Properties

Label 97.6.b.a.96.19
Level $97$
Weight $6$
Character 97.96
Analytic conductor $15.557$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [97,6,Mod(96,97)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(97, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("97.96"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 97 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 97.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.5572305219\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 96.19
Character \(\chi\) \(=\) 97.96
Dual form 97.6.b.a.96.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.466290 q^{2} -9.91982 q^{3} -31.7826 q^{4} -23.6226i q^{5} +4.62551 q^{6} -97.7284i q^{7} +29.7412 q^{8} -144.597 q^{9} +11.0150i q^{10} -176.630 q^{11} +315.277 q^{12} -592.622i q^{13} +45.5698i q^{14} +234.332i q^{15} +1003.17 q^{16} +1502.56i q^{17} +67.4242 q^{18} +1527.67i q^{19} +750.787i q^{20} +969.448i q^{21} +82.3609 q^{22} +1627.21i q^{23} -295.027 q^{24} +2566.97 q^{25} +276.334i q^{26} +3844.89 q^{27} +3106.06i q^{28} -561.146i q^{29} -109.267i q^{30} -2609.48 q^{31} -1419.49 q^{32} +1752.14 q^{33} -700.631i q^{34} -2308.60 q^{35} +4595.67 q^{36} +8546.03i q^{37} -712.336i q^{38} +5878.70i q^{39} -702.564i q^{40} -3786.09i q^{41} -452.044i q^{42} +871.908 q^{43} +5613.76 q^{44} +3415.76i q^{45} -758.752i q^{46} +8578.90 q^{47} -9951.31 q^{48} +7256.16 q^{49} -1196.95 q^{50} -14905.2i q^{51} +18835.1i q^{52} -14718.8 q^{53} -1792.84 q^{54} +4172.47i q^{55} -2906.56i q^{56} -15154.2i q^{57} +261.657i q^{58} +777.803i q^{59} -7447.67i q^{60} +17475.4 q^{61} +1216.77 q^{62} +14131.2i q^{63} -31439.7 q^{64} -13999.3 q^{65} -817.006 q^{66} -17153.0i q^{67} -47755.4i q^{68} -16141.6i q^{69} +1076.48 q^{70} -22581.9i q^{71} -4300.49 q^{72} -31207.8 q^{73} -3984.93i q^{74} -25463.9 q^{75} -48553.2i q^{76} +17261.8i q^{77} -2741.18i q^{78} +30670.3 q^{79} -23697.6i q^{80} -3003.56 q^{81} +1765.42i q^{82} +43519.9i q^{83} -30811.6i q^{84} +35494.5 q^{85} -406.562 q^{86} +5566.47i q^{87} -5253.19 q^{88} -18258.5 q^{89} -1592.74i q^{90} -57916.0 q^{91} -51716.9i q^{92} +25885.6 q^{93} -4000.25 q^{94} +36087.5 q^{95} +14081.1 q^{96} +(-45431.0 + 80767.4i) q^{97} -3383.47 q^{98} +25540.2 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 2 q^{2} + 40 q^{3} + 638 q^{4} - 130 q^{6} + 180 q^{8} + 3300 q^{9} + 382 q^{11} + 2586 q^{12} + 10174 q^{16} + 4738 q^{18} + 1996 q^{22} - 3102 q^{24} - 25178 q^{25} + 3046 q^{27} + 14796 q^{31}+ \cdots - 562238 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/97\mathbb{Z}\right)^\times\).

\(n\) \(5\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.466290 −0.0824292 −0.0412146 0.999150i \(-0.513123\pi\)
−0.0412146 + 0.999150i \(0.513123\pi\)
\(3\) −9.91982 −0.636357 −0.318178 0.948031i \(-0.603071\pi\)
−0.318178 + 0.948031i \(0.603071\pi\)
\(4\) −31.7826 −0.993205
\(5\) 23.6226i 0.422574i −0.977424 0.211287i \(-0.932235\pi\)
0.977424 0.211287i \(-0.0677655\pi\)
\(6\) 4.62551 0.0524544
\(7\) 97.7284i 0.753834i −0.926247 0.376917i \(-0.876984\pi\)
0.926247 0.376917i \(-0.123016\pi\)
\(8\) 29.7412 0.164298
\(9\) −144.597 −0.595050
\(10\) 11.0150i 0.0348324i
\(11\) −176.630 −0.440132 −0.220066 0.975485i \(-0.570627\pi\)
−0.220066 + 0.975485i \(0.570627\pi\)
\(12\) 315.277 0.632033
\(13\) 592.622i 0.972567i −0.873801 0.486283i \(-0.838352\pi\)
0.873801 0.486283i \(-0.161648\pi\)
\(14\) 45.5698i 0.0621379i
\(15\) 234.332i 0.268908i
\(16\) 1003.17 0.979662
\(17\) 1502.56i 1.26099i 0.776194 + 0.630494i \(0.217148\pi\)
−0.776194 + 0.630494i \(0.782852\pi\)
\(18\) 67.4242 0.0490495
\(19\) 1527.67i 0.970833i 0.874283 + 0.485416i \(0.161332\pi\)
−0.874283 + 0.485416i \(0.838668\pi\)
\(20\) 750.787i 0.419703i
\(21\) 969.448i 0.479707i
\(22\) 82.3609 0.0362798
\(23\) 1627.21i 0.641393i 0.947182 + 0.320696i \(0.103917\pi\)
−0.947182 + 0.320696i \(0.896083\pi\)
\(24\) −295.027 −0.104552
\(25\) 2566.97 0.821431
\(26\) 276.334i 0.0801679i
\(27\) 3844.89 1.01502
\(28\) 3106.06i 0.748712i
\(29\) 561.146i 0.123903i −0.998079 0.0619513i \(-0.980268\pi\)
0.998079 0.0619513i \(-0.0197324\pi\)
\(30\) 109.267i 0.0221659i
\(31\) −2609.48 −0.487697 −0.243848 0.969813i \(-0.578410\pi\)
−0.243848 + 0.969813i \(0.578410\pi\)
\(32\) −1419.49 −0.245051
\(33\) 1752.14 0.280081
\(34\) 700.631i 0.103942i
\(35\) −2308.60 −0.318551
\(36\) 4595.67 0.591007
\(37\) 8546.03i 1.02627i 0.858309 + 0.513133i \(0.171515\pi\)
−0.858309 + 0.513133i \(0.828485\pi\)
\(38\) 712.336i 0.0800250i
\(39\) 5878.70i 0.618900i
\(40\) 702.564i 0.0694282i
\(41\) 3786.09i 0.351748i −0.984413 0.175874i \(-0.943725\pi\)
0.984413 0.175874i \(-0.0562751\pi\)
\(42\) 452.044i 0.0395419i
\(43\) 871.908 0.0719117 0.0359559 0.999353i \(-0.488552\pi\)
0.0359559 + 0.999353i \(0.488552\pi\)
\(44\) 5613.76 0.437142
\(45\) 3415.76i 0.251453i
\(46\) 758.752i 0.0528695i
\(47\) 8578.90 0.566483 0.283241 0.959049i \(-0.408590\pi\)
0.283241 + 0.959049i \(0.408590\pi\)
\(48\) −9951.31 −0.623415
\(49\) 7256.16 0.431734
\(50\) −1196.95 −0.0677099
\(51\) 14905.2i 0.802438i
\(52\) 18835.1i 0.965959i
\(53\) −14718.8 −0.719753 −0.359876 0.933000i \(-0.617181\pi\)
−0.359876 + 0.933000i \(0.617181\pi\)
\(54\) −1792.84 −0.0836674
\(55\) 4172.47i 0.185988i
\(56\) 2906.56i 0.123854i
\(57\) 15154.2i 0.617796i
\(58\) 261.657i 0.0102132i
\(59\) 777.803i 0.0290897i 0.999894 + 0.0145449i \(0.00462994\pi\)
−0.999894 + 0.0145449i \(0.995370\pi\)
\(60\) 7447.67i 0.267081i
\(61\) 17475.4 0.601315 0.300658 0.953732i \(-0.402794\pi\)
0.300658 + 0.953732i \(0.402794\pi\)
\(62\) 1216.77 0.0402004
\(63\) 14131.2i 0.448569i
\(64\) −31439.7 −0.959463
\(65\) −13999.3 −0.410981
\(66\) −817.006 −0.0230869
\(67\) 17153.0i 0.466824i −0.972378 0.233412i \(-0.925011\pi\)
0.972378 0.233412i \(-0.0749890\pi\)
\(68\) 47755.4i 1.25242i
\(69\) 16141.6i 0.408155i
\(70\) 1076.48 0.0262579
\(71\) 22581.9i 0.531636i −0.964023 0.265818i \(-0.914358\pi\)
0.964023 0.265818i \(-0.0856421\pi\)
\(72\) −4300.49 −0.0977657
\(73\) −31207.8 −0.685419 −0.342710 0.939441i \(-0.611345\pi\)
−0.342710 + 0.939441i \(0.611345\pi\)
\(74\) 3984.93i 0.0845944i
\(75\) −25463.9 −0.522723
\(76\) 48553.2i 0.964237i
\(77\) 17261.8i 0.331787i
\(78\) 2741.18i 0.0510154i
\(79\) 30670.3 0.552905 0.276452 0.961028i \(-0.410841\pi\)
0.276452 + 0.961028i \(0.410841\pi\)
\(80\) 23697.6i 0.413980i
\(81\) −3003.56 −0.0508655
\(82\) 1765.42i 0.0289943i
\(83\) 43519.9i 0.693414i 0.937973 + 0.346707i \(0.112700\pi\)
−0.937973 + 0.346707i \(0.887300\pi\)
\(84\) 30811.6i 0.476448i
\(85\) 35494.5 0.532860
\(86\) −406.562 −0.00592763
\(87\) 5566.47i 0.0788463i
\(88\) −5253.19 −0.0723130
\(89\) −18258.5 −0.244337 −0.122169 0.992509i \(-0.538985\pi\)
−0.122169 + 0.992509i \(0.538985\pi\)
\(90\) 1592.74i 0.0207270i
\(91\) −57916.0 −0.733154
\(92\) 51716.9i 0.637035i
\(93\) 25885.6 0.310349
\(94\) −4000.25 −0.0466947
\(95\) 36087.5 0.410249
\(96\) 14081.1 0.155940
\(97\) −45431.0 + 80767.4i −0.490256 + 0.871579i
\(98\) −3383.47 −0.0355875
\(99\) 25540.2 0.261901
\(100\) −81585.0 −0.815850
\(101\) −69711.1 −0.679984 −0.339992 0.940428i \(-0.610424\pi\)
−0.339992 + 0.940428i \(0.610424\pi\)
\(102\) 6950.13i 0.0661443i
\(103\) 100533. 0.933720 0.466860 0.884331i \(-0.345385\pi\)
0.466860 + 0.884331i \(0.345385\pi\)
\(104\) 17625.3i 0.159791i
\(105\) 22900.9 0.202712
\(106\) 6863.24 0.0593286
\(107\) 214489.i 1.81111i 0.424227 + 0.905556i \(0.360546\pi\)
−0.424227 + 0.905556i \(0.639454\pi\)
\(108\) −122201. −1.00812
\(109\) 67647.1 0.545359 0.272680 0.962105i \(-0.412090\pi\)
0.272680 + 0.962105i \(0.412090\pi\)
\(110\) 1945.58i 0.0153309i
\(111\) 84775.1i 0.653072i
\(112\) 98038.6i 0.738503i
\(113\) 186295. 1.37248 0.686238 0.727377i \(-0.259261\pi\)
0.686238 + 0.727377i \(0.259261\pi\)
\(114\) 7066.24i 0.0509245i
\(115\) 38438.9 0.271036
\(116\) 17834.7i 0.123061i
\(117\) 85691.5i 0.578726i
\(118\) 362.682i 0.00239784i
\(119\) 146843. 0.950575
\(120\) 6969.31i 0.0441811i
\(121\) −129853. −0.806283
\(122\) −8148.60 −0.0495660
\(123\) 37557.3i 0.223837i
\(124\) 82936.0 0.484383
\(125\) 134459.i 0.769689i
\(126\) 6589.26i 0.0369752i
\(127\) 240026.i 1.32053i 0.751031 + 0.660267i \(0.229557\pi\)
−0.751031 + 0.660267i \(0.770443\pi\)
\(128\) 60083.6 0.324139
\(129\) −8649.18 −0.0457615
\(130\) 6527.72 0.0338769
\(131\) 336513.i 1.71326i 0.515928 + 0.856632i \(0.327447\pi\)
−0.515928 + 0.856632i \(0.672553\pi\)
\(132\) −55687.5 −0.278178
\(133\) 149296. 0.731847
\(134\) 7998.27i 0.0384799i
\(135\) 90826.4i 0.428921i
\(136\) 44688.0i 0.207178i
\(137\) 215748.i 0.982077i 0.871138 + 0.491039i \(0.163383\pi\)
−0.871138 + 0.491039i \(0.836617\pi\)
\(138\) 7526.68i 0.0336439i
\(139\) 64165.0i 0.281683i 0.990032 + 0.140842i \(0.0449809\pi\)
−0.990032 + 0.140842i \(0.955019\pi\)
\(140\) 73373.2 0.316386
\(141\) −85101.1 −0.360485
\(142\) 10529.7i 0.0438224i
\(143\) 104675.i 0.428058i
\(144\) −145056. −0.582948
\(145\) −13255.7 −0.0523580
\(146\) 14551.9 0.0564986
\(147\) −71979.8 −0.274737
\(148\) 271615.i 1.01929i
\(149\) 219209.i 0.808896i 0.914561 + 0.404448i \(0.132536\pi\)
−0.914561 + 0.404448i \(0.867464\pi\)
\(150\) 11873.6 0.0430877
\(151\) 123390. 0.440390 0.220195 0.975456i \(-0.429331\pi\)
0.220195 + 0.975456i \(0.429331\pi\)
\(152\) 45434.6i 0.159506i
\(153\) 217267.i 0.750351i
\(154\) 8049.00i 0.0273489i
\(155\) 61642.7i 0.206088i
\(156\) 186840.i 0.614694i
\(157\) 361369.i 1.17004i −0.811018 0.585021i \(-0.801086\pi\)
0.811018 0.585021i \(-0.198914\pi\)
\(158\) −14301.3 −0.0455755
\(159\) 146008. 0.458019
\(160\) 33532.0i 0.103552i
\(161\) 159025. 0.483504
\(162\) 1400.53 0.00419280
\(163\) −391363. −1.15375 −0.576873 0.816834i \(-0.695727\pi\)
−0.576873 + 0.816834i \(0.695727\pi\)
\(164\) 120332.i 0.349358i
\(165\) 41390.1i 0.118355i
\(166\) 20292.9i 0.0571576i
\(167\) 9302.86 0.0258122 0.0129061 0.999917i \(-0.495892\pi\)
0.0129061 + 0.999917i \(0.495892\pi\)
\(168\) 28832.5i 0.0788151i
\(169\) 20092.1 0.0541138
\(170\) −16550.7 −0.0439233
\(171\) 220896.i 0.577694i
\(172\) −27711.5 −0.0714231
\(173\) 132199.i 0.335824i −0.985802 0.167912i \(-0.946297\pi\)
0.985802 0.167912i \(-0.0537025\pi\)
\(174\) 2595.59i 0.00649924i
\(175\) 250866.i 0.619223i
\(176\) −177191. −0.431181
\(177\) 7715.67i 0.0185115i
\(178\) 8513.75 0.0201405
\(179\) 660241.i 1.54017i 0.637939 + 0.770087i \(0.279787\pi\)
−0.637939 + 0.770087i \(0.720213\pi\)
\(180\) 108562.i 0.249744i
\(181\) 854614.i 1.93898i −0.245128 0.969491i \(-0.578830\pi\)
0.245128 0.969491i \(-0.421170\pi\)
\(182\) 27005.7 0.0604333
\(183\) −173353. −0.382651
\(184\) 48395.1i 0.105380i
\(185\) 201880. 0.433674
\(186\) −12070.2 −0.0255818
\(187\) 265398.i 0.555001i
\(188\) −272659. −0.562634
\(189\) 375755.i 0.765157i
\(190\) −16827.2 −0.0338165
\(191\) −217228. −0.430857 −0.215428 0.976520i \(-0.569115\pi\)
−0.215428 + 0.976520i \(0.569115\pi\)
\(192\) 311876. 0.610561
\(193\) −399450. −0.771915 −0.385957 0.922517i \(-0.626129\pi\)
−0.385957 + 0.922517i \(0.626129\pi\)
\(194\) 21184.0 37661.0i 0.0404114 0.0718435i
\(195\) 138870. 0.261531
\(196\) −230619. −0.428801
\(197\) −447168. −0.820929 −0.410464 0.911877i \(-0.634633\pi\)
−0.410464 + 0.911877i \(0.634633\pi\)
\(198\) −11909.2 −0.0215883
\(199\) 540987.i 0.968398i 0.874958 + 0.484199i \(0.160889\pi\)
−0.874958 + 0.484199i \(0.839111\pi\)
\(200\) 76344.8 0.134960
\(201\) 170155.i 0.297066i
\(202\) 32505.6 0.0560506
\(203\) −54839.9 −0.0934021
\(204\) 473725.i 0.796986i
\(205\) −89437.3 −0.148639
\(206\) −46877.7 −0.0769658
\(207\) 235290.i 0.381661i
\(208\) 594503.i 0.952787i
\(209\) 269832.i 0.427295i
\(210\) −10678.5 −0.0167094
\(211\) 402116.i 0.621792i 0.950444 + 0.310896i \(0.100629\pi\)
−0.950444 + 0.310896i \(0.899371\pi\)
\(212\) 467802. 0.714862
\(213\) 224008.i 0.338310i
\(214\) 100014.i 0.149289i
\(215\) 20596.7i 0.0303880i
\(216\) 114352. 0.166766
\(217\) 255020.i 0.367642i
\(218\) −31543.1 −0.0449535
\(219\) 309576. 0.436171
\(220\) 132612.i 0.184725i
\(221\) 890453. 1.22639
\(222\) 39529.8i 0.0538322i
\(223\) 1.10299e6i 1.48528i −0.669689 0.742642i \(-0.733572\pi\)
0.669689 0.742642i \(-0.266428\pi\)
\(224\) 138724.i 0.184728i
\(225\) −371177. −0.488793
\(226\) −86867.4 −0.113132
\(227\) 1.17876e6 1.51831 0.759154 0.650911i \(-0.225613\pi\)
0.759154 + 0.650911i \(0.225613\pi\)
\(228\) 481639.i 0.613599i
\(229\) −1.19860e6 −1.51038 −0.755192 0.655504i \(-0.772456\pi\)
−0.755192 + 0.655504i \(0.772456\pi\)
\(230\) −17923.7 −0.0223413
\(231\) 171234.i 0.211135i
\(232\) 16689.1i 0.0203570i
\(233\) 472989.i 0.570771i −0.958413 0.285385i \(-0.907878\pi\)
0.958413 0.285385i \(-0.0921216\pi\)
\(234\) 39957.1i 0.0477039i
\(235\) 202656.i 0.239381i
\(236\) 24720.6i 0.0288921i
\(237\) −304244. −0.351845
\(238\) −68471.5 −0.0783552
\(239\) 22901.4i 0.0259339i 0.999916 + 0.0129669i \(0.00412762\pi\)
−0.999916 + 0.0129669i \(0.995872\pi\)
\(240\) 235076.i 0.263439i
\(241\) −1.03631e6 −1.14934 −0.574668 0.818386i \(-0.694869\pi\)
−0.574668 + 0.818386i \(0.694869\pi\)
\(242\) 60549.1 0.0664613
\(243\) −904515. −0.982652
\(244\) −555413. −0.597230
\(245\) 171409.i 0.182440i
\(246\) 17512.6i 0.0184507i
\(247\) 905329. 0.944200
\(248\) −77609.0 −0.0801278
\(249\) 431710.i 0.441259i
\(250\) 62697.0i 0.0634449i
\(251\) 709938.i 0.711272i 0.934625 + 0.355636i \(0.115736\pi\)
−0.934625 + 0.355636i \(0.884264\pi\)
\(252\) 449127.i 0.445521i
\(253\) 287414.i 0.282298i
\(254\) 111922.i 0.108851i
\(255\) −352099. −0.339089
\(256\) 978054. 0.932745
\(257\) 1.49260e6i 1.40965i 0.709382 + 0.704824i \(0.248974\pi\)
−0.709382 + 0.704824i \(0.751026\pi\)
\(258\) 4033.02 0.00377209
\(259\) 835190. 0.773635
\(260\) 444933. 0.408189
\(261\) 81140.1i 0.0737283i
\(262\) 156913.i 0.141223i
\(263\) 751114.i 0.669602i 0.942289 + 0.334801i \(0.108669\pi\)
−0.942289 + 0.334801i \(0.891331\pi\)
\(264\) 52110.7 0.0460169
\(265\) 347697.i 0.304149i
\(266\) −69615.4 −0.0603256
\(267\) 181121. 0.155486
\(268\) 545166.i 0.463652i
\(269\) 1.72309e6 1.45186 0.725932 0.687766i \(-0.241408\pi\)
0.725932 + 0.687766i \(0.241408\pi\)
\(270\) 42351.4i 0.0353557i
\(271\) 649646.i 0.537346i 0.963231 + 0.268673i \(0.0865850\pi\)
−0.963231 + 0.268673i \(0.913415\pi\)
\(272\) 1.50733e6i 1.23534i
\(273\) 574516. 0.466548
\(274\) 100601.i 0.0809518i
\(275\) −453405. −0.361539
\(276\) 513023.i 0.405381i
\(277\) 1.56706e6i 1.22712i 0.789648 + 0.613560i \(0.210263\pi\)
−0.789648 + 0.613560i \(0.789737\pi\)
\(278\) 29919.5i 0.0232189i
\(279\) 377323. 0.290204
\(280\) −68660.5 −0.0523373
\(281\) 159357.i 0.120394i −0.998187 0.0601972i \(-0.980827\pi\)
0.998187 0.0601972i \(-0.0191729\pi\)
\(282\) 39681.8 0.0297145
\(283\) 565938. 0.420052 0.210026 0.977696i \(-0.432645\pi\)
0.210026 + 0.977696i \(0.432645\pi\)
\(284\) 717711.i 0.528024i
\(285\) −357981. −0.261065
\(286\) 48808.9i 0.0352845i
\(287\) −370009. −0.265159
\(288\) 205254. 0.145818
\(289\) −837842. −0.590089
\(290\) 6181.01 0.00431583
\(291\) 450667. 801198.i 0.311977 0.554635i
\(292\) 991865. 0.680762
\(293\) −449425. −0.305836 −0.152918 0.988239i \(-0.548867\pi\)
−0.152918 + 0.988239i \(0.548867\pi\)
\(294\) 33563.5 0.0226464
\(295\) 18373.7 0.0122926
\(296\) 254169.i 0.168614i
\(297\) −679125. −0.446744
\(298\) 102215.i 0.0666767i
\(299\) 964321. 0.623797
\(300\) 809309. 0.519172
\(301\) 85210.2i 0.0542095i
\(302\) −57535.5 −0.0363010
\(303\) 691522. 0.432712
\(304\) 1.53252e6i 0.951089i
\(305\) 412814.i 0.254100i
\(306\) 101309.i 0.0618508i
\(307\) 469544. 0.284335 0.142167 0.989843i \(-0.454593\pi\)
0.142167 + 0.989843i \(0.454593\pi\)
\(308\) 548624.i 0.329532i
\(309\) −997272. −0.594179
\(310\) 28743.4i 0.0169877i
\(311\) 1.14896e6i 0.673600i 0.941576 + 0.336800i \(0.109345\pi\)
−0.941576 + 0.336800i \(0.890655\pi\)
\(312\) 174840.i 0.101684i
\(313\) −35647.0 −0.0205666 −0.0102833 0.999947i \(-0.503273\pi\)
−0.0102833 + 0.999947i \(0.503273\pi\)
\(314\) 168503.i 0.0964456i
\(315\) 333817. 0.189554
\(316\) −974781. −0.549148
\(317\) 1.30025e6i 0.726741i −0.931645 0.363371i \(-0.881626\pi\)
0.931645 0.363371i \(-0.118374\pi\)
\(318\) −68082.1 −0.0377542
\(319\) 99115.3i 0.0545336i
\(320\) 742687.i 0.405444i
\(321\) 2.12769e6i 1.15251i
\(322\) −74151.6 −0.0398548
\(323\) −2.29542e6 −1.22421
\(324\) 95460.7 0.0505199
\(325\) 1.52124e6i 0.798897i
\(326\) 182488. 0.0951024
\(327\) −671047. −0.347043
\(328\) 112603.i 0.0577916i
\(329\) 838402.i 0.427034i
\(330\) 19299.8i 0.00975591i
\(331\) 36154.1i 0.0181379i 0.999959 + 0.00906895i \(0.00288678\pi\)
−0.999959 + 0.00906895i \(0.997113\pi\)
\(332\) 1.38317e6i 0.688703i
\(333\) 1.23573e6i 0.610680i
\(334\) −4337.83 −0.00212768
\(335\) −405198. −0.197268
\(336\) 972526.i 0.469951i
\(337\) 2.16935e6i 1.04053i −0.854004 0.520266i \(-0.825833\pi\)
0.854004 0.520266i \(-0.174167\pi\)
\(338\) −9368.73 −0.00446055
\(339\) −1.84801e6 −0.873384
\(340\) −1.12811e6 −0.529240
\(341\) 460913. 0.214651
\(342\) 103002.i 0.0476189i
\(343\) 2.35165e6i 1.07929i
\(344\) 25931.6 0.0118150
\(345\) −381307. −0.172475
\(346\) 61643.0i 0.0276817i
\(347\) 1.79119e6i 0.798579i −0.916825 0.399290i \(-0.869257\pi\)
0.916825 0.399290i \(-0.130743\pi\)
\(348\) 176917.i 0.0783106i
\(349\) 1.82482e6i 0.801965i −0.916086 0.400983i \(-0.868669\pi\)
0.916086 0.400983i \(-0.131331\pi\)
\(350\) 116976.i 0.0510421i
\(351\) 2.27857e6i 0.987176i
\(352\) 250724. 0.107855
\(353\) −1.51153e6 −0.645623 −0.322811 0.946463i \(-0.604628\pi\)
−0.322811 + 0.946463i \(0.604628\pi\)
\(354\) 3597.74i 0.00152588i
\(355\) −533443. −0.224656
\(356\) 580302. 0.242677
\(357\) −1.45666e6 −0.604905
\(358\) 307864.i 0.126955i
\(359\) 2.52579e6i 1.03434i 0.855884 + 0.517168i \(0.173014\pi\)
−0.855884 + 0.517168i \(0.826986\pi\)
\(360\) 101589.i 0.0413133i
\(361\) 142334. 0.0574833
\(362\) 398498.i 0.159829i
\(363\) 1.28812e6 0.513084
\(364\) 1.84072e6 0.728172
\(365\) 737210.i 0.289640i
\(366\) 80832.7 0.0315416
\(367\) 896568.i 0.347471i 0.984792 + 0.173735i \(0.0555837\pi\)
−0.984792 + 0.173735i \(0.944416\pi\)
\(368\) 1.63238e6i 0.628348i
\(369\) 547458.i 0.209307i
\(370\) −94134.4 −0.0357474
\(371\) 1.43845e6i 0.542574i
\(372\) −822710. −0.308240
\(373\) 2.34116e6i 0.871281i −0.900121 0.435641i \(-0.856522\pi\)
0.900121 0.435641i \(-0.143478\pi\)
\(374\) 123753.i 0.0457483i
\(375\) 1.33381e6i 0.489797i
\(376\) 255147. 0.0930722
\(377\) −332547. −0.120504
\(378\) 175211.i 0.0630713i
\(379\) −255582. −0.0913971 −0.0456985 0.998955i \(-0.514551\pi\)
−0.0456985 + 0.998955i \(0.514551\pi\)
\(380\) −1.14695e6 −0.407461
\(381\) 2.38102e6i 0.840331i
\(382\) 101291. 0.0355152
\(383\) 3.75556e6i 1.30821i 0.756403 + 0.654106i \(0.226955\pi\)
−0.756403 + 0.654106i \(0.773045\pi\)
\(384\) −596019. −0.206268
\(385\) 407768. 0.140204
\(386\) 186260. 0.0636283
\(387\) −126075. −0.0427911
\(388\) 1.44391e6 2.56699e6i 0.486925 0.865657i
\(389\) 3.50781e6 1.17534 0.587668 0.809102i \(-0.300046\pi\)
0.587668 + 0.809102i \(0.300046\pi\)
\(390\) −64753.8 −0.0215578
\(391\) −2.44499e6 −0.808788
\(392\) 215807. 0.0709332
\(393\) 3.33815e6i 1.09025i
\(394\) 208510. 0.0676685
\(395\) 724512.i 0.233643i
\(396\) −811734. −0.260121
\(397\) −18344.3 −0.00584150 −0.00292075 0.999996i \(-0.500930\pi\)
−0.00292075 + 0.999996i \(0.500930\pi\)
\(398\) 252257.i 0.0798243i
\(399\) −1.48099e6 −0.465716
\(400\) 2.57512e6 0.804725
\(401\) 3.81188e6i 1.18380i 0.806012 + 0.591900i \(0.201622\pi\)
−0.806012 + 0.591900i \(0.798378\pi\)
\(402\) 79341.4i 0.0244870i
\(403\) 1.54644e6i 0.474318i
\(404\) 2.21560e6 0.675364
\(405\) 70951.8i 0.0214944i
\(406\) 25571.3 0.00769906
\(407\) 1.50949e6i 0.451693i
\(408\) 443297.i 0.131839i
\(409\) 4.09227e6i 1.20964i 0.796362 + 0.604820i \(0.206755\pi\)
−0.796362 + 0.604820i \(0.793245\pi\)
\(410\) 41703.7 0.0122522
\(411\) 2.14018e6i 0.624951i
\(412\) −3.19521e6 −0.927376
\(413\) 76013.5 0.0219288
\(414\) 109713.i 0.0314600i
\(415\) 1.02805e6 0.293019
\(416\) 841220.i 0.238329i
\(417\) 636506.i 0.179251i
\(418\) 125820.i 0.0352216i
\(419\) 1.34947e6 0.375516 0.187758 0.982215i \(-0.439878\pi\)
0.187758 + 0.982215i \(0.439878\pi\)
\(420\) −727849. −0.201334
\(421\) −3.27848e6 −0.901504 −0.450752 0.892649i \(-0.648844\pi\)
−0.450752 + 0.892649i \(0.648844\pi\)
\(422\) 187503.i 0.0512539i
\(423\) −1.24048e6 −0.337086
\(424\) −437755. −0.118254
\(425\) 3.85704e6i 1.03581i
\(426\) 104453.i 0.0278867i
\(427\) 1.70784e6i 0.453292i
\(428\) 6.81701e6i 1.79881i
\(429\) 1.03836e6i 0.272398i
\(430\) 9604.06i 0.00250486i
\(431\) 6.58840e6 1.70839 0.854195 0.519953i \(-0.174050\pi\)
0.854195 + 0.519953i \(0.174050\pi\)
\(432\) 3.85710e6 0.994378
\(433\) 3.71957e6i 0.953396i −0.879067 0.476698i \(-0.841834\pi\)
0.879067 0.476698i \(-0.158166\pi\)
\(434\) 118913.i 0.0303045i
\(435\) 131494. 0.0333184
\(436\) −2.15000e6 −0.541654
\(437\) −2.48583e6 −0.622685
\(438\) −144352. −0.0359533
\(439\) 3.18701e6i 0.789263i 0.918840 + 0.394631i \(0.129128\pi\)
−0.918840 + 0.394631i \(0.870872\pi\)
\(440\) 124094.i 0.0305576i
\(441\) −1.04922e6 −0.256903
\(442\) −415209. −0.101091
\(443\) 4.16494e6i 1.00832i 0.863609 + 0.504162i \(0.168198\pi\)
−0.863609 + 0.504162i \(0.831802\pi\)
\(444\) 2.69437e6i 0.648635i
\(445\) 431313.i 0.103251i
\(446\) 514313.i 0.122431i
\(447\) 2.17451e6i 0.514746i
\(448\) 3.07255e6i 0.723276i
\(449\) −384436. −0.0899928 −0.0449964 0.998987i \(-0.514328\pi\)
−0.0449964 + 0.998987i \(0.514328\pi\)
\(450\) 173076. 0.0402908
\(451\) 668738.i 0.154816i
\(452\) −5.92093e6 −1.36315
\(453\) −1.22401e6 −0.280245
\(454\) −549643. −0.125153
\(455\) 1.36813e6i 0.309812i
\(456\) 450703.i 0.101503i
\(457\) 2.29133e6i 0.513213i 0.966516 + 0.256606i \(0.0826044\pi\)
−0.966516 + 0.256606i \(0.917396\pi\)
\(458\) 558897. 0.124500
\(459\) 5.77720e6i 1.27993i
\(460\) −1.22169e6 −0.269194
\(461\) 6.89986e6 1.51213 0.756063 0.654498i \(-0.227120\pi\)
0.756063 + 0.654498i \(0.227120\pi\)
\(462\) 79844.7i 0.0174037i
\(463\) 1.55515e6 0.337148 0.168574 0.985689i \(-0.446084\pi\)
0.168574 + 0.985689i \(0.446084\pi\)
\(464\) 562927.i 0.121383i
\(465\) 611485.i 0.131145i
\(466\) 220550.i 0.0470482i
\(467\) 4.17292e6 0.885417 0.442708 0.896666i \(-0.354018\pi\)
0.442708 + 0.896666i \(0.354018\pi\)
\(468\) 2.72350e6i 0.574794i
\(469\) −1.67633e6 −0.351908
\(470\) 94496.4i 0.0197320i
\(471\) 3.58471e6i 0.744564i
\(472\) 23132.8i 0.00477940i
\(473\) −154005. −0.0316507
\(474\) 141866. 0.0290023
\(475\) 3.92148e6i 0.797473i
\(476\) −4.66705e6 −0.944116
\(477\) 2.12830e6 0.428289
\(478\) 10678.7i 0.00213771i
\(479\) 8.50692e6 1.69408 0.847039 0.531531i \(-0.178383\pi\)
0.847039 + 0.531531i \(0.178383\pi\)
\(480\) 332631.i 0.0658962i
\(481\) 5.06457e6 0.998113
\(482\) 483221. 0.0947389
\(483\) −1.57750e6 −0.307681
\(484\) 4.12705e6 0.800805
\(485\) 1.90794e6 + 1.07320e6i 0.368306 + 0.207169i
\(486\) 421766. 0.0809993
\(487\) 2.95564e6 0.564715 0.282358 0.959309i \(-0.408884\pi\)
0.282358 + 0.959309i \(0.408884\pi\)
\(488\) 519739. 0.0987951
\(489\) 3.88225e6 0.734194
\(490\) 79926.5i 0.0150384i
\(491\) −632440. −0.118390 −0.0591951 0.998246i \(-0.518853\pi\)
−0.0591951 + 0.998246i \(0.518853\pi\)
\(492\) 1.19367e6i 0.222316i
\(493\) 843158. 0.156240
\(494\) −422146. −0.0778297
\(495\) 603327.i 0.110672i
\(496\) −2.61776e6 −0.477778
\(497\) −2.20689e6 −0.400766
\(498\) 201302.i 0.0363726i
\(499\) 7.14474e6i 1.28450i 0.766494 + 0.642251i \(0.221999\pi\)
−0.766494 + 0.642251i \(0.778001\pi\)
\(500\) 4.27346e6i 0.764460i
\(501\) −92282.8 −0.0164258
\(502\) 331037.i 0.0586296i
\(503\) −7.26339e6 −1.28003 −0.640014 0.768363i \(-0.721071\pi\)
−0.640014 + 0.768363i \(0.721071\pi\)
\(504\) 420280.i 0.0736991i
\(505\) 1.64676e6i 0.287344i
\(506\) 134019.i 0.0232696i
\(507\) −199310. −0.0344357
\(508\) 7.62866e6i 1.31156i
\(509\) −2.15850e6 −0.369281 −0.184641 0.982806i \(-0.559112\pi\)
−0.184641 + 0.982806i \(0.559112\pi\)
\(510\) 164180. 0.0279509
\(511\) 3.04989e6i 0.516692i
\(512\) −2.37873e6 −0.401024
\(513\) 5.87372e6i 0.985416i
\(514\) 695985.i 0.116196i
\(515\) 2.37486e6i 0.394566i
\(516\) 274893. 0.0454506
\(517\) −1.51529e6 −0.249328
\(518\) −389441. −0.0637701
\(519\) 1.31139e6i 0.213704i
\(520\) −416355. −0.0675236
\(521\) −1.13928e6 −0.183881 −0.0919403 0.995765i \(-0.529307\pi\)
−0.0919403 + 0.995765i \(0.529307\pi\)
\(522\) 37834.8i 0.00607736i
\(523\) 1.65131e6i 0.263982i 0.991251 + 0.131991i \(0.0421371\pi\)
−0.991251 + 0.131991i \(0.957863\pi\)
\(524\) 1.06953e7i 1.70162i
\(525\) 2.48855e6i 0.394047i
\(526\) 350237.i 0.0551947i
\(527\) 3.92091e6i 0.614979i
\(528\) 1.75770e6 0.274385
\(529\) 3.78853e6 0.588615
\(530\) 162128.i 0.0250707i
\(531\) 112468.i 0.0173099i
\(532\) −4.74502e6 −0.726874
\(533\) −2.24372e6 −0.342098
\(534\) −84454.9 −0.0128166
\(535\) 5.06678e6 0.765329
\(536\) 510150.i 0.0766984i
\(537\) 6.54947e6i 0.980100i
\(538\) −803458. −0.119676
\(539\) −1.28166e6 −0.190020
\(540\) 2.88670e6i 0.426007i
\(541\) 8.47691e6i 1.24522i −0.782534 0.622608i \(-0.786073\pi\)
0.782534 0.622608i \(-0.213927\pi\)
\(542\) 302924.i 0.0442930i
\(543\) 8.47762e6i 1.23388i
\(544\) 2.13287e6i 0.309006i
\(545\) 1.59800e6i 0.230455i
\(546\) −267891. −0.0384571
\(547\) −5.24828e6 −0.749979 −0.374989 0.927029i \(-0.622354\pi\)
−0.374989 + 0.927029i \(0.622354\pi\)
\(548\) 6.85703e6i 0.975404i
\(549\) −2.52689e6 −0.357813
\(550\) 211418. 0.0298013
\(551\) 857244. 0.120289
\(552\) 480071.i 0.0670591i
\(553\) 2.99736e6i 0.416798i
\(554\) 730706.i 0.101151i
\(555\) −2.00261e6 −0.275971
\(556\) 2.03933e6i 0.279770i
\(557\) −1.17188e7 −1.60046 −0.800228 0.599696i \(-0.795288\pi\)
−0.800228 + 0.599696i \(0.795288\pi\)
\(558\) −175942. −0.0239213
\(559\) 516712.i 0.0699390i
\(560\) −2.31593e6 −0.312072
\(561\) 2.63270e6i 0.353179i
\(562\) 74306.7i 0.00992401i
\(563\) 6.71582e6i 0.892952i −0.894796 0.446476i \(-0.852679\pi\)
0.894796 0.446476i \(-0.147321\pi\)
\(564\) 2.70473e6 0.358036
\(565\) 4.40077e6i 0.579972i
\(566\) −263891. −0.0346246
\(567\) 293533.i 0.0383441i
\(568\) 671612.i 0.0873470i
\(569\) 4.99269e6i 0.646479i −0.946317 0.323239i \(-0.895228\pi\)
0.946317 0.323239i \(-0.104772\pi\)
\(570\) 166923. 0.0215193
\(571\) −9.70480e6 −1.24565 −0.622825 0.782361i \(-0.714015\pi\)
−0.622825 + 0.782361i \(0.714015\pi\)
\(572\) 3.32684e6i 0.425150i
\(573\) 2.15487e6 0.274179
\(574\) 172531. 0.0218569
\(575\) 4.17700e6i 0.526860i
\(576\) 4.54609e6 0.570929
\(577\) 1.63251e6i 0.204135i 0.994777 + 0.102067i \(0.0325458\pi\)
−0.994777 + 0.102067i \(0.967454\pi\)
\(578\) 390677. 0.0486406
\(579\) 3.96248e6 0.491213
\(580\) 421301. 0.0520023
\(581\) 4.25313e6 0.522719
\(582\) −210142. + 373591.i −0.0257161 + 0.0457181i
\(583\) 2.59979e6 0.316786
\(584\) −928158. −0.112613
\(585\) 2.02426e6 0.244554
\(586\) 209563. 0.0252098
\(587\) 7.24173e6i 0.867456i −0.901044 0.433728i \(-0.857198\pi\)
0.901044 0.433728i \(-0.142802\pi\)
\(588\) 2.28770e6 0.272870
\(589\) 3.98641e6i 0.473472i
\(590\) −8567.49 −0.00101327
\(591\) 4.43583e6 0.522403
\(592\) 8.57316e6i 1.00540i
\(593\) −9.11270e6 −1.06417 −0.532084 0.846692i \(-0.678591\pi\)
−0.532084 + 0.846692i \(0.678591\pi\)
\(594\) 316669. 0.0368247
\(595\) 3.46882e6i 0.401688i
\(596\) 6.96703e6i 0.803400i
\(597\) 5.36649e6i 0.616247i
\(598\) −449653. −0.0514191
\(599\) 2.16685e6i 0.246753i −0.992360 0.123376i \(-0.960628\pi\)
0.992360 0.123376i \(-0.0393723\pi\)
\(600\) −757327. −0.0858826
\(601\) 3.47129e6i 0.392017i −0.980602 0.196008i \(-0.937202\pi\)
0.980602 0.196008i \(-0.0627979\pi\)
\(602\) 39732.7i 0.00446845i
\(603\) 2.48027e6i 0.277783i
\(604\) −3.92165e6 −0.437398
\(605\) 3.06746e6i 0.340714i
\(606\) −322450. −0.0356682
\(607\) 1.18808e7 1.30880 0.654399 0.756149i \(-0.272922\pi\)
0.654399 + 0.756149i \(0.272922\pi\)
\(608\) 2.16850e6i 0.237904i
\(609\) 544002. 0.0594370
\(610\) 192491.i 0.0209453i
\(611\) 5.08404e6i 0.550943i
\(612\) 6.90529e6i 0.745252i
\(613\) −921903. −0.0990910 −0.0495455 0.998772i \(-0.515777\pi\)
−0.0495455 + 0.998772i \(0.515777\pi\)
\(614\) −218943. −0.0234375
\(615\) 887202. 0.0945877
\(616\) 513386.i 0.0545120i
\(617\) −1.35922e7 −1.43740 −0.718700 0.695320i \(-0.755263\pi\)
−0.718700 + 0.695320i \(0.755263\pi\)
\(618\) 465018. 0.0489777
\(619\) 1.85507e7i 1.94596i 0.230888 + 0.972980i \(0.425837\pi\)
−0.230888 + 0.972980i \(0.574163\pi\)
\(620\) 1.95916e6i 0.204688i
\(621\) 6.25645e6i 0.651027i
\(622\) 535747.i 0.0555243i
\(623\) 1.78437e6i 0.184190i
\(624\) 5.89737e6i 0.606313i
\(625\) 4.84551e6 0.496181
\(626\) 16621.8 0.00169529
\(627\) 2.67669e6i 0.271912i
\(628\) 1.14852e7i 1.16209i
\(629\) −1.28410e7 −1.29411
\(630\) −155655. −0.0156247
\(631\) −1.98710e6 −0.198676 −0.0993380 0.995054i \(-0.531673\pi\)
−0.0993380 + 0.995054i \(0.531673\pi\)
\(632\) 912171. 0.0908413
\(633\) 3.98892e6i 0.395682i
\(634\) 606295.i 0.0599047i
\(635\) 5.67005e6 0.558023
\(636\) −4.64051e6 −0.454907
\(637\) 4.30016e6i 0.419890i
\(638\) 46216.5i 0.00449516i
\(639\) 3.26528e6i 0.316350i
\(640\) 1.41933e6i 0.136973i
\(641\) 7.60605e6i 0.731163i −0.930779 0.365581i \(-0.880870\pi\)
0.930779 0.365581i \(-0.119130\pi\)
\(642\) 992121.i 0.0950008i
\(643\) −1.42591e7 −1.36008 −0.680041 0.733174i \(-0.738038\pi\)
−0.680041 + 0.733174i \(0.738038\pi\)
\(644\) −5.05421e6 −0.480218
\(645\) 204316.i 0.0193376i
\(646\) 1.07033e6 0.100911
\(647\) 1.88917e7 1.77423 0.887114 0.461551i \(-0.152707\pi\)
0.887114 + 0.461551i \(0.152707\pi\)
\(648\) −89329.3 −0.00835711
\(649\) 137384.i 0.0128033i
\(650\) 709341.i 0.0658524i
\(651\) 2.52976e6i 0.233952i
\(652\) 1.24385e7 1.14591
\(653\) 2.04065e7i 1.87277i −0.350973 0.936386i \(-0.614149\pi\)
0.350973 0.936386i \(-0.385851\pi\)
\(654\) 312902. 0.0286065
\(655\) 7.94932e6 0.723980
\(656\) 3.79811e6i 0.344594i
\(657\) 4.51256e6 0.407859
\(658\) 390939.i 0.0352001i
\(659\) 4.40356e6i 0.394994i 0.980304 + 0.197497i \(0.0632812\pi\)
−0.980304 + 0.197497i \(0.936719\pi\)
\(660\) 1.31548e6i 0.117551i
\(661\) −1.32658e7 −1.18095 −0.590473 0.807057i \(-0.701059\pi\)
−0.590473 + 0.807057i \(0.701059\pi\)
\(662\) 16858.3i 0.00149509i
\(663\) −8.83313e6 −0.780424
\(664\) 1.29433e6i 0.113927i
\(665\) 3.52677e6i 0.309259i
\(666\) 576210.i 0.0503379i
\(667\) 913102. 0.0794703
\(668\) −295669. −0.0256368
\(669\) 1.09415e7i 0.945171i
\(670\) 188940. 0.0162606
\(671\) −3.08668e6 −0.264658
\(672\) 1.37612e6i 0.117553i
\(673\) 2.11276e7 1.79809 0.899047 0.437853i \(-0.144261\pi\)
0.899047 + 0.437853i \(0.144261\pi\)
\(674\) 1.01155e6i 0.0857702i
\(675\) 9.86974e6 0.833770
\(676\) −638577. −0.0537461
\(677\) −1.55509e7 −1.30402 −0.652010 0.758210i \(-0.726074\pi\)
−0.652010 + 0.758210i \(0.726074\pi\)
\(678\) 861709. 0.0719924
\(679\) 7.89327e6 + 4.43990e6i 0.657026 + 0.369571i
\(680\) 1.05565e6 0.0875481
\(681\) −1.16931e7 −0.966185
\(682\) −214919. −0.0176935
\(683\) 2.03835e6 0.167196 0.0835981 0.996500i \(-0.473359\pi\)
0.0835981 + 0.996500i \(0.473359\pi\)
\(684\) 7.02065e6i 0.573769i
\(685\) 5.09653e6 0.415000
\(686\) 1.09655e6i 0.0889650i
\(687\) 1.18899e7 0.961143
\(688\) 874676. 0.0704492
\(689\) 8.72270e6i 0.700008i
\(690\) 177800. 0.0142170
\(691\) 1.84540e7 1.47026 0.735131 0.677925i \(-0.237121\pi\)
0.735131 + 0.677925i \(0.237121\pi\)
\(692\) 4.20162e6i 0.333543i
\(693\) 2.49601e6i 0.197430i
\(694\) 835214.i 0.0658263i
\(695\) 1.51574e6 0.119032
\(696\) 165553.i 0.0129543i
\(697\) 5.68884e6 0.443549
\(698\) 850894.i 0.0661054i
\(699\) 4.69197e6i 0.363214i
\(700\) 7.97317e6i 0.615015i
\(701\) −1.84195e7 −1.41574 −0.707868 0.706344i \(-0.750343\pi\)
−0.707868 + 0.706344i \(0.750343\pi\)
\(702\) 1.06247e6i 0.0813721i
\(703\) −1.30555e7 −0.996334
\(704\) 5.55320e6 0.422291
\(705\) 2.01031e6i 0.152332i
\(706\) 704809. 0.0532182
\(707\) 6.81276e6i 0.512595i
\(708\) 245224.i 0.0183857i
\(709\) 8.20204e6i 0.612782i 0.951906 + 0.306391i \(0.0991216\pi\)
−0.951906 + 0.306391i \(0.900878\pi\)
\(710\) 248739. 0.0185182
\(711\) −4.43484e6 −0.329006
\(712\) −543029. −0.0401442
\(713\) 4.24617e6i 0.312805i
\(714\) 679225. 0.0498618
\(715\) 2.47270e6 0.180886
\(716\) 2.09842e7i 1.52971i
\(717\) 227178.i 0.0165032i
\(718\) 1.17775e6i 0.0852594i
\(719\) 1.93499e7i 1.39591i 0.716143 + 0.697954i \(0.245906\pi\)
−0.716143 + 0.697954i \(0.754094\pi\)
\(720\) 3.42660e6i 0.246339i
\(721\) 9.82496e6i 0.703870i
\(722\) −66369.1 −0.00473830
\(723\) 1.02800e7 0.731388
\(724\) 2.71618e7i 1.92581i
\(725\) 1.44045e6i 0.101778i
\(726\) −600636. −0.0422931
\(727\) −1.34628e6 −0.0944711 −0.0472356 0.998884i \(-0.515041\pi\)
−0.0472356 + 0.998884i \(0.515041\pi\)
\(728\) −1.72249e6 −0.120456
\(729\) 9.70249e6 0.676183
\(730\) 343754.i 0.0238748i
\(731\) 1.31010e6i 0.0906798i
\(732\) 5.50960e6 0.380051
\(733\) −7.66144e6 −0.526684 −0.263342 0.964702i \(-0.584825\pi\)
−0.263342 + 0.964702i \(0.584825\pi\)
\(734\) 418061.i 0.0286417i
\(735\) 1.70035e6i 0.116097i
\(736\) 2.30981e6i 0.157174i
\(737\) 3.02974e6i 0.205464i
\(738\) 255274.i 0.0172531i
\(739\) 1.25070e7i 0.842446i −0.906957 0.421223i \(-0.861601\pi\)
0.906957 0.421223i \(-0.138399\pi\)
\(740\) −6.41625e6 −0.430727
\(741\) −8.98070e6 −0.600848
\(742\) 670733.i 0.0447239i
\(743\) −4.17158e6 −0.277223 −0.138611 0.990347i \(-0.544264\pi\)
−0.138611 + 0.990347i \(0.544264\pi\)
\(744\) 769867. 0.0509898
\(745\) 5.17829e6 0.341818
\(746\) 1.09166e6i 0.0718190i
\(747\) 6.29286e6i 0.412616i
\(748\) 8.43504e6i 0.551230i
\(749\) 2.09617e7 1.36528
\(750\) 621943.i 0.0403736i
\(751\) −1.94965e7 −1.26141 −0.630706 0.776022i \(-0.717235\pi\)
−0.630706 + 0.776022i \(0.717235\pi\)
\(752\) 8.60613e6 0.554962
\(753\) 7.04245e6i 0.452623i
\(754\) 155064. 0.00993302
\(755\) 2.91479e6i 0.186097i
\(756\) 1.19425e7i 0.759958i
\(757\) 1.50001e6i 0.0951379i −0.998868 0.0475689i \(-0.984853\pi\)
0.998868 0.0475689i \(-0.0151474\pi\)
\(758\) 119175. 0.00753379
\(759\) 2.85110e6i 0.179642i
\(760\) 1.07328e6 0.0674032
\(761\) 1.19231e7i 0.746327i 0.927766 + 0.373164i \(0.121727\pi\)
−0.927766 + 0.373164i \(0.878273\pi\)
\(762\) 1.11025e6i 0.0692678i
\(763\) 6.61104e6i 0.411110i
\(764\) 6.90407e6 0.427929
\(765\) −5.13240e6 −0.317079
\(766\) 1.75118e6i 0.107835i
\(767\) 460944. 0.0282917
\(768\) −9.70212e6 −0.593558
\(769\) 1.66689e7i 1.01646i 0.861221 + 0.508231i \(0.169700\pi\)
−0.861221 + 0.508231i \(0.830300\pi\)
\(770\) −190138. −0.0115569
\(771\) 1.48063e7i 0.897039i
\(772\) 1.26956e7 0.766670
\(773\) 1.24060e7 0.746762 0.373381 0.927678i \(-0.378198\pi\)
0.373381 + 0.927678i \(0.378198\pi\)
\(774\) 58787.7 0.00352723
\(775\) −6.69846e6 −0.400609
\(776\) −1.35117e6 + 2.40212e6i −0.0805482 + 0.143199i
\(777\) −8.28494e6 −0.492308
\(778\) −1.63566e6 −0.0968820
\(779\) 5.78388e6 0.341488
\(780\) −4.41366e6 −0.259754
\(781\) 3.98865e6i 0.233990i
\(782\) 1.14007e6 0.0666678
\(783\) 2.15755e6i 0.125764i
\(784\) 7.27919e6 0.422954
\(785\) −8.53647e6 −0.494429
\(786\) 1.55655e6i 0.0898682i
\(787\) −1.68974e7 −0.972485 −0.486243 0.873824i \(-0.661633\pi\)
−0.486243 + 0.873824i \(0.661633\pi\)
\(788\) 1.42122e7 0.815351
\(789\) 7.45092e6i 0.426106i
\(790\) 337833.i 0.0192590i
\(791\) 1.82063e7i 1.03462i
\(792\) 759597. 0.0430299
\(793\) 1.03563e7i 0.584819i
\(794\) 8553.75 0.000481510
\(795\) 3.44909e6i 0.193547i
\(796\) 1.71939e7i 0.961818i
\(797\) 7.35156e6i 0.409953i −0.978767 0.204976i \(-0.934288\pi\)
0.978767 0.204976i \(-0.0657117\pi\)
\(798\) 690573. 0.0383886
\(799\) 1.28903e7i 0.714328i
\(800\) −3.64379e6 −0.201293
\(801\) 2.64013e6 0.145393
\(802\) 1.77744e6i 0.0975796i
\(803\) 5.51225e6 0.301675
\(804\) 5.40795e6i 0.295048i
\(805\) 3.75658e6i 0.204316i
\(806\) 721087.i 0.0390976i
\(807\) −1.70927e7 −0.923904
\(808\) −2.07329e6 −0.111720
\(809\) 283044. 0.0152049 0.00760244 0.999971i \(-0.497580\pi\)
0.00760244 + 0.999971i \(0.497580\pi\)
\(810\) 33084.1i 0.00177177i
\(811\) −1.97671e7 −1.05534 −0.527669 0.849450i \(-0.676934\pi\)
−0.527669 + 0.849450i \(0.676934\pi\)
\(812\) 1.74295e6 0.0927674
\(813\) 6.44438e6i 0.341944i
\(814\) 703859.i 0.0372327i
\(815\) 9.24500e6i 0.487543i
\(816\) 1.49525e7i 0.786118i
\(817\) 1.33199e6i 0.0698143i
\(818\) 1.90819e6i 0.0997097i
\(819\) 8.37449e6 0.436263
\(820\) 2.84255e6 0.147629
\(821\) 3.01579e7i 1.56151i −0.624840 0.780753i \(-0.714836\pi\)
0.624840 0.780753i \(-0.285164\pi\)
\(822\) 997946.i 0.0515143i
\(823\) −3.47753e7 −1.78966 −0.894831 0.446406i \(-0.852704\pi\)
−0.894831 + 0.446406i \(0.852704\pi\)
\(824\) 2.98998e6 0.153409
\(825\) 4.49770e6 0.230067
\(826\) −35444.3 −0.00180758
\(827\) 1.76944e7i 0.899647i −0.893117 0.449824i \(-0.851487\pi\)
0.893117 0.449824i \(-0.148513\pi\)
\(828\) 7.47812e6i 0.379068i
\(829\) 1.25566e7 0.634581 0.317290 0.948328i \(-0.397227\pi\)
0.317290 + 0.948328i \(0.397227\pi\)
\(830\) −479371. −0.0241533
\(831\) 1.55450e7i 0.780886i
\(832\) 1.86319e7i 0.933142i
\(833\) 1.09028e7i 0.544411i
\(834\) 296796.i 0.0147755i
\(835\) 219758.i 0.0109076i
\(836\) 8.57596e6i 0.424392i
\(837\) −1.00332e7 −0.495022
\(838\) −629244. −0.0309535
\(839\) 2.45300e7i 1.20307i 0.798845 + 0.601536i \(0.205445\pi\)
−0.798845 + 0.601536i \(0.794555\pi\)
\(840\) 681099. 0.0333052
\(841\) 2.01963e7 0.984648
\(842\) 1.52872e6 0.0743102
\(843\) 1.58080e6i 0.0766137i
\(844\) 1.27803e7i 0.617568i
\(845\) 474627.i 0.0228671i
\(846\) 578425. 0.0277857
\(847\) 1.26903e7i 0.607804i
\(848\) −1.47655e7 −0.705115
\(849\) −5.61401e6 −0.267303
\(850\) 1.79850e6i 0.0853814i
\(851\) −1.39062e7 −0.658240
\(852\) 7.11956e6i 0.336012i
\(853\) 2.33868e7i 1.10052i −0.834994 0.550260i \(-0.814529\pi\)
0.834994 0.550260i \(-0.185471\pi\)
\(854\) 796350.i 0.0373645i
\(855\) −5.21814e6 −0.244118
\(856\) 6.37915e6i 0.297563i
\(857\) 1.59207e7 0.740473 0.370237 0.928937i \(-0.379277\pi\)
0.370237 + 0.928937i \(0.379277\pi\)
\(858\) 484176.i 0.0224535i
\(859\) 1.83520e6i 0.0848594i −0.999099 0.0424297i \(-0.986490\pi\)
0.999099 0.0424297i \(-0.0135098\pi\)
\(860\) 654618.i 0.0301815i
\(861\) 3.67042e6 0.168736
\(862\) −3.07211e6 −0.140821
\(863\) 2.25018e7i 1.02847i −0.857650 0.514234i \(-0.828076\pi\)
0.857650 0.514234i \(-0.171924\pi\)
\(864\) −5.45778e6 −0.248732
\(865\) −3.12288e6 −0.141911
\(866\) 1.73440e6i 0.0785877i
\(867\) 8.31124e6 0.375507
\(868\) 8.10520e6i 0.365144i
\(869\) −5.41730e6 −0.243351
\(870\) −61314.5 −0.00274641
\(871\) −1.01652e7 −0.454017
\(872\) 2.01190e6 0.0896016
\(873\) 6.56919e6 1.16787e7i 0.291727 0.518633i
\(874\) 1.15912e6 0.0513275
\(875\) −1.31405e7 −0.580218
\(876\) −9.83912e6 −0.433208
\(877\) −1.37558e7 −0.603929 −0.301965 0.953319i \(-0.597642\pi\)
−0.301965 + 0.953319i \(0.597642\pi\)
\(878\) 1.48607e6i 0.0650583i
\(879\) 4.45822e6 0.194621
\(880\) 4.18571e6i 0.182206i
\(881\) 2.22513e7 0.965863 0.482932 0.875658i \(-0.339572\pi\)
0.482932 + 0.875658i \(0.339572\pi\)
\(882\) 489241. 0.0211764
\(883\) 3.03062e7i 1.30807i −0.756465 0.654034i \(-0.773075\pi\)
0.756465 0.654034i \(-0.226925\pi\)
\(884\) −2.83009e7 −1.21806
\(885\) −182264. −0.00782246
\(886\) 1.94207e6i 0.0831153i
\(887\) 1.47585e7i 0.629845i 0.949117 + 0.314923i \(0.101979\pi\)
−0.949117 + 0.314923i \(0.898021\pi\)
\(888\) 2.52131e6i 0.107299i
\(889\) 2.34574e7 0.995464
\(890\) 201117.i 0.00851087i
\(891\) 530519. 0.0223875
\(892\) 3.50559e7i 1.47519i
\(893\) 1.31057e7i 0.549960i
\(894\) 1.01395e6i 0.0424301i
\(895\) 1.55966e7 0.650838
\(896\) 5.87188e6i 0.244347i
\(897\) −9.56589e6 −0.396958
\(898\) 179259. 0.00741804
\(899\) 1.46430e6i 0.0604269i
\(900\) 1.17970e7 0.485472
\(901\) 2.21160e7i 0.907599i
\(902\) 311826.i 0.0127613i
\(903\) 845270.i 0.0344966i
\(904\) 5.54063e6 0.225495
\(905\) −2.01882e7 −0.819363
\(906\) 570742. 0.0231004
\(907\) 4.20540e6i 0.169742i 0.996392 + 0.0848710i \(0.0270478\pi\)
−0.996392 + 0.0848710i \(0.972952\pi\)
\(908\) −3.74639e7 −1.50799
\(909\) 1.00800e7 0.404625
\(910\) 637944.i 0.0255375i
\(911\) 1.65850e7i 0.662094i −0.943614 0.331047i \(-0.892598\pi\)
0.943614 0.331047i \(-0.107402\pi\)
\(912\) 1.52023e7i 0.605232i
\(913\) 7.68693e6i 0.305194i
\(914\) 1.06843e6i 0.0423037i
\(915\) 4.09504e6i 0.161698i
\(916\) 3.80947e7 1.50012
\(917\) 3.28869e7 1.29152
\(918\) 2.69385e6i 0.105504i
\(919\) 4.47618e7i 1.74831i −0.485645 0.874156i \(-0.661415\pi\)
0.485645 0.874156i \(-0.338585\pi\)
\(920\) 1.14322e6 0.0445307
\(921\) −4.65779e6 −0.180938
\(922\) −3.21734e6 −0.124643
\(923\) −1.33825e7 −0.517052
\(924\) 5.44225e6i 0.209700i
\(925\) 2.19374e7i 0.843008i
\(926\) −725152. −0.0277908
\(927\) −1.45368e7 −0.555610
\(928\) 796540.i 0.0303625i
\(929\) 1.28854e7i 0.489846i 0.969543 + 0.244923i \(0.0787626\pi\)
−0.969543 + 0.244923i \(0.921237\pi\)
\(930\) 285129.i 0.0108102i
\(931\) 1.10850e7i 0.419142i
\(932\) 1.50328e7i 0.566893i
\(933\) 1.13974e7i 0.428650i
\(934\) −1.94579e6 −0.0729842
\(935\) −6.26940e6 −0.234529
\(936\) 2.54857e6i 0.0950837i
\(937\) −3.36388e7 −1.25167 −0.625837 0.779954i \(-0.715243\pi\)
−0.625837 + 0.779954i \(0.715243\pi\)
\(938\) 781658. 0.0290075
\(939\) 353612. 0.0130877
\(940\) 6.44093e6i 0.237754i
\(941\) 2.57789e7i 0.949052i 0.880242 + 0.474526i \(0.157380\pi\)
−0.880242 + 0.474526i \(0.842620\pi\)
\(942\) 1.67152e6i 0.0613738i
\(943\) 6.16076e6 0.225608
\(944\) 780272.i 0.0284981i
\(945\) −8.87632e6 −0.323336
\(946\) 71811.2 0.00260894
\(947\) 6.74925e6i 0.244557i −0.992496 0.122279i \(-0.960980\pi\)
0.992496 0.122279i \(-0.0390201\pi\)
\(948\) 9.66965e6 0.349454
\(949\) 1.84944e7i 0.666616i
\(950\) 1.82855e6i 0.0657350i
\(951\) 1.28983e7i 0.462467i
\(952\) 4.36729e6 0.156178
\(953\) 5.12384e7i 1.82752i 0.406249 + 0.913762i \(0.366837\pi\)
−0.406249 + 0.913762i \(0.633163\pi\)
\(954\) −992405. −0.0353035
\(955\) 5.13150e6i 0.182069i
\(956\) 727865.i 0.0257577i
\(957\) 983206.i 0.0347028i
\(958\) −3.96669e6 −0.139642
\(959\) 2.10847e7 0.740323
\(960\) 7.36732e6i 0.258007i
\(961\) −2.18198e7 −0.762152
\(962\) −2.36156e6 −0.0822737
\(963\) 3.10145e7i 1.07770i
\(964\) 3.29366e7 1.14153
\(965\) 9.43605e6i 0.326191i
\(966\) 735571. 0.0253619
\(967\) 1.49450e7 0.513961 0.256981 0.966417i \(-0.417272\pi\)
0.256981 + 0.966417i \(0.417272\pi\)
\(968\) −3.86197e6 −0.132471
\(969\) 2.27701e7 0.779033
\(970\) −889651. 500421.i −0.0303592 0.0170768i
\(971\) 3.58565e7 1.22045 0.610225 0.792228i \(-0.291079\pi\)
0.610225 + 0.792228i \(0.291079\pi\)
\(972\) 2.87478e7 0.975976
\(973\) 6.27075e6 0.212343
\(974\) −1.37819e6 −0.0465490
\(975\) 1.50905e7i 0.508383i
\(976\) 1.75309e7 0.589086
\(977\) 4.06130e7i 1.36122i 0.732645 + 0.680611i \(0.238285\pi\)
−0.732645 + 0.680611i \(0.761715\pi\)
\(978\) −1.81025e6 −0.0605190
\(979\) 3.22500e6 0.107541
\(980\) 5.44783e6i 0.181200i
\(981\) −9.78157e6 −0.324516
\(982\) 294901. 0.00975881
\(983\) 1.42860e7i 0.471549i 0.971808 + 0.235774i \(0.0757627\pi\)
−0.971808 + 0.235774i \(0.924237\pi\)
\(984\) 1.11700e6i 0.0367761i
\(985\) 1.05633e7i 0.346903i
\(986\) −393156. −0.0128787
\(987\) 8.31680e6i 0.271746i
\(988\) −2.87737e7 −0.937785
\(989\) 1.41878e6i 0.0461237i
\(990\) 281325.i 0.00912264i
\(991\) 2.07465e7i 0.671058i −0.942030 0.335529i \(-0.891085\pi\)
0.942030 0.335529i \(-0.108915\pi\)
\(992\) 3.70413e6 0.119511
\(993\) 358642.i 0.0115422i
\(994\) 1.02905e6 0.0330348
\(995\) 1.27795e7 0.409220
\(996\) 1.37208e7i 0.438261i
\(997\) 1.53883e7 0.490291 0.245146 0.969486i \(-0.421164\pi\)
0.245146 + 0.969486i \(0.421164\pi\)
\(998\) 3.33152e6i 0.105881i
\(999\) 3.28586e7i 1.04168i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 97.6.b.a.96.19 40
97.96 even 2 inner 97.6.b.a.96.20 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
97.6.b.a.96.19 40 1.1 even 1 trivial
97.6.b.a.96.20 yes 40 97.96 even 2 inner