Properties

Label 97.6.b.a.96.26
Level $97$
Weight $6$
Character 97.96
Analytic conductor $15.557$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [97,6,Mod(96,97)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(97, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("97.96"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 97 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 97.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.5572305219\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 96.26
Character \(\chi\) \(=\) 97.96
Dual form 97.6.b.a.96.25

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.13637 q^{2} -26.9093 q^{3} -22.1632 q^{4} +95.4056i q^{5} -84.3974 q^{6} +82.4789i q^{7} -169.876 q^{8} +481.111 q^{9} +299.227i q^{10} -573.103 q^{11} +596.397 q^{12} -288.476i q^{13} +258.684i q^{14} -2567.30i q^{15} +176.431 q^{16} +997.460i q^{17} +1508.94 q^{18} +828.231i q^{19} -2114.50i q^{20} -2219.45i q^{21} -1797.46 q^{22} -3908.18i q^{23} +4571.23 q^{24} -5977.23 q^{25} -904.765i q^{26} -6407.39 q^{27} -1828.00i q^{28} -2949.29i q^{29} -8051.99i q^{30} +5310.23 q^{31} +5989.37 q^{32} +15421.8 q^{33} +3128.40i q^{34} -7868.95 q^{35} -10663.0 q^{36} +15305.2i q^{37} +2597.64i q^{38} +7762.68i q^{39} -16207.1i q^{40} +5087.22i q^{41} -6961.00i q^{42} -4043.83 q^{43} +12701.8 q^{44} +45900.7i q^{45} -12257.5i q^{46} +6271.38 q^{47} -4747.63 q^{48} +10004.2 q^{49} -18746.8 q^{50} -26840.9i q^{51} +6393.55i q^{52} +63.7343 q^{53} -20095.9 q^{54} -54677.2i q^{55} -14011.2i q^{56} -22287.1i q^{57} -9250.05i q^{58} +24044.5i q^{59} +56899.6i q^{60} -39048.8 q^{61} +16654.8 q^{62} +39681.5i q^{63} +13139.1 q^{64} +27522.2 q^{65} +48368.4 q^{66} -57423.9i q^{67} -22106.9i q^{68} +105166. i q^{69} -24679.9 q^{70} -58055.9i q^{71} -81729.0 q^{72} -26907.7 q^{73} +48002.7i q^{74} +160843. q^{75} -18356.3i q^{76} -47268.9i q^{77} +24346.6i q^{78} -86523.1 q^{79} +16832.5i q^{80} +55508.5 q^{81} +15955.4i q^{82} +45441.2i q^{83} +49190.1i q^{84} -95163.3 q^{85} -12682.9 q^{86} +79363.3i q^{87} +97356.2 q^{88} +97809.7 q^{89} +143961. i q^{90} +23793.1 q^{91} +86617.8i q^{92} -142895. q^{93} +19669.4 q^{94} -79017.9 q^{95} -161170. q^{96} +(-10862.2 - 92029.1i) q^{97} +31376.9 q^{98} -275726. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 2 q^{2} + 40 q^{3} + 638 q^{4} - 130 q^{6} + 180 q^{8} + 3300 q^{9} + 382 q^{11} + 2586 q^{12} + 10174 q^{16} + 4738 q^{18} + 1996 q^{22} - 3102 q^{24} - 25178 q^{25} + 3046 q^{27} + 14796 q^{31}+ \cdots - 562238 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/97\mathbb{Z}\right)^\times\).

\(n\) \(5\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.13637 0.554436 0.277218 0.960807i \(-0.410588\pi\)
0.277218 + 0.960807i \(0.410588\pi\)
\(3\) −26.9093 −1.72623 −0.863116 0.505005i \(-0.831491\pi\)
−0.863116 + 0.505005i \(0.831491\pi\)
\(4\) −22.1632 −0.692600
\(5\) 95.4056i 1.70667i 0.521365 + 0.853334i \(0.325423\pi\)
−0.521365 + 0.853334i \(0.674577\pi\)
\(6\) −84.3974 −0.957086
\(7\) 82.4789i 0.636206i 0.948056 + 0.318103i \(0.103046\pi\)
−0.948056 + 0.318103i \(0.896954\pi\)
\(8\) −169.876 −0.938439
\(9\) 481.111 1.97988
\(10\) 299.227i 0.946238i
\(11\) −573.103 −1.42807 −0.714037 0.700108i \(-0.753135\pi\)
−0.714037 + 0.700108i \(0.753135\pi\)
\(12\) 596.397 1.19559
\(13\) 288.476i 0.473424i −0.971580 0.236712i \(-0.923930\pi\)
0.971580 0.236712i \(-0.0760699\pi\)
\(14\) 258.684i 0.352736i
\(15\) 2567.30i 2.94611i
\(16\) 176.431 0.172296
\(17\) 997.460i 0.837092i 0.908196 + 0.418546i \(0.137460\pi\)
−0.908196 + 0.418546i \(0.862540\pi\)
\(18\) 1508.94 1.09772
\(19\) 828.231i 0.526342i 0.964749 + 0.263171i \(0.0847683\pi\)
−0.964749 + 0.263171i \(0.915232\pi\)
\(20\) 2114.50i 1.18204i
\(21\) 2219.45i 1.09824i
\(22\) −1797.46 −0.791776
\(23\) 3908.18i 1.54048i −0.637757 0.770238i \(-0.720138\pi\)
0.637757 0.770238i \(-0.279862\pi\)
\(24\) 4571.23 1.61996
\(25\) −5977.23 −1.91271
\(26\) 904.765i 0.262484i
\(27\) −6407.39 −1.69150
\(28\) 1828.00i 0.440637i
\(29\) 2949.29i 0.651212i −0.945506 0.325606i \(-0.894432\pi\)
0.945506 0.325606i \(-0.105568\pi\)
\(30\) 8051.99i 1.63343i
\(31\) 5310.23 0.992451 0.496225 0.868194i \(-0.334719\pi\)
0.496225 + 0.868194i \(0.334719\pi\)
\(32\) 5989.37 1.03397
\(33\) 15421.8 2.46519
\(34\) 3128.40i 0.464114i
\(35\) −7868.95 −1.08579
\(36\) −10663.0 −1.37126
\(37\) 15305.2i 1.83796i 0.394309 + 0.918978i \(0.370984\pi\)
−0.394309 + 0.918978i \(0.629016\pi\)
\(38\) 2597.64i 0.291823i
\(39\) 7762.68i 0.817241i
\(40\) 16207.1i 1.60160i
\(41\) 5087.22i 0.472630i 0.971677 + 0.236315i \(0.0759397\pi\)
−0.971677 + 0.236315i \(0.924060\pi\)
\(42\) 6961.00i 0.608904i
\(43\) −4043.83 −0.333520 −0.166760 0.985998i \(-0.553330\pi\)
−0.166760 + 0.985998i \(0.553330\pi\)
\(44\) 12701.8 0.989085
\(45\) 45900.7i 3.37900i
\(46\) 12257.5i 0.854095i
\(47\) 6271.38 0.414113 0.207056 0.978329i \(-0.433612\pi\)
0.207056 + 0.978329i \(0.433612\pi\)
\(48\) −4747.63 −0.297423
\(49\) 10004.2 0.595242
\(50\) −18746.8 −1.06048
\(51\) 26840.9i 1.44502i
\(52\) 6393.55i 0.327894i
\(53\) 63.7343 0.00311662 0.00155831 0.999999i \(-0.499504\pi\)
0.00155831 + 0.999999i \(0.499504\pi\)
\(54\) −20095.9 −0.937828
\(55\) 54677.2i 2.43725i
\(56\) 14011.2i 0.597041i
\(57\) 22287.1i 0.908588i
\(58\) 9250.05i 0.361055i
\(59\) 24044.5i 0.899263i 0.893214 + 0.449631i \(0.148445\pi\)
−0.893214 + 0.449631i \(0.851555\pi\)
\(60\) 56899.6i 2.04047i
\(61\) −39048.8 −1.34364 −0.671821 0.740714i \(-0.734488\pi\)
−0.671821 + 0.740714i \(0.734488\pi\)
\(62\) 16654.8 0.550251
\(63\) 39681.5i 1.25961i
\(64\) 13139.1 0.400973
\(65\) 27522.2 0.807978
\(66\) 48368.4 1.36679
\(67\) 57423.9i 1.56281i −0.624025 0.781404i \(-0.714504\pi\)
0.624025 0.781404i \(-0.285496\pi\)
\(68\) 22106.9i 0.579770i
\(69\) 105166.i 2.65922i
\(70\) −24679.9 −0.602003
\(71\) 58055.9i 1.36679i −0.730051 0.683393i \(-0.760504\pi\)
0.730051 0.683393i \(-0.239496\pi\)
\(72\) −81729.0 −1.85800
\(73\) −26907.7 −0.590976 −0.295488 0.955346i \(-0.595482\pi\)
−0.295488 + 0.955346i \(0.595482\pi\)
\(74\) 48002.7i 1.01903i
\(75\) 160843. 3.30179
\(76\) 18356.3i 0.364544i
\(77\) 47268.9i 0.908550i
\(78\) 24346.6i 0.453108i
\(79\) −86523.1 −1.55978 −0.779892 0.625914i \(-0.784726\pi\)
−0.779892 + 0.625914i \(0.784726\pi\)
\(80\) 16832.5i 0.294052i
\(81\) 55508.5 0.940041
\(82\) 15955.4i 0.262043i
\(83\) 45441.2i 0.724027i 0.932173 + 0.362013i \(0.117911\pi\)
−0.932173 + 0.362013i \(0.882089\pi\)
\(84\) 49190.1i 0.760641i
\(85\) −95163.3 −1.42864
\(86\) −12682.9 −0.184915
\(87\) 79363.3i 1.12414i
\(88\) 97356.2 1.34016
\(89\) 97809.7 1.30890 0.654450 0.756105i \(-0.272900\pi\)
0.654450 + 0.756105i \(0.272900\pi\)
\(90\) 143961.i 1.87344i
\(91\) 23793.1 0.301195
\(92\) 86617.8i 1.06693i
\(93\) −142895. −1.71320
\(94\) 19669.4 0.229599
\(95\) −79017.9 −0.898290
\(96\) −161170. −1.78487
\(97\) −10862.2 92029.1i −0.117216 0.993106i
\(98\) 31376.9 0.330024
\(99\) −275726. −2.82741
\(100\) 132475. 1.32475
\(101\) 33007.0 0.321960 0.160980 0.986958i \(-0.448535\pi\)
0.160980 + 0.986958i \(0.448535\pi\)
\(102\) 84183.0i 0.801169i
\(103\) −116401. −1.08109 −0.540547 0.841314i \(-0.681783\pi\)
−0.540547 + 0.841314i \(0.681783\pi\)
\(104\) 49005.0i 0.444280i
\(105\) 211748. 1.87433
\(106\) 199.894 0.00172797
\(107\) 1625.30i 0.0137238i −0.999976 0.00686188i \(-0.997816\pi\)
0.999976 0.00686188i \(-0.00218422\pi\)
\(108\) 142008. 1.17153
\(109\) 112304. 0.905378 0.452689 0.891669i \(-0.350465\pi\)
0.452689 + 0.891669i \(0.350465\pi\)
\(110\) 171488.i 1.35130i
\(111\) 411853.i 3.17274i
\(112\) 14551.8i 0.109616i
\(113\) −48043.4 −0.353946 −0.176973 0.984216i \(-0.556631\pi\)
−0.176973 + 0.984216i \(0.556631\pi\)
\(114\) 69900.6i 0.503754i
\(115\) 372862. 2.62908
\(116\) 65365.7i 0.451030i
\(117\) 138789.i 0.937323i
\(118\) 75412.5i 0.498584i
\(119\) −82269.4 −0.532563
\(120\) 436121.i 2.76474i
\(121\) 167396. 1.03940
\(122\) −122471. −0.744964
\(123\) 136894.i 0.815869i
\(124\) −117692. −0.687372
\(125\) 272119.i 1.55770i
\(126\) 124456.i 0.698374i
\(127\) 253036.i 1.39211i 0.717988 + 0.696055i \(0.245063\pi\)
−0.717988 + 0.696055i \(0.754937\pi\)
\(128\) −150451. −0.811652
\(129\) 108817. 0.575732
\(130\) 86319.6 0.447972
\(131\) 369803.i 1.88275i −0.337366 0.941374i \(-0.609536\pi\)
0.337366 0.941374i \(-0.390464\pi\)
\(132\) −341797. −1.70739
\(133\) −68311.6 −0.334862
\(134\) 180102.i 0.866478i
\(135\) 611301.i 2.88683i
\(136\) 169444.i 0.785560i
\(137\) 68696.5i 0.312704i −0.987701 0.156352i \(-0.950027\pi\)
0.987701 0.156352i \(-0.0499734\pi\)
\(138\) 329840.i 1.47437i
\(139\) 176664.i 0.775550i −0.921754 0.387775i \(-0.873244\pi\)
0.921754 0.387775i \(-0.126756\pi\)
\(140\) 174401. 0.752020
\(141\) −168759. −0.714855
\(142\) 182084.i 0.757796i
\(143\) 165326.i 0.676085i
\(144\) 84882.8 0.341125
\(145\) 281379. 1.11140
\(146\) −84392.5 −0.327659
\(147\) −269207. −1.02753
\(148\) 339213.i 1.27297i
\(149\) 207858.i 0.767011i −0.923539 0.383505i \(-0.874717\pi\)
0.923539 0.383505i \(-0.125283\pi\)
\(150\) 504463. 1.83063
\(151\) −516830. −1.84461 −0.922307 0.386458i \(-0.873699\pi\)
−0.922307 + 0.386458i \(0.873699\pi\)
\(152\) 140696.i 0.493939i
\(153\) 479888.i 1.65734i
\(154\) 148253.i 0.503733i
\(155\) 506626.i 1.69378i
\(156\) 172046.i 0.566021i
\(157\) 343605.i 1.11253i 0.831006 + 0.556263i \(0.187765\pi\)
−0.831006 + 0.556263i \(0.812235\pi\)
\(158\) −271368. −0.864801
\(159\) −1715.05 −0.00538001
\(160\) 571420.i 1.76464i
\(161\) 322342. 0.980060
\(162\) 174095. 0.521193
\(163\) −344327. −1.01508 −0.507542 0.861627i \(-0.669446\pi\)
−0.507542 + 0.861627i \(0.669446\pi\)
\(164\) 112749.i 0.327343i
\(165\) 1.47133e6i 4.20726i
\(166\) 142520.i 0.401427i
\(167\) 603963. 1.67579 0.837895 0.545832i \(-0.183786\pi\)
0.837895 + 0.545832i \(0.183786\pi\)
\(168\) 377030.i 1.03063i
\(169\) 288075. 0.775869
\(170\) −298467. −0.792088
\(171\) 398471.i 1.04209i
\(172\) 89624.2 0.230996
\(173\) 267403.i 0.679284i −0.940555 0.339642i \(-0.889694\pi\)
0.940555 0.339642i \(-0.110306\pi\)
\(174\) 248912.i 0.623266i
\(175\) 492996.i 1.21688i
\(176\) −101113. −0.246051
\(177\) 647022.i 1.55234i
\(178\) 306767. 0.725702
\(179\) 199233.i 0.464759i 0.972625 + 0.232380i \(0.0746512\pi\)
−0.972625 + 0.232380i \(0.925349\pi\)
\(180\) 1.01731e6i 2.34029i
\(181\) 571624.i 1.29692i 0.761248 + 0.648461i \(0.224587\pi\)
−0.761248 + 0.648461i \(0.775413\pi\)
\(182\) 74624.0 0.166994
\(183\) 1.05078e6 2.31944
\(184\) 663904.i 1.44564i
\(185\) −1.46020e6 −3.13678
\(186\) −448169. −0.949860
\(187\) 571647.i 1.19543i
\(188\) −138994. −0.286815
\(189\) 528474.i 1.07614i
\(190\) −247829. −0.498045
\(191\) 973520. 1.93091 0.965454 0.260575i \(-0.0839120\pi\)
0.965454 + 0.260575i \(0.0839120\pi\)
\(192\) −353563. −0.692172
\(193\) −34733.2 −0.0671200 −0.0335600 0.999437i \(-0.510684\pi\)
−0.0335600 + 0.999437i \(0.510684\pi\)
\(194\) −34067.8 288637.i −0.0649890 0.550614i
\(195\) −740603. −1.39476
\(196\) −221726. −0.412265
\(197\) −75425.5 −0.138469 −0.0692345 0.997600i \(-0.522056\pi\)
−0.0692345 + 0.997600i \(0.522056\pi\)
\(198\) −864777. −1.56762
\(199\) 354176.i 0.633996i −0.948426 0.316998i \(-0.897325\pi\)
0.948426 0.316998i \(-0.102675\pi\)
\(200\) 1.01539e6 1.79497
\(201\) 1.54524e6i 2.69777i
\(202\) 103522. 0.178506
\(203\) 243254. 0.414305
\(204\) 594882.i 1.00082i
\(205\) −485349. −0.806622
\(206\) −365076. −0.599398
\(207\) 1.88027e6i 3.04995i
\(208\) 50896.0i 0.0815690i
\(209\) 474662.i 0.751655i
\(210\) 664119. 1.03920
\(211\) 733549.i 1.13429i 0.823619 + 0.567144i \(0.191952\pi\)
−0.823619 + 0.567144i \(0.808048\pi\)
\(212\) −1412.56 −0.00215857
\(213\) 1.56224e6i 2.35939i
\(214\) 5097.52i 0.00760894i
\(215\) 385804.i 0.569207i
\(216\) 1.08846e6 1.58737
\(217\) 437982.i 0.631403i
\(218\) 352227. 0.501974
\(219\) 724068. 1.02016
\(220\) 1.21182e6i 1.68804i
\(221\) 287743. 0.396300
\(222\) 1.29172e6i 1.75908i
\(223\) 874658.i 1.17781i −0.808202 0.588906i \(-0.799559\pi\)
0.808202 0.588906i \(-0.200441\pi\)
\(224\) 493997.i 0.657815i
\(225\) −2.87571e6 −3.78694
\(226\) −150682. −0.196241
\(227\) −438011. −0.564183 −0.282092 0.959387i \(-0.591028\pi\)
−0.282092 + 0.959387i \(0.591028\pi\)
\(228\) 493954.i 0.629288i
\(229\) −507797. −0.639885 −0.319942 0.947437i \(-0.603664\pi\)
−0.319942 + 0.947437i \(0.603664\pi\)
\(230\) 1.16943e6 1.45766
\(231\) 1.27197e6i 1.56837i
\(232\) 501012.i 0.611123i
\(233\) 363402.i 0.438528i 0.975666 + 0.219264i \(0.0703657\pi\)
−0.975666 + 0.219264i \(0.929634\pi\)
\(234\) 435292.i 0.519686i
\(235\) 598325.i 0.706753i
\(236\) 532904.i 0.622830i
\(237\) 2.32828e6 2.69255
\(238\) −258027. −0.295272
\(239\) 1.39025e6i 1.57434i −0.616735 0.787171i \(-0.711545\pi\)
0.616735 0.787171i \(-0.288455\pi\)
\(240\) 452951.i 0.507602i
\(241\) −558025. −0.618886 −0.309443 0.950918i \(-0.600143\pi\)
−0.309443 + 0.950918i \(0.600143\pi\)
\(242\) 525015. 0.576279
\(243\) 63300.5 0.0687688
\(244\) 865448. 0.930607
\(245\) 954460.i 1.01588i
\(246\) 429348.i 0.452347i
\(247\) 238924. 0.249183
\(248\) −902078. −0.931354
\(249\) 1.22279e6i 1.24984i
\(250\) 853465.i 0.863646i
\(251\) 1.37652e6i 1.37911i −0.724233 0.689556i \(-0.757806\pi\)
0.724233 0.689556i \(-0.242194\pi\)
\(252\) 879469.i 0.872407i
\(253\) 2.23979e6i 2.19991i
\(254\) 793615.i 0.771836i
\(255\) 2.56078e6 2.46616
\(256\) −892319. −0.850982
\(257\) 154904.i 0.146295i −0.997321 0.0731473i \(-0.976696\pi\)
0.997321 0.0731473i \(-0.0233043\pi\)
\(258\) 341288. 0.319207
\(259\) −1.26236e6 −1.16932
\(260\) −609980. −0.559606
\(261\) 1.41893e6i 1.28932i
\(262\) 1.15984e6i 1.04386i
\(263\) 1.65844e6i 1.47846i 0.673451 + 0.739231i \(0.264811\pi\)
−0.673451 + 0.739231i \(0.735189\pi\)
\(264\) −2.61979e6 −2.31343
\(265\) 6080.61i 0.00531903i
\(266\) −214250. −0.185659
\(267\) −2.63199e6 −2.25947
\(268\) 1.27270e6i 1.08240i
\(269\) −2.15900e6 −1.81916 −0.909582 0.415525i \(-0.863598\pi\)
−0.909582 + 0.415525i \(0.863598\pi\)
\(270\) 1.91726e6i 1.60056i
\(271\) 1.31006e6i 1.08360i −0.840508 0.541800i \(-0.817743\pi\)
0.840508 0.541800i \(-0.182257\pi\)
\(272\) 175983.i 0.144227i
\(273\) −640257. −0.519933
\(274\) 215457.i 0.173374i
\(275\) 3.42557e6 2.73150
\(276\) 2.33082e6i 1.84178i
\(277\) 104116.i 0.0815303i 0.999169 + 0.0407652i \(0.0129796\pi\)
−0.999169 + 0.0407652i \(0.987020\pi\)
\(278\) 554081.i 0.429993i
\(279\) 2.55481e6 1.96493
\(280\) 1.33674e6 1.01895
\(281\) 2.08313e6i 1.57381i −0.617076 0.786903i \(-0.711683\pi\)
0.617076 0.786903i \(-0.288317\pi\)
\(282\) −529289. −0.396342
\(283\) −1.48615e6 −1.10305 −0.551527 0.834157i \(-0.685955\pi\)
−0.551527 + 0.834157i \(0.685955\pi\)
\(284\) 1.28671e6i 0.946636i
\(285\) 2.12632e6 1.55066
\(286\) 518523.i 0.374846i
\(287\) −419588. −0.300690
\(288\) 2.88155e6 2.04713
\(289\) 424931. 0.299277
\(290\) 882506. 0.616202
\(291\) 292294. + 2.47644e6i 0.202343 + 1.71433i
\(292\) 596362. 0.409310
\(293\) 432344. 0.294212 0.147106 0.989121i \(-0.453004\pi\)
0.147106 + 0.989121i \(0.453004\pi\)
\(294\) −844331. −0.569698
\(295\) −2.29398e6 −1.53474
\(296\) 2.59998e6i 1.72481i
\(297\) 3.67209e6 2.41559
\(298\) 651919.i 0.425258i
\(299\) −1.12741e6 −0.729299
\(300\) −3.56480e6 −2.28682
\(301\) 333530.i 0.212187i
\(302\) −1.62097e6 −1.02272
\(303\) −888194. −0.555778
\(304\) 146126.i 0.0906864i
\(305\) 3.72548e6i 2.29315i
\(306\) 1.50511e6i 0.918890i
\(307\) 1.87052e6 1.13270 0.566352 0.824163i \(-0.308354\pi\)
0.566352 + 0.824163i \(0.308354\pi\)
\(308\) 1.04763e6i 0.629262i
\(309\) 3.13227e6 1.86622
\(310\) 1.58896e6i 0.939095i
\(311\) 1.52832e6i 0.896011i −0.894031 0.448005i \(-0.852135\pi\)
0.894031 0.448005i \(-0.147865\pi\)
\(312\) 1.31869e6i 0.766931i
\(313\) −851146. −0.491070 −0.245535 0.969388i \(-0.578964\pi\)
−0.245535 + 0.969388i \(0.578964\pi\)
\(314\) 1.07767e6i 0.616825i
\(315\) −3.78583e6 −2.14974
\(316\) 1.91763e6 1.08031
\(317\) 7630.94i 0.00426511i −0.999998 0.00213255i \(-0.999321\pi\)
0.999998 0.00213255i \(-0.000678813\pi\)
\(318\) −5379.01 −0.00298287
\(319\) 1.69025e6i 0.929979i
\(320\) 1.25354e6i 0.684327i
\(321\) 43735.6i 0.0236904i
\(322\) 1.01098e6 0.543381
\(323\) −826127. −0.440596
\(324\) −1.23025e6 −0.651073
\(325\) 1.72429e6i 0.905526i
\(326\) −1.07993e6 −0.562799
\(327\) −3.02203e6 −1.56289
\(328\) 864195.i 0.443534i
\(329\) 517257.i 0.263461i
\(330\) 4.61462e6i 2.33266i
\(331\) 1.62463e6i 0.815052i 0.913194 + 0.407526i \(0.133608\pi\)
−0.913194 + 0.407526i \(0.866392\pi\)
\(332\) 1.00712e6i 0.501461i
\(333\) 7.36350e6i 3.63893i
\(334\) 1.89425e6 0.929118
\(335\) 5.47856e6 2.66719
\(336\) 391579.i 0.189222i
\(337\) 412404.i 0.197810i 0.995097 + 0.0989050i \(0.0315340\pi\)
−0.995097 + 0.0989050i \(0.968466\pi\)
\(338\) 903508. 0.430170
\(339\) 1.29281e6 0.610994
\(340\) 2.10912e6 0.989475
\(341\) −3.04331e6 −1.41729
\(342\) 1.24975e6i 0.577774i
\(343\) 2.21136e6i 1.01490i
\(344\) 686947. 0.312988
\(345\) −1.00335e7 −4.53840
\(346\) 838675.i 0.376620i
\(347\) 258797.i 0.115381i −0.998335 0.0576906i \(-0.981626\pi\)
0.998335 0.0576906i \(-0.0183737\pi\)
\(348\) 1.75895e6i 0.778582i
\(349\) 1.10867e6i 0.487237i −0.969871 0.243618i \(-0.921666\pi\)
0.969871 0.243618i \(-0.0783344\pi\)
\(350\) 1.54621e6i 0.674683i
\(351\) 1.84838e6i 0.800797i
\(352\) −3.43253e6 −1.47658
\(353\) 878209. 0.375112 0.187556 0.982254i \(-0.439943\pi\)
0.187556 + 0.982254i \(0.439943\pi\)
\(354\) 2.02930e6i 0.860672i
\(355\) 5.53886e6 2.33265
\(356\) −2.16778e6 −0.906545
\(357\) 2.21381e6 0.919327
\(358\) 624866.i 0.257679i
\(359\) 184309.i 0.0754763i −0.999288 0.0377381i \(-0.987985\pi\)
0.999288 0.0377381i \(-0.0120153\pi\)
\(360\) 7.79740e6i 3.17098i
\(361\) 1.79013e6 0.722965
\(362\) 1.79282e6i 0.719061i
\(363\) −4.50451e6 −1.79424
\(364\) −527333. −0.208608
\(365\) 2.56715e6i 1.00860i
\(366\) 3.29562e6 1.28598
\(367\) 1.96696e6i 0.762307i 0.924512 + 0.381153i \(0.124473\pi\)
−0.924512 + 0.381153i \(0.875527\pi\)
\(368\) 689523.i 0.265417i
\(369\) 2.44752e6i 0.935749i
\(370\) −4.57973e6 −1.73914
\(371\) 5256.73i 0.00198281i
\(372\) 3.16700e6 1.18656
\(373\) 2.42386e6i 0.902060i −0.892509 0.451030i \(-0.851057\pi\)
0.892509 0.451030i \(-0.148943\pi\)
\(374\) 1.79289e6i 0.662789i
\(375\) 7.32253e6i 2.68895i
\(376\) −1.06536e6 −0.388620
\(377\) −850798. −0.308300
\(378\) 1.65749e6i 0.596652i
\(379\) −3.45648e6 −1.23605 −0.618026 0.786158i \(-0.712067\pi\)
−0.618026 + 0.786158i \(0.712067\pi\)
\(380\) 1.75129e6 0.622156
\(381\) 6.80903e6i 2.40311i
\(382\) 3.05331e6 1.07057
\(383\) 2.54854e6i 0.887759i 0.896086 + 0.443880i \(0.146398\pi\)
−0.896086 + 0.443880i \(0.853602\pi\)
\(384\) 4.04853e6 1.40110
\(385\) 4.50972e6 1.55059
\(386\) −108936. −0.0372137
\(387\) −1.94553e6 −0.660328
\(388\) 240741. + 2.03966e6i 0.0811841 + 0.687826i
\(389\) 157675. 0.0528310 0.0264155 0.999651i \(-0.491591\pi\)
0.0264155 + 0.999651i \(0.491591\pi\)
\(390\) −2.32280e6 −0.773305
\(391\) 3.89825e6 1.28952
\(392\) −1.69948e6 −0.558598
\(393\) 9.95114e6i 3.25006i
\(394\) −236562. −0.0767723
\(395\) 8.25479e6i 2.66203i
\(396\) 6.11097e6 1.95827
\(397\) −2.97514e6 −0.947395 −0.473698 0.880687i \(-0.657081\pi\)
−0.473698 + 0.880687i \(0.657081\pi\)
\(398\) 1.11083e6i 0.351510i
\(399\) 1.83822e6 0.578049
\(400\) −1.05457e6 −0.329553
\(401\) 593448.i 0.184298i 0.995745 + 0.0921492i \(0.0293737\pi\)
−0.995745 + 0.0921492i \(0.970626\pi\)
\(402\) 4.84643e6i 1.49574i
\(403\) 1.53187e6i 0.469850i
\(404\) −731540. −0.222990
\(405\) 5.29582e6i 1.60434i
\(406\) 762934. 0.229706
\(407\) 8.77146e6i 2.62474i
\(408\) 4.55962e6i 1.35606i
\(409\) 4.60575e6i 1.36142i −0.732553 0.680709i \(-0.761672\pi\)
0.732553 0.680709i \(-0.238328\pi\)
\(410\) −1.52223e6 −0.447220
\(411\) 1.84857e6i 0.539799i
\(412\) 2.57982e6 0.748766
\(413\) −1.98317e6 −0.572116
\(414\) 5.89720e6i 1.69101i
\(415\) −4.33535e6 −1.23567
\(416\) 1.72779e6i 0.489505i
\(417\) 4.75389e6i 1.33878i
\(418\) 1.48871e6i 0.416745i
\(419\) −1.53664e6 −0.427600 −0.213800 0.976877i \(-0.568584\pi\)
−0.213800 + 0.976877i \(0.568584\pi\)
\(420\) −4.69302e6 −1.29816
\(421\) −1.00930e6 −0.277534 −0.138767 0.990325i \(-0.544314\pi\)
−0.138767 + 0.990325i \(0.544314\pi\)
\(422\) 2.30068e6i 0.628890i
\(423\) 3.01723e6 0.819893
\(424\) −10826.9 −0.00292476
\(425\) 5.96205e6i 1.60112i
\(426\) 4.89977e6i 1.30813i
\(427\) 3.22070e6i 0.854833i
\(428\) 36021.8i 0.00950508i
\(429\) 4.44881e6i 1.16708i
\(430\) 1.21002e6i 0.315589i
\(431\) 13469.7 0.00349274 0.00174637 0.999998i \(-0.499444\pi\)
0.00174637 + 0.999998i \(0.499444\pi\)
\(432\) −1.13046e6 −0.291438
\(433\) 1.46966e6i 0.376701i 0.982102 + 0.188350i \(0.0603141\pi\)
−0.982102 + 0.188350i \(0.939686\pi\)
\(434\) 1.37367e6i 0.350073i
\(435\) −7.57170e6 −1.91854
\(436\) −2.48902e6 −0.627065
\(437\) 3.23688e6 0.810816
\(438\) 2.27094e6 0.565615
\(439\) 2.65977e6i 0.658692i −0.944209 0.329346i \(-0.893172\pi\)
0.944209 0.329346i \(-0.106828\pi\)
\(440\) 9.28833e6i 2.28721i
\(441\) 4.81314e6 1.17851
\(442\) 902466. 0.219723
\(443\) 1.44305e6i 0.349360i 0.984625 + 0.174680i \(0.0558890\pi\)
−0.984625 + 0.174680i \(0.944111\pi\)
\(444\) 9.12798e6i 2.19744i
\(445\) 9.33159e6i 2.23386i
\(446\) 2.74325e6i 0.653022i
\(447\) 5.59332e6i 1.32404i
\(448\) 1.08370e6i 0.255101i
\(449\) −952823. −0.223047 −0.111523 0.993762i \(-0.535573\pi\)
−0.111523 + 0.993762i \(0.535573\pi\)
\(450\) −9.01928e6 −2.09962
\(451\) 2.91550e6i 0.674950i
\(452\) 1.06480e6 0.245143
\(453\) 1.39075e7 3.18423
\(454\) −1.37376e6 −0.312804
\(455\) 2.27000e6i 0.514041i
\(456\) 3.78604e6i 0.852654i
\(457\) 2.79217e6i 0.625390i −0.949854 0.312695i \(-0.898768\pi\)
0.949854 0.312695i \(-0.101232\pi\)
\(458\) −1.59264e6 −0.354775
\(459\) 6.39111e6i 1.41594i
\(460\) −8.26382e6 −1.82090
\(461\) −4.75789e6 −1.04271 −0.521353 0.853341i \(-0.674573\pi\)
−0.521353 + 0.853341i \(0.674573\pi\)
\(462\) 3.98937e6i 0.869560i
\(463\) −1.49074e6 −0.323183 −0.161592 0.986858i \(-0.551663\pi\)
−0.161592 + 0.986858i \(0.551663\pi\)
\(464\) 520346.i 0.112201i
\(465\) 1.36329e7i 2.92386i
\(466\) 1.13976e6i 0.243136i
\(467\) −649635. −0.137841 −0.0689203 0.997622i \(-0.521955\pi\)
−0.0689203 + 0.997622i \(0.521955\pi\)
\(468\) 3.07600e6i 0.649190i
\(469\) 4.73626e6 0.994268
\(470\) 1.87657e6i 0.391850i
\(471\) 9.24616e6i 1.92048i
\(472\) 4.08458e6i 0.843903i
\(473\) 2.31753e6 0.476291
\(474\) 7.30232e6 1.49285
\(475\) 4.95053e6i 1.00674i
\(476\) 1.82335e6 0.368853
\(477\) 30663.2 0.00617053
\(478\) 4.36034e6i 0.872872i
\(479\) 8.78954e6 1.75036 0.875180 0.483797i \(-0.160743\pi\)
0.875180 + 0.483797i \(0.160743\pi\)
\(480\) 1.53765e7i 3.04617i
\(481\) 4.41518e6 0.870133
\(482\) −1.75017e6 −0.343133
\(483\) −8.67400e6 −1.69181
\(484\) −3.71003e6 −0.719887
\(485\) 8.78009e6 1.03631e6i 1.69490 0.200049i
\(486\) 198534. 0.0381279
\(487\) −5.12517e6 −0.979233 −0.489617 0.871938i \(-0.662863\pi\)
−0.489617 + 0.871938i \(0.662863\pi\)
\(488\) 6.63344e6 1.26093
\(489\) 9.26559e6 1.75227
\(490\) 2.99354e6i 0.563241i
\(491\) 3.16695e6 0.592839 0.296420 0.955058i \(-0.404207\pi\)
0.296420 + 0.955058i \(0.404207\pi\)
\(492\) 3.03400e6i 0.565071i
\(493\) 2.94180e6 0.545124
\(494\) 749354. 0.138156
\(495\) 2.63058e7i 4.82546i
\(496\) 936888. 0.170995
\(497\) 4.78839e6 0.869557
\(498\) 3.83512e6i 0.692956i
\(499\) 2.40107e6i 0.431672i 0.976430 + 0.215836i \(0.0692477\pi\)
−0.976430 + 0.215836i \(0.930752\pi\)
\(500\) 6.03103e6i 1.07886i
\(501\) −1.62522e7 −2.89280
\(502\) 4.31728e6i 0.764629i
\(503\) −3.03278e6 −0.534467 −0.267233 0.963632i \(-0.586109\pi\)
−0.267233 + 0.963632i \(0.586109\pi\)
\(504\) 6.74091e6i 1.18207i
\(505\) 3.14905e6i 0.549479i
\(506\) 7.02479e6i 1.21971i
\(507\) −7.75189e6 −1.33933
\(508\) 5.60810e6i 0.964176i
\(509\) −1.48353e6 −0.253806 −0.126903 0.991915i \(-0.540504\pi\)
−0.126903 + 0.991915i \(0.540504\pi\)
\(510\) 8.03153e6 1.36733
\(511\) 2.21932e6i 0.375983i
\(512\) 2.01579e6 0.339837
\(513\) 5.30680e6i 0.890306i
\(514\) 485834.i 0.0811111i
\(515\) 1.11053e7i 1.84507i
\(516\) −2.41172e6 −0.398752
\(517\) −3.59415e6 −0.591384
\(518\) −3.95921e6 −0.648312
\(519\) 7.19564e6i 1.17260i
\(520\) −4.67535e6 −0.758238
\(521\) −2.23871e6 −0.361330 −0.180665 0.983545i \(-0.557825\pi\)
−0.180665 + 0.983545i \(0.557825\pi\)
\(522\) 4.45029e6i 0.714846i
\(523\) 1.09854e7i 1.75616i 0.478516 + 0.878079i \(0.341175\pi\)
−0.478516 + 0.878079i \(0.658825\pi\)
\(524\) 8.19602e6i 1.30399i
\(525\) 1.32662e7i 2.10062i
\(526\) 5.20147e6i 0.819713i
\(527\) 5.29674e6i 0.830772i
\(528\) 2.72088e6 0.424742
\(529\) −8.83752e6 −1.37306
\(530\) 19071.0i 0.00294906i
\(531\) 1.15681e7i 1.78043i
\(532\) 1.51400e6 0.231925
\(533\) 1.46754e6 0.223754
\(534\) −8.25488e6 −1.25273
\(535\) 155062. 0.0234219
\(536\) 9.75492e6i 1.46660i
\(537\) 5.36121e6i 0.802283i
\(538\) −6.77141e6 −1.00861
\(539\) −5.73345e6 −0.850050
\(540\) 1.35484e7i 1.99942i
\(541\) 3.19006e6i 0.468604i 0.972164 + 0.234302i \(0.0752805\pi\)
−0.972164 + 0.234302i \(0.924720\pi\)
\(542\) 4.10883e6i 0.600787i
\(543\) 1.53820e7i 2.23879i
\(544\) 5.97416e6i 0.865524i
\(545\) 1.07145e7i 1.54518i
\(546\) −2.00808e6 −0.288270
\(547\) 1.16662e7 1.66709 0.833546 0.552451i \(-0.186307\pi\)
0.833546 + 0.552451i \(0.186307\pi\)
\(548\) 1.52253e6i 0.216579i
\(549\) −1.87868e7 −2.66025
\(550\) 1.07438e7 1.51444
\(551\) 2.44269e6 0.342760
\(552\) 1.78652e7i 2.49551i
\(553\) 7.13633e6i 0.992344i
\(554\) 326547.i 0.0452034i
\(555\) 3.92930e7 5.41481
\(556\) 3.91543e6i 0.537146i
\(557\) −5.64098e6 −0.770400 −0.385200 0.922833i \(-0.625868\pi\)
−0.385200 + 0.922833i \(0.625868\pi\)
\(558\) 8.01281e6 1.08943
\(559\) 1.16655e6i 0.157896i
\(560\) −1.38833e6 −0.187077
\(561\) 1.53826e7i 2.06359i
\(562\) 6.53347e6i 0.872576i
\(563\) 1.79705e6i 0.238940i 0.992838 + 0.119470i \(0.0381196\pi\)
−0.992838 + 0.119470i \(0.961880\pi\)
\(564\) 3.74023e6 0.495109
\(565\) 4.58361e6i 0.604069i
\(566\) −4.66111e6 −0.611573
\(567\) 4.57828e6i 0.598060i
\(568\) 9.86228e6i 1.28265i
\(569\) 1.01521e7i 1.31454i −0.753655 0.657271i \(-0.771711\pi\)
0.753655 0.657271i \(-0.228289\pi\)
\(570\) 6.66891e6 0.859741
\(571\) −7.70110e6 −0.988468 −0.494234 0.869329i \(-0.664551\pi\)
−0.494234 + 0.869329i \(0.664551\pi\)
\(572\) 3.66416e6i 0.468257i
\(573\) −2.61967e7 −3.33320
\(574\) −1.31598e6 −0.166713
\(575\) 2.33601e7i 2.94649i
\(576\) 6.32134e6 0.793877
\(577\) 1.28734e7i 1.60973i 0.593458 + 0.804865i \(0.297762\pi\)
−0.593458 + 0.804865i \(0.702238\pi\)
\(578\) 1.33274e6 0.165930
\(579\) 934647. 0.115865
\(580\) −6.23626e6 −0.769758
\(581\) −3.74794e6 −0.460630
\(582\) 916740. + 7.76702e6i 0.112186 + 0.950488i
\(583\) −36526.3 −0.00445076
\(584\) 4.57097e6 0.554595
\(585\) 1.32412e7 1.59970
\(586\) 1.35599e6 0.163122
\(587\) 5.21229e6i 0.624358i 0.950023 + 0.312179i \(0.101059\pi\)
−0.950023 + 0.312179i \(0.898941\pi\)
\(588\) 5.96649e6 0.711665
\(589\) 4.39810e6i 0.522368i
\(590\) −7.19477e6 −0.850917
\(591\) 2.02965e6 0.239030
\(592\) 2.70031e6i 0.316672i
\(593\) −5.90788e6 −0.689914 −0.344957 0.938619i \(-0.612106\pi\)
−0.344957 + 0.938619i \(0.612106\pi\)
\(594\) 1.15170e7 1.33929
\(595\) 7.84896e6i 0.908908i
\(596\) 4.60680e6i 0.531232i
\(597\) 9.53063e6i 1.09442i
\(598\) −3.53598e6 −0.404350
\(599\) 1.10423e7i 1.25745i 0.777627 + 0.628726i \(0.216423\pi\)
−0.777627 + 0.628726i \(0.783577\pi\)
\(600\) −2.73233e7 −3.09853
\(601\) 1.73604e6i 0.196054i 0.995184 + 0.0980268i \(0.0312531\pi\)
−0.995184 + 0.0980268i \(0.968747\pi\)
\(602\) 1.04607e6i 0.117644i
\(603\) 2.76273e7i 3.09417i
\(604\) 1.14546e7 1.27758
\(605\) 1.59705e7i 1.77391i
\(606\) −2.78570e6 −0.308143
\(607\) 3.32052e6 0.365792 0.182896 0.983132i \(-0.441453\pi\)
0.182896 + 0.983132i \(0.441453\pi\)
\(608\) 4.96058e6i 0.544219i
\(609\) −6.54580e6 −0.715186
\(610\) 1.16845e7i 1.27141i
\(611\) 1.80914e6i 0.196051i
\(612\) 1.06359e7i 1.14787i
\(613\) 1.25673e7 1.35080 0.675401 0.737450i \(-0.263970\pi\)
0.675401 + 0.737450i \(0.263970\pi\)
\(614\) 5.86664e6 0.628012
\(615\) 1.30604e7 1.39242
\(616\) 8.02983e6i 0.852618i
\(617\) −8.36105e6 −0.884194 −0.442097 0.896967i \(-0.645765\pi\)
−0.442097 + 0.896967i \(0.645765\pi\)
\(618\) 9.82394e6 1.03470
\(619\) 1.55012e7i 1.62607i −0.582218 0.813033i \(-0.697815\pi\)
0.582218 0.813033i \(-0.302185\pi\)
\(620\) 1.12284e7i 1.17311i
\(621\) 2.50412e7i 2.60571i
\(622\) 4.79337e6i 0.496781i
\(623\) 8.06723e6i 0.832731i
\(624\) 1.36958e6i 0.140807i
\(625\) 7.28284e6 0.745762
\(626\) −2.66950e6 −0.272267
\(627\) 1.27728e7i 1.29753i
\(628\) 7.61539e6i 0.770536i
\(629\) −1.52663e7 −1.53854
\(630\) −1.18738e7 −1.19189
\(631\) −7.04697e6 −0.704578 −0.352289 0.935891i \(-0.614597\pi\)
−0.352289 + 0.935891i \(0.614597\pi\)
\(632\) 1.46982e7 1.46376
\(633\) 1.97393e7i 1.95804i
\(634\) 23933.4i 0.00236473i
\(635\) −2.41411e7 −2.37587
\(636\) 38010.9 0.00372619
\(637\) 2.88598e6i 0.281802i
\(638\) 5.30123e6i 0.515614i
\(639\) 2.79313e7i 2.70607i
\(640\) 1.43539e7i 1.38522i
\(641\) 4.69321e6i 0.451154i −0.974225 0.225577i \(-0.927573\pi\)
0.974225 0.225577i \(-0.0724268\pi\)
\(642\) 137171.i 0.0131348i
\(643\) 2.48309e6 0.236846 0.118423 0.992963i \(-0.462216\pi\)
0.118423 + 0.992963i \(0.462216\pi\)
\(644\) −7.14414e6 −0.678790
\(645\) 1.03817e7i 0.982584i
\(646\) −2.59104e6 −0.244282
\(647\) −1.55196e7 −1.45754 −0.728770 0.684759i \(-0.759908\pi\)
−0.728770 + 0.684759i \(0.759908\pi\)
\(648\) −9.42954e6 −0.882171
\(649\) 1.37800e7i 1.28421i
\(650\) 5.40799e6i 0.502056i
\(651\) 1.17858e7i 1.08995i
\(652\) 7.63139e6 0.703047
\(653\) 1.85659e6i 0.170386i −0.996364 0.0851930i \(-0.972849\pi\)
0.996364 0.0851930i \(-0.0271507\pi\)
\(654\) −9.47818e6 −0.866524
\(655\) 3.52813e7 3.21322
\(656\) 897543.i 0.0814321i
\(657\) −1.29456e7 −1.17006
\(658\) 1.62231e6i 0.146072i
\(659\) 2.75691e6i 0.247291i 0.992326 + 0.123646i \(0.0394586\pi\)
−0.992326 + 0.123646i \(0.960541\pi\)
\(660\) 3.26093e7i 2.91395i
\(661\) −865188. −0.0770206 −0.0385103 0.999258i \(-0.512261\pi\)
−0.0385103 + 0.999258i \(0.512261\pi\)
\(662\) 5.09544e6i 0.451894i
\(663\) −7.74296e6 −0.684105
\(664\) 7.71935e6i 0.679455i
\(665\) 6.51731e6i 0.571497i
\(666\) 2.30946e7i 2.01755i
\(667\) −1.15263e7 −1.00318
\(668\) −1.33858e7 −1.16065
\(669\) 2.35364e7i 2.03318i
\(670\) 1.71828e7 1.47879
\(671\) 2.23790e7 1.91882
\(672\) 1.32931e7i 1.13554i
\(673\) 1.73987e6 0.148074 0.0740369 0.997256i \(-0.476412\pi\)
0.0740369 + 0.997256i \(0.476412\pi\)
\(674\) 1.29345e6i 0.109673i
\(675\) 3.82985e7 3.23535
\(676\) −6.38466e6 −0.537367
\(677\) 9.14719e6 0.767037 0.383518 0.923533i \(-0.374712\pi\)
0.383518 + 0.923533i \(0.374712\pi\)
\(678\) 4.05474e6 0.338757
\(679\) 7.59046e6 895901.i 0.631820 0.0745737i
\(680\) 1.61659e7 1.34069
\(681\) 1.17866e7 0.973912
\(682\) −9.54492e6 −0.785799
\(683\) −8.73714e6 −0.716668 −0.358334 0.933594i \(-0.616655\pi\)
−0.358334 + 0.933594i \(0.616655\pi\)
\(684\) 8.83139e6i 0.721754i
\(685\) 6.55403e6 0.533681
\(686\) 6.93563e6i 0.562699i
\(687\) 1.36645e7 1.10459
\(688\) −713456. −0.0574640
\(689\) 18385.8i 0.00147548i
\(690\) −3.14686e7 −2.51626
\(691\) 5.58931e6 0.445311 0.222655 0.974897i \(-0.428528\pi\)
0.222655 + 0.974897i \(0.428528\pi\)
\(692\) 5.92652e6i 0.470473i
\(693\) 2.27416e7i 1.79882i
\(694\) 811682.i 0.0639716i
\(695\) 1.68547e7 1.32361
\(696\) 1.34819e7i 1.05494i
\(697\) −5.07430e6 −0.395634
\(698\) 3.47720e6i 0.270142i
\(699\) 9.77890e6i 0.757002i
\(700\) 1.09264e7i 0.842812i
\(701\) 1.82704e7 1.40428 0.702138 0.712041i \(-0.252229\pi\)
0.702138 + 0.712041i \(0.252229\pi\)
\(702\) 5.79718e6i 0.443991i
\(703\) −1.26763e7 −0.967392
\(704\) −7.53004e6 −0.572619
\(705\) 1.61005e7i 1.22002i
\(706\) 2.75439e6 0.207976
\(707\) 2.72238e6i 0.204833i
\(708\) 1.43401e7i 1.07515i
\(709\) 910191.i 0.0680013i 0.999422 + 0.0340006i \(0.0108248\pi\)
−0.999422 + 0.0340006i \(0.989175\pi\)
\(710\) 1.73719e7 1.29331
\(711\) −4.16272e7 −3.08818
\(712\) −1.66155e7 −1.22832
\(713\) 2.07533e7i 1.52885i
\(714\) 6.94332e6 0.509708
\(715\) −1.57730e7 −1.15385
\(716\) 4.41564e6i 0.321892i
\(717\) 3.74107e7i 2.71768i
\(718\) 578060.i 0.0418468i
\(719\) 2.34684e7i 1.69301i 0.532377 + 0.846507i \(0.321299\pi\)
−0.532377 + 0.846507i \(0.678701\pi\)
\(720\) 8.09829e6i 0.582187i
\(721\) 9.60062e6i 0.687798i
\(722\) 5.61451e6 0.400838
\(723\) 1.50161e7 1.06834
\(724\) 1.26690e7i 0.898249i
\(725\) 1.76286e7i 1.24558i
\(726\) −1.41278e7 −0.994792
\(727\) −1.22924e7 −0.862585 −0.431293 0.902212i \(-0.641942\pi\)
−0.431293 + 0.902212i \(0.641942\pi\)
\(728\) −4.04188e6 −0.282654
\(729\) −1.51919e7 −1.05875
\(730\) 8.05152e6i 0.559204i
\(731\) 4.03355e6i 0.279186i
\(732\) −2.32886e7 −1.60644
\(733\) 2.69653e7 1.85373 0.926864 0.375397i \(-0.122494\pi\)
0.926864 + 0.375397i \(0.122494\pi\)
\(734\) 6.16910e6i 0.422651i
\(735\) 2.56839e7i 1.75365i
\(736\) 2.34075e7i 1.59280i
\(737\) 3.29098e7i 2.23181i
\(738\) 7.67630e6i 0.518813i
\(739\) 5.81245e6i 0.391515i −0.980652 0.195757i \(-0.937283\pi\)
0.980652 0.195757i \(-0.0627165\pi\)
\(740\) 3.23628e7 2.17253
\(741\) −6.42929e6 −0.430148
\(742\) 16487.0i 0.00109934i
\(743\) −2.63049e7 −1.74810 −0.874048 0.485839i \(-0.838514\pi\)
−0.874048 + 0.485839i \(0.838514\pi\)
\(744\) 2.42743e7 1.60773
\(745\) 1.98308e7 1.30903
\(746\) 7.60211e6i 0.500135i
\(747\) 2.18622e7i 1.43349i
\(748\) 1.26695e7i 0.827955i
\(749\) 134053. 0.00873113
\(750\) 2.29661e7i 1.49085i
\(751\) −1.95041e7 −1.26190 −0.630950 0.775823i \(-0.717335\pi\)
−0.630950 + 0.775823i \(0.717335\pi\)
\(752\) 1.10647e6 0.0713499
\(753\) 3.70413e7i 2.38067i
\(754\) −2.66841e6 −0.170932
\(755\) 4.93085e7i 3.14814i
\(756\) 1.17127e7i 0.745336i
\(757\) 1.03926e7i 0.659147i 0.944130 + 0.329574i \(0.106905\pi\)
−0.944130 + 0.329574i \(0.893095\pi\)
\(758\) −1.08408e7 −0.685312
\(759\) 6.02711e7i 3.79756i
\(760\) 1.34232e7 0.842990
\(761\) 1.36330e7i 0.853357i −0.904403 0.426678i \(-0.859684\pi\)
0.904403 0.426678i \(-0.140316\pi\)
\(762\) 2.13556e7i 1.33237i
\(763\) 9.26273e6i 0.576007i
\(764\) −2.15763e7 −1.33735
\(765\) −4.57841e7 −2.82853
\(766\) 7.99316e6i 0.492206i
\(767\) 6.93626e6 0.425733
\(768\) 2.40117e7 1.46899
\(769\) 1.49522e7i 0.911779i −0.890036 0.455890i \(-0.849321\pi\)
0.890036 0.455890i \(-0.150679\pi\)
\(770\) 1.41441e7 0.859705
\(771\) 4.16835e6i 0.252539i
\(772\) 769800. 0.0464873
\(773\) 1.27499e6 0.0767463 0.0383732 0.999263i \(-0.487782\pi\)
0.0383732 + 0.999263i \(0.487782\pi\)
\(774\) −6.10188e6 −0.366110
\(775\) −3.17405e7 −1.89827
\(776\) 1.84522e6 + 1.56335e7i 0.110000 + 0.931970i
\(777\) 3.39691e7 2.01852
\(778\) 494526. 0.0292914
\(779\) −4.21339e6 −0.248765
\(780\) 1.64141e7 0.966010
\(781\) 3.32720e7i 1.95187i
\(782\) 1.22263e7 0.714956
\(783\) 1.88972e7i 1.10152i
\(784\) 1.76506e6 0.102558
\(785\) −3.27818e7 −1.89871
\(786\) 3.12104e7i 1.80195i
\(787\) −2.63718e7 −1.51776 −0.758880 0.651230i \(-0.774253\pi\)
−0.758880 + 0.651230i \(0.774253\pi\)
\(788\) 1.67167e6 0.0959037
\(789\) 4.46275e7i 2.55217i
\(790\) 2.58900e7i 1.47593i
\(791\) 3.96257e6i 0.225183i
\(792\) 4.68391e7 2.65336
\(793\) 1.12646e7i 0.636113i
\(794\) −9.33113e6 −0.525270
\(795\) 163625.i 0.00918188i
\(796\) 7.84968e6i 0.439106i
\(797\) 1.94980e7i 1.08729i −0.839316 0.543643i \(-0.817044\pi\)
0.839316 0.543643i \(-0.182956\pi\)
\(798\) 5.76532e6 0.320491
\(799\) 6.25545e6i 0.346651i
\(800\) −3.57999e7 −1.97768
\(801\) 4.70573e7 2.59147
\(802\) 1.86127e6i 0.102182i
\(803\) 1.54209e7 0.843958
\(804\) 3.42474e7i 1.86848i
\(805\) 3.07533e7i 1.67264i
\(806\) 4.80451e6i 0.260502i
\(807\) 5.80972e7 3.14030
\(808\) −5.60708e6 −0.302140
\(809\) 2.75267e7 1.47871 0.739354 0.673317i \(-0.235131\pi\)
0.739354 + 0.673317i \(0.235131\pi\)
\(810\) 1.66096e7i 0.889503i
\(811\) −1.19960e7 −0.640451 −0.320226 0.947341i \(-0.603759\pi\)
−0.320226 + 0.947341i \(0.603759\pi\)
\(812\) −5.39129e6 −0.286948
\(813\) 3.52529e7i 1.87054i
\(814\) 2.75105e7i 1.45525i
\(815\) 3.28507e7i 1.73241i
\(816\) 4.73557e6i 0.248970i
\(817\) 3.34922e6i 0.175545i
\(818\) 1.44453e7i 0.754820i
\(819\) 1.14471e7 0.596330
\(820\) 1.07569e7 0.558666
\(821\) 3.24705e7i 1.68125i −0.541620 0.840623i \(-0.682189\pi\)
0.541620 0.840623i \(-0.317811\pi\)
\(822\) 5.79780e6i 0.299284i
\(823\) −7.77043e6 −0.399894 −0.199947 0.979807i \(-0.564077\pi\)
−0.199947 + 0.979807i \(0.564077\pi\)
\(824\) 1.97737e7 1.01454
\(825\) −9.21797e7 −4.71520
\(826\) −6.21994e6 −0.317202
\(827\) 1.29252e7i 0.657163i 0.944476 + 0.328581i \(0.106570\pi\)
−0.944476 + 0.328581i \(0.893430\pi\)
\(828\) 4.16727e7i 2.11240i
\(829\) 4.33588e6 0.219125 0.109562 0.993980i \(-0.465055\pi\)
0.109562 + 0.993980i \(0.465055\pi\)
\(830\) −1.35972e7 −0.685102
\(831\) 2.80170e6i 0.140740i
\(832\) 3.79030e6i 0.189830i
\(833\) 9.97882e6i 0.498272i
\(834\) 1.49099e7i 0.742268i
\(835\) 5.76215e7i 2.86002i
\(836\) 1.05200e7i 0.520597i
\(837\) −3.40247e7 −1.67873
\(838\) −4.81947e6 −0.237077
\(839\) 1.88783e7i 0.925889i −0.886387 0.462944i \(-0.846793\pi\)
0.886387 0.462944i \(-0.153207\pi\)
\(840\) −3.59708e7 −1.75894
\(841\) 1.18128e7 0.575923
\(842\) −3.16554e6 −0.153875
\(843\) 5.60557e7i 2.71676i
\(844\) 1.62578e7i 0.785608i
\(845\) 2.74840e7i 1.32415i
\(846\) 9.46313e6 0.454579
\(847\) 1.38066e7i 0.661271i
\(848\) 11244.7 0.000536980
\(849\) 3.99913e7 1.90413
\(850\) 1.86992e7i 0.887718i
\(851\) 5.98155e7 2.83133
\(852\) 3.46243e7i 1.63411i
\(853\) 1.49671e7i 0.704313i 0.935941 + 0.352156i \(0.114552\pi\)
−0.935941 + 0.352156i \(0.885448\pi\)
\(854\) 1.01013e7i 0.473950i
\(855\) −3.80164e7 −1.77851
\(856\) 276098.i 0.0128789i
\(857\) −1.32117e7 −0.614476 −0.307238 0.951633i \(-0.599405\pi\)
−0.307238 + 0.951633i \(0.599405\pi\)
\(858\) 1.39531e7i 0.647072i
\(859\) 5.96714e6i 0.275920i −0.990438 0.137960i \(-0.955945\pi\)
0.990438 0.137960i \(-0.0440546\pi\)
\(860\) 8.55065e6i 0.394233i
\(861\) 1.12908e7 0.519060
\(862\) 42246.0 0.00193650
\(863\) 2.95311e7i 1.34975i 0.737933 + 0.674874i \(0.235802\pi\)
−0.737933 + 0.674874i \(0.764198\pi\)
\(864\) −3.83762e7 −1.74895
\(865\) 2.55118e7 1.15931
\(866\) 4.60939e6i 0.208857i
\(867\) −1.14346e7 −0.516622
\(868\) 9.70708e6i 0.437310i
\(869\) 4.95866e7 2.22749
\(870\) −2.37476e7 −1.06371
\(871\) −1.65654e7 −0.739872
\(872\) −1.90777e7 −0.849642
\(873\) −5.22591e6 4.42762e7i −0.232074 1.96623i
\(874\) 1.01520e7 0.449546
\(875\) 2.24441e7 0.991018
\(876\) −1.60477e7 −0.706565
\(877\) −2.61066e7 −1.14618 −0.573088 0.819494i \(-0.694255\pi\)
−0.573088 + 0.819494i \(0.694255\pi\)
\(878\) 8.34200e6i 0.365203i
\(879\) −1.16341e7 −0.507878
\(880\) 9.64675e6i 0.419928i
\(881\) −3.31155e7 −1.43745 −0.718724 0.695296i \(-0.755273\pi\)
−0.718724 + 0.695296i \(0.755273\pi\)
\(882\) 1.50958e7 0.653407
\(883\) 3.70375e6i 0.159860i 0.996800 + 0.0799300i \(0.0254697\pi\)
−0.996800 + 0.0799300i \(0.974530\pi\)
\(884\) −6.37730e6 −0.274477
\(885\) 6.17295e7 2.64932
\(886\) 4.52594e6i 0.193698i
\(887\) 6.14035e6i 0.262050i −0.991379 0.131025i \(-0.958173\pi\)
0.991379 0.131025i \(-0.0418268\pi\)
\(888\) 6.99637e7i 2.97742i
\(889\) −2.08702e7 −0.885669
\(890\) 2.92673e7i 1.23853i
\(891\) −3.18121e7 −1.34245
\(892\) 1.93852e7i 0.815753i
\(893\) 5.19416e6i 0.217965i
\(894\) 1.75427e7i 0.734095i
\(895\) −1.90079e7 −0.793190
\(896\) 1.24090e7i 0.516378i
\(897\) 3.03379e7 1.25894
\(898\) −2.98840e6 −0.123665
\(899\) 1.56614e7i 0.646295i
\(900\) 6.37350e7 2.62284
\(901\) 63572.4i 0.00260889i
\(902\) 9.14407e6i 0.374217i
\(903\) 8.97507e6i 0.366284i
\(904\) 8.16140e6 0.332157
\(905\) −5.45361e7 −2.21341
\(906\) 4.36191e7 1.76545
\(907\) 9.76379e6i 0.394094i 0.980394 + 0.197047i \(0.0631352\pi\)
−0.980394 + 0.197047i \(0.936865\pi\)
\(908\) 9.70773e6 0.390754
\(909\) 1.58800e7 0.637442
\(910\) 7.11955e6i 0.285003i
\(911\) 3.27943e7i 1.30919i −0.755981 0.654594i \(-0.772840\pi\)
0.755981 0.654594i \(-0.227160\pi\)
\(912\) 3.93214e6i 0.156546i
\(913\) 2.60425e7i 1.03396i
\(914\) 8.75725e6i 0.346739i
\(915\) 1.00250e8i 3.95851i
\(916\) 1.12544e7 0.443184
\(917\) 3.05009e7 1.19781
\(918\) 2.00449e7i 0.785048i
\(919\) 2.89871e6i 0.113218i −0.998396 0.0566091i \(-0.981971\pi\)
0.998396 0.0566091i \(-0.0180289\pi\)
\(920\) −6.33402e7 −2.46723
\(921\) −5.03344e7 −1.95531
\(922\) −1.49225e7 −0.578114
\(923\) −1.67477e7 −0.647070
\(924\) 2.81910e7i 1.08625i
\(925\) 9.14828e7i 3.51548i
\(926\) −4.67550e6 −0.179185
\(927\) −5.60017e7 −2.14043
\(928\) 1.76644e7i 0.673331i
\(929\) 1.61081e7i 0.612356i −0.951974 0.306178i \(-0.900950\pi\)
0.951974 0.306178i \(-0.0990504\pi\)
\(930\) 4.27579e7i 1.62110i
\(931\) 8.28582e6i 0.313301i
\(932\) 8.05416e6i 0.303725i
\(933\) 4.11260e7i 1.54672i
\(934\) −2.03749e6 −0.0764238
\(935\) 5.45383e7 2.04020
\(936\) 2.35768e7i 0.879621i
\(937\) 3.43022e7 1.27636 0.638181 0.769887i \(-0.279687\pi\)
0.638181 + 0.769887i \(0.279687\pi\)
\(938\) 1.48546e7 0.551258
\(939\) 2.29037e7 0.847701
\(940\) 1.32608e7i 0.489498i
\(941\) 2.31090e7i 0.850759i 0.905015 + 0.425379i \(0.139859\pi\)
−0.905015 + 0.425379i \(0.860141\pi\)
\(942\) 2.89993e7i 1.06478i
\(943\) 1.98818e7 0.728074
\(944\) 4.24220e6i 0.154939i
\(945\) 5.04194e7 1.83662
\(946\) 7.26862e6 0.264073
\(947\) 2.58367e7i 0.936188i 0.883679 + 0.468094i \(0.155059\pi\)
−0.883679 + 0.468094i \(0.844941\pi\)
\(948\) −5.16021e7 −1.86486
\(949\) 7.76223e6i 0.279783i
\(950\) 1.55267e7i 0.558174i
\(951\) 205343.i 0.00736256i
\(952\) 1.39756e7 0.499778
\(953\) 2.20350e6i 0.0785925i −0.999228 0.0392963i \(-0.987488\pi\)
0.999228 0.0392963i \(-0.0125116\pi\)
\(954\) 96171.1 0.00342116
\(955\) 9.28793e7i 3.29542i
\(956\) 3.08125e7i 1.09039i
\(957\) 4.54833e7i 1.60536i
\(958\) 2.75672e7 0.970463
\(959\) 5.66601e6 0.198944
\(960\) 3.37319e7i 1.18131i
\(961\) −430639. −0.0150420
\(962\) 1.38476e7 0.482433
\(963\) 781947.i 0.0271714i
\(964\) 1.23676e7 0.428641
\(965\) 3.31374e6i 0.114551i
\(966\) −2.72048e7 −0.938001
\(967\) −3.08694e7 −1.06160 −0.530801 0.847496i \(-0.678109\pi\)
−0.530801 + 0.847496i \(0.678109\pi\)
\(968\) −2.84365e7 −0.975411
\(969\) 2.22305e7 0.760571
\(970\) 2.75376e7 3.25026e6i 0.939715 0.110915i
\(971\) −4.35503e6 −0.148232 −0.0741162 0.997250i \(-0.523614\pi\)
−0.0741162 + 0.997250i \(0.523614\pi\)
\(972\) −1.40294e6 −0.0476293
\(973\) 1.45710e7 0.493410
\(974\) −1.60744e7 −0.542923
\(975\) 4.63993e7i 1.56315i
\(976\) −6.88942e6 −0.231504
\(977\) 1.48921e7i 0.499137i −0.968357 0.249568i \(-0.919711\pi\)
0.968357 0.249568i \(-0.0802888\pi\)
\(978\) 2.90603e7 0.971522
\(979\) −5.60550e7 −1.86921
\(980\) 2.11539e7i 0.703599i
\(981\) 5.40307e7 1.79254
\(982\) 9.93270e6 0.328692
\(983\) 1.63068e7i 0.538250i 0.963105 + 0.269125i \(0.0867345\pi\)
−0.963105 + 0.269125i \(0.913266\pi\)
\(984\) 2.32549e7i 0.765643i
\(985\) 7.19602e6i 0.236321i
\(986\) 9.22655e6 0.302237
\(987\) 1.39190e7i 0.454795i
\(988\) −5.29533e6 −0.172584
\(989\) 1.58040e7i 0.513779i
\(990\) 8.25046e7i 2.67541i
\(991\) 5.16770e7i 1.67153i −0.549089 0.835764i \(-0.685025\pi\)
0.549089 0.835764i \(-0.314975\pi\)
\(992\) 3.18049e7 1.02616
\(993\) 4.37177e7i 1.40697i
\(994\) 1.50181e7 0.482114
\(995\) 3.37904e7 1.08202
\(996\) 2.71010e7i 0.865639i
\(997\) 3.39384e7 1.08132 0.540658 0.841242i \(-0.318175\pi\)
0.540658 + 0.841242i \(0.318175\pi\)
\(998\) 7.53064e6i 0.239335i
\(999\) 9.80664e7i 3.10890i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 97.6.b.a.96.26 yes 40
97.96 even 2 inner 97.6.b.a.96.25 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
97.6.b.a.96.25 40 97.96 even 2 inner
97.6.b.a.96.26 yes 40 1.1 even 1 trivial