Properties

Label 97.6.b.a.96.23
Level $97$
Weight $6$
Character 97.96
Analytic conductor $15.557$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [97,6,Mod(96,97)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(97, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("97.96"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 97 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 97.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.5572305219\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 96.23
Character \(\chi\) \(=\) 97.96
Dual form 97.6.b.a.96.24

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.99522 q^{2} +29.1171 q^{3} -28.0191 q^{4} -72.5916i q^{5} +58.0949 q^{6} -11.3700i q^{7} -119.751 q^{8} +604.804 q^{9} -144.836i q^{10} -24.9567 q^{11} -815.835 q^{12} -833.816i q^{13} -22.6857i q^{14} -2113.66i q^{15} +657.682 q^{16} -1845.68i q^{17} +1206.72 q^{18} +2655.07i q^{19} +2033.95i q^{20} -331.063i q^{21} -49.7941 q^{22} -1336.67i q^{23} -3486.80 q^{24} -2144.54 q^{25} -1663.64i q^{26} +10534.7 q^{27} +318.579i q^{28} +3986.45i q^{29} -4217.20i q^{30} -1548.28 q^{31} +5144.25 q^{32} -726.667 q^{33} -3682.53i q^{34} -825.370 q^{35} -16946.1 q^{36} -859.841i q^{37} +5297.43i q^{38} -24278.3i q^{39} +8692.93i q^{40} +10158.6i q^{41} -660.542i q^{42} +17391.3 q^{43} +699.266 q^{44} -43903.7i q^{45} -2666.94i q^{46} -4179.93 q^{47} +19149.8 q^{48} +16677.7 q^{49} -4278.82 q^{50} -53740.8i q^{51} +23362.8i q^{52} -33030.2 q^{53} +21019.0 q^{54} +1811.65i q^{55} +1361.58i q^{56} +77307.8i q^{57} +7953.83i q^{58} +9231.41i q^{59} +59222.7i q^{60} -5342.32 q^{61} -3089.15 q^{62} -6876.65i q^{63} -10781.9 q^{64} -60528.0 q^{65} -1449.86 q^{66} +55676.7i q^{67} +51714.3i q^{68} -38919.9i q^{69} -1646.79 q^{70} +46548.7i q^{71} -72426.0 q^{72} +81423.1 q^{73} -1715.57i q^{74} -62442.8 q^{75} -74392.6i q^{76} +283.759i q^{77} -48440.4i q^{78} +8898.89 q^{79} -47742.2i q^{80} +159772. q^{81} +20268.6i q^{82} +18263.0i q^{83} +9276.08i q^{84} -133981. q^{85} +34699.3 q^{86} +116074. i q^{87} +2988.60 q^{88} -82626.2 q^{89} -87597.4i q^{90} -9480.53 q^{91} +37452.3i q^{92} -45081.4 q^{93} -8339.87 q^{94} +192736. q^{95} +149786. q^{96} +(-31048.1 - 87311.8i) q^{97} +33275.7 q^{98} -15093.9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 2 q^{2} + 40 q^{3} + 638 q^{4} - 130 q^{6} + 180 q^{8} + 3300 q^{9} + 382 q^{11} + 2586 q^{12} + 10174 q^{16} + 4738 q^{18} + 1996 q^{22} - 3102 q^{24} - 25178 q^{25} + 3046 q^{27} + 14796 q^{31}+ \cdots - 562238 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/97\mathbb{Z}\right)^\times\).

\(n\) \(5\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.99522 0.352708 0.176354 0.984327i \(-0.443570\pi\)
0.176354 + 0.984327i \(0.443570\pi\)
\(3\) 29.1171 1.86786 0.933931 0.357454i \(-0.116355\pi\)
0.933931 + 0.357454i \(0.116355\pi\)
\(4\) −28.0191 −0.875597
\(5\) 72.5916i 1.29856i −0.760550 0.649279i \(-0.775071\pi\)
0.760550 0.649279i \(-0.224929\pi\)
\(6\) 58.0949 0.658809
\(7\) 11.3700i 0.0877035i −0.999038 0.0438518i \(-0.986037\pi\)
0.999038 0.0438518i \(-0.0139629\pi\)
\(8\) −119.751 −0.661538
\(9\) 604.804 2.48891
\(10\) 144.836i 0.458012i
\(11\) −24.9567 −0.0621879 −0.0310940 0.999516i \(-0.509899\pi\)
−0.0310940 + 0.999516i \(0.509899\pi\)
\(12\) −815.835 −1.63549
\(13\) 833.816i 1.36840i −0.729296 0.684198i \(-0.760152\pi\)
0.729296 0.684198i \(-0.239848\pi\)
\(14\) 22.6857i 0.0309337i
\(15\) 2113.66i 2.42553i
\(16\) 657.682 0.642268
\(17\) 1845.68i 1.54894i −0.632611 0.774469i \(-0.718017\pi\)
0.632611 0.774469i \(-0.281983\pi\)
\(18\) 1206.72 0.877857
\(19\) 2655.07i 1.68730i 0.536896 + 0.843648i \(0.319597\pi\)
−0.536896 + 0.843648i \(0.680403\pi\)
\(20\) 2033.95i 1.13701i
\(21\) 331.063i 0.163818i
\(22\) −49.7941 −0.0219342
\(23\) 1336.67i 0.526871i −0.964677 0.263435i \(-0.915144\pi\)
0.964677 0.263435i \(-0.0848556\pi\)
\(24\) −3486.80 −1.23566
\(25\) −2144.54 −0.686253
\(26\) 1663.64i 0.482644i
\(27\) 10534.7 2.78107
\(28\) 318.579i 0.0767930i
\(29\) 3986.45i 0.880220i 0.897944 + 0.440110i \(0.145061\pi\)
−0.897944 + 0.440110i \(0.854939\pi\)
\(30\) 4217.20i 0.855502i
\(31\) −1548.28 −0.289364 −0.144682 0.989478i \(-0.546216\pi\)
−0.144682 + 0.989478i \(0.546216\pi\)
\(32\) 5144.25 0.888071
\(33\) −726.667 −0.116158
\(34\) 3682.53i 0.546323i
\(35\) −825.370 −0.113888
\(36\) −16946.1 −2.17928
\(37\) 859.841i 0.103256i −0.998666 0.0516278i \(-0.983559\pi\)
0.998666 0.0516278i \(-0.0164410\pi\)
\(38\) 5297.43i 0.595123i
\(39\) 24278.3i 2.55597i
\(40\) 8692.93i 0.859045i
\(41\) 10158.6i 0.943789i 0.881655 + 0.471895i \(0.156430\pi\)
−0.881655 + 0.471895i \(0.843570\pi\)
\(42\) 660.542i 0.0577799i
\(43\) 17391.3 1.43437 0.717183 0.696885i \(-0.245431\pi\)
0.717183 + 0.696885i \(0.245431\pi\)
\(44\) 699.266 0.0544516
\(45\) 43903.7i 3.23199i
\(46\) 2666.94i 0.185831i
\(47\) −4179.93 −0.276010 −0.138005 0.990432i \(-0.544069\pi\)
−0.138005 + 0.990432i \(0.544069\pi\)
\(48\) 19149.8 1.19967
\(49\) 16677.7 0.992308
\(50\) −4278.82 −0.242047
\(51\) 53740.8i 2.89320i
\(52\) 23362.8i 1.19816i
\(53\) −33030.2 −1.61518 −0.807590 0.589744i \(-0.799228\pi\)
−0.807590 + 0.589744i \(0.799228\pi\)
\(54\) 21019.0 0.980906
\(55\) 1811.65i 0.0807546i
\(56\) 1361.58i 0.0580192i
\(57\) 77307.8i 3.15164i
\(58\) 7953.83i 0.310461i
\(59\) 9231.41i 0.345253i 0.984987 + 0.172627i \(0.0552254\pi\)
−0.984987 + 0.172627i \(0.944775\pi\)
\(60\) 59222.7i 2.12378i
\(61\) −5342.32 −0.183825 −0.0919126 0.995767i \(-0.529298\pi\)
−0.0919126 + 0.995767i \(0.529298\pi\)
\(62\) −3089.15 −0.102061
\(63\) 6876.65i 0.218286i
\(64\) −10781.9 −0.329038
\(65\) −60528.0 −1.77694
\(66\) −1449.86 −0.0409700
\(67\) 55676.7i 1.51526i 0.652685 + 0.757629i \(0.273642\pi\)
−0.652685 + 0.757629i \(0.726358\pi\)
\(68\) 51714.3i 1.35625i
\(69\) 38919.9i 0.984122i
\(70\) −1646.79 −0.0401692
\(71\) 46548.7i 1.09588i 0.836518 + 0.547939i \(0.184587\pi\)
−0.836518 + 0.547939i \(0.815413\pi\)
\(72\) −72426.0 −1.64651
\(73\) 81423.1 1.78830 0.894151 0.447766i \(-0.147780\pi\)
0.894151 + 0.447766i \(0.147780\pi\)
\(74\) 1715.57i 0.0364191i
\(75\) −62442.8 −1.28183
\(76\) 74392.6i 1.47739i
\(77\) 283.759i 0.00545410i
\(78\) 48440.4i 0.901512i
\(79\) 8898.89 0.160424 0.0802118 0.996778i \(-0.474440\pi\)
0.0802118 + 0.996778i \(0.474440\pi\)
\(80\) 47742.2i 0.834022i
\(81\) 159772. 2.70575
\(82\) 20268.6i 0.332882i
\(83\) 18263.0i 0.290990i 0.989359 + 0.145495i \(0.0464774\pi\)
−0.989359 + 0.145495i \(0.953523\pi\)
\(84\) 9276.08i 0.143439i
\(85\) −133981. −2.01139
\(86\) 34699.3 0.505912
\(87\) 116074.i 1.64413i
\(88\) 2988.60 0.0411397
\(89\) −82626.2 −1.10571 −0.552857 0.833276i \(-0.686462\pi\)
−0.552857 + 0.833276i \(0.686462\pi\)
\(90\) 87597.4i 1.13995i
\(91\) −9480.53 −0.120013
\(92\) 37452.3i 0.461327i
\(93\) −45081.4 −0.540492
\(94\) −8339.87 −0.0973508
\(95\) 192736. 2.19105
\(96\) 149786. 1.65879
\(97\) −31048.1 87311.8i −0.335047 0.942201i
\(98\) 33275.7 0.349995
\(99\) −15093.9 −0.154780
\(100\) 60088.1 0.600881
\(101\) −69826.8 −0.681112 −0.340556 0.940224i \(-0.610615\pi\)
−0.340556 + 0.940224i \(0.610615\pi\)
\(102\) 107225.i 1.02046i
\(103\) 98055.0 0.910703 0.455352 0.890312i \(-0.349514\pi\)
0.455352 + 0.890312i \(0.349514\pi\)
\(104\) 99850.4i 0.905246i
\(105\) −24032.4 −0.212727
\(106\) −65902.3 −0.569687
\(107\) 37969.8i 0.320611i 0.987067 + 0.160306i \(0.0512480\pi\)
−0.987067 + 0.160306i \(0.948752\pi\)
\(108\) −295173. −2.43510
\(109\) 13428.2 0.108256 0.0541281 0.998534i \(-0.482762\pi\)
0.0541281 + 0.998534i \(0.482762\pi\)
\(110\) 3614.63i 0.0284828i
\(111\) 25036.1i 0.192867i
\(112\) 7477.88i 0.0563291i
\(113\) 154323. 1.13693 0.568467 0.822706i \(-0.307537\pi\)
0.568467 + 0.822706i \(0.307537\pi\)
\(114\) 154246.i 1.11161i
\(115\) −97030.9 −0.684172
\(116\) 111697.i 0.770718i
\(117\) 504296.i 3.40581i
\(118\) 18418.7i 0.121774i
\(119\) −20985.5 −0.135847
\(120\) 253113.i 1.60458i
\(121\) −160428. −0.996133
\(122\) −10659.1 −0.0648366
\(123\) 295789.i 1.76287i
\(124\) 43381.4 0.253367
\(125\) 71173.1i 0.407419i
\(126\) 13720.4i 0.0769912i
\(127\) 232834.i 1.28097i 0.767973 + 0.640483i \(0.221266\pi\)
−0.767973 + 0.640483i \(0.778734\pi\)
\(128\) −186128. −1.00412
\(129\) 506383. 2.67920
\(130\) −120767. −0.626741
\(131\) 126240.i 0.642714i 0.946958 + 0.321357i \(0.104139\pi\)
−0.946958 + 0.321357i \(0.895861\pi\)
\(132\) 20360.6 0.101708
\(133\) 30188.2 0.147982
\(134\) 111087.i 0.534444i
\(135\) 764730.i 3.61138i
\(136\) 221022.i 1.02468i
\(137\) 239969.i 1.09233i −0.837677 0.546165i \(-0.816087\pi\)
0.837677 0.546165i \(-0.183913\pi\)
\(138\) 77653.6i 0.347107i
\(139\) 255909.i 1.12344i −0.827329 0.561718i \(-0.810141\pi\)
0.827329 0.561718i \(-0.189859\pi\)
\(140\) 23126.1 0.0997201
\(141\) −121707. −0.515548
\(142\) 92874.8i 0.386525i
\(143\) 20809.3i 0.0850977i
\(144\) 397769. 1.59854
\(145\) 289383. 1.14302
\(146\) 162457. 0.630748
\(147\) 485607. 1.85349
\(148\) 24092.0i 0.0904104i
\(149\) 403461.i 1.48880i −0.667735 0.744399i \(-0.732736\pi\)
0.667735 0.744399i \(-0.267264\pi\)
\(150\) −124587. −0.452110
\(151\) −386858. −1.38073 −0.690366 0.723461i \(-0.742550\pi\)
−0.690366 + 0.723461i \(0.742550\pi\)
\(152\) 317947.i 1.11621i
\(153\) 1.11628e6i 3.85516i
\(154\) 566.161i 0.00192370i
\(155\) 112392.i 0.375756i
\(156\) 680256.i 2.23800i
\(157\) 311504.i 1.00859i 0.863531 + 0.504295i \(0.168248\pi\)
−0.863531 + 0.504295i \(0.831752\pi\)
\(158\) 17755.2 0.0565827
\(159\) −961742. −3.01693
\(160\) 373430.i 1.15321i
\(161\) −15198.0 −0.0462084
\(162\) 318780. 0.954339
\(163\) 339867. 1.00194 0.500969 0.865465i \(-0.332977\pi\)
0.500969 + 0.865465i \(0.332977\pi\)
\(164\) 284635.i 0.826379i
\(165\) 52749.9i 0.150838i
\(166\) 36438.7i 0.102634i
\(167\) 326766. 0.906664 0.453332 0.891342i \(-0.350235\pi\)
0.453332 + 0.891342i \(0.350235\pi\)
\(168\) 39645.1i 0.108372i
\(169\) −323956. −0.872508
\(170\) −267321. −0.709432
\(171\) 1.60580e6i 4.19952i
\(172\) −487288. −1.25593
\(173\) 334893.i 0.850728i −0.905022 0.425364i \(-0.860146\pi\)
0.905022 0.425364i \(-0.139854\pi\)
\(174\) 231592.i 0.579897i
\(175\) 24383.5i 0.0601868i
\(176\) −16413.6 −0.0399413
\(177\) 268792.i 0.644885i
\(178\) −164857. −0.389994
\(179\) 8397.70i 0.0195897i −0.999952 0.00979485i \(-0.996882\pi\)
0.999952 0.00979485i \(-0.00311785\pi\)
\(180\) 1.23014e6i 2.82992i
\(181\) 145823.i 0.330848i 0.986223 + 0.165424i \(0.0528993\pi\)
−0.986223 + 0.165424i \(0.947101\pi\)
\(182\) −18915.7 −0.0423296
\(183\) −155553. −0.343360
\(184\) 160068.i 0.348545i
\(185\) −62417.2 −0.134083
\(186\) −89947.1 −0.190636
\(187\) 46062.2i 0.0963253i
\(188\) 117118. 0.241673
\(189\) 119780.i 0.243910i
\(190\) 384549. 0.772801
\(191\) 500958. 0.993614 0.496807 0.867861i \(-0.334506\pi\)
0.496807 + 0.867861i \(0.334506\pi\)
\(192\) −313938. −0.614598
\(193\) 582971. 1.12656 0.563279 0.826267i \(-0.309540\pi\)
0.563279 + 0.826267i \(0.309540\pi\)
\(194\) −61947.7 174206.i −0.118174 0.332322i
\(195\) −1.76240e6 −3.31908
\(196\) −467295. −0.868862
\(197\) 526473. 0.966519 0.483259 0.875477i \(-0.339453\pi\)
0.483259 + 0.875477i \(0.339453\pi\)
\(198\) −30115.7 −0.0545921
\(199\) 690511.i 1.23606i −0.786156 0.618028i \(-0.787932\pi\)
0.786156 0.618028i \(-0.212068\pi\)
\(200\) 256811. 0.453982
\(201\) 1.62114e6i 2.83029i
\(202\) −139320. −0.240233
\(203\) 45326.1 0.0771984
\(204\) 1.50577e6i 2.53328i
\(205\) 737431. 1.22557
\(206\) 195641. 0.321212
\(207\) 808423.i 1.31133i
\(208\) 548386.i 0.878877i
\(209\) 66261.8i 0.104929i
\(210\) −47949.8 −0.0750306
\(211\) 506320.i 0.782923i 0.920195 + 0.391461i \(0.128030\pi\)
−0.920195 + 0.391461i \(0.871970\pi\)
\(212\) 925475. 1.41425
\(213\) 1.35536e6i 2.04695i
\(214\) 75758.0i 0.113082i
\(215\) 1.26246e6i 1.86261i
\(216\) −1.26154e6 −1.83978
\(217\) 17604.0i 0.0253783i
\(218\) 26792.3 0.0381828
\(219\) 2.37080e6 3.34030
\(220\) 50760.8i 0.0707085i
\(221\) −1.53896e6 −2.11956
\(222\) 49952.4i 0.0680258i
\(223\) 358548.i 0.482819i 0.970423 + 0.241410i \(0.0776098\pi\)
−0.970423 + 0.241410i \(0.922390\pi\)
\(224\) 58490.4i 0.0778869i
\(225\) −1.29703e6 −1.70802
\(226\) 307908. 0.401006
\(227\) −859830. −1.10751 −0.553755 0.832680i \(-0.686806\pi\)
−0.553755 + 0.832680i \(0.686806\pi\)
\(228\) 2.16610e6i 2.75956i
\(229\) −348458. −0.439098 −0.219549 0.975601i \(-0.570459\pi\)
−0.219549 + 0.975601i \(0.570459\pi\)
\(230\) −193598. −0.241313
\(231\) 8262.24i 0.0101875i
\(232\) 477382.i 0.582299i
\(233\) 1.31789e6i 1.59034i −0.606386 0.795170i \(-0.707382\pi\)
0.606386 0.795170i \(-0.292618\pi\)
\(234\) 1.00618e6i 1.20126i
\(235\) 303428.i 0.358415i
\(236\) 258656.i 0.302303i
\(237\) 259110. 0.299649
\(238\) −41870.6 −0.0479144
\(239\) 859363.i 0.973154i −0.873638 0.486577i \(-0.838245\pi\)
0.873638 0.486577i \(-0.161755\pi\)
\(240\) 1.39011e6i 1.55784i
\(241\) 747922. 0.829495 0.414748 0.909937i \(-0.363870\pi\)
0.414748 + 0.909937i \(0.363870\pi\)
\(242\) −320089. −0.351344
\(243\) 2.09216e6 2.27290
\(244\) 149687. 0.160957
\(245\) 1.21066e6i 1.28857i
\(246\) 590164.i 0.621777i
\(247\) 2.21384e6 2.30889
\(248\) 185408. 0.191425
\(249\) 531766.i 0.543529i
\(250\) 142006.i 0.143700i
\(251\) 583583.i 0.584680i 0.956314 + 0.292340i \(0.0944339\pi\)
−0.956314 + 0.292340i \(0.905566\pi\)
\(252\) 192678.i 0.191131i
\(253\) 33358.9i 0.0327650i
\(254\) 464554.i 0.451806i
\(255\) −3.90113e6 −3.75699
\(256\) −26345.0 −0.0251245
\(257\) 1.08631e6i 1.02594i 0.858408 + 0.512968i \(0.171454\pi\)
−0.858408 + 0.512968i \(0.828546\pi\)
\(258\) 1.01034e6 0.944974
\(259\) −9776.43 −0.00905589
\(260\) 1.69594e6 1.55589
\(261\) 2.41102e6i 2.19079i
\(262\) 251876.i 0.226690i
\(263\) 320911.i 0.286085i −0.989717 0.143043i \(-0.954311\pi\)
0.989717 0.143043i \(-0.0456886\pi\)
\(264\) 87019.2 0.0768432
\(265\) 2.39771e6i 2.09740i
\(266\) 60232.1 0.0521944
\(267\) −2.40583e6 −2.06532
\(268\) 1.56001e6i 1.32676i
\(269\) −155007. −0.130608 −0.0653041 0.997865i \(-0.520802\pi\)
−0.0653041 + 0.997865i \(0.520802\pi\)
\(270\) 1.52580e6i 1.27376i
\(271\) 2.23692e6i 1.85024i 0.379676 + 0.925119i \(0.376035\pi\)
−0.379676 + 0.925119i \(0.623965\pi\)
\(272\) 1.21387e6i 0.994833i
\(273\) −276045. −0.224168
\(274\) 478791.i 0.385274i
\(275\) 53520.7 0.0426767
\(276\) 1.09050e6i 0.861694i
\(277\) 1.64351e6i 1.28698i −0.765454 0.643491i \(-0.777485\pi\)
0.765454 0.643491i \(-0.222515\pi\)
\(278\) 510594.i 0.396245i
\(279\) −936406. −0.720201
\(280\) 98839.0 0.0753413
\(281\) 659197.i 0.498023i 0.968501 + 0.249012i \(0.0801057\pi\)
−0.968501 + 0.249012i \(0.919894\pi\)
\(282\) −242833. −0.181838
\(283\) −238830. −0.177265 −0.0886324 0.996064i \(-0.528250\pi\)
−0.0886324 + 0.996064i \(0.528250\pi\)
\(284\) 1.30425e6i 0.959547i
\(285\) 5.61190e6 4.09258
\(286\) 41519.1i 0.0300146i
\(287\) 115504. 0.0827737
\(288\) 3.11127e6 2.21033
\(289\) −1.98668e6 −1.39921
\(290\) 577381. 0.403151
\(291\) −904030. 2.54227e6i −0.625821 1.75990i
\(292\) −2.28140e6 −1.56583
\(293\) −660970. −0.449793 −0.224897 0.974383i \(-0.572204\pi\)
−0.224897 + 0.974383i \(0.572204\pi\)
\(294\) 968890. 0.653742
\(295\) 670123. 0.448332
\(296\) 102967.i 0.0683075i
\(297\) −262911. −0.172949
\(298\) 804992.i 0.525111i
\(299\) −1.11454e6 −0.720968
\(300\) 1.74959e6 1.12236
\(301\) 197739.i 0.125799i
\(302\) −771865. −0.486995
\(303\) −2.03315e6 −1.27222
\(304\) 1.74619e6i 1.08370i
\(305\) 387807.i 0.238708i
\(306\) 2.22721e6i 1.35975i
\(307\) −2.89041e6 −1.75031 −0.875153 0.483846i \(-0.839240\pi\)
−0.875153 + 0.483846i \(0.839240\pi\)
\(308\) 7950.68i 0.00477560i
\(309\) 2.85508e6 1.70107
\(310\) 224246.i 0.132532i
\(311\) 2.55348e6i 1.49703i −0.663115 0.748517i \(-0.730766\pi\)
0.663115 0.748517i \(-0.269234\pi\)
\(312\) 2.90735e6i 1.69087i
\(313\) −2.50658e6 −1.44618 −0.723088 0.690756i \(-0.757278\pi\)
−0.723088 + 0.690756i \(0.757278\pi\)
\(314\) 621518.i 0.355738i
\(315\) −499187. −0.283457
\(316\) −249339. −0.140466
\(317\) 497832.i 0.278250i 0.990275 + 0.139125i \(0.0444289\pi\)
−0.990275 + 0.139125i \(0.955571\pi\)
\(318\) −1.91888e6 −1.06410
\(319\) 99488.8i 0.0547391i
\(320\) 782677.i 0.427275i
\(321\) 1.10557e6i 0.598857i
\(322\) −30323.3 −0.0162981
\(323\) 4.90041e6 2.61352
\(324\) −4.47667e6 −2.36915
\(325\) 1.78815e6i 0.939066i
\(326\) 678109. 0.353391
\(327\) 390991. 0.202208
\(328\) 1.21651e6i 0.624352i
\(329\) 47526.0i 0.0242070i
\(330\) 105248.i 0.0532019i
\(331\) 1.66555e6i 0.835582i 0.908543 + 0.417791i \(0.137196\pi\)
−0.908543 + 0.417791i \(0.862804\pi\)
\(332\) 511714.i 0.254790i
\(333\) 520036.i 0.256994i
\(334\) 651970. 0.319787
\(335\) 4.04166e6 1.96765
\(336\) 217734.i 0.105215i
\(337\) 629783.i 0.302076i −0.988528 0.151038i \(-0.951738\pi\)
0.988528 0.151038i \(-0.0482616\pi\)
\(338\) −646363. −0.307740
\(339\) 4.49344e6 2.12364
\(340\) 3.75403e6 1.76116
\(341\) 38640.0 0.0179950
\(342\) 3.20391e6i 1.48120i
\(343\) 380723.i 0.174732i
\(344\) −2.08262e6 −0.948887
\(345\) −2.82526e6 −1.27794
\(346\) 668184.i 0.300058i
\(347\) 2.52850e6i 1.12730i 0.826013 + 0.563651i \(0.190604\pi\)
−0.826013 + 0.563651i \(0.809396\pi\)
\(348\) 3.25228e6i 1.43960i
\(349\) 1.29822e6i 0.570539i 0.958447 + 0.285269i \(0.0920831\pi\)
−0.958447 + 0.285269i \(0.907917\pi\)
\(350\) 48650.4i 0.0212284i
\(351\) 8.78399e6i 3.80561i
\(352\) −128384. −0.0552273
\(353\) −3.43592e6 −1.46759 −0.733797 0.679369i \(-0.762254\pi\)
−0.733797 + 0.679369i \(0.762254\pi\)
\(354\) 536298.i 0.227456i
\(355\) 3.37905e6 1.42306
\(356\) 2.31511e6 0.968160
\(357\) −611036. −0.253744
\(358\) 16755.2i 0.00690944i
\(359\) 889441.i 0.364234i −0.983277 0.182117i \(-0.941705\pi\)
0.983277 0.182117i \(-0.0582950\pi\)
\(360\) 5.25752e6i 2.13808i
\(361\) −4.57328e6 −1.84697
\(362\) 290948.i 0.116693i
\(363\) −4.67120e6 −1.86064
\(364\) 265636. 0.105083
\(365\) 5.91064e6i 2.32221i
\(366\) −310361. −0.121106
\(367\) 4.03111e6i 1.56228i 0.624354 + 0.781141i \(0.285362\pi\)
−0.624354 + 0.781141i \(0.714638\pi\)
\(368\) 879103.i 0.338392i
\(369\) 6.14398e6i 2.34900i
\(370\) −124536. −0.0472923
\(371\) 375554.i 0.141657i
\(372\) 1.26314e6 0.473254
\(373\) 1.60552e6i 0.597506i 0.954330 + 0.298753i \(0.0965707\pi\)
−0.954330 + 0.298753i \(0.903429\pi\)
\(374\) 91904.0i 0.0339747i
\(375\) 2.07235e6i 0.761002i
\(376\) 500552. 0.182591
\(377\) 3.32397e6 1.20449
\(378\) 238987.i 0.0860289i
\(379\) −581217. −0.207845 −0.103923 0.994585i \(-0.533139\pi\)
−0.103923 + 0.994585i \(0.533139\pi\)
\(380\) −5.40028e6 −1.91848
\(381\) 6.77945e6i 2.39267i
\(382\) 999519. 0.350455
\(383\) 4.03085e6i 1.40411i 0.712125 + 0.702053i \(0.247733\pi\)
−0.712125 + 0.702053i \(0.752267\pi\)
\(384\) −5.41952e6 −1.87557
\(385\) 20598.5 0.00708247
\(386\) 1.16315e6 0.397346
\(387\) 1.05183e7 3.57000
\(388\) 869940. + 2.44640e6i 0.293366 + 0.824989i
\(389\) −1.94850e6 −0.652870 −0.326435 0.945220i \(-0.605847\pi\)
−0.326435 + 0.945220i \(0.605847\pi\)
\(390\) −3.51637e6 −1.17067
\(391\) −2.46706e6 −0.816091
\(392\) −1.99718e6 −0.656449
\(393\) 3.67573e6i 1.20050i
\(394\) 1.05043e6 0.340899
\(395\) 645985.i 0.208319i
\(396\) 422919. 0.135525
\(397\) −4.13875e6 −1.31793 −0.658965 0.752173i \(-0.729006\pi\)
−0.658965 + 0.752173i \(0.729006\pi\)
\(398\) 1.37772e6i 0.435966i
\(399\) 878993. 0.276410
\(400\) −1.41043e6 −0.440758
\(401\) 5.40237e6i 1.67774i 0.544336 + 0.838868i \(0.316782\pi\)
−0.544336 + 0.838868i \(0.683218\pi\)
\(402\) 3.23453e6i 0.998267i
\(403\) 1.29098e6i 0.395965i
\(404\) 1.95648e6 0.596380
\(405\) 1.15981e7i 3.51357i
\(406\) 90435.4 0.0272285
\(407\) 21458.8i 0.00642126i
\(408\) 6.43553e6i 1.91396i
\(409\) 1.02617e6i 0.303328i −0.988432 0.151664i \(-0.951537\pi\)
0.988432 0.151664i \(-0.0484632\pi\)
\(410\) 1.47133e6 0.432266
\(411\) 6.98720e6i 2.04032i
\(412\) −2.74741e6 −0.797409
\(413\) 104962. 0.0302799
\(414\) 1.61298e6i 0.462517i
\(415\) 1.32574e6 0.377867
\(416\) 4.28936e6i 1.21523i
\(417\) 7.45132e6i 2.09842i
\(418\) 132207.i 0.0370094i
\(419\) −4.26053e6 −1.18557 −0.592787 0.805360i \(-0.701972\pi\)
−0.592787 + 0.805360i \(0.701972\pi\)
\(420\) 673365. 0.186263
\(421\) −3.85677e6 −1.06052 −0.530260 0.847835i \(-0.677906\pi\)
−0.530260 + 0.847835i \(0.677906\pi\)
\(422\) 1.01022e6i 0.276143i
\(423\) −2.52804e6 −0.686963
\(424\) 3.95540e6 1.06850
\(425\) 3.95814e6i 1.06296i
\(426\) 2.70424e6i 0.721974i
\(427\) 60742.4i 0.0161221i
\(428\) 1.06388e6i 0.280726i
\(429\) 605907.i 0.158951i
\(430\) 2.51888e6i 0.656956i
\(431\) 4.34436e6 1.12650 0.563252 0.826285i \(-0.309550\pi\)
0.563252 + 0.826285i \(0.309550\pi\)
\(432\) 6.92848e6 1.78619
\(433\) 6.07134e6i 1.55620i 0.628142 + 0.778099i \(0.283816\pi\)
−0.628142 + 0.778099i \(0.716184\pi\)
\(434\) 35123.8i 0.00895111i
\(435\) 8.42598e6 2.13500
\(436\) −376248. −0.0947889
\(437\) 3.54894e6 0.888987
\(438\) 4.73027e6 1.17815
\(439\) 96532.4i 0.0239063i −0.999929 0.0119531i \(-0.996195\pi\)
0.999929 0.0119531i \(-0.00380489\pi\)
\(440\) 216947.i 0.0534222i
\(441\) 1.00868e7 2.46976
\(442\) −3.07056e6 −0.747586
\(443\) 7.95372e6i 1.92558i −0.270255 0.962789i \(-0.587108\pi\)
0.270255 0.962789i \(-0.412892\pi\)
\(444\) 701488.i 0.168874i
\(445\) 5.99797e6i 1.43583i
\(446\) 715380.i 0.170294i
\(447\) 1.17476e7i 2.78087i
\(448\) 122591.i 0.0288578i
\(449\) −1.01396e6 −0.237358 −0.118679 0.992933i \(-0.537866\pi\)
−0.118679 + 0.992933i \(0.537866\pi\)
\(450\) −2.58785e6 −0.602432
\(451\) 253526.i 0.0586923i
\(452\) −4.32400e6 −0.995497
\(453\) −1.12642e7 −2.57901
\(454\) −1.71555e6 −0.390628
\(455\) 688207.i 0.155844i
\(456\) 9.25770e6i 2.08493i
\(457\) 2.20788e6i 0.494522i −0.968949 0.247261i \(-0.920469\pi\)
0.968949 0.247261i \(-0.0795306\pi\)
\(458\) −695249. −0.154873
\(459\) 1.94437e7i 4.30771i
\(460\) 2.71872e6 0.599059
\(461\) −433567. −0.0950176 −0.0475088 0.998871i \(-0.515128\pi\)
−0.0475088 + 0.998871i \(0.515128\pi\)
\(462\) 16485.0i 0.00359321i
\(463\) 2.40559e6 0.521517 0.260759 0.965404i \(-0.416027\pi\)
0.260759 + 0.965404i \(0.416027\pi\)
\(464\) 2.62182e6i 0.565337i
\(465\) 3.27253e6i 0.701861i
\(466\) 2.62948e6i 0.560925i
\(467\) 3.94418e6 0.836882 0.418441 0.908244i \(-0.362577\pi\)
0.418441 + 0.908244i \(0.362577\pi\)
\(468\) 1.41299e7i 2.98212i
\(469\) 633047. 0.132894
\(470\) 605405.i 0.126416i
\(471\) 9.07009e6i 1.88391i
\(472\) 1.10547e6i 0.228398i
\(473\) −434029. −0.0892002
\(474\) 516980. 0.105689
\(475\) 5.69390e6i 1.15791i
\(476\) 587994. 0.118948
\(477\) −1.99768e7 −4.02003
\(478\) 1.71461e6i 0.343239i
\(479\) −6.35821e6 −1.26618 −0.633091 0.774078i \(-0.718214\pi\)
−0.633091 + 0.774078i \(0.718214\pi\)
\(480\) 1.08732e7i 2.15404i
\(481\) −716949. −0.141295
\(482\) 1.49227e6 0.292569
\(483\) −442521. −0.0863110
\(484\) 4.49505e6 0.872211
\(485\) −6.33811e6 + 2.25383e6i −1.22350 + 0.435078i
\(486\) 4.17432e6 0.801668
\(487\) 5.20333e6 0.994165 0.497083 0.867703i \(-0.334405\pi\)
0.497083 + 0.867703i \(0.334405\pi\)
\(488\) 639748. 0.121607
\(489\) 9.89595e6 1.87148
\(490\) 2.41553e6i 0.454489i
\(491\) 1.52023e6 0.284581 0.142291 0.989825i \(-0.454553\pi\)
0.142291 + 0.989825i \(0.454553\pi\)
\(492\) 8.28775e6i 1.54356i
\(493\) 7.35771e6 1.36341
\(494\) 4.41709e6 0.814364
\(495\) 1.09569e6i 0.200991i
\(496\) −1.01828e6 −0.185849
\(497\) 529261. 0.0961123
\(498\) 1.06099e6i 0.191707i
\(499\) 3.86501e6i 0.694864i 0.937705 + 0.347432i \(0.112946\pi\)
−0.937705 + 0.347432i \(0.887054\pi\)
\(500\) 1.99421e6i 0.356735i
\(501\) 9.51448e6 1.69352
\(502\) 1.16437e6i 0.206221i
\(503\) −7.98633e6 −1.40743 −0.703716 0.710481i \(-0.748477\pi\)
−0.703716 + 0.710481i \(0.748477\pi\)
\(504\) 823487.i 0.144404i
\(505\) 5.06884e6i 0.884463i
\(506\) 66558.2i 0.0115565i
\(507\) −9.43266e6 −1.62972
\(508\) 6.52380e6i 1.12161i
\(509\) 4.44864e6 0.761085 0.380543 0.924763i \(-0.375737\pi\)
0.380543 + 0.924763i \(0.375737\pi\)
\(510\) −7.78361e6 −1.32512
\(511\) 925785.i 0.156840i
\(512\) 5.90355e6 0.995263
\(513\) 2.79703e7i 4.69249i
\(514\) 2.16742e6i 0.361855i
\(515\) 7.11797e6i 1.18260i
\(516\) −1.41884e7 −2.34590
\(517\) 104317. 0.0171645
\(518\) −19506.1 −0.00319408
\(519\) 9.75111e6i 1.58904i
\(520\) 7.24830e6 1.17551
\(521\) −5.99246e6 −0.967188 −0.483594 0.875292i \(-0.660669\pi\)
−0.483594 + 0.875292i \(0.660669\pi\)
\(522\) 4.81051e6i 0.772707i
\(523\) 576600.i 0.0921765i 0.998937 + 0.0460883i \(0.0146755\pi\)
−0.998937 + 0.0460883i \(0.985324\pi\)
\(524\) 3.53713e6i 0.562759i
\(525\) 709977.i 0.112421i
\(526\) 640287.i 0.100905i
\(527\) 2.85763e6i 0.448207i
\(528\) −477916. −0.0746048
\(529\) 4.64966e6 0.722407
\(530\) 4.78395e6i 0.739771i
\(531\) 5.58320e6i 0.859303i
\(532\) −845847. −0.129573
\(533\) 8.47042e6 1.29148
\(534\) −4.80016e6 −0.728455
\(535\) 2.75629e6 0.416332
\(536\) 6.66735e6i 1.00240i
\(537\) 244517.i 0.0365909i
\(538\) −309273. −0.0460666
\(539\) −416222. −0.0617096
\(540\) 2.14270e7i 3.16212i
\(541\) 3.16338e6i 0.464685i 0.972634 + 0.232342i \(0.0746389\pi\)
−0.972634 + 0.232342i \(0.925361\pi\)
\(542\) 4.46315e6i 0.652594i
\(543\) 4.24594e6i 0.617979i
\(544\) 9.49465e6i 1.37557i
\(545\) 974778.i 0.140577i
\(546\) −550770. −0.0790658
\(547\) 1.03552e6 0.147975 0.0739875 0.997259i \(-0.476427\pi\)
0.0739875 + 0.997259i \(0.476427\pi\)
\(548\) 6.72372e6i 0.956442i
\(549\) −3.23106e6 −0.457524
\(550\) 106785. 0.0150524
\(551\) −1.05843e7 −1.48519
\(552\) 4.66070e6i 0.651034i
\(553\) 101181.i 0.0140697i
\(554\) 3.27915e6i 0.453929i
\(555\) −1.81741e6 −0.250449
\(556\) 7.17034e6i 0.983677i
\(557\) 9.37276e6 1.28006 0.640029 0.768351i \(-0.278922\pi\)
0.640029 + 0.768351i \(0.278922\pi\)
\(558\) −1.86833e6 −0.254020
\(559\) 1.45011e7i 1.96278i
\(560\) −542831. −0.0731467
\(561\) 1.34120e6i 0.179922i
\(562\) 1.31524e6i 0.175657i
\(563\) 7.31437e6i 0.972537i −0.873809 0.486268i \(-0.838358\pi\)
0.873809 0.486268i \(-0.161642\pi\)
\(564\) 3.41013e6 0.451413
\(565\) 1.12026e7i 1.47638i
\(566\) −476517. −0.0625226
\(567\) 1.81661e6i 0.237304i
\(568\) 5.57426e6i 0.724964i
\(569\) 7.38802e6i 0.956638i −0.878186 0.478319i \(-0.841246\pi\)
0.878186 0.478319i \(-0.158754\pi\)
\(570\) 1.11969e7 1.44349
\(571\) −6.07542e6 −0.779805 −0.389902 0.920856i \(-0.627491\pi\)
−0.389902 + 0.920856i \(0.627491\pi\)
\(572\) 583059.i 0.0745113i
\(573\) 1.45864e7 1.85593
\(574\) 230455. 0.0291949
\(575\) 2.86654e6i 0.361567i
\(576\) −6.52095e6 −0.818945
\(577\) 4.84527e6i 0.605868i 0.953011 + 0.302934i \(0.0979663\pi\)
−0.953011 + 0.302934i \(0.902034\pi\)
\(578\) −3.96386e6 −0.493513
\(579\) 1.69744e7 2.10425
\(580\) −8.10825e6 −1.00082
\(581\) 207652. 0.0255208
\(582\) −1.80373e6 5.07237e6i −0.220732 0.620731i
\(583\) 824325. 0.100445
\(584\) −9.75051e6 −1.18303
\(585\) −3.66076e7 −4.42264
\(586\) −1.31878e6 −0.158646
\(587\) 1.43096e6i 0.171409i 0.996321 + 0.0857043i \(0.0273140\pi\)
−0.996321 + 0.0857043i \(0.972686\pi\)
\(588\) −1.36063e7 −1.62291
\(589\) 4.11078e6i 0.488243i
\(590\) 1.33704e6 0.158130
\(591\) 1.53293e7 1.80532
\(592\) 565502.i 0.0663178i
\(593\) 2.93816e6 0.343114 0.171557 0.985174i \(-0.445120\pi\)
0.171557 + 0.985174i \(0.445120\pi\)
\(594\) −524565. −0.0610005
\(595\) 1.52337e6i 0.176406i
\(596\) 1.13046e7i 1.30359i
\(597\) 2.01057e7i 2.30878i
\(598\) −2.22374e6 −0.254291
\(599\) 8.81482e6i 1.00380i 0.864926 + 0.501899i \(0.167365\pi\)
−0.864926 + 0.501899i \(0.832635\pi\)
\(600\) 7.47759e6 0.847976
\(601\) 1.73019e7i 1.95392i −0.213421 0.976960i \(-0.568461\pi\)
0.213421 0.976960i \(-0.431539\pi\)
\(602\) 394533.i 0.0443703i
\(603\) 3.36735e7i 3.77134i
\(604\) 1.08394e7 1.20896
\(605\) 1.16457e7i 1.29354i
\(606\) −4.05658e6 −0.448723
\(607\) −2.23416e6 −0.246117 −0.123059 0.992399i \(-0.539270\pi\)
−0.123059 + 0.992399i \(0.539270\pi\)
\(608\) 1.36583e7i 1.49844i
\(609\) 1.31976e6 0.144196
\(610\) 773760.i 0.0841941i
\(611\) 3.48529e6i 0.377691i
\(612\) 3.12771e7i 3.37557i
\(613\) 99675.7 0.0107137 0.00535683 0.999986i \(-0.498295\pi\)
0.00535683 + 0.999986i \(0.498295\pi\)
\(614\) −5.76700e6 −0.617347
\(615\) 2.14718e7 2.28919
\(616\) 33980.5i 0.00360809i
\(617\) −7.93517e6 −0.839157 −0.419579 0.907719i \(-0.637822\pi\)
−0.419579 + 0.907719i \(0.637822\pi\)
\(618\) 5.69650e6 0.599980
\(619\) 9.05446e6i 0.949808i −0.880038 0.474904i \(-0.842483\pi\)
0.880038 0.474904i \(-0.157517\pi\)
\(620\) 3.14912e6i 0.329011i
\(621\) 1.40814e7i 1.46527i
\(622\) 5.09475e6i 0.528016i
\(623\) 939464.i 0.0969750i
\(624\) 1.59674e7i 1.64162i
\(625\) −1.18683e7 −1.21531
\(626\) −5.00118e6 −0.510078
\(627\) 1.92935e6i 0.195994i
\(628\) 8.72807e6i 0.883119i
\(629\) −1.58699e6 −0.159937
\(630\) −995987. −0.0999775
\(631\) −7.82386e6 −0.782253 −0.391127 0.920337i \(-0.627915\pi\)
−0.391127 + 0.920337i \(0.627915\pi\)
\(632\) −1.06565e6 −0.106126
\(633\) 1.47426e7i 1.46239i
\(634\) 993283.i 0.0981409i
\(635\) 1.69018e7 1.66341
\(636\) 2.69471e7 2.64162
\(637\) 1.39062e7i 1.35787i
\(638\) 198502.i 0.0193069i
\(639\) 2.81529e7i 2.72754i
\(640\) 1.35114e7i 1.30391i
\(641\) 6.05239e6i 0.581811i 0.956752 + 0.290905i \(0.0939565\pi\)
−0.956752 + 0.290905i \(0.906044\pi\)
\(642\) 2.20585e6i 0.211222i
\(643\) −1.09121e7 −1.04083 −0.520417 0.853912i \(-0.674223\pi\)
−0.520417 + 0.853912i \(0.674223\pi\)
\(644\) 425834. 0.0404600
\(645\) 3.67591e7i 3.47909i
\(646\) 9.77737e6 0.921809
\(647\) −1.39398e7 −1.30917 −0.654584 0.755990i \(-0.727156\pi\)
−0.654584 + 0.755990i \(0.727156\pi\)
\(648\) −1.91329e7 −1.78996
\(649\) 230386.i 0.0214706i
\(650\) 3.56775e6i 0.331216i
\(651\) 512577.i 0.0474031i
\(652\) −9.52278e6 −0.877293
\(653\) 4.73716e6i 0.434745i 0.976089 + 0.217373i \(0.0697486\pi\)
−0.976089 + 0.217373i \(0.930251\pi\)
\(654\) 780112. 0.0713202
\(655\) 9.16395e6 0.834602
\(656\) 6.68114e6i 0.606165i
\(657\) 4.92451e7 4.45091
\(658\) 94824.7i 0.00853801i
\(659\) 624376.i 0.0560057i −0.999608 0.0280029i \(-0.991085\pi\)
0.999608 0.0280029i \(-0.00891476\pi\)
\(660\) 1.47801e6i 0.132074i
\(661\) 6.38690e6 0.568573 0.284287 0.958739i \(-0.408243\pi\)
0.284287 + 0.958739i \(0.408243\pi\)
\(662\) 3.32314e6i 0.294716i
\(663\) −4.48100e7 −3.95905
\(664\) 2.18702e6i 0.192501i
\(665\) 2.19141e6i 0.192163i
\(666\) 1.03758e6i 0.0906437i
\(667\) 5.32856e6 0.463762
\(668\) −9.15570e6 −0.793872
\(669\) 1.04399e7i 0.901840i
\(670\) 8.06399e6 0.694006
\(671\) 133327. 0.0114317
\(672\) 1.70307e6i 0.145482i
\(673\) −1.24911e7 −1.06307 −0.531536 0.847036i \(-0.678385\pi\)
−0.531536 + 0.847036i \(0.678385\pi\)
\(674\) 1.25655e6i 0.106545i
\(675\) −2.25921e7 −1.90852
\(676\) 9.07697e6 0.763966
\(677\) 2.00378e7 1.68027 0.840135 0.542377i \(-0.182476\pi\)
0.840135 + 0.542377i \(0.182476\pi\)
\(678\) 8.96539e6 0.749023
\(679\) −992740. + 353018.i −0.0826344 + 0.0293848i
\(680\) 1.60444e7 1.33061
\(681\) −2.50357e7 −2.06868
\(682\) 77095.1 0.00634696
\(683\) 1.44633e7 1.18635 0.593177 0.805072i \(-0.297873\pi\)
0.593177 + 0.805072i \(0.297873\pi\)
\(684\) 4.49930e7i 3.67709i
\(685\) −1.74198e7 −1.41845
\(686\) 759625.i 0.0616295i
\(687\) −1.01461e7 −0.820174
\(688\) 1.14379e7 0.921247
\(689\) 2.75411e7i 2.21021i
\(690\) −5.63700e6 −0.450739
\(691\) −7.06083e6 −0.562549 −0.281275 0.959627i \(-0.590757\pi\)
−0.281275 + 0.959627i \(0.590757\pi\)
\(692\) 9.38340e6i 0.744895i
\(693\) 171619.i 0.0135748i
\(694\) 5.04491e6i 0.397608i
\(695\) −1.85768e7 −1.45885
\(696\) 1.39000e7i 1.08765i
\(697\) 1.87496e7 1.46187
\(698\) 2.59023e6i 0.201234i
\(699\) 3.83732e7i 2.97054i
\(700\) 683205.i 0.0526994i
\(701\) 8.98565e6 0.690644 0.345322 0.938484i \(-0.387770\pi\)
0.345322 + 0.938484i \(0.387770\pi\)
\(702\) 1.75260e7i 1.34227i
\(703\) 2.28294e6 0.174223
\(704\) 269082. 0.0204622
\(705\) 8.83494e6i 0.669469i
\(706\) −6.85540e6 −0.517632
\(707\) 793934.i 0.0597359i
\(708\) 7.53130e6i 0.564660i
\(709\) 3.87999e6i 0.289878i −0.989441 0.144939i \(-0.953701\pi\)
0.989441 0.144939i \(-0.0462986\pi\)
\(710\) 6.74193e6 0.501925
\(711\) 5.38209e6 0.399279
\(712\) 9.89458e6 0.731472
\(713\) 2.06954e6i 0.152458i
\(714\) −1.21915e6 −0.0894976
\(715\) 1.51058e6 0.110504
\(716\) 235296.i 0.0171527i
\(717\) 2.50221e7i 1.81772i
\(718\) 1.77463e6i 0.128468i
\(719\) 9.98891e6i 0.720603i −0.932836 0.360301i \(-0.882674\pi\)
0.932836 0.360301i \(-0.117326\pi\)
\(720\) 2.88747e7i 2.07580i
\(721\) 1.11489e6i 0.0798719i
\(722\) −9.12468e6 −0.651441
\(723\) 2.17773e7 1.54938
\(724\) 4.08583e6i 0.289690i
\(725\) 8.54911e6i 0.604054i
\(726\) −9.32006e6 −0.656262
\(727\) −1.73293e7 −1.21603 −0.608017 0.793924i \(-0.708035\pi\)
−0.608017 + 0.793924i \(0.708035\pi\)
\(728\) 1.13530e6 0.0793933
\(729\) 2.20931e7 1.53970
\(730\) 1.17930e7i 0.819063i
\(731\) 3.20987e7i 2.22174i
\(732\) 4.35845e6 0.300645
\(733\) 2.85272e7 1.96110 0.980548 0.196281i \(-0.0628863\pi\)
0.980548 + 0.196281i \(0.0628863\pi\)
\(734\) 8.04294e6i 0.551029i
\(735\) 3.52510e7i 2.40687i
\(736\) 6.87616e6i 0.467898i
\(737\) 1.38951e6i 0.0942308i
\(738\) 1.22586e7i 0.828512i
\(739\) 2.47307e7i 1.66581i 0.553414 + 0.832906i \(0.313325\pi\)
−0.553414 + 0.832906i \(0.686675\pi\)
\(740\) 1.74888e6 0.117403
\(741\) 6.44605e7 4.31269
\(742\) 749312.i 0.0499635i
\(743\) −9.73513e6 −0.646948 −0.323474 0.946237i \(-0.604851\pi\)
−0.323474 + 0.946237i \(0.604851\pi\)
\(744\) 5.39854e6 0.357556
\(745\) −2.92879e7 −1.93329
\(746\) 3.20335e6i 0.210745i
\(747\) 1.10456e7i 0.724247i
\(748\) 1.29062e6i 0.0843422i
\(749\) 431718. 0.0281187
\(750\) 4.13479e6i 0.268411i
\(751\) 2.05585e7 1.33012 0.665061 0.746789i \(-0.268406\pi\)
0.665061 + 0.746789i \(0.268406\pi\)
\(752\) −2.74907e6 −0.177272
\(753\) 1.69922e7i 1.09210i
\(754\) 6.63203e6 0.424833
\(755\) 2.80826e7i 1.79296i
\(756\) 3.35613e6i 0.213567i
\(757\) 1.58872e7i 1.00764i 0.863808 + 0.503822i \(0.168073\pi\)
−0.863808 + 0.503822i \(0.831927\pi\)
\(758\) −1.15965e6 −0.0733086
\(759\) 971313.i 0.0612005i
\(760\) −2.30803e7 −1.44946
\(761\) 6.63090e6i 0.415060i 0.978229 + 0.207530i \(0.0665425\pi\)
−0.978229 + 0.207530i \(0.933458\pi\)
\(762\) 1.35265e7i 0.843912i
\(763\) 152680.i 0.00949446i
\(764\) −1.40364e7 −0.870006
\(765\) −8.10322e7 −5.00616
\(766\) 8.04242e6i 0.495239i
\(767\) 7.69730e6 0.472443
\(768\) −767088. −0.0469291
\(769\) 1.10337e7i 0.672831i −0.941714 0.336415i \(-0.890785\pi\)
0.941714 0.336415i \(-0.109215\pi\)
\(770\) 41098.5 0.00249804
\(771\) 3.16301e7i 1.91630i
\(772\) −1.63343e7 −0.986411
\(773\) −1.48462e7 −0.893645 −0.446823 0.894623i \(-0.647444\pi\)
−0.446823 + 0.894623i \(0.647444\pi\)
\(774\) 2.09863e7 1.25917
\(775\) 3.32035e6 0.198577
\(776\) 3.71804e6 + 1.04557e7i 0.221646 + 0.623302i
\(777\) −284661. −0.0169151
\(778\) −3.88768e6 −0.230272
\(779\) −2.69718e7 −1.59245
\(780\) 4.93809e7 2.90618
\(781\) 1.16170e6i 0.0681503i
\(782\) −4.92233e6 −0.287842
\(783\) 4.19960e7i 2.44796i
\(784\) 1.09686e7 0.637327
\(785\) 2.26126e7 1.30971
\(786\) 7.33388e6i 0.423426i
\(787\) −7.77655e6 −0.447559 −0.223780 0.974640i \(-0.571840\pi\)
−0.223780 + 0.974640i \(0.571840\pi\)
\(788\) −1.47513e7 −0.846281
\(789\) 9.34400e6i 0.534368i
\(790\) 1.28888e6i 0.0734759i
\(791\) 1.75466e6i 0.0997132i
\(792\) 1.80752e6 0.102393
\(793\) 4.45451e6i 0.251546i
\(794\) −8.25770e6 −0.464844
\(795\) 6.98144e7i 3.91766i
\(796\) 1.93475e7i 1.08229i
\(797\) 2.97502e7i 1.65899i −0.558514 0.829495i \(-0.688628\pi\)
0.558514 0.829495i \(-0.311372\pi\)
\(798\) 1.75378e6 0.0974919
\(799\) 7.71482e6i 0.427522i
\(800\) −1.10321e7 −0.609441
\(801\) −4.99727e7 −2.75202
\(802\) 1.07789e7i 0.591750i
\(803\) −2.03206e6 −0.111211
\(804\) 4.54230e7i 2.47820i
\(805\) 1.10325e6i 0.0600043i
\(806\) 2.57578e6i 0.139660i
\(807\) −4.51335e6 −0.243958
\(808\) 8.36183e6 0.450581
\(809\) 2.58345e7 1.38781 0.693903 0.720068i \(-0.255890\pi\)
0.693903 + 0.720068i \(0.255890\pi\)
\(810\) 2.31407e7i 1.23927i
\(811\) 4.56383e6 0.243656 0.121828 0.992551i \(-0.461124\pi\)
0.121828 + 0.992551i \(0.461124\pi\)
\(812\) −1.27000e6 −0.0675947
\(813\) 6.51327e7i 3.45599i
\(814\) 42815.0i 0.00226483i
\(815\) 2.46715e7i 1.30107i
\(816\) 3.53444e7i 1.85821i
\(817\) 4.61750e7i 2.42020i
\(818\) 2.04744e6i 0.106986i
\(819\) −5.73386e6 −0.298702
\(820\) −2.06621e7 −1.07310
\(821\) 3.60552e6i 0.186685i 0.995634 + 0.0933426i \(0.0297552\pi\)
−0.995634 + 0.0933426i \(0.970245\pi\)
\(822\) 1.39410e7i 0.719638i
\(823\) 1.94009e7 0.998441 0.499221 0.866475i \(-0.333620\pi\)
0.499221 + 0.866475i \(0.333620\pi\)
\(824\) −1.17422e7 −0.602465
\(825\) 1.55837e6 0.0797141
\(826\) 209421. 0.0106800
\(827\) 7.54254e6i 0.383490i 0.981445 + 0.191745i \(0.0614147\pi\)
−0.981445 + 0.191745i \(0.938585\pi\)
\(828\) 2.26513e7i 1.14820i
\(829\) −9.04398e6 −0.457060 −0.228530 0.973537i \(-0.573392\pi\)
−0.228530 + 0.973537i \(0.573392\pi\)
\(830\) 2.64515e6 0.133277
\(831\) 4.78542e7i 2.40390i
\(832\) 8.99014e6i 0.450255i
\(833\) 3.07817e7i 1.53702i
\(834\) 1.48670e7i 0.740130i
\(835\) 2.37205e7i 1.17736i
\(836\) 1.85660e6i 0.0918760i
\(837\) −1.63106e7 −0.804743
\(838\) −8.50068e6 −0.418161
\(839\) 2.46864e7i 1.21075i 0.795942 + 0.605373i \(0.206976\pi\)
−0.795942 + 0.605373i \(0.793024\pi\)
\(840\) 2.87790e6 0.140727
\(841\) 4.61936e6 0.225212
\(842\) −7.69509e6 −0.374053
\(843\) 1.91939e7i 0.930238i
\(844\) 1.41866e7i 0.685525i
\(845\) 2.35165e7i 1.13300i
\(846\) −5.04399e6 −0.242297
\(847\) 1.82408e6i 0.0873644i
\(848\) −2.17233e7 −1.03738
\(849\) −6.95402e6 −0.331106
\(850\) 7.89734e6i 0.374916i
\(851\) −1.14932e6 −0.0544024
\(852\) 3.79761e7i 1.79230i
\(853\) 2.18992e7i 1.03052i 0.857034 + 0.515260i \(0.172305\pi\)
−0.857034 + 0.515260i \(0.827695\pi\)
\(854\) 121194.i 0.00568640i
\(855\) 1.16567e8 5.45333
\(856\) 4.54693e6i 0.212096i
\(857\) −3.74254e6 −0.174066 −0.0870330 0.996205i \(-0.527739\pi\)
−0.0870330 + 0.996205i \(0.527739\pi\)
\(858\) 1.20892e6i 0.0560632i
\(859\) 2.40580e7i 1.11244i 0.831035 + 0.556220i \(0.187749\pi\)
−0.831035 + 0.556220i \(0.812251\pi\)
\(860\) 3.53730e7i 1.63089i
\(861\) 3.36314e6 0.154610
\(862\) 8.66794e6 0.397327
\(863\) 2.24494e7i 1.02607i −0.858368 0.513035i \(-0.828521\pi\)
0.858368 0.513035i \(-0.171479\pi\)
\(864\) 5.41931e7 2.46979
\(865\) −2.43104e7 −1.10472
\(866\) 1.21136e7i 0.548883i
\(867\) −5.78463e7 −2.61353
\(868\) 493248.i 0.0222211i
\(869\) −222087. −0.00997641
\(870\) 1.68117e7 0.753030
\(871\) 4.64242e7 2.07347
\(872\) −1.60805e6 −0.0716156
\(873\) −1.87780e7 5.28066e7i −0.833900 2.34505i
\(874\) 7.08091e6 0.313553
\(875\) −809241. −0.0357321
\(876\) −6.64278e7 −2.92476
\(877\) 3.18309e7 1.39750 0.698748 0.715368i \(-0.253741\pi\)
0.698748 + 0.715368i \(0.253741\pi\)
\(878\) 192603.i 0.00843193i
\(879\) −1.92455e7 −0.840151
\(880\) 1.19149e6i 0.0518661i
\(881\) −1.98695e7 −0.862475 −0.431237 0.902239i \(-0.641923\pi\)
−0.431237 + 0.902239i \(0.641923\pi\)
\(882\) 2.01253e7 0.871105
\(883\) 2.95149e7i 1.27391i −0.770899 0.636957i \(-0.780193\pi\)
0.770899 0.636957i \(-0.219807\pi\)
\(884\) 4.31202e7 1.85588
\(885\) 1.95120e7 0.837421
\(886\) 1.58694e7i 0.679166i
\(887\) 2.04148e7i 0.871237i −0.900131 0.435619i \(-0.856530\pi\)
0.900131 0.435619i \(-0.143470\pi\)
\(888\) 2.99810e6i 0.127589i
\(889\) 2.64733e6 0.112345
\(890\) 1.19672e7i 0.506430i
\(891\) −3.98738e6 −0.168265
\(892\) 1.00462e7i 0.422755i
\(893\) 1.10980e7i 0.465711i
\(894\) 2.34390e7i 0.980834i
\(895\) −609603. −0.0254384
\(896\) 2.11629e6i 0.0880653i
\(897\) −3.24520e7 −1.34667
\(898\) −2.02307e6 −0.0837181
\(899\) 6.17214e6i 0.254704i
\(900\) 3.63416e7 1.49554
\(901\) 6.09631e7i 2.50181i
\(902\) 505839.i 0.0207012i
\(903\) 5.75759e6i 0.234975i
\(904\) −1.84804e7 −0.752125
\(905\) 1.05855e7 0.429626
\(906\) −2.24745e7 −0.909639
\(907\) 2.32820e7i 0.939726i −0.882739 0.469863i \(-0.844303\pi\)
0.882739 0.469863i \(-0.155697\pi\)
\(908\) 2.40917e7 0.969733
\(909\) −4.22315e7 −1.69522
\(910\) 1.37312e6i 0.0549674i
\(911\) 3.71188e7i 1.48183i −0.671599 0.740915i \(-0.734392\pi\)
0.671599 0.740915i \(-0.265608\pi\)
\(912\) 5.08439e7i 2.02419i
\(913\) 455786.i 0.0180961i
\(914\) 4.40521e6i 0.174422i
\(915\) 1.12918e7i 0.445873i
\(916\) 9.76348e6 0.384473
\(917\) 1.43535e6 0.0563683
\(918\) 3.87943e7i 1.51936i
\(919\) 1.55502e7i 0.607362i 0.952774 + 0.303681i \(0.0982157\pi\)
−0.952774 + 0.303681i \(0.901784\pi\)
\(920\) 1.16196e7 0.452606
\(921\) −8.41604e7 −3.26933
\(922\) −865061. −0.0335135
\(923\) 3.88131e7 1.49959
\(924\) 231501.i 0.00892015i
\(925\) 1.84396e6i 0.0708595i
\(926\) 4.79967e6 0.183943
\(927\) 5.93041e7 2.26666
\(928\) 2.05073e7i 0.781698i
\(929\) 4.40630e6i 0.167508i 0.996486 + 0.0837538i \(0.0266909\pi\)
−0.996486 + 0.0837538i \(0.973309\pi\)
\(930\) 6.52940e6i 0.247552i
\(931\) 4.42805e7i 1.67432i
\(932\) 3.69262e7i 1.39250i
\(933\) 7.43499e7i 2.79625i
\(934\) 7.86949e6 0.295175
\(935\) 3.34373e6 0.125084
\(936\) 6.03900e7i 2.25307i
\(937\) −2.32408e7 −0.864773 −0.432387 0.901688i \(-0.642328\pi\)
−0.432387 + 0.901688i \(0.642328\pi\)
\(938\) 1.26307e6 0.0468726
\(939\) −7.29844e7 −2.70126
\(940\) 8.50178e6i 0.313827i
\(941\) 1.76935e7i 0.651387i 0.945475 + 0.325694i \(0.105598\pi\)
−0.945475 + 0.325694i \(0.894402\pi\)
\(942\) 1.80968e7i 0.664469i
\(943\) 1.35787e7 0.497255
\(944\) 6.07133e6i 0.221745i
\(945\) −8.69501e6 −0.316731
\(946\) −865982. −0.0314616
\(947\) 3.43945e6i 0.124627i 0.998057 + 0.0623137i \(0.0198479\pi\)
−0.998057 + 0.0623137i \(0.980152\pi\)
\(948\) −7.26003e6 −0.262372
\(949\) 6.78919e7i 2.44710i
\(950\) 1.13606e7i 0.408405i
\(951\) 1.44954e7i 0.519732i
\(952\) 2.51303e6 0.0898682
\(953\) 2.35757e7i 0.840876i 0.907321 + 0.420438i \(0.138124\pi\)
−0.907321 + 0.420438i \(0.861876\pi\)
\(954\) −3.98580e7 −1.41790
\(955\) 3.63653e7i 1.29027i
\(956\) 2.40786e7i 0.852091i
\(957\) 2.89682e6i 0.102245i
\(958\) −1.26860e7 −0.446592
\(959\) −2.72846e6 −0.0958013
\(960\) 2.27893e7i 0.798091i
\(961\) −2.62320e7 −0.916268
\(962\) −1.43047e6 −0.0498357
\(963\) 2.29643e7i 0.797972i
\(964\) −2.09561e7 −0.726304
\(965\) 4.23188e7i 1.46290i
\(966\) −882925. −0.0304425
\(967\) 1.55092e7 0.533363 0.266681 0.963785i \(-0.414073\pi\)
0.266681 + 0.963785i \(0.414073\pi\)
\(968\) 1.92115e7 0.658979
\(969\) 1.42685e8 4.88169
\(970\) −1.26459e7 + 4.49688e6i −0.431539 + 0.153455i
\(971\) −3.77320e6 −0.128428 −0.0642142 0.997936i \(-0.520454\pi\)
−0.0642142 + 0.997936i \(0.520454\pi\)
\(972\) −5.86205e7 −1.99014
\(973\) −2.90970e6 −0.0985293
\(974\) 1.03818e7 0.350650
\(975\) 5.20658e7i 1.75405i
\(976\) −3.51355e6 −0.118065
\(977\) 1.69465e6i 0.0567993i −0.999597 0.0283996i \(-0.990959\pi\)
0.999597 0.0283996i \(-0.00904110\pi\)
\(978\) 1.97446e7 0.660086
\(979\) 2.06208e6 0.0687621
\(980\) 3.39217e7i 1.12827i
\(981\) 8.12146e6 0.269440
\(982\) 3.03319e6 0.100374
\(983\) 3.64667e7i 1.20368i −0.798615 0.601842i \(-0.794434\pi\)
0.798615 0.601842i \(-0.205566\pi\)
\(984\) 3.54211e7i 1.16620i
\(985\) 3.82175e7i 1.25508i
\(986\) 1.46802e7 0.480884
\(987\) 1.38382e6i 0.0452154i
\(988\) −6.20297e7 −2.02166
\(989\) 2.32463e7i 0.755725i
\(990\) 2.18615e6i 0.0708910i
\(991\) 8.64246e6i 0.279546i 0.990184 + 0.139773i \(0.0446373\pi\)
−0.990184 + 0.139773i \(0.955363\pi\)
\(992\) −7.96474e6 −0.256976
\(993\) 4.84961e7i 1.56075i
\(994\) 1.05599e6 0.0338996
\(995\) −5.01253e7 −1.60509
\(996\) 1.48996e7i 0.475912i
\(997\) −4.45178e6 −0.141839 −0.0709195 0.997482i \(-0.522593\pi\)
−0.0709195 + 0.997482i \(0.522593\pi\)
\(998\) 7.71154e6i 0.245084i
\(999\) 9.05816e6i 0.287161i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 97.6.b.a.96.23 40
97.96 even 2 inner 97.6.b.a.96.24 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
97.6.b.a.96.23 40 1.1 even 1 trivial
97.6.b.a.96.24 yes 40 97.96 even 2 inner