(785\) −1.12651e7 −0.652471
\(786\) 2.64982e7i 1.52989i
\(787\) −1.33403e7 −0.767767 −0.383883 0.923382i \(-0.625413\pi\)
−0.383883 + 0.923382i \(0.625413\pi\)
\(788\) 2.06109e7 1.18245
\(789\) 2.03789e7i 1.16544i
\(790\) 4.91768e7i 2.80345i
\(791\) 8.52901e6i 0.484682i
\(792\) −1.49172e6 −0.0845037
\(793\) 1.29410e7i 0.730779i
\(794\) −1.37117e7 −0.771862
\(795\) 1.76105e6i 0.0988220i
\(796\) 4.19167e7i 2.34480i
\(797\) 5.94191e6i 0.331345i 0.986181 + 0.165673i \(0.0529795\pi\)
−0.986181 + 0.165673i \(0.947021\pi\)
\(798\) −2.45824e6 −0.136652
\(799\) 3.35749e6i 0.186058i
\(800\) −159553. −0.00881414
\(801\) −1.62833e6 −0.0896730
\(802\) 4.35658e7i 2.39172i
\(803\) −2.33354e6 −0.127710
\(804\) 4.22342e7i 2.30422i
\(805\) 4.92075e6i 0.267634i
\(806\) 1.88424e6i 0.102164i
\(807\) 9.50205e6 0.513610
\(808\) −2.92242e7 −1.57476
\(809\) 2.73919e7 1.47147 0.735733 0.677272i \(-0.236838\pi\)
0.735733 + 0.677272i \(0.236838\pi\)
\(810\) 3.77906e7i 2.02382i
\(811\) 1.72840e7 0.922769 0.461384 0.887200i \(-0.347353\pi\)
0.461384 + 0.887200i \(0.347353\pi\)
\(812\) −1.73429e7 −0.923063
\(813\) 3.68304e6i 0.195425i
\(814\) 3.70737e6i 0.196113i
\(815\) 2.97829e6i 0.157063i
\(816\) 5.03741e6i 0.264839i
\(817\) 1.72245e6i 0.0902802i
\(818\) 4.30065e7i 2.24725i
\(819\) 9.86259e6 0.513785
\(820\) −3.50892e7 −1.82238
\(821\) 9.87853e6i 0.511487i −0.966745 0.255743i \(-0.917680\pi\)
0.966745 0.255743i \(-0.0823202\pi\)
\(822\) 3.58855e7i 1.85242i
\(823\) −1.81822e6 −0.0935723 −0.0467862 0.998905i \(-0.514898\pi\)
−0.0467862 + 0.998905i \(0.514898\pi\)
\(824\) −2.69501e7 −1.38275
\(825\) −135468. −0.00692950
\(826\) 6.32841e6 0.322734
\(827\) 2.22552e6i 0.113153i −0.998398 0.0565766i \(-0.981981\pi\)
0.998398 0.0565766i \(-0.0180185\pi\)
\(828\) 1.77700e7i 0.900764i
\(829\) −2.63047e7 −1.32937 −0.664687 0.747122i \(-0.731435\pi\)
−0.664687 + 0.747122i \(0.731435\pi\)
\(830\) 2.51702e7 1.26821
\(831\) 9.40698e6i 0.472550i
\(832\) 3.02285e7i 1.51394i
\(833\) 3.00055e6i 0.149826i
\(834\) 5.94050e7i 2.95738i
\(835\) 1.82183e7i 0.904255i
\(836\) 380458.i 0.0188274i
\(837\) 279143. 0.0137725
\(838\) −1.27676e7 −0.628056
\(839\) 1.33272e7i 0.653633i −0.945088 0.326816i \(-0.894024\pi\)
0.945088 0.326816i \(-0.105976\pi\)
\(840\) −2.01436e7 −0.985004
\(841\) −1.50286e6 −0.0732705
\(842\) 5.01086e7 2.43575
\(843\) 2.81802e7i 1.36576i
\(844\) 2.81451e7i 1.36002i
\(845\) 3.63039e7i 1.74909i
\(846\) −2.53504e7 −1.21775
\(847\) 9.11516e6i 0.436572i
\(848\) −1.81356e6 −0.0866047
\(849\) −6.34831e6 −0.302266
\(850\) 536381.i 0.0254640i
\(851\) −2.24254e7 −1.06149
\(852\) 4.79886e7i 2.26485i
\(853\) 1.04169e7i 0.490191i 0.969499 + 0.245095i \(0.0788193\pi\)
−0.969499 + 0.245095i \(0.921181\pi\)
\(854\) 7.07938e6i 0.332162i
\(855\) −1.96508e6 −0.0919316
\(856\) 6.84584e7i 3.19332i
\(857\) 1.28667e7 0.598435 0.299217 0.954185i \(-0.403274\pi\)
0.299217 + 0.954185i \(0.403274\pi\)
\(858\) 5.54417e6i 0.257110i
\(859\) 3.71311e7i 1.71694i −0.512863 0.858470i \(-0.671415\pi\)
0.512863 0.858470i \(-0.328585\pi\)
\(860\) 2.77962e7i 1.28156i
\(861\) 1.16161e7 0.534012
\(862\) 1.77561e7 0.813915
\(863\) 9.95845e6i 0.455161i 0.973759 + 0.227580i \(0.0730814\pi\)
−0.973759 + 0.227580i \(0.926919\pi\)
\(864\) −967374. −0.0440869
\(865\) 3.53404e7 1.60594
\(866\) 4.57199e7i 2.07162i
\(867\) −2.78434e7 −1.25798
\(868\) 690764.i 0.0311193i
\(869\) 2.51958e6 0.113182
\(870\) −5.03547e7 −2.25549
\(871\) 3.27459e7 1.46255
\(872\) −5.22927e7 −2.32890
\(873\) −5.11386e6 + 1.48465e7i −0.227098 + 0.659309i
\(874\) −3.43410e6 −0.152067
\(875\) −1.02845e7 −0.454110
\(876\) 1.13794e8 5.01024
\(877\) −1.68443e7 −0.739525 −0.369763 0.929126i \(-0.620561\pi\)
−0.369763 + 0.929126i \(0.620561\pi\)
\(878\) 3.55152e7i 1.55481i
\(879\) −4.72312e7 −2.06185
\(880\) 1.63006e6i 0.0709573i
\(881\) −3.08869e7 −1.34071 −0.670354 0.742042i \(-0.733858\pi\)
−0.670354 + 0.742042i \(0.733858\pi\)
\(882\) −2.26553e7 −0.980616
\(883\) 9.80289e6i 0.423109i −0.977366 0.211555i \(-0.932147\pi\)
0.977366 0.211555i \(-0.0678526\pi\)
\(884\) −1.47109e7 −0.633154
\(885\) 1.23134e7 0.528471
\(886\) 5.61530e7i 2.40319i
\(887\) 922105.i 0.0393524i 0.999806 + 0.0196762i \(0.00626353\pi\)
−0.999806 + 0.0196762i \(0.993736\pi\)
\(888\) 9.18003e7i 3.90672i
\(889\) −2.56142e6 −0.108699
\(890\) 5.07816e6i 0.214898i
\(891\) −1.93620e6 −0.0817066
\(892\) 9.07420e7i 3.81853i
\(893\) 3.28305e6i 0.137768i
\(894\) 6.46076e7i 2.70358i
\(895\) −2.27805e7 −0.950616
\(896\) 1.77148e7i 0.737166i
\(897\) 3.35359e7 1.39164
\(898\) −7.71790e6 −0.319381
\(899\) 876814.i 0.0361833i
\(900\) 2.71400e6 0.111687
\(901\) 357253.i 0.0146610i
\(902\) 2.68271e6i 0.109789i
\(903\) 9.20173e6i 0.375535i
\(904\) 4.87744e7 1.98505
\(905\) 2.15209e7 0.873453
\(906\) 3.42072e7 1.38451
\(907\) 3.90070e7i 1.57443i −0.616676 0.787217i \(-0.711521\pi\)
0.616676 0.787217i \(-0.288479\pi\)
\(908\) −5.76539e7 −2.32067
\(909\) 1.52303e7 0.611362
\(910\) 3.07577e7i 1.23126i
\(911\) 2.44321e7i 0.975361i −0.873022 0.487680i \(-0.837843\pi\)
0.873022 0.487680i \(-0.162157\pi\)
\(912\) 4.92572e6i 0.196102i
\(913\) 1.28960e6i 0.0512009i
\(914\) 2.96849e7i 1.17536i
\(915\) 1.37746e7i 0.543911i
\(916\) 2.03384e7 0.800900
\(917\) −7.53185e6 −0.295786
\(918\) 3.25210e6i 0.127367i
\(919\) 2.39860e7i 0.936847i 0.883504 + 0.468424i \(0.155178\pi\)
−0.883504 + 0.468424i \(0.844822\pi\)
\(920\) −2.81401e7 −1.09611
\(921\) −2.99197e7 −1.16227
\(922\) −2.16039e6 −0.0836962
\(923\) 3.72075e7 1.43756
\(924\) 2.03249e6i 0.0783158i
\(925\) 3.42501e6i 0.131616i
\(926\) −6.60439e7 −2.53107
\(927\) 1.40452e7 0.536819
\(928\) 3.03861e6i 0.115826i
\(929\) 3.25331e6i 0.123676i 0.998086 + 0.0618380i \(0.0196962\pi\)
−0.998086 + 0.0618380i \(0.980304\pi\)
\(930\) 2.00562e6i 0.0760398i
\(931\) 2.93402e6i 0.110940i
\(932\) 8.25407e7i 3.11264i
\(933\) 5.07344e7i 1.90809i
\(934\) 4.86593e7 1.82515
\(935\) 321106. 0.0120121
\(936\) 5.64007e7i 2.10424i
\(937\) 1.13762e7 0.423299 0.211650 0.977346i \(-0.432116\pi\)
0.211650 + 0.977346i \(0.432116\pi\)
\(938\) 1.79136e7 0.664776
\(939\) 1.28766e7 0.476582
\(940\) 5.29803e7i 1.95567i
\(941\) 4.69557e7i 1.72868i 0.502910 + 0.864339i \(0.332263\pi\)
−0.502910 + 0.864339i \(0.667737\pi\)
\(942\) 4.19990e7i 1.54210i
\(943\) 1.62273e7 0.594249
\(944\) 1.26806e7i 0.463137i
\(945\) −4.55664e6 −0.165983
\(946\) 2.12513e6 0.0772071
\(947\) 3.07280e7i 1.11342i −0.830706 0.556711i \(-0.812063\pi\)
0.830706 0.556711i \(-0.187937\pi\)
\(948\) −1.22866e8 −4.44027
\(949\) 8.82289e7i 3.18013i
\(950\) 524489.i 0.0188550i
\(951\) 2.58604e7i 0.927222i
\(952\) −4.08640e6 −0.146133
\(953\) 3.03422e7i 1.08222i 0.840952 + 0.541110i \(0.181996\pi\)
−0.840952 + 0.541110i \(0.818004\pi\)
\(954\) 2.69740e6 0.0959565
\(955\) 1.80564e7i 0.640654i
\(956\) 3.51575e7i 1.24415i
\(957\) 2.57993e6i 0.0910599i
\(958\) −4.38928e7 −1.54518
\(959\) 1.02001e7 0.358144
\(960\) 3.21757e7i 1.12681i
\(961\) −2.85942e7 −0.998780
\(962\) 1.40172e8 4.88342
\(963\) 3.56774e7i 1.23973i
\(964\) 9.11759e7 3.16000
\(965\) 3.77140e7i 1.30372i
\(966\) 1.83457e7 0.632547
\(967\) −5.33380e7 −1.83430 −0.917150 0.398541i \(-0.869517\pi\)
−0.917150 + 0.398541i \(0.869517\pi\)
\(968\) 5.21264e7 1.78801
\(969\) −970318. −0.0331975
\(970\) 4.63007e7 + 1.59482e7i 1.58001 + 0.544231i
\(971\) −6.34870e6 −0.216091 −0.108045 0.994146i \(-0.534459\pi\)
−0.108045 + 0.994146i \(0.534459\pi\)
\(972\) 7.08205e7 2.40433
\(973\) 1.68853e7 0.571776
\(974\) −3.79955e7 −1.28332
\(975\) 5.12191e6i 0.172552i
\(976\) −1.41853e7 −0.476667
\(977\) 3.73779e7i 1.25279i 0.779505 + 0.626396i \(0.215470\pi\)
−0.779505 + 0.626396i \(0.784530\pi\)
\(978\) 1.11038e7 0.371214
\(979\) −260180. −0.00867595
\(980\) 4.73479e7i 1.57484i
\(981\) 2.72526e7 0.904138
\(982\) 6.03780e6 0.199802
\(983\) 8.13412e6i 0.268489i 0.990948 + 0.134245i \(0.0428608\pi\)
−0.990948 + 0.134245i \(0.957139\pi\)
\(984\) 6.64281e7i 2.18708i
\(985\) 1.70099e7i 0.558613i
\(986\) −1.02151e7 −0.334620
\(987\) 1.75388e7i 0.573069i
\(988\) 1.43848e7 0.468824
\(989\) 1.28546e7i 0.417895i
\(990\) 2.42448e6i 0.0786194i
\(991\) 5.78746e7i 1.87199i 0.352011 + 0.935996i \(0.385498\pi\)
−0.352011 + 0.935996i \(0.614502\pi\)
\(992\) −121027. −0.00390485
\(993\) 6.51825e7i 2.09777i
\(994\) 2.03543e7 0.653417
\(995\) −3.45932e7 −1.10773
\(996\) 6.28865e7i 2.00867i
\(997\) −5.67003e7 −1.80654 −0.903270 0.429072i \(-0.858841\pi\)
−0.903270 + 0.429072i \(0.858841\pi\)
\(998\) 7.64527e7i 2.42978i
\(999\) 2.07660e7i 0.658322i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 97.6.b.a.96.4 yes 40
97.96 even 2 inner 97.6.b.a.96.3 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
97.6.b.a.96.3 40 97.96 even 2 inner
97.6.b.a.96.4 yes 40 1.1 even 1 trivial