Properties

Label 97.6.b.a.96.2
Level $97$
Weight $6$
Character 97.96
Analytic conductor $15.557$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [97,6,Mod(96,97)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(97, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("97.96"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 97 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 97.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.5572305219\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 96.2
Character \(\chi\) \(=\) 97.96
Dual form 97.6.b.a.96.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-10.9603 q^{2} +12.4768 q^{3} +88.1276 q^{4} +77.3203i q^{5} -136.749 q^{6} +129.228i q^{7} -615.173 q^{8} -87.3297 q^{9} -847.452i q^{10} -350.587 q^{11} +1099.55 q^{12} +1085.83i q^{13} -1416.38i q^{14} +964.710i q^{15} +3922.38 q^{16} -1100.57i q^{17} +957.157 q^{18} -1031.75i q^{19} +6814.05i q^{20} +1612.35i q^{21} +3842.53 q^{22} -834.244i q^{23} -7675.39 q^{24} -2853.43 q^{25} -11901.0i q^{26} -4121.45 q^{27} +11388.6i q^{28} -7644.83i q^{29} -10573.5i q^{30} +4505.54 q^{31} -23304.9 q^{32} -4374.20 q^{33} +12062.5i q^{34} -9991.97 q^{35} -7696.15 q^{36} -2132.10i q^{37} +11308.3i q^{38} +13547.7i q^{39} -47565.4i q^{40} +9988.95i q^{41} -17671.8i q^{42} -500.775 q^{43} -30896.4 q^{44} -6752.36i q^{45} +9143.54i q^{46} -17980.2 q^{47} +48938.8 q^{48} +107.062 q^{49} +31274.4 q^{50} -13731.6i q^{51} +95691.9i q^{52} +30119.4 q^{53} +45172.3 q^{54} -27107.5i q^{55} -79497.8i q^{56} -12873.0i q^{57} +83789.4i q^{58} -7457.09i q^{59} +85017.5i q^{60} -47987.8 q^{61} -49381.9 q^{62} -11285.5i q^{63} +129911. q^{64} -83957.0 q^{65} +47942.4 q^{66} -3983.03i q^{67} -96990.5i q^{68} -10408.7i q^{69} +109515. q^{70} +39145.5i q^{71} +53722.9 q^{72} -21442.3 q^{73} +23368.4i q^{74} -35601.7 q^{75} -90925.8i q^{76} -45305.7i q^{77} -148487. i q^{78} -38480.9 q^{79} +303280. i q^{80} -30201.4 q^{81} -109482. i q^{82} +114812. i q^{83} +142093. i q^{84} +85096.4 q^{85} +5488.63 q^{86} -95382.9i q^{87} +215672. q^{88} -87567.0 q^{89} +74007.7i q^{90} -140320. q^{91} -73519.9i q^{92} +56214.6 q^{93} +197068. q^{94} +79775.4 q^{95} -290770. q^{96} +(89392.4 - 24420.2i) q^{97} -1173.43 q^{98} +30616.6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 2 q^{2} + 40 q^{3} + 638 q^{4} - 130 q^{6} + 180 q^{8} + 3300 q^{9} + 382 q^{11} + 2586 q^{12} + 10174 q^{16} + 4738 q^{18} + 1996 q^{22} - 3102 q^{24} - 25178 q^{25} + 3046 q^{27} + 14796 q^{31}+ \cdots - 562238 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/97\mathbb{Z}\right)^\times\).

\(n\) \(5\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −10.9603 −1.93752 −0.968760 0.247999i \(-0.920227\pi\)
−0.968760 + 0.247999i \(0.920227\pi\)
\(3\) 12.4768 0.800386 0.400193 0.916431i \(-0.368943\pi\)
0.400193 + 0.916431i \(0.368943\pi\)
\(4\) 88.1276 2.75399
\(5\) 77.3203i 1.38315i 0.722306 + 0.691574i \(0.243082\pi\)
−0.722306 + 0.691574i \(0.756918\pi\)
\(6\) −136.749 −1.55077
\(7\) 129.228i 0.996810i 0.866944 + 0.498405i \(0.166081\pi\)
−0.866944 + 0.498405i \(0.833919\pi\)
\(8\) −615.173 −3.39838
\(9\) −87.3297 −0.359381
\(10\) 847.452i 2.67988i
\(11\) −350.587 −0.873603 −0.436801 0.899558i \(-0.643889\pi\)
−0.436801 + 0.899558i \(0.643889\pi\)
\(12\) 1099.55 2.20425
\(13\) 1085.83i 1.78199i 0.454015 + 0.890994i \(0.349991\pi\)
−0.454015 + 0.890994i \(0.650009\pi\)
\(14\) 1416.38i 1.93134i
\(15\) 964.710i 1.10705i
\(16\) 3922.38 3.83045
\(17\) 1100.57i 0.923624i −0.886978 0.461812i \(-0.847199\pi\)
0.886978 0.461812i \(-0.152801\pi\)
\(18\) 957.157 0.696309
\(19\) 1031.75i 0.655679i −0.944733 0.327840i \(-0.893679\pi\)
0.944733 0.327840i \(-0.106321\pi\)
\(20\) 6814.05i 3.80917i
\(21\) 1612.35i 0.797833i
\(22\) 3842.53 1.69262
\(23\) 834.244i 0.328832i −0.986391 0.164416i \(-0.947426\pi\)
0.986391 0.164416i \(-0.0525739\pi\)
\(24\) −7675.39 −2.72002
\(25\) −2853.43 −0.913099
\(26\) 11901.0i 3.45264i
\(27\) −4121.45 −1.08803
\(28\) 11388.6i 2.74520i
\(29\) 7644.83i 1.68800i −0.536343 0.844000i \(-0.680195\pi\)
0.536343 0.844000i \(-0.319805\pi\)
\(30\) 10573.5i 2.14494i
\(31\) 4505.54 0.842059 0.421029 0.907047i \(-0.361669\pi\)
0.421029 + 0.907047i \(0.361669\pi\)
\(32\) −23304.9 −4.02320
\(33\) −4374.20 −0.699220
\(34\) 12062.5i 1.78954i
\(35\) −9991.97 −1.37874
\(36\) −7696.15 −0.989732
\(37\) 2132.10i 0.256037i −0.991772 0.128018i \(-0.959138\pi\)
0.991772 0.128018i \(-0.0408617\pi\)
\(38\) 11308.3i 1.27039i
\(39\) 13547.7i 1.42628i
\(40\) 47565.4i 4.70047i
\(41\) 9988.95i 0.928026i 0.885828 + 0.464013i \(0.153591\pi\)
−0.885828 + 0.464013i \(0.846409\pi\)
\(42\) 17671.8i 1.54582i
\(43\) −500.775 −0.0413021 −0.0206510 0.999787i \(-0.506574\pi\)
−0.0206510 + 0.999787i \(0.506574\pi\)
\(44\) −30896.4 −2.40589
\(45\) 6752.36i 0.497078i
\(46\) 9143.54i 0.637118i
\(47\) −17980.2 −1.18727 −0.593635 0.804734i \(-0.702308\pi\)
−0.593635 + 0.804734i \(0.702308\pi\)
\(48\) 48938.8 3.06584
\(49\) 107.062 0.00637007
\(50\) 31274.4 1.76915
\(51\) 13731.6i 0.739256i
\(52\) 95691.9i 4.90757i
\(53\) 30119.4 1.47285 0.736423 0.676521i \(-0.236513\pi\)
0.736423 + 0.676521i \(0.236513\pi\)
\(54\) 45172.3 2.10808
\(55\) 27107.5i 1.20832i
\(56\) 79497.8i 3.38754i
\(57\) 12873.0i 0.524797i
\(58\) 83789.4i 3.27054i
\(59\) 7457.09i 0.278894i −0.990230 0.139447i \(-0.955467\pi\)
0.990230 0.139447i \(-0.0445325\pi\)
\(60\) 85017.5i 3.04881i
\(61\) −47987.8 −1.65123 −0.825613 0.564238i \(-0.809170\pi\)
−0.825613 + 0.564238i \(0.809170\pi\)
\(62\) −49381.9 −1.63151
\(63\) 11285.5i 0.358235i
\(64\) 129911. 3.96458
\(65\) −83957.0 −2.46475
\(66\) 47942.4 1.35475
\(67\) 3983.03i 0.108399i −0.998530 0.0541997i \(-0.982739\pi\)
0.998530 0.0541997i \(-0.0172608\pi\)
\(68\) 96990.5i 2.54365i
\(69\) 10408.7i 0.263192i
\(70\) 109515. 2.67133
\(71\) 39145.5i 0.921587i 0.887507 + 0.460793i \(0.152435\pi\)
−0.887507 + 0.460793i \(0.847565\pi\)
\(72\) 53722.9 1.22132
\(73\) −21442.3 −0.470938 −0.235469 0.971882i \(-0.575663\pi\)
−0.235469 + 0.971882i \(0.575663\pi\)
\(74\) 23368.4i 0.496077i
\(75\) −35601.7 −0.730832
\(76\) 90925.8i 1.80573i
\(77\) 45305.7i 0.870816i
\(78\) 148487.i 2.76345i
\(79\) −38480.9 −0.693710 −0.346855 0.937919i \(-0.612750\pi\)
−0.346855 + 0.937919i \(0.612750\pi\)
\(80\) 303280.i 5.29809i
\(81\) −30201.4 −0.511463
\(82\) 109482.i 1.79807i
\(83\) 114812.i 1.82934i 0.404205 + 0.914668i \(0.367548\pi\)
−0.404205 + 0.914668i \(0.632452\pi\)
\(84\) 142093.i 2.19722i
\(85\) 85096.4 1.27751
\(86\) 5488.63 0.0800236
\(87\) 95382.9i 1.35105i
\(88\) 215672. 2.96884
\(89\) −87567.0 −1.17183 −0.585916 0.810372i \(-0.699265\pi\)
−0.585916 + 0.810372i \(0.699265\pi\)
\(90\) 74007.7i 0.963099i
\(91\) −140320. −1.77630
\(92\) 73519.9i 0.905598i
\(93\) 56214.6 0.673972
\(94\) 197068. 2.30036
\(95\) 79775.4 0.906901
\(96\) −290770. −3.22011
\(97\) 89392.4 24420.2i 0.964653 0.263524i
\(98\) −1173.43 −0.0123421
\(99\) 30616.6 0.313957
\(100\) −251466. −2.51466
\(101\) −182389. −1.77908 −0.889538 0.456861i \(-0.848974\pi\)
−0.889538 + 0.456861i \(0.848974\pi\)
\(102\) 150502.i 1.43232i
\(103\) 56377.4 0.523615 0.261808 0.965120i \(-0.415681\pi\)
0.261808 + 0.965120i \(0.415681\pi\)
\(104\) 667976.i 6.05588i
\(105\) −124668. −1.10352
\(106\) −330117. −2.85367
\(107\) 109851.i 0.927562i 0.885950 + 0.463781i \(0.153508\pi\)
−0.885950 + 0.463781i \(0.846492\pi\)
\(108\) −363214. −2.99642
\(109\) 69732.9 0.562175 0.281087 0.959682i \(-0.409305\pi\)
0.281087 + 0.959682i \(0.409305\pi\)
\(110\) 297105.i 2.34115i
\(111\) 26601.7i 0.204928i
\(112\) 506883.i 3.81823i
\(113\) 48853.0 0.359911 0.179956 0.983675i \(-0.442405\pi\)
0.179956 + 0.983675i \(0.442405\pi\)
\(114\) 141091.i 1.01680i
\(115\) 64504.0 0.454823
\(116\) 673720.i 4.64873i
\(117\) 94825.5i 0.640414i
\(118\) 81731.7i 0.540363i
\(119\) 142225. 0.920678
\(120\) 593464.i 3.76219i
\(121\) −38139.8 −0.236818
\(122\) 525959. 3.19928
\(123\) 124630.i 0.742779i
\(124\) 397062. 2.31902
\(125\) 20997.6i 0.120197i
\(126\) 123692.i 0.694088i
\(127\) 42036.3i 0.231268i 0.993292 + 0.115634i \(0.0368900\pi\)
−0.993292 + 0.115634i \(0.963110\pi\)
\(128\) −678107. −3.65825
\(129\) −6248.07 −0.0330576
\(130\) 920192. 4.77551
\(131\) 341215.i 1.73720i 0.495512 + 0.868601i \(0.334980\pi\)
−0.495512 + 0.868601i \(0.665020\pi\)
\(132\) −385487. −1.92564
\(133\) 133332. 0.653587
\(134\) 43655.1i 0.210026i
\(135\) 318672.i 1.50491i
\(136\) 677041.i 3.13883i
\(137\) 220369.i 1.00311i 0.865126 + 0.501555i \(0.167238\pi\)
−0.865126 + 0.501555i \(0.832762\pi\)
\(138\) 114082.i 0.509941i
\(139\) 17507.1i 0.0768559i 0.999261 + 0.0384279i \(0.0122350\pi\)
−0.999261 + 0.0384279i \(0.987765\pi\)
\(140\) −880568. −3.79702
\(141\) −224335. −0.950275
\(142\) 429046.i 1.78559i
\(143\) 380679.i 1.55675i
\(144\) −342541. −1.37659
\(145\) 591100. 2.33475
\(146\) 235013. 0.912452
\(147\) 1335.79 0.00509852
\(148\) 187896.i 0.705122i
\(149\) 505750.i 1.86625i −0.359551 0.933125i \(-0.617070\pi\)
0.359551 0.933125i \(-0.382930\pi\)
\(150\) 390204. 1.41600
\(151\) −126612. −0.451890 −0.225945 0.974140i \(-0.572547\pi\)
−0.225945 + 0.974140i \(0.572547\pi\)
\(152\) 634706.i 2.22825i
\(153\) 96112.4i 0.331933i
\(154\) 496563.i 1.68722i
\(155\) 348370.i 1.16469i
\(156\) 1.19393e6i 3.92795i
\(157\) 94283.9i 0.305273i 0.988282 + 0.152636i \(0.0487764\pi\)
−0.988282 + 0.152636i \(0.951224\pi\)
\(158\) 421761. 1.34408
\(159\) 375794. 1.17885
\(160\) 1.80194e6i 5.56468i
\(161\) 107808. 0.327783
\(162\) 331016. 0.990971
\(163\) −132130. −0.389523 −0.194762 0.980851i \(-0.562393\pi\)
−0.194762 + 0.980851i \(0.562393\pi\)
\(164\) 880302.i 2.55577i
\(165\) 338215.i 0.967124i
\(166\) 1.25838e6i 3.54438i
\(167\) 33260.2 0.0922855 0.0461427 0.998935i \(-0.485307\pi\)
0.0461427 + 0.998935i \(0.485307\pi\)
\(168\) 991877.i 2.71134i
\(169\) −807742. −2.17548
\(170\) −932680. −2.47520
\(171\) 90102.6i 0.235639i
\(172\) −44132.1 −0.113745
\(173\) 158915.i 0.403692i −0.979417 0.201846i \(-0.935306\pi\)
0.979417 0.201846i \(-0.0646941\pi\)
\(174\) 1.04542e6i 2.61769i
\(175\) 368744.i 0.910186i
\(176\) −1.37514e6 −3.34629
\(177\) 93040.5i 0.223223i
\(178\) 959758. 2.27045
\(179\) 219197.i 0.511331i 0.966765 + 0.255666i \(0.0822946\pi\)
−0.966765 + 0.255666i \(0.917705\pi\)
\(180\) 595069.i 1.36895i
\(181\) 288008.i 0.653443i 0.945121 + 0.326721i \(0.105944\pi\)
−0.945121 + 0.326721i \(0.894056\pi\)
\(182\) 1.53795e6 3.44163
\(183\) −598734. −1.32162
\(184\) 513205.i 1.11750i
\(185\) 164854. 0.354137
\(186\) −616128. −1.30584
\(187\) 385845.i 0.806880i
\(188\) −1.58455e6 −3.26973
\(189\) 532608.i 1.08456i
\(190\) −874360. −1.75714
\(191\) −121421. −0.240830 −0.120415 0.992724i \(-0.538423\pi\)
−0.120415 + 0.992724i \(0.538423\pi\)
\(192\) 1.62088e6 3.17319
\(193\) −243573. −0.470690 −0.235345 0.971912i \(-0.575622\pi\)
−0.235345 + 0.971912i \(0.575622\pi\)
\(194\) −979765. + 267652.i −1.86904 + 0.510582i
\(195\) −1.04751e6 −1.97276
\(196\) 9435.09 0.0175431
\(197\) 357478. 0.656272 0.328136 0.944631i \(-0.393580\pi\)
0.328136 + 0.944631i \(0.393580\pi\)
\(198\) −335567. −0.608297
\(199\) 796599.i 1.42596i 0.701185 + 0.712979i \(0.252655\pi\)
−0.701185 + 0.712979i \(0.747345\pi\)
\(200\) 1.75536e6 3.10306
\(201\) 49695.5i 0.0867614i
\(202\) 1.99903e6 3.44700
\(203\) 987927. 1.68262
\(204\) 1.21013e6i 2.03590i
\(205\) −772349. −1.28360
\(206\) −617912. −1.01452
\(207\) 72854.3i 0.118176i
\(208\) 4.25906e6i 6.82583i
\(209\) 361719.i 0.572803i
\(210\) 1.36639e6 2.13810
\(211\) 230882.i 0.357013i −0.983939 0.178506i \(-0.942873\pi\)
0.983939 0.178506i \(-0.0571266\pi\)
\(212\) 2.65435e6 4.05620
\(213\) 488411.i 0.737626i
\(214\) 1.20399e6i 1.79717i
\(215\) 38720.1i 0.0571269i
\(216\) 2.53541e6 3.69755
\(217\) 582243.i 0.839372i
\(218\) −764292. −1.08923
\(219\) −267531. −0.376932
\(220\) 2.38892e6i 3.32770i
\(221\) 1.19504e6 1.64589
\(222\) 291562.i 0.397053i
\(223\) 846992.i 1.14056i −0.821451 0.570279i \(-0.806835\pi\)
0.821451 0.570279i \(-0.193165\pi\)
\(224\) 3.01165e6i 4.01036i
\(225\) 249190. 0.328151
\(226\) −535442. −0.697335
\(227\) −211467. −0.272382 −0.136191 0.990683i \(-0.543486\pi\)
−0.136191 + 0.990683i \(0.543486\pi\)
\(228\) 1.13446e6i 1.44528i
\(229\) 338053. 0.425987 0.212994 0.977054i \(-0.431679\pi\)
0.212994 + 0.977054i \(0.431679\pi\)
\(230\) −706982. −0.881229
\(231\) 565270.i 0.696989i
\(232\) 4.70289e6i 5.73647i
\(233\) 916406.i 1.10585i −0.833229 0.552927i \(-0.813511\pi\)
0.833229 0.552927i \(-0.186489\pi\)
\(234\) 1.03931e6i 1.24081i
\(235\) 1.39023e6i 1.64217i
\(236\) 657175.i 0.768071i
\(237\) −480118. −0.555236
\(238\) −1.55882e6 −1.78383
\(239\) 746973.i 0.845883i 0.906157 + 0.422941i \(0.139002\pi\)
−0.906157 + 0.422941i \(0.860998\pi\)
\(240\) 3.78396e6i 4.24052i
\(241\) −934065. −1.03594 −0.517970 0.855399i \(-0.673312\pi\)
−0.517970 + 0.855399i \(0.673312\pi\)
\(242\) 418023. 0.458841
\(243\) 624697. 0.678662
\(244\) −4.22905e6 −4.54745
\(245\) 8278.05i 0.00881075i
\(246\) 1.36598e6i 1.43915i
\(247\) 1.12031e6 1.16841
\(248\) −2.77169e6 −2.86164
\(249\) 1.43249e6i 1.46418i
\(250\) 230139.i 0.232885i
\(251\) 1.19939e6i 1.20164i −0.799383 0.600821i \(-0.794840\pi\)
0.799383 0.600821i \(-0.205160\pi\)
\(252\) 994560.i 0.986574i
\(253\) 292475.i 0.287268i
\(254\) 460730.i 0.448086i
\(255\) 1.06173e6 1.02250
\(256\) 3.27508e6 3.12336
\(257\) 49589.3i 0.0468333i −0.999726 0.0234167i \(-0.992546\pi\)
0.999726 0.0234167i \(-0.00745444\pi\)
\(258\) 68480.5 0.0640498
\(259\) 275527. 0.255220
\(260\) −7.39893e6 −6.78790
\(261\) 667620.i 0.606636i
\(262\) 3.73981e6i 3.36587i
\(263\) 305867.i 0.272673i −0.990663 0.136337i \(-0.956467\pi\)
0.990663 0.136337i \(-0.0435329\pi\)
\(264\) 2.69089e6 2.37622
\(265\) 2.32885e6i 2.03716i
\(266\) −1.46135e6 −1.26634
\(267\) −1.09256e6 −0.937919
\(268\) 351015.i 0.298530i
\(269\) 565161. 0.476202 0.238101 0.971240i \(-0.423475\pi\)
0.238101 + 0.971240i \(0.423475\pi\)
\(270\) 3.49273e6i 2.91579i
\(271\) 1.55966e6i 1.29005i −0.764162 0.645024i \(-0.776847\pi\)
0.764162 0.645024i \(-0.223153\pi\)
\(272\) 4.31686e6i 3.53790i
\(273\) −1.75075e6 −1.42173
\(274\) 2.41530e6i 1.94355i
\(275\) 1.00038e6 0.797686
\(276\) 917293.i 0.724828i
\(277\) 1.59463e6i 1.24870i 0.781143 + 0.624352i \(0.214637\pi\)
−0.781143 + 0.624352i \(0.785363\pi\)
\(278\) 191883.i 0.148910i
\(279\) −393467. −0.302620
\(280\) 6.14679e6 4.68547
\(281\) 743017.i 0.561349i 0.959803 + 0.280674i \(0.0905581\pi\)
−0.959803 + 0.280674i \(0.909442\pi\)
\(282\) 2.45877e6 1.84118
\(283\) −1.45519e6 −1.08007 −0.540036 0.841642i \(-0.681589\pi\)
−0.540036 + 0.841642i \(0.681589\pi\)
\(284\) 3.44980e6i 2.53804i
\(285\) 995341. 0.725872
\(286\) 4.17235e6i 3.01624i
\(287\) −1.29085e6 −0.925066
\(288\) 2.03521e6 1.44586
\(289\) 208603. 0.146919
\(290\) −6.47862e6 −4.52364
\(291\) 1.11533e6 304685.i 0.772095 0.210921i
\(292\) −1.88965e6 −1.29696
\(293\) 45073.7 0.0306729 0.0153364 0.999882i \(-0.495118\pi\)
0.0153364 + 0.999882i \(0.495118\pi\)
\(294\) −14640.6 −0.00987848
\(295\) 576585. 0.385752
\(296\) 1.31161e6i 0.870112i
\(297\) 1.44493e6 0.950506
\(298\) 5.54315e6i 3.61590i
\(299\) 905850. 0.585974
\(300\) −3.13749e6 −2.01270
\(301\) 64714.3i 0.0411703i
\(302\) 1.38770e6 0.875546
\(303\) −2.27563e6 −1.42395
\(304\) 4.04693e6i 2.51155i
\(305\) 3.71043e6i 2.28389i
\(306\) 1.05342e6i 0.643128i
\(307\) −2.45197e6 −1.48480 −0.742402 0.669954i \(-0.766314\pi\)
−0.742402 + 0.669954i \(0.766314\pi\)
\(308\) 3.99268e6i 2.39821i
\(309\) 703410. 0.419095
\(310\) 3.81823e6i 2.25661i
\(311\) 2.21710e6i 1.29982i −0.760009 0.649912i \(-0.774806\pi\)
0.760009 0.649912i \(-0.225194\pi\)
\(312\) 8.33420e6i 4.84705i
\(313\) 2.98004e6 1.71934 0.859669 0.510852i \(-0.170670\pi\)
0.859669 + 0.510852i \(0.170670\pi\)
\(314\) 1.03338e6i 0.591473i
\(315\) 872596. 0.495492
\(316\) −3.39123e6 −1.91047
\(317\) 2.66084e6i 1.48720i 0.668624 + 0.743601i \(0.266884\pi\)
−0.668624 + 0.743601i \(0.733116\pi\)
\(318\) −4.11880e6 −2.28404
\(319\) 2.68018e6i 1.47464i
\(320\) 1.00448e7i 5.48360i
\(321\) 1.37058e6i 0.742408i
\(322\) −1.18160e6 −0.635086
\(323\) −1.13552e6 −0.605601
\(324\) −2.66158e6 −1.40856
\(325\) 3.09835e6i 1.62713i
\(326\) 1.44818e6 0.754709
\(327\) 870043. 0.449957
\(328\) 6.14493e6i 3.15379i
\(329\) 2.32355e6i 1.18348i
\(330\) 3.70692e6i 1.87382i
\(331\) 354982.i 0.178089i −0.996028 0.0890444i \(-0.971619\pi\)
0.996028 0.0890444i \(-0.0283813\pi\)
\(332\) 1.01181e7i 5.03797i
\(333\) 186195.i 0.0920149i
\(334\) −364541. −0.178805
\(335\) 307969. 0.149932
\(336\) 6.32427e6i 3.05606i
\(337\) 1.20668e6i 0.578786i −0.957210 0.289393i \(-0.906547\pi\)
0.957210 0.289393i \(-0.0934534\pi\)
\(338\) 8.85307e6 4.21504
\(339\) 609529. 0.288068
\(340\) 7.49934e6 3.51824
\(341\) −1.57958e6 −0.735625
\(342\) 987549.i 0.456555i
\(343\) 2.18577e6i 1.00316i
\(344\) 308064. 0.140360
\(345\) 804803. 0.364034
\(346\) 1.74175e6i 0.782162i
\(347\) 2.70571e6i 1.20631i 0.797626 + 0.603153i \(0.206089\pi\)
−0.797626 + 0.603153i \(0.793911\pi\)
\(348\) 8.40586e6i 3.72078i
\(349\) 779832.i 0.342719i −0.985209 0.171359i \(-0.945184\pi\)
0.985209 0.171359i \(-0.0548159\pi\)
\(350\) 4.04154e6i 1.76350i
\(351\) 4.47521e6i 1.93886i
\(352\) 8.17038e6 3.51468
\(353\) 2.34517e6 1.00170 0.500850 0.865534i \(-0.333021\pi\)
0.500850 + 0.865534i \(0.333021\pi\)
\(354\) 1.01975e6i 0.432499i
\(355\) −3.02674e6 −1.27469
\(356\) −7.71707e6 −3.22721
\(357\) 1.77451e6 0.736898
\(358\) 2.40246e6i 0.990715i
\(359\) 1.27800e6i 0.523351i 0.965156 + 0.261676i \(0.0842751\pi\)
−0.965156 + 0.261676i \(0.915725\pi\)
\(360\) 4.15387e6i 1.68926i
\(361\) 1.41159e6 0.570085
\(362\) 3.15664e6i 1.26606i
\(363\) −475863. −0.189546
\(364\) −1.23661e7 −4.89192
\(365\) 1.65792e6i 0.651377i
\(366\) 6.56228e6 2.56066
\(367\) 2.43672e6i 0.944366i 0.881501 + 0.472183i \(0.156534\pi\)
−0.881501 + 0.472183i \(0.843466\pi\)
\(368\) 3.27223e6i 1.25957i
\(369\) 872332.i 0.333515i
\(370\) −1.80685e6 −0.686148
\(371\) 3.89228e6i 1.46815i
\(372\) 4.95406e6 1.85611
\(373\) 707039.i 0.263130i 0.991308 + 0.131565i \(0.0420003\pi\)
−0.991308 + 0.131565i \(0.958000\pi\)
\(374\) 4.22897e6i 1.56335i
\(375\) 261983.i 0.0962043i
\(376\) 1.10609e7 4.03480
\(377\) 8.30101e6 3.00800
\(378\) 5.83753e6i 2.10136i
\(379\) −4.12298e6 −1.47439 −0.737197 0.675678i \(-0.763851\pi\)
−0.737197 + 0.675678i \(0.763851\pi\)
\(380\) 7.03041e6 2.49759
\(381\) 524478.i 0.185104i
\(382\) 1.33081e6 0.466614
\(383\) 1.06412e6i 0.370676i 0.982675 + 0.185338i \(0.0593379\pi\)
−0.982675 + 0.185338i \(0.940662\pi\)
\(384\) −8.46060e6 −2.92801
\(385\) 3.50305e6 1.20447
\(386\) 2.66962e6 0.911972
\(387\) 43732.6 0.0148432
\(388\) 7.87793e6 2.15209e6i 2.65664 0.725740i
\(389\) 668424. 0.223964 0.111982 0.993710i \(-0.464280\pi\)
0.111982 + 0.993710i \(0.464280\pi\)
\(390\) 1.14810e7 3.82226
\(391\) −918144. −0.303717
\(392\) −65861.5 −0.0216479
\(393\) 4.25727e6i 1.39043i
\(394\) −3.91806e6 −1.27154
\(395\) 2.97536e6i 0.959503i
\(396\) 2.69817e6 0.864632
\(397\) −940056. −0.299349 −0.149674 0.988735i \(-0.547823\pi\)
−0.149674 + 0.988735i \(0.547823\pi\)
\(398\) 8.73094e6i 2.76282i
\(399\) 1.66355e6 0.523123
\(400\) −1.11923e7 −3.49758
\(401\) 4.88928e6i 1.51839i 0.650862 + 0.759196i \(0.274408\pi\)
−0.650862 + 0.759196i \(0.725592\pi\)
\(402\) 544676.i 0.168102i
\(403\) 4.89226e6i 1.50054i
\(404\) −1.60735e7 −4.89955
\(405\) 2.33518e6i 0.707430i
\(406\) −1.08280e7 −3.26010
\(407\) 747485.i 0.223675i
\(408\) 8.44730e6i 2.51228i
\(409\) 2.95090e6i 0.872261i 0.899883 + 0.436130i \(0.143651\pi\)
−0.899883 + 0.436130i \(0.856349\pi\)
\(410\) 8.46515e6 2.48700
\(411\) 2.74949e6i 0.802875i
\(412\) 4.96841e6 1.44203
\(413\) 963667. 0.278004
\(414\) 798503.i 0.228968i
\(415\) −8.87733e6 −2.53024
\(416\) 2.53052e7i 7.16929i
\(417\) 218432.i 0.0615144i
\(418\) 3.96454e6i 1.10982i
\(419\) −1.92712e6 −0.536258 −0.268129 0.963383i \(-0.586405\pi\)
−0.268129 + 0.963383i \(0.586405\pi\)
\(420\) −1.09867e7 −3.03908
\(421\) 1.39881e6 0.384639 0.192320 0.981332i \(-0.438399\pi\)
0.192320 + 0.981332i \(0.438399\pi\)
\(422\) 2.53053e6i 0.691720i
\(423\) 1.57020e6 0.426683
\(424\) −1.85287e7 −5.00530
\(425\) 3.14040e6i 0.843360i
\(426\) 5.35311e6i 1.42916i
\(427\) 6.20138e6i 1.64596i
\(428\) 9.68086e6i 2.55449i
\(429\) 4.74965e6i 1.24600i
\(430\) 424383.i 0.110684i
\(431\) −6.14094e6 −1.59236 −0.796181 0.605058i \(-0.793150\pi\)
−0.796181 + 0.605058i \(0.793150\pi\)
\(432\) −1.61659e7 −4.16765
\(433\) 2.35234e6i 0.602949i −0.953474 0.301474i \(-0.902521\pi\)
0.953474 0.301474i \(-0.0974788\pi\)
\(434\) 6.38154e6i 1.62630i
\(435\) 7.37504e6 1.86871
\(436\) 6.14539e6 1.54822
\(437\) −860733. −0.215608
\(438\) 2.93221e6 0.730314
\(439\) 3.76713e6i 0.932931i −0.884539 0.466466i \(-0.845527\pi\)
0.884539 0.466466i \(-0.154473\pi\)
\(440\) 1.66758e7i 4.10634i
\(441\) −9349.67 −0.00228929
\(442\) −1.30979e7 −3.18894
\(443\) 4.16101e6i 1.00737i 0.863887 + 0.503686i \(0.168023\pi\)
−0.863887 + 0.503686i \(0.831977\pi\)
\(444\) 2.34434e6i 0.564370i
\(445\) 6.77071e6i 1.62082i
\(446\) 9.28326e6i 2.20985i
\(447\) 6.31013e6i 1.49372i
\(448\) 1.67882e7i 3.95193i
\(449\) 7.45106e6 1.74422 0.872112 0.489307i \(-0.162750\pi\)
0.872112 + 0.489307i \(0.162750\pi\)
\(450\) −2.73118e6 −0.635799
\(451\) 3.50199e6i 0.810726i
\(452\) 4.30530e6 0.991190
\(453\) −1.57971e6 −0.361687
\(454\) 2.31774e6 0.527746
\(455\) 1.08496e7i 2.45689i
\(456\) 7.91910e6i 1.78346i
\(457\) 3.08010e6i 0.689881i −0.938625 0.344941i \(-0.887899\pi\)
0.938625 0.344941i \(-0.112101\pi\)
\(458\) −3.70516e6 −0.825359
\(459\) 4.53595e6i 1.00493i
\(460\) 5.68458e6 1.25258
\(461\) 6.29148e6 1.37880 0.689399 0.724382i \(-0.257875\pi\)
0.689399 + 0.724382i \(0.257875\pi\)
\(462\) 6.19551e6i 1.35043i
\(463\) −5.73564e6 −1.24345 −0.621727 0.783234i \(-0.713568\pi\)
−0.621727 + 0.783234i \(0.713568\pi\)
\(464\) 2.99859e7i 6.46581i
\(465\) 4.34653e6i 0.932204i
\(466\) 1.00441e7i 2.14262i
\(467\) −4.02600e6 −0.854244 −0.427122 0.904194i \(-0.640473\pi\)
−0.427122 + 0.904194i \(0.640473\pi\)
\(468\) 8.35674e6i 1.76369i
\(469\) 514720. 0.108054
\(470\) 1.52373e7i 3.18174i
\(471\) 1.17636e6i 0.244336i
\(472\) 4.58740e6i 0.947789i
\(473\) 175565. 0.0360816
\(474\) 5.26223e6 1.07578
\(475\) 2.94404e6i 0.598700i
\(476\) 1.25339e7 2.53553
\(477\) −2.63032e6 −0.529314
\(478\) 8.18703e6i 1.63892i
\(479\) 2.51906e6 0.501649 0.250825 0.968033i \(-0.419298\pi\)
0.250825 + 0.968033i \(0.419298\pi\)
\(480\) 2.24824e7i 4.45389i
\(481\) 2.31510e6 0.456255
\(482\) 1.02376e7 2.00715
\(483\) 1.34510e6 0.262353
\(484\) −3.36117e6 −0.652195
\(485\) 1.88818e6 + 6.91185e6i 0.364492 + 1.33426i
\(486\) −6.84685e6 −1.31492
\(487\) 6.01634e6 1.14950 0.574751 0.818328i \(-0.305099\pi\)
0.574751 + 0.818328i \(0.305099\pi\)
\(488\) 2.95208e7 5.61150
\(489\) −1.64856e6 −0.311769
\(490\) 90729.7i 0.0170710i
\(491\) −3.49540e6 −0.654324 −0.327162 0.944968i \(-0.606092\pi\)
−0.327162 + 0.944968i \(0.606092\pi\)
\(492\) 1.09833e7i 2.04560i
\(493\) −8.41366e6 −1.55908
\(494\) −1.22789e7 −2.26382
\(495\) 2.36729e6i 0.434248i
\(496\) 1.76725e7 3.22547
\(497\) −5.05871e6 −0.918647
\(498\) 1.57005e7i 2.83687i
\(499\) 6.49072e6i 1.16692i 0.812141 + 0.583461i \(0.198302\pi\)
−0.812141 + 0.583461i \(0.801698\pi\)
\(500\) 1.85047e6i 0.331022i
\(501\) 414980. 0.0738641
\(502\) 1.31456e7i 2.32821i
\(503\) 913450. 0.160977 0.0804886 0.996756i \(-0.474352\pi\)
0.0804886 + 0.996756i \(0.474352\pi\)
\(504\) 6.94252e6i 1.21742i
\(505\) 1.41024e7i 2.46073i
\(506\) 3.20561e6i 0.556588i
\(507\) −1.00780e7 −1.74123
\(508\) 3.70456e6i 0.636909i
\(509\) −1.84137e6 −0.315027 −0.157513 0.987517i \(-0.550348\pi\)
−0.157513 + 0.987517i \(0.550348\pi\)
\(510\) −1.16369e7 −1.98112
\(511\) 2.77095e6i 0.469435i
\(512\) −1.41963e7 −2.39332
\(513\) 4.25232e6i 0.713399i
\(514\) 543512.i 0.0907406i
\(515\) 4.35912e6i 0.724238i
\(516\) −550627. −0.0910402
\(517\) 6.30362e6 1.03720
\(518\) −3.01985e6 −0.494494
\(519\) 1.98275e6i 0.323110i
\(520\) 5.16481e7 8.37618
\(521\) −1.19136e7 −1.92286 −0.961431 0.275047i \(-0.911307\pi\)
−0.961431 + 0.275047i \(0.911307\pi\)
\(522\) 7.31730e6i 1.17537i
\(523\) 6.55966e6i 1.04864i −0.851521 0.524321i \(-0.824319\pi\)
0.851521 0.524321i \(-0.175681\pi\)
\(524\) 3.00705e7i 4.78423i
\(525\) 4.60074e6i 0.728500i
\(526\) 3.35238e6i 0.528310i
\(527\) 4.95866e6i 0.777746i
\(528\) −1.71573e7 −2.67833
\(529\) 5.74038e6 0.891870
\(530\) 2.55248e7i 3.94705i
\(531\) 651225.i 0.100229i
\(532\) 1.17502e7 1.79997
\(533\) −1.08463e7 −1.65373
\(534\) 1.19747e7 1.81724
\(535\) −8.49368e6 −1.28296
\(536\) 2.45026e6i 0.368383i
\(537\) 2.73488e6i 0.409263i
\(538\) −6.19432e6 −0.922651
\(539\) −37534.4 −0.00556491
\(540\) 2.80838e7i 4.14449i
\(541\) 5.84285e6i 0.858285i 0.903237 + 0.429143i \(0.141184\pi\)
−0.903237 + 0.429143i \(0.858816\pi\)
\(542\) 1.70943e7i 2.49950i
\(543\) 3.59341e6i 0.523007i
\(544\) 2.56486e7i 3.71592i
\(545\) 5.39177e6i 0.777571i
\(546\) 1.91887e7 2.75463
\(547\) −6.07402e6 −0.867976 −0.433988 0.900919i \(-0.642894\pi\)
−0.433988 + 0.900919i \(0.642894\pi\)
\(548\) 1.94206e7i 2.76255i
\(549\) 4.19076e6 0.593420
\(550\) −1.09644e7 −1.54553
\(551\) −7.88756e6 −1.10679
\(552\) 6.40315e6i 0.894429i
\(553\) 4.97282e6i 0.691497i
\(554\) 1.74775e7i 2.41939i
\(555\) 2.05685e6 0.283446
\(556\) 1.54286e6i 0.211660i
\(557\) 2.08445e6 0.284678 0.142339 0.989818i \(-0.454538\pi\)
0.142339 + 0.989818i \(0.454538\pi\)
\(558\) 4.31251e6 0.586333
\(559\) 543759.i 0.0735998i
\(560\) −3.91924e7 −5.28118
\(561\) 4.81411e6i 0.645816i
\(562\) 8.14366e6i 1.08762i
\(563\) 8.27671e6i 1.10049i 0.835003 + 0.550246i \(0.185466\pi\)
−0.835003 + 0.550246i \(0.814534\pi\)
\(564\) −1.97701e7 −2.61704
\(565\) 3.77733e6i 0.497810i
\(566\) 1.59493e7 2.09266
\(567\) 3.90287e6i 0.509832i
\(568\) 2.40813e7i 3.13191i
\(569\) 2.17889e6i 0.282134i 0.990000 + 0.141067i \(0.0450532\pi\)
−0.990000 + 0.141067i \(0.954947\pi\)
\(570\) −1.09092e7 −1.40639
\(571\) −603489. −0.0774603 −0.0387302 0.999250i \(-0.512331\pi\)
−0.0387302 + 0.999250i \(0.512331\pi\)
\(572\) 3.35483e7i 4.28727i
\(573\) −1.51495e6 −0.192757
\(574\) 1.41481e7 1.79233
\(575\) 2.38046e6i 0.300256i
\(576\) −1.13451e7 −1.42480
\(577\) 307427.i 0.0384417i −0.999815 0.0192208i \(-0.993881\pi\)
0.999815 0.0192208i \(-0.00611856\pi\)
\(578\) −2.28635e6 −0.284658
\(579\) −3.03900e6 −0.376734
\(580\) 5.20922e7 6.42988
\(581\) −1.48370e7 −1.82350
\(582\) −1.22243e7 + 3.33943e6i −1.49595 + 0.408663i
\(583\) −1.05595e7 −1.28668
\(584\) 1.31907e7 1.60043
\(585\) 7.33194e6 0.885787
\(586\) −494020. −0.0594293
\(587\) 7.87226e6i 0.942984i −0.881870 0.471492i \(-0.843716\pi\)
0.881870 0.471492i \(-0.156284\pi\)
\(588\) 117720. 0.0140412
\(589\) 4.64860e6i 0.552120i
\(590\) −6.31952e6 −0.747402
\(591\) 4.46018e6 0.525271
\(592\) 8.36290e6i 0.980738i
\(593\) 4.45994e6 0.520825 0.260413 0.965497i \(-0.416141\pi\)
0.260413 + 0.965497i \(0.416141\pi\)
\(594\) −1.58368e7 −1.84163
\(595\) 1.09969e7i 1.27343i
\(596\) 4.45705e7i 5.13963i
\(597\) 9.93900e6i 1.14132i
\(598\) −9.92837e6 −1.13534
\(599\) 1.68662e6i 0.192066i −0.995378 0.0960330i \(-0.969385\pi\)
0.995378 0.0960330i \(-0.0306154\pi\)
\(600\) 2.19012e7 2.48365
\(601\) 3.02189e6i 0.341265i −0.985335 0.170633i \(-0.945419\pi\)
0.985335 0.170633i \(-0.0545811\pi\)
\(602\) 709286.i 0.0797683i
\(603\) 347837.i 0.0389567i
\(604\) −1.11580e7 −1.24450
\(605\) 2.94899e6i 0.327555i
\(606\) 2.49415e7 2.75893
\(607\) 4.42081e6 0.487001 0.243501 0.969901i \(-0.421704\pi\)
0.243501 + 0.969901i \(0.421704\pi\)
\(608\) 2.40448e7i 2.63793i
\(609\) 1.23262e7 1.34674
\(610\) 4.06674e7i 4.42508i
\(611\) 1.95235e7i 2.11570i
\(612\) 8.47015e6i 0.914140i
\(613\) 5.13001e6 0.551400 0.275700 0.961244i \(-0.411090\pi\)
0.275700 + 0.961244i \(0.411090\pi\)
\(614\) 2.68743e7 2.87684
\(615\) −9.63643e6 −1.02737
\(616\) 2.78709e7i 2.95937i
\(617\) 5.10437e6 0.539795 0.269898 0.962889i \(-0.413010\pi\)
0.269898 + 0.962889i \(0.413010\pi\)
\(618\) −7.70956e6 −0.812004
\(619\) 1.32209e7i 1.38687i −0.720521 0.693433i \(-0.756097\pi\)
0.720521 0.693433i \(-0.243903\pi\)
\(620\) 3.07010e7i 3.20755i
\(621\) 3.43830e6i 0.357779i
\(622\) 2.43000e7i 2.51844i
\(623\) 1.13161e7i 1.16809i
\(624\) 5.31394e7i 5.46330i
\(625\) −1.05405e7 −1.07935
\(626\) −3.26620e7 −3.33125
\(627\) 4.51309e6i 0.458464i
\(628\) 8.30901e6i 0.840717i
\(629\) −2.34652e6 −0.236482
\(630\) −9.56389e6 −0.960026
\(631\) −9.93999e6 −0.993831 −0.496916 0.867799i \(-0.665534\pi\)
−0.496916 + 0.867799i \(0.665534\pi\)
\(632\) 2.36724e7 2.35749
\(633\) 2.88067e6i 0.285748i
\(634\) 2.91635e7i 2.88148i
\(635\) −3.25026e6 −0.319878
\(636\) 3.31178e7 3.24653
\(637\) 116251.i 0.0113514i
\(638\) 2.93755e7i 2.85715i
\(639\) 3.41857e6i 0.331201i
\(640\) 5.24315e7i 5.05990i
\(641\) 1.19932e7i 1.15289i −0.817135 0.576446i \(-0.804439\pi\)
0.817135 0.576446i \(-0.195561\pi\)
\(642\) 1.50220e7i 1.43843i
\(643\) 8.00379e6 0.763428 0.381714 0.924280i \(-0.375334\pi\)
0.381714 + 0.924280i \(0.375334\pi\)
\(644\) 9.50085e6 0.902709
\(645\) 483103.i 0.0457236i
\(646\) 1.24456e7 1.17336
\(647\) 1.76907e7 1.66144 0.830721 0.556688i \(-0.187928\pi\)
0.830721 + 0.556688i \(0.187928\pi\)
\(648\) 1.85791e7 1.73815
\(649\) 2.61436e6i 0.243643i
\(650\) 3.39588e7i 3.15260i
\(651\) 7.26452e6i 0.671822i
\(652\) −1.16443e7 −1.07274
\(653\) 6.53143e6i 0.599412i 0.954032 + 0.299706i \(0.0968885\pi\)
−0.954032 + 0.299706i \(0.903111\pi\)
\(654\) −9.53591e6 −0.871801
\(655\) −2.63829e7 −2.40281
\(656\) 3.91805e7i 3.55476i
\(657\) 1.87255e6 0.169246
\(658\) 2.54667e7i 2.29302i
\(659\) 2.75274e6i 0.246918i 0.992350 + 0.123459i \(0.0393987\pi\)
−0.992350 + 0.123459i \(0.960601\pi\)
\(660\) 2.98060e7i 2.66345i
\(661\) 827167. 0.0736359 0.0368179 0.999322i \(-0.488278\pi\)
0.0368179 + 0.999322i \(0.488278\pi\)
\(662\) 3.89070e6i 0.345051i
\(663\) 1.49102e7 1.31735
\(664\) 7.06295e7i 6.21679i
\(665\) 1.03092e7i 0.904008i
\(666\) 2.04075e6i 0.178281i
\(667\) −6.37765e6 −0.555068
\(668\) 2.93114e6 0.254153
\(669\) 1.05677e7i 0.912887i
\(670\) −3.37543e6 −0.290497
\(671\) 1.68239e7 1.44251
\(672\) 3.75757e7i 3.20984i
\(673\) −1.38566e7 −1.17929 −0.589645 0.807663i \(-0.700732\pi\)
−0.589645 + 0.807663i \(0.700732\pi\)
\(674\) 1.32256e7i 1.12141i
\(675\) 1.17603e7 0.993479
\(676\) −7.11843e7 −5.99125
\(677\) 234072. 0.0196281 0.00981403 0.999952i \(-0.496876\pi\)
0.00981403 + 0.999952i \(0.496876\pi\)
\(678\) −6.68060e6 −0.558138
\(679\) 3.15578e6 + 1.15520e7i 0.262683 + 0.961576i
\(680\) −5.23490e7 −4.34147
\(681\) −2.63844e6 −0.218011
\(682\) 1.73127e7 1.42529
\(683\) −7.47804e6 −0.613389 −0.306695 0.951808i \(-0.599223\pi\)
−0.306695 + 0.951808i \(0.599223\pi\)
\(684\) 7.94052e6i 0.648946i
\(685\) −1.70390e7 −1.38745
\(686\) 2.39567e7i 1.94364i
\(687\) 4.21782e6 0.340955
\(688\) −1.96423e6 −0.158206
\(689\) 3.27047e7i 2.62459i
\(690\) −8.82086e6 −0.705324
\(691\) 1.99730e7 1.59129 0.795643 0.605766i \(-0.207133\pi\)
0.795643 + 0.605766i \(0.207133\pi\)
\(692\) 1.40048e7i 1.11176i
\(693\) 3.95654e6i 0.312955i
\(694\) 2.96553e7i 2.33724i
\(695\) −1.35365e6 −0.106303
\(696\) 5.86770e7i 4.59140i
\(697\) 1.09935e7 0.857147
\(698\) 8.54718e6i 0.664024i
\(699\) 1.14338e7i 0.885111i
\(700\) 3.24965e7i 2.50664i
\(701\) 2.27019e7 1.74489 0.872443 0.488717i \(-0.162535\pi\)
0.872443 + 0.488717i \(0.162535\pi\)
\(702\) 4.90496e7i 3.75658i
\(703\) −2.19980e6 −0.167878
\(704\) −4.55452e7 −3.46347
\(705\) 1.73457e7i 1.31437i
\(706\) −2.57037e7 −1.94081
\(707\) 2.35698e7i 1.77340i
\(708\) 8.19944e6i 0.614753i
\(709\) 1.78961e7i 1.33704i 0.743696 + 0.668518i \(0.233071\pi\)
−0.743696 + 0.668518i \(0.766929\pi\)
\(710\) 3.31739e7 2.46974
\(711\) 3.36053e6 0.249306
\(712\) 5.38689e7 3.98234
\(713\) 3.75872e6i 0.276896i
\(714\) −1.94491e7 −1.42775
\(715\) 2.94342e7 2.15322
\(716\) 1.93173e7i 1.40820i
\(717\) 9.31982e6i 0.677033i
\(718\) 1.40072e7i 1.01400i
\(719\) 2.24722e7i 1.62115i −0.585633 0.810576i \(-0.699154\pi\)
0.585633 0.810576i \(-0.300846\pi\)
\(720\) 2.64854e7i 1.90403i
\(721\) 7.28556e6i 0.521945i
\(722\) −1.54714e7 −1.10455
\(723\) −1.16541e7 −0.829152
\(724\) 2.53814e7i 1.79957i
\(725\) 2.18140e7i 1.54131i
\(726\) 5.21559e6 0.367250
\(727\) 1.85580e7 1.30225 0.651127 0.758969i \(-0.274296\pi\)
0.651127 + 0.758969i \(0.274296\pi\)
\(728\) 8.63213e7 6.03656
\(729\) 1.51332e7 1.05466
\(730\) 1.81713e7i 1.26206i
\(731\) 551138.i 0.0381476i
\(732\) −5.27649e7 −3.63972
\(733\) 1.17957e7 0.810894 0.405447 0.914118i \(-0.367116\pi\)
0.405447 + 0.914118i \(0.367116\pi\)
\(734\) 2.67071e7i 1.82973i
\(735\) 103284.i 0.00705201i
\(736\) 1.94419e7i 1.32296i
\(737\) 1.39640e6i 0.0946980i
\(738\) 9.56099e6i 0.646193i
\(739\) 2.43126e7i 1.63765i 0.574046 + 0.818823i \(0.305373\pi\)
−0.574046 + 0.818823i \(0.694627\pi\)
\(740\) 1.45282e7 0.975288
\(741\) 1.39779e7 0.935182
\(742\) 4.26605e7i 2.84457i
\(743\) −5.95531e6 −0.395760 −0.197880 0.980226i \(-0.563406\pi\)
−0.197880 + 0.980226i \(0.563406\pi\)
\(744\) −3.45817e7 −2.29042
\(745\) 3.91047e7 2.58130
\(746\) 7.74934e6i 0.509821i
\(747\) 1.00265e7i 0.657430i
\(748\) 3.40036e7i 2.22214i
\(749\) −1.41958e7 −0.924603
\(750\) 2.87140e6i 0.186398i
\(751\) −4.81446e6 −0.311493 −0.155746 0.987797i \(-0.549778\pi\)
−0.155746 + 0.987797i \(0.549778\pi\)
\(752\) −7.05252e7 −4.54778
\(753\) 1.49645e7i 0.961778i
\(754\) −9.09813e7 −5.82806
\(755\) 9.78968e6i 0.625031i
\(756\) 4.69375e7i 2.98686i
\(757\) 1.21358e7i 0.769712i 0.922977 + 0.384856i \(0.125749\pi\)
−0.922977 + 0.384856i \(0.874251\pi\)
\(758\) 4.51890e7 2.85667
\(759\) 3.64915e6i 0.229926i
\(760\) −4.90757e7 −3.08200
\(761\) 8.94667e6i 0.560015i 0.959998 + 0.280008i \(0.0903370\pi\)
−0.959998 + 0.280008i \(0.909663\pi\)
\(762\) 5.74843e6i 0.358642i
\(763\) 9.01146e6i 0.560382i
\(764\) −1.07006e7 −0.663243
\(765\) −7.43144e6 −0.459113
\(766\) 1.16631e7i 0.718192i
\(767\) 8.09716e6 0.496986
\(768\) 4.08625e7 2.49990
\(769\) 1.13075e7i 0.689529i −0.938689 0.344765i \(-0.887959\pi\)
0.938689 0.344765i \(-0.112041\pi\)
\(770\) −3.83944e7 −2.33368
\(771\) 618715.i 0.0374848i
\(772\) −2.14655e7 −1.29627
\(773\) −2.30217e6 −0.138576 −0.0692882 0.997597i \(-0.522073\pi\)
−0.0692882 + 0.997597i \(0.522073\pi\)
\(774\) −479321. −0.0287590
\(775\) −1.28563e7 −0.768883
\(776\) −5.49918e7 + 1.50226e7i −3.27826 + 0.895554i
\(777\) 3.43769e6 0.204275
\(778\) −7.32610e6 −0.433934
\(779\) 1.03061e7 0.608487
\(780\) −9.23149e7 −5.43294
\(781\) 1.37239e7i 0.805101i
\(782\) 1.00631e7 0.588458
\(783\) 3.15078e7i 1.83660i
\(784\) 419937. 0.0244003
\(785\) −7.29006e6 −0.422238
\(786\) 4.66609e7i 2.69399i
\(787\) 1.70451e7 0.980985 0.490492 0.871446i \(-0.336817\pi\)
0.490492 + 0.871446i \(0.336817\pi\)
\(788\) 3.15037e7 1.80736
\(789\) 3.81623e6i 0.218244i
\(790\) 3.26107e7i 1.85906i
\(791\) 6.31319e6i 0.358763i
\(792\) −1.88345e7 −1.06695
\(793\) 5.21068e7i 2.94246i
\(794\) 1.03033e7 0.579994
\(795\) 2.90565e7i 1.63052i
\(796\) 7.02023e7i 3.92707i
\(797\) 2.82937e7i 1.57777i 0.614539 + 0.788887i \(0.289342\pi\)
−0.614539 + 0.788887i \(0.710658\pi\)
\(798\) −1.82330e7 −1.01356
\(799\) 1.97885e7i 1.09659i
\(800\) 6.64989e7 3.67358
\(801\) 7.64720e6 0.421135
\(802\) 5.35878e7i 2.94192i
\(803\) 7.51738e6 0.411412
\(804\) 4.37954e6i 0.238940i
\(805\) 8.33574e6i 0.453372i
\(806\) 5.36205e7i 2.90733i
\(807\) 7.05139e6 0.381146
\(808\) 1.12201e8 6.04599
\(809\) 2.96599e7 1.59330 0.796651 0.604440i \(-0.206603\pi\)
0.796651 + 0.604440i \(0.206603\pi\)
\(810\) 2.55942e7i 1.37066i
\(811\) −2.03879e7 −1.08848 −0.544240 0.838929i \(-0.683182\pi\)
−0.544240 + 0.838929i \(0.683182\pi\)
\(812\) 8.70636e7 4.63390
\(813\) 1.94595e7i 1.03254i
\(814\) 8.19264e6i 0.433374i
\(815\) 1.02164e7i 0.538768i
\(816\) 5.38605e7i 2.83169i
\(817\) 516676.i 0.0270809i
\(818\) 3.23427e7i 1.69002i
\(819\) 1.22541e7 0.638371
\(820\) −6.80652e7 −3.53501
\(821\) 1.62008e7i 0.838840i −0.907792 0.419420i \(-0.862233\pi\)
0.907792 0.419420i \(-0.137767\pi\)
\(822\) 3.01352e7i 1.55559i
\(823\) −1.27062e7 −0.653907 −0.326954 0.945040i \(-0.606022\pi\)
−0.326954 + 0.945040i \(0.606022\pi\)
\(824\) −3.46819e7 −1.77945
\(825\) 1.24815e7 0.638457
\(826\) −1.05620e7 −0.538639
\(827\) 3.08158e7i 1.56679i 0.621526 + 0.783394i \(0.286513\pi\)
−0.621526 + 0.783394i \(0.713487\pi\)
\(828\) 6.42047e6i 0.325455i
\(829\) 1.34381e7 0.679126 0.339563 0.940583i \(-0.389721\pi\)
0.339563 + 0.940583i \(0.389721\pi\)
\(830\) 9.72980e7 4.90240
\(831\) 1.98958e7i 0.999445i
\(832\) 1.41062e8i 7.06483i
\(833\) 117829.i 0.00588355i
\(834\) 2.39408e6i 0.119185i
\(835\) 2.57169e6i 0.127644i
\(836\) 3.18774e7i 1.57749i
\(837\) −1.85694e7 −0.916186
\(838\) 2.11218e7 1.03901
\(839\) 2.02403e7i 0.992684i 0.868127 + 0.496342i \(0.165324\pi\)
−0.868127 + 0.496342i \(0.834676\pi\)
\(840\) 7.66923e7 3.75019
\(841\) −3.79322e7 −1.84935
\(842\) −1.53313e7 −0.745247
\(843\) 9.27046e6i 0.449296i
\(844\) 2.03471e7i 0.983209i
\(845\) 6.24549e7i 3.00902i
\(846\) −1.72099e7 −0.826707
\(847\) 4.92874e6i 0.236063i
\(848\) 1.18140e8 5.64167
\(849\) −1.81561e7 −0.864475
\(850\) 3.44197e7i 1.63403i
\(851\) −1.77869e6 −0.0841930
\(852\) 4.30424e7i 2.03141i
\(853\) 5.05236e6i 0.237751i −0.992909 0.118875i \(-0.962071\pi\)
0.992909 0.118875i \(-0.0379289\pi\)
\(854\) 6.79688e7i 3.18908i
\(855\) −6.96676e6 −0.325924
\(856\) 6.75771e7i 3.15221i
\(857\) −4.11264e7 −1.91280 −0.956398 0.292066i \(-0.905657\pi\)
−0.956398 + 0.292066i \(0.905657\pi\)
\(858\) 5.20575e7i 2.41415i
\(859\) 6.49889e6i 0.300508i −0.988647 0.150254i \(-0.951991\pi\)
0.988647 0.150254i \(-0.0480092\pi\)
\(860\) 3.41231e6i 0.157327i
\(861\) −1.61057e7 −0.740410
\(862\) 6.73064e7 3.08524
\(863\) 1.41643e7i 0.647393i 0.946161 + 0.323696i \(0.104926\pi\)
−0.946161 + 0.323696i \(0.895074\pi\)
\(864\) 9.60499e7 4.37736
\(865\) 1.22874e7 0.558366
\(866\) 2.57823e7i 1.16823i
\(867\) 2.60270e6 0.117592
\(868\) 5.13116e7i 2.31162i
\(869\) 1.34909e7 0.606027
\(870\) −8.08324e7 −3.62066
\(871\) 4.32491e6 0.193166
\(872\) −4.28978e7 −1.91049
\(873\) −7.80661e6 + 2.13261e6i −0.346678 + 0.0947055i
\(874\) 9.43387e6 0.417745
\(875\) −2.71348e6 −0.119814
\(876\) −2.35768e7 −1.03807
\(877\) −1.64644e7 −0.722846 −0.361423 0.932402i \(-0.617709\pi\)
−0.361423 + 0.932402i \(0.617709\pi\)
\(878\) 4.12888e7i 1.80757i
\(879\) 562376. 0.0245502
\(880\) 1.06326e8i 4.62842i
\(881\) 1.98872e6 0.0863243 0.0431621 0.999068i \(-0.486257\pi\)
0.0431621 + 0.999068i \(0.486257\pi\)
\(882\) 102475. 0.00443554
\(883\) 3.28725e6i 0.141883i −0.997480 0.0709415i \(-0.977400\pi\)
0.997480 0.0709415i \(-0.0226004\pi\)
\(884\) 1.05316e8 4.53275
\(885\) 7.19393e6 0.308751
\(886\) 4.56058e7i 1.95180i
\(887\) 5.39047e6i 0.230047i 0.993363 + 0.115024i \(0.0366944\pi\)
−0.993363 + 0.115024i \(0.963306\pi\)
\(888\) 1.63647e7i 0.696426i
\(889\) −5.43228e6 −0.230530
\(890\) 7.42088e7i 3.14037i
\(891\) 1.05882e7 0.446816
\(892\) 7.46434e7i 3.14108i
\(893\) 1.85511e7i 0.778468i
\(894\) 6.91608e7i 2.89412i
\(895\) −1.69484e7 −0.707247
\(896\) 8.76306e7i 3.64658i
\(897\) 1.13021e7 0.469006
\(898\) −8.16656e7 −3.37947
\(899\) 3.44440e7i 1.42140i
\(900\) 2.19605e7 0.903723
\(901\) 3.31485e7i 1.36036i
\(902\) 3.83828e7i 1.57080i
\(903\) 807427.i 0.0329522i
\(904\) −3.00531e7 −1.22312
\(905\) −2.22689e7 −0.903808
\(906\) 1.73141e7 0.700775
\(907\) 3.72525e7i 1.50362i 0.659382 + 0.751808i \(0.270818\pi\)
−0.659382 + 0.751808i \(0.729182\pi\)
\(908\) −1.86361e7 −0.750137
\(909\) 1.59280e7 0.639367
\(910\) 1.18915e8i 4.76028i
\(911\) 2.39819e7i 0.957385i −0.877983 0.478693i \(-0.841111\pi\)
0.877983 0.478693i \(-0.158889\pi\)
\(912\) 5.04927e7i 2.01021i
\(913\) 4.02517e7i 1.59811i
\(914\) 3.37587e7i 1.33666i
\(915\) 4.62943e7i 1.82799i
\(916\) 2.97918e7 1.17316
\(917\) −4.40947e7 −1.73166
\(918\) 4.97152e7i 1.94707i
\(919\) 3.25978e7i 1.27321i 0.771190 + 0.636605i \(0.219662\pi\)
−0.771190 + 0.636605i \(0.780338\pi\)
\(920\) −3.96812e7 −1.54566
\(921\) −3.05927e7 −1.18842
\(922\) −6.89563e7 −2.67145
\(923\) −4.25055e7 −1.64226
\(924\) 4.98159e7i 1.91950i
\(925\) 6.08380e6i 0.233787i
\(926\) 6.28642e7 2.40922
\(927\) −4.92343e6 −0.188178
\(928\) 1.78162e8i 6.79116i
\(929\) 2.96689e7i 1.12788i −0.825817 0.563939i \(-0.809285\pi\)
0.825817 0.563939i \(-0.190715\pi\)
\(930\) 4.76392e7i 1.80616i
\(931\) 110461.i 0.00417672i
\(932\) 8.07606e7i 3.04551i
\(933\) 2.76623e7i 1.04036i
\(934\) 4.41261e7 1.65512
\(935\) −2.98337e7 −1.11604
\(936\) 5.83341e7i 2.17637i
\(937\) 2.25654e7 0.839640 0.419820 0.907607i \(-0.362093\pi\)
0.419820 + 0.907607i \(0.362093\pi\)
\(938\) −5.64147e6 −0.209356
\(939\) 3.71813e7 1.37613
\(940\) 1.22518e8i 4.52252i
\(941\) 2.48205e7i 0.913770i 0.889526 + 0.456885i \(0.151035\pi\)
−0.889526 + 0.456885i \(0.848965\pi\)
\(942\) 1.28932e7i 0.473407i
\(943\) 8.33322e6 0.305164
\(944\) 2.92496e7i 1.06829i
\(945\) 4.11815e7 1.50011
\(946\) −1.92424e6 −0.0699088
\(947\) 4.69323e7i 1.70058i −0.526316 0.850289i \(-0.676427\pi\)
0.526316 0.850289i \(-0.323573\pi\)
\(948\) −4.23117e7 −1.52911
\(949\) 2.32827e7i 0.839206i
\(950\) 3.22674e7i 1.15999i
\(951\) 3.31987e7i 1.19034i
\(952\) −8.74928e7 −3.12882
\(953\) 4.50650e7i 1.60734i 0.595078 + 0.803668i \(0.297121\pi\)
−0.595078 + 0.803668i \(0.702879\pi\)
\(954\) 2.88290e7 1.02556
\(955\) 9.38833e6i 0.333104i
\(956\) 6.58289e7i 2.32955i
\(957\) 3.34400e7i 1.18028i
\(958\) −2.76096e7 −0.971956
\(959\) −2.84779e7 −0.999910
\(960\) 1.25327e8i 4.38900i
\(961\) −8.32928e6 −0.290937
\(962\) −2.53742e7 −0.884003
\(963\) 9.59322e6i 0.333349i
\(964\) −8.23169e7 −2.85296
\(965\) 1.88331e7i 0.651034i
\(966\) −1.47426e7 −0.508314
\(967\) −2.67456e7 −0.919784 −0.459892 0.887975i \(-0.652112\pi\)
−0.459892 + 0.887975i \(0.652112\pi\)
\(968\) 2.34626e7 0.804800
\(969\) −1.41676e7 −0.484715
\(970\) −2.06949e7 7.57557e7i −0.706211 2.58515i
\(971\) −3.90194e6 −0.132811 −0.0664053 0.997793i \(-0.521153\pi\)
−0.0664053 + 0.997793i \(0.521153\pi\)
\(972\) 5.50530e7 1.86903
\(973\) −2.26241e6 −0.0766107
\(974\) −6.59407e7 −2.22718
\(975\) 3.86575e7i 1.30233i
\(976\) −1.88227e8 −6.32494
\(977\) 4.70491e7i 1.57694i 0.615074 + 0.788469i \(0.289126\pi\)
−0.615074 + 0.788469i \(0.710874\pi\)
\(978\) 1.80687e7 0.604059
\(979\) 3.06998e7 1.02372
\(980\) 729524.i 0.0242647i
\(981\) −6.08975e6 −0.202035
\(982\) 3.83105e7 1.26777
\(983\) 2.16849e7i 0.715769i −0.933766 0.357885i \(-0.883498\pi\)
0.933766 0.357885i \(-0.116502\pi\)
\(984\) 7.66691e7i 2.52425i
\(985\) 2.76403e7i 0.907721i
\(986\) 9.22160e7 3.02075
\(987\) 2.89904e7i 0.947244i
\(988\) 9.87303e7 3.21779
\(989\) 417769.i 0.0135814i
\(990\) 2.59461e7i 0.841365i
\(991\) 3.97245e7i 1.28491i 0.766322 + 0.642457i \(0.222085\pi\)
−0.766322 + 0.642457i \(0.777915\pi\)
\(992\) −1.05001e8 −3.38777
\(993\) 4.42904e6i 0.142540i
\(994\) 5.54448e7 1.77990
\(995\) −6.15933e7 −1.97231
\(996\) 1.26242e8i 4.03232i
\(997\) −4.82543e6 −0.153744 −0.0768720 0.997041i \(-0.524493\pi\)
−0.0768720 + 0.997041i \(0.524493\pi\)
\(998\) 7.11401e7i 2.26094i
\(999\) 8.78734e6i 0.278576i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 97.6.b.a.96.2 yes 40
97.96 even 2 inner 97.6.b.a.96.1 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
97.6.b.a.96.1 40 97.96 even 2 inner
97.6.b.a.96.2 yes 40 1.1 even 1 trivial