Properties

Label 97.6.b.a.96.12
Level $97$
Weight $6$
Character 97.96
Analytic conductor $15.557$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [97,6,Mod(96,97)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(97, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("97.96"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 97 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 97.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.5572305219\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 96.12
Character \(\chi\) \(=\) 97.96
Dual form 97.6.b.a.96.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.09653 q^{2} -8.23001 q^{3} -6.02536 q^{4} +103.917i q^{5} +41.9445 q^{6} +183.907i q^{7} +193.797 q^{8} -175.267 q^{9} -529.617i q^{10} +653.553 q^{11} +49.5888 q^{12} +414.613i q^{13} -937.288i q^{14} -855.240i q^{15} -794.884 q^{16} +1634.87i q^{17} +893.254 q^{18} +1001.37i q^{19} -626.138i q^{20} -1513.56i q^{21} -3330.86 q^{22} +3936.24i q^{23} -1594.96 q^{24} -7673.78 q^{25} -2113.09i q^{26} +3442.34 q^{27} -1108.11i q^{28} -4383.54i q^{29} +4358.76i q^{30} +5539.70 q^{31} -2150.37 q^{32} -5378.75 q^{33} -8332.18i q^{34} -19111.1 q^{35} +1056.05 q^{36} +3639.87i q^{37} -5103.54i q^{38} -3412.27i q^{39} +20138.9i q^{40} -5093.92i q^{41} +7713.89i q^{42} -16828.7 q^{43} -3937.90 q^{44} -18213.2i q^{45} -20061.2i q^{46} +20108.8 q^{47} +6541.90 q^{48} -17014.8 q^{49} +39109.7 q^{50} -13455.0i q^{51} -2498.19i q^{52} +573.904 q^{53} -17544.0 q^{54} +67915.4i q^{55} +35640.7i q^{56} -8241.32i q^{57} +22340.9i q^{58} -11533.9i q^{59} +5153.13i q^{60} +52634.5 q^{61} -28233.3 q^{62} -32232.8i q^{63} +36395.7 q^{64} -43085.4 q^{65} +27413.0 q^{66} -19934.1i q^{67} -9850.69i q^{68} -32395.3i q^{69} +97400.3 q^{70} -15299.8i q^{71} -33966.3 q^{72} +26799.4 q^{73} -18550.7i q^{74} +63155.3 q^{75} -6033.64i q^{76} +120193. i q^{77} +17390.7i q^{78} +39795.1 q^{79} -82602.1i q^{80} +14259.4 q^{81} +25961.3i q^{82} -62355.3i q^{83} +9119.72i q^{84} -169891. q^{85} +85768.2 q^{86} +36076.6i q^{87} +126657. q^{88} -64176.5 q^{89} +92824.4i q^{90} -76250.3 q^{91} -23717.3i q^{92} -45591.8 q^{93} -102485. q^{94} -104060. q^{95} +17697.6 q^{96} +(91325.1 - 15718.4i) q^{97} +86716.4 q^{98} -114546. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 2 q^{2} + 40 q^{3} + 638 q^{4} - 130 q^{6} + 180 q^{8} + 3300 q^{9} + 382 q^{11} + 2586 q^{12} + 10174 q^{16} + 4738 q^{18} + 1996 q^{22} - 3102 q^{24} - 25178 q^{25} + 3046 q^{27} + 14796 q^{31}+ \cdots - 562238 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/97\mathbb{Z}\right)^\times\).

\(n\) \(5\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.09653 −0.900948 −0.450474 0.892790i \(-0.648745\pi\)
−0.450474 + 0.892790i \(0.648745\pi\)
\(3\) −8.23001 −0.527955 −0.263978 0.964529i \(-0.585035\pi\)
−0.263978 + 0.964529i \(0.585035\pi\)
\(4\) −6.02536 −0.188292
\(5\) 103.917i 1.85893i 0.368914 + 0.929464i \(0.379730\pi\)
−0.368914 + 0.929464i \(0.620270\pi\)
\(6\) 41.9445 0.475660
\(7\) 183.907i 1.41858i 0.704918 + 0.709289i \(0.250984\pi\)
−0.704918 + 0.709289i \(0.749016\pi\)
\(8\) 193.797 1.07059
\(9\) −175.267 −0.721263
\(10\) 529.617i 1.67480i
\(11\) 653.553 1.62854 0.814272 0.580484i \(-0.197137\pi\)
0.814272 + 0.580484i \(0.197137\pi\)
\(12\) 49.5888 0.0994100
\(13\) 414.613i 0.680432i 0.940347 + 0.340216i \(0.110500\pi\)
−0.940347 + 0.340216i \(0.889500\pi\)
\(14\) 937.288i 1.27807i
\(15\) 855.240i 0.981431i
\(16\) −794.884 −0.776253
\(17\) 1634.87i 1.37202i 0.727590 + 0.686012i \(0.240640\pi\)
−0.727590 + 0.686012i \(0.759360\pi\)
\(18\) 893.254 0.649821
\(19\) 1001.37i 0.636374i 0.948028 + 0.318187i \(0.103074\pi\)
−0.948028 + 0.318187i \(0.896926\pi\)
\(20\) 626.138i 0.350022i
\(21\) 1513.56i 0.748946i
\(22\) −3330.86 −1.46723
\(23\) 3936.24i 1.55154i 0.631017 + 0.775769i \(0.282638\pi\)
−0.631017 + 0.775769i \(0.717362\pi\)
\(24\) −1594.96 −0.565224
\(25\) −7673.78 −2.45561
\(26\) 2113.09i 0.613034i
\(27\) 3442.34 0.908750
\(28\) 1108.11i 0.267108i
\(29\) 4383.54i 0.967899i −0.875096 0.483950i \(-0.839202\pi\)
0.875096 0.483950i \(-0.160798\pi\)
\(30\) 4358.76i 0.884218i
\(31\) 5539.70 1.03534 0.517669 0.855581i \(-0.326800\pi\)
0.517669 + 0.855581i \(0.326800\pi\)
\(32\) −2150.37 −0.371226
\(33\) −5378.75 −0.859798
\(34\) 8332.18i 1.23612i
\(35\) −19111.1 −2.63703
\(36\) 1056.05 0.135808
\(37\) 3639.87i 0.437101i 0.975826 + 0.218551i \(0.0701328\pi\)
−0.975826 + 0.218551i \(0.929867\pi\)
\(38\) 5103.54i 0.573340i
\(39\) 3412.27i 0.359238i
\(40\) 20138.9i 1.99015i
\(41\) 5093.92i 0.473252i −0.971601 0.236626i \(-0.923958\pi\)
0.971601 0.236626i \(-0.0760416\pi\)
\(42\) 7713.89i 0.674761i
\(43\) −16828.7 −1.38797 −0.693985 0.719989i \(-0.744147\pi\)
−0.693985 + 0.719989i \(0.744147\pi\)
\(44\) −3937.90 −0.306643
\(45\) 18213.2i 1.34078i
\(46\) 20061.2i 1.39786i
\(47\) 20108.8 1.32783 0.663914 0.747809i \(-0.268894\pi\)
0.663914 + 0.747809i \(0.268894\pi\)
\(48\) 6541.90 0.409827
\(49\) −17014.8 −1.01236
\(50\) 39109.7 2.21238
\(51\) 13455.0i 0.724367i
\(52\) 2498.19i 0.128120i
\(53\) 573.904 0.0280640 0.0140320 0.999902i \(-0.495533\pi\)
0.0140320 + 0.999902i \(0.495533\pi\)
\(54\) −17544.0 −0.818737
\(55\) 67915.4i 3.02734i
\(56\) 35640.7i 1.51872i
\(57\) 8241.32i 0.335977i
\(58\) 22340.9i 0.872027i
\(59\) 11533.9i 0.431366i −0.976463 0.215683i \(-0.930802\pi\)
0.976463 0.215683i \(-0.0691977\pi\)
\(60\) 5153.13i 0.184796i
\(61\) 52634.5 1.81111 0.905557 0.424224i \(-0.139453\pi\)
0.905557 + 0.424224i \(0.139453\pi\)
\(62\) −28233.3 −0.932786
\(63\) 32232.8i 1.02317i
\(64\) 36395.7 1.11071
\(65\) −43085.4 −1.26487
\(66\) 27413.0 0.774634
\(67\) 19934.1i 0.542513i −0.962507 0.271256i \(-0.912561\pi\)
0.962507 0.271256i \(-0.0874391\pi\)
\(68\) 9850.69i 0.258342i
\(69\) 32395.3i 0.819143i
\(70\) 97400.3 2.37583
\(71\) 15299.8i 0.360197i −0.983649 0.180098i \(-0.942358\pi\)
0.983649 0.180098i \(-0.0576416\pi\)
\(72\) −33966.3 −0.772177
\(73\) 26799.4 0.588596 0.294298 0.955714i \(-0.404914\pi\)
0.294298 + 0.955714i \(0.404914\pi\)
\(74\) 18550.7i 0.393805i
\(75\) 63155.3 1.29645
\(76\) 6033.64i 0.119824i
\(77\) 120193.i 2.31022i
\(78\) 17390.7i 0.323655i
\(79\) 39795.1 0.717400 0.358700 0.933453i \(-0.383220\pi\)
0.358700 + 0.933453i \(0.383220\pi\)
\(80\) 82602.1i 1.44300i
\(81\) 14259.4 0.241484
\(82\) 25961.3i 0.426376i
\(83\) 62355.3i 0.993524i −0.867887 0.496762i \(-0.834522\pi\)
0.867887 0.496762i \(-0.165478\pi\)
\(84\) 9119.72i 0.141021i
\(85\) −169891. −2.55049
\(86\) 85768.2 1.25049
\(87\) 36076.6i 0.511008i
\(88\) 126657. 1.74350
\(89\) −64176.5 −0.858818 −0.429409 0.903110i \(-0.641278\pi\)
−0.429409 + 0.903110i \(0.641278\pi\)
\(90\) 92824.4i 1.20797i
\(91\) −76250.3 −0.965246
\(92\) 23717.3i 0.292143i
\(93\) −45591.8 −0.546612
\(94\) −102485. −1.19630
\(95\) −104060. −1.18297
\(96\) 17697.6 0.195991
\(97\) 91325.1 15718.4i 0.985509 0.169621i
\(98\) 86716.4 0.912087
\(99\) −114546. −1.17461
\(100\) 46237.3 0.462373
\(101\) −19572.5 −0.190916 −0.0954580 0.995433i \(-0.530432\pi\)
−0.0954580 + 0.995433i \(0.530432\pi\)
\(102\) 68573.9i 0.652617i
\(103\) −5267.33 −0.0489212 −0.0244606 0.999701i \(-0.507787\pi\)
−0.0244606 + 0.999701i \(0.507787\pi\)
\(104\) 80351.0i 0.728463i
\(105\) 157285. 1.39224
\(106\) −2924.92 −0.0252842
\(107\) 174347.i 1.47216i 0.676896 + 0.736079i \(0.263325\pi\)
−0.676896 + 0.736079i \(0.736675\pi\)
\(108\) −20741.3 −0.171111
\(109\) 74882.0 0.603686 0.301843 0.953358i \(-0.402398\pi\)
0.301843 + 0.953358i \(0.402398\pi\)
\(110\) 346133.i 2.72748i
\(111\) 29956.2i 0.230770i
\(112\) 146185.i 1.10118i
\(113\) −7617.02 −0.0561163 −0.0280581 0.999606i \(-0.508932\pi\)
−0.0280581 + 0.999606i \(0.508932\pi\)
\(114\) 42002.2i 0.302698i
\(115\) −409043. −2.88420
\(116\) 26412.4i 0.182248i
\(117\) 72668.0i 0.490770i
\(118\) 58782.8i 0.388638i
\(119\) −300665. −1.94632
\(120\) 165743.i 1.05071i
\(121\) 266081. 1.65215
\(122\) −268253. −1.63172
\(123\) 41923.0i 0.249856i
\(124\) −33378.7 −0.194946
\(125\) 472697.i 2.70587i
\(126\) 164276.i 0.921821i
\(127\) 32623.4i 0.179482i −0.995965 0.0897408i \(-0.971396\pi\)
0.995965 0.0897408i \(-0.0286039\pi\)
\(128\) −116680. −0.629465
\(129\) 138501. 0.732787
\(130\) 219586. 1.13959
\(131\) 56873.8i 0.289557i 0.989464 + 0.144778i \(0.0462470\pi\)
−0.989464 + 0.144778i \(0.953753\pi\)
\(132\) 32408.9 0.161894
\(133\) −184160. −0.902746
\(134\) 101595.i 0.488776i
\(135\) 357718.i 1.68930i
\(136\) 316834.i 1.46887i
\(137\) 3708.92i 0.0168829i 0.999964 + 0.00844144i \(0.00268703\pi\)
−0.999964 + 0.00844144i \(0.997313\pi\)
\(138\) 165104.i 0.738005i
\(139\) 304737.i 1.33779i −0.743357 0.668894i \(-0.766768\pi\)
0.743357 0.668894i \(-0.233232\pi\)
\(140\) 115151. 0.496534
\(141\) −165496. −0.701034
\(142\) 77975.9i 0.324519i
\(143\) 270972.i 1.10811i
\(144\) 139317. 0.559883
\(145\) 455525. 1.79925
\(146\) −136584. −0.530294
\(147\) 140032. 0.534483
\(148\) 21931.5i 0.0823028i
\(149\) 826.445i 0.00304964i −0.999999 0.00152482i \(-0.999515\pi\)
0.999999 0.00152482i \(-0.000485365\pi\)
\(150\) −321873. −1.16804
\(151\) 335639. 1.19793 0.598963 0.800777i \(-0.295580\pi\)
0.598963 + 0.800777i \(0.295580\pi\)
\(152\) 194064.i 0.681296i
\(153\) 286539.i 0.989590i
\(154\) 612568.i 2.08138i
\(155\) 575670.i 1.92462i
\(156\) 20560.2i 0.0676418i
\(157\) 37150.5i 0.120286i 0.998190 + 0.0601431i \(0.0191557\pi\)
−0.998190 + 0.0601431i \(0.980844\pi\)
\(158\) −202817. −0.646340
\(159\) −4723.24 −0.0148165
\(160\) 223460.i 0.690082i
\(161\) −723903. −2.20098
\(162\) −72673.3 −0.217564
\(163\) −85345.8 −0.251601 −0.125801 0.992056i \(-0.540150\pi\)
−0.125801 + 0.992056i \(0.540150\pi\)
\(164\) 30692.7i 0.0891098i
\(165\) 558945.i 1.59830i
\(166\) 317796.i 0.895113i
\(167\) 162822. 0.451775 0.225888 0.974153i \(-0.427472\pi\)
0.225888 + 0.974153i \(0.427472\pi\)
\(168\) 293323.i 0.801814i
\(169\) 199389. 0.537012
\(170\) 865857. 2.29786
\(171\) 175508.i 0.458993i
\(172\) 101399. 0.261344
\(173\) 327607.i 0.832220i 0.909314 + 0.416110i \(0.136607\pi\)
−0.909314 + 0.416110i \(0.863393\pi\)
\(174\) 183865.i 0.460391i
\(175\) 1.41126e6i 3.48347i
\(176\) −519499. −1.26416
\(177\) 94924.0i 0.227742i
\(178\) 327078. 0.773751
\(179\) 215099.i 0.501771i −0.968017 0.250886i \(-0.919278\pi\)
0.968017 0.250886i \(-0.0807218\pi\)
\(180\) 109741.i 0.252458i
\(181\) 122529.i 0.277997i 0.990293 + 0.138999i \(0.0443884\pi\)
−0.990293 + 0.138999i \(0.955612\pi\)
\(182\) 388612. 0.869636
\(183\) −433182. −0.956188
\(184\) 762834.i 1.66106i
\(185\) −378245. −0.812539
\(186\) 232360. 0.492469
\(187\) 1.06848e6i 2.23440i
\(188\) −121163. −0.250020
\(189\) 633071.i 1.28913i
\(190\) 530345. 1.06580
\(191\) −273366. −0.542202 −0.271101 0.962551i \(-0.587388\pi\)
−0.271101 + 0.962551i \(0.587388\pi\)
\(192\) −299537. −0.586405
\(193\) 323806. 0.625736 0.312868 0.949797i \(-0.398710\pi\)
0.312868 + 0.949797i \(0.398710\pi\)
\(194\) −465441. + 80109.5i −0.887893 + 0.152820i
\(195\) 354594. 0.667797
\(196\) 102520. 0.190620
\(197\) 635410. 1.16651 0.583255 0.812289i \(-0.301779\pi\)
0.583255 + 0.812289i \(0.301779\pi\)
\(198\) 583789. 1.05826
\(199\) 969033.i 1.73463i 0.497763 + 0.867313i \(0.334155\pi\)
−0.497763 + 0.867313i \(0.665845\pi\)
\(200\) −1.48716e6 −2.62895
\(201\) 164058.i 0.286423i
\(202\) 99751.7 0.172005
\(203\) 806164. 1.37304
\(204\) 81071.3i 0.136393i
\(205\) 529346. 0.879741
\(206\) 26845.1 0.0440755
\(207\) 689893.i 1.11907i
\(208\) 329569.i 0.528188i
\(209\) 654452.i 1.03636i
\(210\) −801606. −1.25433
\(211\) 578763.i 0.894942i −0.894299 0.447471i \(-0.852325\pi\)
0.894299 0.447471i \(-0.147675\pi\)
\(212\) −3457.98 −0.00528424
\(213\) 125918.i 0.190168i
\(214\) 888564.i 1.32634i
\(215\) 1.74879e6i 2.58014i
\(216\) 667117. 0.972899
\(217\) 1.01879e6i 1.46871i
\(218\) −381639. −0.543890
\(219\) −220559. −0.310752
\(220\) 409215.i 0.570026i
\(221\) −677840. −0.933569
\(222\) 152673.i 0.207912i
\(223\) 246336.i 0.331715i 0.986150 + 0.165858i \(0.0530392\pi\)
−0.986150 + 0.165858i \(0.946961\pi\)
\(224\) 395468.i 0.526613i
\(225\) 1.34496e6 1.77114
\(226\) 38820.4 0.0505579
\(227\) 16425.2 0.0211566 0.0105783 0.999944i \(-0.496633\pi\)
0.0105783 + 0.999944i \(0.496633\pi\)
\(228\) 49656.9i 0.0632620i
\(229\) 818791. 1.03177 0.515887 0.856657i \(-0.327463\pi\)
0.515887 + 0.856657i \(0.327463\pi\)
\(230\) 2.08470e6 2.59851
\(231\) 989190.i 1.21969i
\(232\) 849519.i 1.03622i
\(233\) 105442.i 0.127240i 0.997974 + 0.0636200i \(0.0202646\pi\)
−0.997974 + 0.0636200i \(0.979735\pi\)
\(234\) 370355.i 0.442159i
\(235\) 2.08965e6i 2.46834i
\(236\) 69495.8i 0.0812229i
\(237\) −327514. −0.378755
\(238\) 1.53235e6 1.75354
\(239\) 268662.i 0.304236i −0.988362 0.152118i \(-0.951391\pi\)
0.988362 0.152118i \(-0.0486094\pi\)
\(240\) 679816.i 0.761839i
\(241\) −1.57482e6 −1.74658 −0.873290 0.487201i \(-0.838018\pi\)
−0.873290 + 0.487201i \(0.838018\pi\)
\(242\) −1.35609e6 −1.48851
\(243\) −953844. −1.03624
\(244\) −317142. −0.341019
\(245\) 1.76813e6i 1.88191i
\(246\) 213662.i 0.225107i
\(247\) −415183. −0.433009
\(248\) 1.07358e6 1.10842
\(249\) 513185.i 0.524536i
\(250\) 2.40911e6i 2.43785i
\(251\) 1.11475e6i 1.11685i −0.829556 0.558423i \(-0.811406\pi\)
0.829556 0.558423i \(-0.188594\pi\)
\(252\) 194214.i 0.192655i
\(253\) 2.57255e6i 2.52675i
\(254\) 166266.i 0.161704i
\(255\) 1.39821e6 1.34655
\(256\) −569999. −0.543593
\(257\) 1.55726e6i 1.47072i −0.677678 0.735359i \(-0.737014\pi\)
0.677678 0.735359i \(-0.262986\pi\)
\(258\) −705873. −0.660203
\(259\) −669398. −0.620062
\(260\) 259605. 0.238166
\(261\) 768290.i 0.698110i
\(262\) 289859.i 0.260876i
\(263\) 1.31158e6i 1.16925i −0.811304 0.584624i \(-0.801242\pi\)
0.811304 0.584624i \(-0.198758\pi\)
\(264\) −1.04239e6 −0.920492
\(265\) 59638.5i 0.0521690i
\(266\) 938576. 0.813328
\(267\) 528174. 0.453418
\(268\) 120110.i 0.102151i
\(269\) −1.83671e6 −1.54760 −0.773800 0.633430i \(-0.781647\pi\)
−0.773800 + 0.633430i \(0.781647\pi\)
\(270\) 1.82312e6i 1.52197i
\(271\) 302515.i 0.250221i 0.992143 + 0.125110i \(0.0399285\pi\)
−0.992143 + 0.125110i \(0.960072\pi\)
\(272\) 1.29953e6i 1.06504i
\(273\) 627540. 0.509607
\(274\) 18902.6i 0.0152106i
\(275\) −5.01523e6 −3.99907
\(276\) 195194.i 0.154238i
\(277\) 949331.i 0.743393i −0.928354 0.371696i \(-0.878776\pi\)
0.928354 0.371696i \(-0.121224\pi\)
\(278\) 1.55310e6i 1.20528i
\(279\) −970926. −0.746751
\(280\) −3.70368e6 −2.82318
\(281\) 1.36364e6i 1.03023i 0.857122 + 0.515114i \(0.172250\pi\)
−0.857122 + 0.515114i \(0.827750\pi\)
\(282\) 843454. 0.631595
\(283\) −101300. −0.0751874 −0.0375937 0.999293i \(-0.511969\pi\)
−0.0375937 + 0.999293i \(0.511969\pi\)
\(284\) 92186.8i 0.0678224i
\(285\) 856415. 0.624557
\(286\) 1.38102e6i 0.998352i
\(287\) 936808. 0.671345
\(288\) 376889. 0.267751
\(289\) −1.25295e6 −0.882449
\(290\) −2.32160e6 −1.62103
\(291\) −751606. + 129363.i −0.520305 + 0.0895524i
\(292\) −161476. −0.110828
\(293\) 2.54883e6 1.73449 0.867244 0.497883i \(-0.165889\pi\)
0.867244 + 0.497883i \(0.165889\pi\)
\(294\) −713677. −0.481541
\(295\) 1.19857e6 0.801878
\(296\) 705398.i 0.467956i
\(297\) 2.24975e6 1.47994
\(298\) 4212.00i 0.00274757i
\(299\) −1.63202e6 −1.05572
\(300\) −380533. −0.244112
\(301\) 3.09492e6i 1.96894i
\(302\) −1.71059e6 −1.07927
\(303\) 161082. 0.100795
\(304\) 795976.i 0.493988i
\(305\) 5.46963e6i 3.36673i
\(306\) 1.46036e6i 0.891569i
\(307\) 2.06219e6 1.24877 0.624384 0.781117i \(-0.285350\pi\)
0.624384 + 0.781117i \(0.285350\pi\)
\(308\) 724207.i 0.434996i
\(309\) 43350.2 0.0258282
\(310\) 2.93392e6i 1.73398i
\(311\) 1.12967e6i 0.662291i −0.943580 0.331146i \(-0.892565\pi\)
0.943580 0.331146i \(-0.107435\pi\)
\(312\) 661289.i 0.384596i
\(313\) −803462. −0.463558 −0.231779 0.972768i \(-0.574455\pi\)
−0.231779 + 0.972768i \(0.574455\pi\)
\(314\) 189339.i 0.108372i
\(315\) 3.34954e6 1.90199
\(316\) −239780. −0.135081
\(317\) 2.38973e6i 1.33567i −0.744307 0.667837i \(-0.767220\pi\)
0.744307 0.667837i \(-0.232780\pi\)
\(318\) 24072.1 0.0133489
\(319\) 2.86488e6i 1.57627i
\(320\) 3.78214e6i 2.06473i
\(321\) 1.43488e6i 0.777234i
\(322\) 3.68939e6 1.98297
\(323\) −1.63712e6 −0.873120
\(324\) −85917.8 −0.0454695
\(325\) 3.18165e6i 1.67088i
\(326\) 434968. 0.226680
\(327\) −616280. −0.318719
\(328\) 987189.i 0.506659i
\(329\) 3.69815e6i 1.88363i
\(330\) 2.84868e6i 1.43999i
\(331\) 3.92148e6i 1.96735i 0.179968 + 0.983673i \(0.442401\pi\)
−0.179968 + 0.983673i \(0.557599\pi\)
\(332\) 375713.i 0.187073i
\(333\) 637949.i 0.315265i
\(334\) −829829. −0.407026
\(335\) 2.07150e6 1.00849
\(336\) 1.20310e6i 0.581372i
\(337\) 2.07463e6i 0.995096i 0.867436 + 0.497548i \(0.165766\pi\)
−0.867436 + 0.497548i \(0.834234\pi\)
\(338\) −1.01619e6 −0.483820
\(339\) 62688.1 0.0296269
\(340\) 1.02366e6 0.480238
\(341\) 3.62049e6 1.68609
\(342\) 894481.i 0.413529i
\(343\) 38214.0i 0.0175383i
\(344\) −3.26137e6 −1.48595
\(345\) 3.36643e6 1.52273
\(346\) 1.66966e6i 0.749787i
\(347\) 2.52555e6i 1.12598i −0.826462 0.562992i \(-0.809650\pi\)
0.826462 0.562992i \(-0.190350\pi\)
\(348\) 217374.i 0.0962189i
\(349\) 2.38874e6i 1.04980i −0.851165 0.524899i \(-0.824103\pi\)
0.851165 0.524899i \(-0.175897\pi\)
\(350\) 7.19254e6i 3.13843i
\(351\) 1.42724e6i 0.618343i
\(352\) −1.40538e6 −0.604557
\(353\) 3.78796e6 1.61796 0.808981 0.587835i \(-0.200020\pi\)
0.808981 + 0.587835i \(0.200020\pi\)
\(354\) 483783.i 0.205184i
\(355\) 1.58991e6 0.669580
\(356\) 386687. 0.161709
\(357\) 2.47447e6 1.02757
\(358\) 1.09626e6i 0.452070i
\(359\) 901848.i 0.369315i −0.982803 0.184658i \(-0.940882\pi\)
0.982803 0.184658i \(-0.0591176\pi\)
\(360\) 3.52968e6i 1.43542i
\(361\) 1.47335e6 0.595028
\(362\) 624471.i 0.250461i
\(363\) −2.18985e6 −0.872264
\(364\) 459435. 0.181749
\(365\) 2.78491e6i 1.09416i
\(366\) 2.20773e6 0.861475
\(367\) 91865.0i 0.0356029i 0.999842 + 0.0178014i \(0.00566667\pi\)
−0.999842 + 0.0178014i \(0.994333\pi\)
\(368\) 3.12886e6i 1.20439i
\(369\) 892796.i 0.341339i
\(370\) 1.92774e6 0.732055
\(371\) 105545.i 0.0398110i
\(372\) 274707. 0.102923
\(373\) 3.04251e6i 1.13230i 0.824304 + 0.566148i \(0.191567\pi\)
−0.824304 + 0.566148i \(0.808433\pi\)
\(374\) 5.44553e6i 2.01308i
\(375\) 3.89030e6i 1.42858i
\(376\) 3.89704e6 1.42156
\(377\) 1.81747e6 0.658589
\(378\) 3.22647e6i 1.16144i
\(379\) 790110. 0.282546 0.141273 0.989971i \(-0.454880\pi\)
0.141273 + 0.989971i \(0.454880\pi\)
\(380\) 626999. 0.222745
\(381\) 268491.i 0.0947583i
\(382\) 1.39322e6 0.488496
\(383\) 2.67566e6i 0.932039i −0.884774 0.466020i \(-0.845688\pi\)
0.884774 0.466020i \(-0.154312\pi\)
\(384\) 960278. 0.332329
\(385\) −1.24901e7 −4.29452
\(386\) −1.65029e6 −0.563756
\(387\) 2.94952e6 1.00109
\(388\) −550267. + 94709.3i −0.185564 + 0.0319384i
\(389\) 1.95611e6 0.655418 0.327709 0.944779i \(-0.393723\pi\)
0.327709 + 0.944779i \(0.393723\pi\)
\(390\) −1.80720e6 −0.601650
\(391\) −6.43526e6 −2.12875
\(392\) −3.29742e6 −1.08383
\(393\) 468072.i 0.152873i
\(394\) −3.23839e6 −1.05097
\(395\) 4.13539e6i 1.33359i
\(396\) 690183. 0.221170
\(397\) −102543. −0.0326535 −0.0163268 0.999867i \(-0.505197\pi\)
−0.0163268 + 0.999867i \(0.505197\pi\)
\(398\) 4.93871e6i 1.56281i
\(399\) 1.51564e6 0.476610
\(400\) 6.09976e6 1.90618
\(401\) 1.58111e6i 0.491024i 0.969394 + 0.245512i \(0.0789560\pi\)
−0.969394 + 0.245512i \(0.921044\pi\)
\(402\) 836127.i 0.258052i
\(403\) 2.29683e6i 0.704477i
\(404\) 117931. 0.0359480
\(405\) 1.48179e6i 0.448900i
\(406\) −4.10864e6 −1.23704
\(407\) 2.37885e6i 0.711838i
\(408\) 2.60755e6i 0.775500i
\(409\) 6.57325e6i 1.94300i −0.237046 0.971498i \(-0.576179\pi\)
0.237046 0.971498i \(-0.423821\pi\)
\(410\) −2.69783e6 −0.792601
\(411\) 30524.5i 0.00891341i
\(412\) 31737.5 0.00921150
\(413\) 2.12116e6 0.611926
\(414\) 3.51606e6i 1.00822i
\(415\) 6.47979e6 1.84689
\(416\) 891571.i 0.252594i
\(417\) 2.50799e6i 0.706293i
\(418\) 3.33543e6i 0.933709i
\(419\) −1.52855e6 −0.425347 −0.212673 0.977123i \(-0.568217\pi\)
−0.212673 + 0.977123i \(0.568217\pi\)
\(420\) −947696. −0.262148
\(421\) 2.83766e6 0.780288 0.390144 0.920754i \(-0.372425\pi\)
0.390144 + 0.920754i \(0.372425\pi\)
\(422\) 2.94968e6i 0.806296i
\(423\) −3.52441e6 −0.957713
\(424\) 111221. 0.0300451
\(425\) 1.25457e7i 3.36915i
\(426\) 641743.i 0.171331i
\(427\) 9.67985e6i 2.56921i
\(428\) 1.05050e6i 0.277196i
\(429\) 2.23010e6i 0.585034i
\(430\) 8.91279e6i 2.32457i
\(431\) −2.18381e6 −0.566267 −0.283133 0.959081i \(-0.591374\pi\)
−0.283133 + 0.959081i \(0.591374\pi\)
\(432\) −2.73626e6 −0.705420
\(433\) 1.55032e6i 0.397375i −0.980063 0.198688i \(-0.936332\pi\)
0.980063 0.198688i \(-0.0636679\pi\)
\(434\) 5.19229e6i 1.32323i
\(435\) −3.74898e6 −0.949926
\(436\) −451191. −0.113670
\(437\) −3.94165e6 −0.987359
\(438\) 1.12409e6 0.279972
\(439\) 4.87834e6i 1.20812i 0.796938 + 0.604061i \(0.206452\pi\)
−0.796938 + 0.604061i \(0.793548\pi\)
\(440\) 1.31618e7i 3.24104i
\(441\) 2.98213e6 0.730180
\(442\) 3.45463e6 0.841097
\(443\) 1.98458e6i 0.480463i 0.970716 + 0.240232i \(0.0772234\pi\)
−0.970716 + 0.240232i \(0.922777\pi\)
\(444\) 180497.i 0.0434522i
\(445\) 6.66904e6i 1.59648i
\(446\) 1.25546e6i 0.298858i
\(447\) 6801.65i 0.00161007i
\(448\) 6.69342e6i 1.57563i
\(449\) −3.14402e6 −0.735987 −0.367993 0.929828i \(-0.619955\pi\)
−0.367993 + 0.929828i \(0.619955\pi\)
\(450\) −6.85463e6 −1.59571
\(451\) 3.32915e6i 0.770712i
\(452\) 45895.3 0.0105663
\(453\) −2.76231e6 −0.632452
\(454\) −83711.5 −0.0190610
\(455\) 7.92371e6i 1.79432i
\(456\) 1.59715e6i 0.359694i
\(457\) 5.02168e6i 1.12476i −0.826880 0.562378i \(-0.809886\pi\)
0.826880 0.562378i \(-0.190114\pi\)
\(458\) −4.17300e6 −0.929574
\(459\) 5.62779e6i 1.24683i
\(460\) 2.46463e6 0.543072
\(461\) 5.23018e6 1.14621 0.573105 0.819482i \(-0.305739\pi\)
0.573105 + 0.819482i \(0.305739\pi\)
\(462\) 5.04144e6i 1.09888i
\(463\) −8.95082e6 −1.94048 −0.970242 0.242135i \(-0.922152\pi\)
−0.970242 + 0.242135i \(0.922152\pi\)
\(464\) 3.48440e6i 0.751335i
\(465\) 4.73777e6i 1.01611i
\(466\) 537388.i 0.114637i
\(467\) −859468. −0.182363 −0.0911817 0.995834i \(-0.529064\pi\)
−0.0911817 + 0.995834i \(0.529064\pi\)
\(468\) 437851.i 0.0924084i
\(469\) 3.66602e6 0.769597
\(470\) 1.06500e7i 2.22384i
\(471\) 305749.i 0.0635058i
\(472\) 2.23524e6i 0.461816i
\(473\) −1.09985e7 −2.26037
\(474\) 1.66918e6 0.341239
\(475\) 7.68433e6i 1.56269i
\(476\) 1.81161e6 0.366478
\(477\) −100586. −0.0202415
\(478\) 1.36924e6i 0.274101i
\(479\) −6.15460e6 −1.22564 −0.612818 0.790224i \(-0.709964\pi\)
−0.612818 + 0.790224i \(0.709964\pi\)
\(480\) 1.83908e6i 0.364332i
\(481\) −1.50914e6 −0.297417
\(482\) 8.02612e6 1.57358
\(483\) 5.95773e6 1.16202
\(484\) −1.60323e6 −0.311088
\(485\) 1.63342e6 + 9.49025e6i 0.315313 + 1.83199i
\(486\) 4.86129e6 0.933601
\(487\) −2.37736e6 −0.454226 −0.227113 0.973868i \(-0.572929\pi\)
−0.227113 + 0.973868i \(0.572929\pi\)
\(488\) 1.02004e7 1.93896
\(489\) 702397. 0.132834
\(490\) 9.01133e6i 1.69550i
\(491\) −3.64867e6 −0.683015 −0.341508 0.939879i \(-0.610938\pi\)
−0.341508 + 0.939879i \(0.610938\pi\)
\(492\) 252601.i 0.0470460i
\(493\) 7.16653e6 1.32798
\(494\) 2.11599e6 0.390119
\(495\) 1.19033e7i 2.18351i
\(496\) −4.40342e6 −0.803684
\(497\) 2.81374e6 0.510967
\(498\) 2.61546e6i 0.472580i
\(499\) 8.50543e6i 1.52913i −0.644545 0.764566i \(-0.722953\pi\)
0.644545 0.764566i \(-0.277047\pi\)
\(500\) 2.84817e6i 0.509496i
\(501\) −1.34003e6 −0.238517
\(502\) 5.68136e6i 1.00622i
\(503\) −1.12322e6 −0.197945 −0.0989725 0.995090i \(-0.531556\pi\)
−0.0989725 + 0.995090i \(0.531556\pi\)
\(504\) 6.24664e6i 1.09539i
\(505\) 2.03392e6i 0.354899i
\(506\) 1.31111e7i 2.27647i
\(507\) −1.64097e6 −0.283519
\(508\) 196568.i 0.0337951i
\(509\) −9.38185e6 −1.60507 −0.802535 0.596605i \(-0.796516\pi\)
−0.802535 + 0.596605i \(0.796516\pi\)
\(510\) −7.12601e6 −1.21317
\(511\) 4.92859e6i 0.834969i
\(512\) 6.63878e6 1.11921
\(513\) 3.44707e6i 0.578305i
\(514\) 7.93664e6i 1.32504i
\(515\) 547366.i 0.0909410i
\(516\) −834516. −0.137978
\(517\) 1.31422e7 2.16243
\(518\) 3.41161e6 0.558644
\(519\) 2.69621e6i 0.439375i
\(520\) −8.34985e6 −1.35416
\(521\) 5.51387e6 0.889944 0.444972 0.895545i \(-0.353214\pi\)
0.444972 + 0.895545i \(0.353214\pi\)
\(522\) 3.91561e6i 0.628961i
\(523\) 1.16040e7i 1.85504i 0.373768 + 0.927522i \(0.378066\pi\)
−0.373768 + 0.927522i \(0.621934\pi\)
\(524\) 342685.i 0.0545214i
\(525\) 1.16147e7i 1.83912i
\(526\) 6.68453e6i 1.05343i
\(527\) 9.05670e6i 1.42051i
\(528\) 4.27548e6 0.667422
\(529\) −9.05767e6 −1.40727
\(530\) 303950.i 0.0470015i
\(531\) 2.02151e6i 0.311128i
\(532\) 1.10963e6 0.169980
\(533\) 2.11201e6 0.322016
\(534\) −2.69185e6 −0.408506
\(535\) −1.81176e7 −2.73663
\(536\) 3.86318e6i 0.580809i
\(537\) 1.77027e6i 0.264913i
\(538\) 9.36083e6 1.39431
\(539\) −1.11201e7 −1.64868
\(540\) 2.15538e6i 0.318083i
\(541\) 1.46464e6i 0.215148i 0.994197 + 0.107574i \(0.0343082\pi\)
−0.994197 + 0.107574i \(0.965692\pi\)
\(542\) 1.54178e6i 0.225436i
\(543\) 1.00841e6i 0.146770i
\(544\) 3.51558e6i 0.509331i
\(545\) 7.78153e6i 1.12221i
\(546\) −3.19828e6 −0.459129
\(547\) −4.07050e6 −0.581673 −0.290837 0.956773i \(-0.593934\pi\)
−0.290837 + 0.956773i \(0.593934\pi\)
\(548\) 22347.6i 0.00317892i
\(549\) −9.22509e6 −1.30629
\(550\) 2.55603e7 3.60295
\(551\) 4.38957e6 0.615946
\(552\) 6.27813e6i 0.876966i
\(553\) 7.31859e6i 1.01769i
\(554\) 4.83830e6i 0.669758i
\(555\) 3.11296e6 0.428984
\(556\) 1.83615e6i 0.251896i
\(557\) 7.02584e6 0.959534 0.479767 0.877396i \(-0.340721\pi\)
0.479767 + 0.877396i \(0.340721\pi\)
\(558\) 4.94836e6 0.672784
\(559\) 6.97741e6i 0.944419i
\(560\) 1.51911e7 2.04701
\(561\) 8.79357e6i 1.17966i
\(562\) 6.94982e6i 0.928182i
\(563\) 8.38208e6i 1.11450i 0.830344 + 0.557251i \(0.188144\pi\)
−0.830344 + 0.557251i \(0.811856\pi\)
\(564\) 997172. 0.131999
\(565\) 791539.i 0.104316i
\(566\) 516280. 0.0677399
\(567\) 2.62240e6i 0.342563i
\(568\) 2.96506e6i 0.385623i
\(569\) 2.47779e6i 0.320836i 0.987049 + 0.160418i \(0.0512843\pi\)
−0.987049 + 0.160418i \(0.948716\pi\)
\(570\) −4.36475e6 −0.562694
\(571\) 7.06328e6 0.906601 0.453300 0.891358i \(-0.350247\pi\)
0.453300 + 0.891358i \(0.350247\pi\)
\(572\) 1.63270e6i 0.208649i
\(573\) 2.24981e6 0.286259
\(574\) −4.77447e6 −0.604847
\(575\) 3.02059e7i 3.80997i
\(576\) −6.37896e6 −0.801113
\(577\) 3.35619e6i 0.419669i −0.977737 0.209834i \(-0.932708\pi\)
0.977737 0.209834i \(-0.0672925\pi\)
\(578\) 6.38570e6 0.795040
\(579\) −2.66492e6 −0.330361
\(580\) −2.74470e6 −0.338786
\(581\) 1.14676e7 1.40939
\(582\) 3.83059e6 659302.i 0.468768 0.0806821i
\(583\) 375077. 0.0457035
\(584\) 5.19365e6 0.630145
\(585\) 7.55145e6 0.912306
\(586\) −1.29902e7 −1.56268
\(587\) 5.64914e6i 0.676686i 0.941023 + 0.338343i \(0.109866\pi\)
−0.941023 + 0.338343i \(0.890134\pi\)
\(588\) −843743. −0.100639
\(589\) 5.54732e6i 0.658862i
\(590\) −6.10855e6 −0.722450
\(591\) −5.22943e6 −0.615865
\(592\) 2.89327e6i 0.339301i
\(593\) 8.90285e6 1.03966 0.519831 0.854269i \(-0.325995\pi\)
0.519831 + 0.854269i \(0.325995\pi\)
\(594\) −1.14659e7 −1.33335
\(595\) 3.12442e7i 3.61807i
\(596\) 4979.63i 0.000574224i
\(597\) 7.97515e6i 0.915805i
\(598\) 8.31763e6 0.951145
\(599\) 5.40387e6i 0.615372i 0.951488 + 0.307686i \(0.0995546\pi\)
−0.951488 + 0.307686i \(0.900445\pi\)
\(600\) 1.22393e7 1.38797
\(601\) 1.89110e6i 0.213564i 0.994282 + 0.106782i \(0.0340547\pi\)
−0.994282 + 0.106782i \(0.965945\pi\)
\(602\) 1.57734e7i 1.77392i
\(603\) 3.49379e6i 0.391294i
\(604\) −2.02235e6 −0.225560
\(605\) 2.76504e7i 3.07124i
\(606\) −820958. −0.0908112
\(607\) −1.14035e6 −0.125622 −0.0628112 0.998025i \(-0.520007\pi\)
−0.0628112 + 0.998025i \(0.520007\pi\)
\(608\) 2.15333e6i 0.236239i
\(609\) −6.63474e6 −0.724904
\(610\) 2.78761e7i 3.03325i
\(611\) 8.33738e6i 0.903497i
\(612\) 1.72650e6i 0.186332i
\(613\) −9.29895e6 −0.999500 −0.499750 0.866170i \(-0.666575\pi\)
−0.499750 + 0.866170i \(0.666575\pi\)
\(614\) −1.05100e7 −1.12508
\(615\) −4.35652e6 −0.464464
\(616\) 2.32931e7i 2.47329i
\(617\) −9.59474e6 −1.01466 −0.507330 0.861752i \(-0.669367\pi\)
−0.507330 + 0.861752i \(0.669367\pi\)
\(618\) −220935. −0.0232699
\(619\) 7.44317e6i 0.780785i 0.920649 + 0.390393i \(0.127661\pi\)
−0.920649 + 0.390393i \(0.872339\pi\)
\(620\) 3.46862e6i 0.362391i
\(621\) 1.35499e7i 1.40996i
\(622\) 5.75738e6i 0.596690i
\(623\) 1.18025e7i 1.21830i
\(624\) 2.71236e6i 0.278859i
\(625\) 2.51407e7 2.57441
\(626\) 4.09487e6 0.417642
\(627\) 5.38615e6i 0.547154i
\(628\) 223845.i 0.0226490i
\(629\) −5.95073e6 −0.599713
\(630\) −1.70711e7 −1.71360
\(631\) 3.24194e6 0.324139 0.162069 0.986779i \(-0.448183\pi\)
0.162069 + 0.986779i \(0.448183\pi\)
\(632\) 7.71218e6 0.768041
\(633\) 4.76323e6i 0.472489i
\(634\) 1.21793e7i 1.20337i
\(635\) 3.39013e6 0.333643
\(636\) 28459.2 0.00278985
\(637\) 7.05455e6i 0.688844i
\(638\) 1.46009e7i 1.42013i
\(639\) 2.68155e6i 0.259797i
\(640\) 1.21251e7i 1.17013i
\(641\) 1.03152e7i 0.991591i 0.868439 + 0.495795i \(0.165123\pi\)
−0.868439 + 0.495795i \(0.834877\pi\)
\(642\) 7.31289e6i 0.700247i
\(643\) 5.41281e6 0.516292 0.258146 0.966106i \(-0.416888\pi\)
0.258146 + 0.966106i \(0.416888\pi\)
\(644\) 4.36178e6 0.414428
\(645\) 1.43926e7i 1.36220i
\(646\) 8.34363e6 0.786636
\(647\) −1.58343e7 −1.48710 −0.743549 0.668682i \(-0.766859\pi\)
−0.743549 + 0.668682i \(0.766859\pi\)
\(648\) 2.76343e6 0.258530
\(649\) 7.53801e6i 0.702498i
\(650\) 1.62154e7i 1.50537i
\(651\) 8.38465e6i 0.775412i
\(652\) 514239. 0.0473747
\(653\) 8.78106e6i 0.805868i −0.915229 0.402934i \(-0.867990\pi\)
0.915229 0.402934i \(-0.132010\pi\)
\(654\) 3.14089e6 0.287150
\(655\) −5.91017e6 −0.538265
\(656\) 4.04907e6i 0.367364i
\(657\) −4.69704e6 −0.424532
\(658\) 1.88478e7i 1.69705i
\(659\) 1.94354e7i 1.74333i −0.490103 0.871665i \(-0.663041\pi\)
0.490103 0.871665i \(-0.336959\pi\)
\(660\) 3.36784e6i 0.300948i
\(661\) −9.98175e6 −0.888593 −0.444297 0.895880i \(-0.646546\pi\)
−0.444297 + 0.895880i \(0.646546\pi\)
\(662\) 1.99860e7i 1.77248i
\(663\) 5.57863e6 0.492883
\(664\) 1.20843e7i 1.06366i
\(665\) 1.91374e7i 1.67814i
\(666\) 3.25133e6i 0.284037i
\(667\) 1.72547e7 1.50173
\(668\) −981062. −0.0850659
\(669\) 2.02735e6i 0.175131i
\(670\) −1.05575e7 −0.908599
\(671\) 3.43995e7 2.94948
\(672\) 3.25471e6i 0.278028i
\(673\) 1.94779e7 1.65769 0.828847 0.559476i \(-0.188998\pi\)
0.828847 + 0.559476i \(0.188998\pi\)
\(674\) 1.05734e7i 0.896530i
\(675\) −2.64158e7 −2.23154
\(676\) −1.20139e6 −0.101115
\(677\) 2.29141e6 0.192146 0.0960730 0.995374i \(-0.469372\pi\)
0.0960730 + 0.995374i \(0.469372\pi\)
\(678\) −319492. −0.0266923
\(679\) 2.89073e6 + 1.67953e7i 0.240621 + 1.39802i
\(680\) −3.29245e7 −2.73053
\(681\) −135180. −0.0111697
\(682\) −1.84519e7 −1.51908
\(683\) −1.07216e7 −0.879446 −0.439723 0.898133i \(-0.644923\pi\)
−0.439723 + 0.898133i \(0.644923\pi\)
\(684\) 1.05750e6i 0.0864250i
\(685\) −385421. −0.0313840
\(686\) 194759.i 0.0158011i
\(687\) −6.73866e6 −0.544730
\(688\) 1.33769e7 1.07742
\(689\) 237948.i 0.0190957i
\(690\) −1.71571e7 −1.37190
\(691\) 1.46529e7 1.16742 0.583712 0.811961i \(-0.301600\pi\)
0.583712 + 0.811961i \(0.301600\pi\)
\(692\) 1.97395e6i 0.156701i
\(693\) 2.10659e7i 1.66627i
\(694\) 1.28716e7i 1.01445i
\(695\) 3.16674e7 2.48685
\(696\) 6.99155e6i 0.547080i
\(697\) 8.32791e6 0.649313
\(698\) 1.21743e7i 0.945813i
\(699\) 867788.i 0.0671771i
\(700\) 8.50336e6i 0.655912i
\(701\) 7.11200e6 0.546634 0.273317 0.961924i \(-0.411879\pi\)
0.273317 + 0.961924i \(0.411879\pi\)
\(702\) 7.27397e6i 0.557095i
\(703\) −3.64488e6 −0.278160
\(704\) 2.37865e7 1.80884
\(705\) 1.71979e7i 1.30317i
\(706\) −1.93054e7 −1.45770
\(707\) 3.59952e6i 0.270829i
\(708\) 571951.i 0.0428821i
\(709\) 3.49062e6i 0.260788i 0.991462 + 0.130394i \(0.0416242\pi\)
−0.991462 + 0.130394i \(0.958376\pi\)
\(710\) −8.10304e6 −0.603257
\(711\) −6.97476e6 −0.517434
\(712\) −1.24372e7 −0.919442
\(713\) 2.18056e7i 1.60637i
\(714\) −1.26112e7 −0.925789
\(715\) −2.81586e7 −2.05990
\(716\) 1.29605e6i 0.0944798i
\(717\) 2.21109e6i 0.160623i
\(718\) 4.59630e6i 0.332734i
\(719\) 1.16177e7i 0.838105i −0.907962 0.419052i \(-0.862362\pi\)
0.907962 0.419052i \(-0.137638\pi\)
\(720\) 1.44774e7i 1.04078i
\(721\) 968698.i 0.0693985i
\(722\) −7.50897e6 −0.536089
\(723\) 1.29608e7 0.922116
\(724\) 738279.i 0.0523448i
\(725\) 3.36383e7i 2.37678i
\(726\) 1.11606e7 0.785865
\(727\) 1.84210e6 0.129264 0.0646320 0.997909i \(-0.479413\pi\)
0.0646320 + 0.997909i \(0.479413\pi\)
\(728\) −1.47771e7 −1.03338
\(729\) 4.38512e6 0.305606
\(730\) 1.41934e7i 0.985778i
\(731\) 2.75128e7i 1.90433i
\(732\) 2.61008e6 0.180043
\(733\) −5.53722e6 −0.380655 −0.190328 0.981721i \(-0.560955\pi\)
−0.190328 + 0.981721i \(0.560955\pi\)
\(734\) 468193.i 0.0320763i
\(735\) 1.45517e7i 0.993564i
\(736\) 8.46438e6i 0.575971i
\(737\) 1.30280e7i 0.883506i
\(738\) 4.55016e6i 0.307529i
\(739\) 6.90538e6i 0.465132i 0.972581 + 0.232566i \(0.0747122\pi\)
−0.972581 + 0.232566i \(0.925288\pi\)
\(740\) 2.27906e6 0.152995
\(741\) 3.41696e6 0.228610
\(742\) 537914.i 0.0358676i
\(743\) −1.91134e7 −1.27018 −0.635090 0.772438i \(-0.719037\pi\)
−0.635090 + 0.772438i \(0.719037\pi\)
\(744\) −8.83557e6 −0.585197
\(745\) 85881.8 0.00566906
\(746\) 1.55063e7i 1.02014i
\(747\) 1.09288e7i 0.716592i
\(748\) 6.43796e6i 0.420721i
\(749\) −3.20636e7 −2.08837
\(750\) 1.98270e7i 1.28708i
\(751\) −5.39082e6 −0.348783 −0.174391 0.984676i \(-0.555796\pi\)
−0.174391 + 0.984676i \(0.555796\pi\)
\(752\) −1.59842e7 −1.03073
\(753\) 9.17441e6i 0.589645i
\(754\) −9.26281e6 −0.593355
\(755\) 3.48787e7i 2.22686i
\(756\) 3.81448e6i 0.242734i
\(757\) 2.69483e6i 0.170920i −0.996342 0.0854598i \(-0.972764\pi\)
0.996342 0.0854598i \(-0.0272359\pi\)
\(758\) −4.02682e6 −0.254560
\(759\) 2.11721e7i 1.33401i
\(760\) −2.01666e7 −1.26648
\(761\) 2.97077e6i 0.185955i −0.995668 0.0929773i \(-0.970362\pi\)
0.995668 0.0929773i \(-0.0296384\pi\)
\(762\) 1.36837e6i 0.0853723i
\(763\) 1.37713e7i 0.856376i
\(764\) 1.64713e6 0.102093
\(765\) 2.97763e7 1.83958
\(766\) 1.36366e7i 0.839719i
\(767\) 4.78210e6 0.293515
\(768\) 4.69110e6 0.286993
\(769\) 2.75967e7i 1.68283i 0.540387 + 0.841417i \(0.318278\pi\)
−0.540387 + 0.841417i \(0.681722\pi\)
\(770\) 6.36563e7 3.86914
\(771\) 1.28163e7i 0.776473i
\(772\) −1.95105e6 −0.117821
\(773\) 1.63083e7 0.981658 0.490829 0.871256i \(-0.336694\pi\)
0.490829 + 0.871256i \(0.336694\pi\)
\(774\) −1.50323e7 −0.901932
\(775\) −4.25105e7 −2.54239
\(776\) 1.76986e7 3.04619e6i 1.05508 0.181595i
\(777\) 5.50915e6 0.327365
\(778\) −9.96935e6 −0.590497
\(779\) 5.10092e6 0.301165
\(780\) −2.13655e6 −0.125741
\(781\) 9.99924e6i 0.586596i
\(782\) 3.27975e7 1.91789
\(783\) 1.50896e7i 0.879578i
\(784\) 1.35248e7 0.785850
\(785\) −3.86058e6 −0.223603
\(786\) 2.38554e6i 0.137731i
\(787\) −2.18607e7 −1.25814 −0.629068 0.777350i \(-0.716563\pi\)
−0.629068 + 0.777350i \(0.716563\pi\)
\(788\) −3.82857e6 −0.219645
\(789\) 1.07943e7i 0.617311i
\(790\) 2.10762e7i 1.20150i
\(791\) 1.40082e6i 0.0796053i
\(792\) −2.21988e7 −1.25752
\(793\) 2.18230e7i 1.23234i
\(794\) 522614. 0.0294191
\(795\) 490826.i 0.0275429i
\(796\) 5.83877e6i 0.326617i
\(797\) 1.85218e6i 0.103285i −0.998666 0.0516425i \(-0.983554\pi\)
0.998666 0.0516425i \(-0.0164456\pi\)
\(798\) −7.72449e6 −0.429401
\(799\) 3.28753e7i 1.82181i
\(800\) 1.65015e7 0.911586
\(801\) 1.12480e7 0.619434
\(802\) 8.05820e6i 0.442387i
\(803\) 1.75148e7 0.958554
\(804\) 988508.i 0.0539312i
\(805\) 7.52260e7i 4.09146i
\(806\) 1.17059e7i 0.634697i
\(807\) 1.51161e7 0.817064
\(808\) −3.79310e6 −0.204393
\(809\) −2.07339e7 −1.11381 −0.556904 0.830577i \(-0.688011\pi\)
−0.556904 + 0.830577i \(0.688011\pi\)
\(810\) 7.55200e6i 0.404436i
\(811\) 5.39538e6 0.288052 0.144026 0.989574i \(-0.453995\pi\)
0.144026 + 0.989574i \(0.453995\pi\)
\(812\) −4.85743e6 −0.258533
\(813\) 2.48970e6i 0.132105i
\(814\) 1.21239e7i 0.641329i
\(815\) 8.86890e6i 0.467709i
\(816\) 1.06952e7i 0.562293i
\(817\) 1.68519e7i 0.883269i
\(818\) 3.35008e7i 1.75054i
\(819\) 1.33641e7 0.696196
\(820\) −3.18950e6 −0.165649
\(821\) 1.79050e7i 0.927077i −0.886077 0.463539i \(-0.846580\pi\)
0.886077 0.463539i \(-0.153420\pi\)
\(822\) 155569.i 0.00803052i
\(823\) 1.53587e7 0.790412 0.395206 0.918592i \(-0.370673\pi\)
0.395206 + 0.918592i \(0.370673\pi\)
\(824\) −1.02079e6 −0.0523746
\(825\) 4.12754e7 2.11133
\(826\) −1.08106e7 −0.551314
\(827\) 4.54148e6i 0.230905i −0.993313 0.115453i \(-0.963168\pi\)
0.993313 0.115453i \(-0.0368318\pi\)
\(828\) 4.15686e6i 0.210712i
\(829\) 1.33785e7 0.676118 0.338059 0.941125i \(-0.390230\pi\)
0.338059 + 0.941125i \(0.390230\pi\)
\(830\) −3.30244e7 −1.66395
\(831\) 7.81300e6i 0.392478i
\(832\) 1.50901e7i 0.755762i
\(833\) 2.78170e7i 1.38899i
\(834\) 1.27820e7i 0.636333i
\(835\) 1.69200e7i 0.839817i
\(836\) 3.94331e6i 0.195139i
\(837\) 1.90695e7 0.940863
\(838\) 7.79028e6 0.383215
\(839\) 3.29949e7i 1.61823i 0.587647 + 0.809117i \(0.300054\pi\)
−0.587647 + 0.809117i \(0.699946\pi\)
\(840\) 3.04813e7 1.49051
\(841\) 1.29572e6 0.0631714
\(842\) −1.44622e7 −0.702999
\(843\) 1.12228e7i 0.543914i
\(844\) 3.48726e6i 0.168511i
\(845\) 2.07199e7i 0.998267i
\(846\) 1.79623e7 0.862850
\(847\) 4.89342e7i 2.34371i
\(848\) −456187. −0.0217848
\(849\) 833703. 0.0396956
\(850\) 6.39393e7i 3.03543i
\(851\) −1.43274e7 −0.678179
\(852\) 758699.i 0.0358072i
\(853\) 1.95159e7i 0.918367i −0.888341 0.459184i \(-0.848142\pi\)
0.888341 0.459184i \(-0.151858\pi\)
\(854\) 4.93337e7i 2.31472i
\(855\) 1.82383e7 0.853235
\(856\) 3.37880e7i 1.57608i
\(857\) −5.31594e6 −0.247245 −0.123623 0.992329i \(-0.539451\pi\)
−0.123623 + 0.992329i \(0.539451\pi\)
\(858\) 1.13658e7i 0.527086i
\(859\) 5.84386e6i 0.270220i −0.990831 0.135110i \(-0.956861\pi\)
0.990831 0.135110i \(-0.0431387\pi\)
\(860\) 1.05371e7i 0.485820i
\(861\) −7.70994e6 −0.354440
\(862\) 1.11298e7 0.510177
\(863\) 8.08672e6i 0.369611i 0.982775 + 0.184806i \(0.0591656\pi\)
−0.982775 + 0.184806i \(0.940834\pi\)
\(864\) −7.40231e6 −0.337352
\(865\) −3.40440e7 −1.54704
\(866\) 7.90124e6i 0.358015i
\(867\) 1.03118e7 0.465894
\(868\) 6.13858e6i 0.276547i
\(869\) 2.60082e7 1.16832
\(870\) 1.91068e7 0.855834
\(871\) 8.26495e6 0.369143
\(872\) 1.45119e7 0.646300
\(873\) −1.60063e7 + 2.75492e6i −0.710811 + 0.122342i
\(874\) 2.00888e7 0.889559
\(875\) 8.69322e7 3.83849
\(876\) 1.32895e6 0.0585123
\(877\) −2.90626e7 −1.27596 −0.637978 0.770054i \(-0.720229\pi\)
−0.637978 + 0.770054i \(0.720229\pi\)
\(878\) 2.48626e7i 1.08846i
\(879\) −2.09769e7 −0.915732
\(880\) 5.39849e7i 2.34999i
\(881\) 2.21453e7 0.961263 0.480631 0.876923i \(-0.340408\pi\)
0.480631 + 0.876923i \(0.340408\pi\)
\(882\) −1.51985e7 −0.657855
\(883\) 3.27712e7i 1.41446i 0.706983 + 0.707231i \(0.250056\pi\)
−0.706983 + 0.707231i \(0.749944\pi\)
\(884\) 4.08423e6 0.175784
\(885\) −9.86424e6 −0.423356
\(886\) 1.01145e7i 0.432872i
\(887\) 2.27438e7i 0.970633i −0.874339 0.485316i \(-0.838704\pi\)
0.874339 0.485316i \(-0.161296\pi\)
\(888\) 5.80543e6i 0.247060i
\(889\) 5.99968e6 0.254609
\(890\) 3.39890e7i 1.43835i
\(891\) 9.31925e6 0.393266
\(892\) 1.48426e6i 0.0624594i
\(893\) 2.01365e7i 0.844995i
\(894\) 34664.8i 0.00145059i
\(895\) 2.23525e7 0.932757
\(896\) 2.14583e7i 0.892945i
\(897\) 1.34315e7 0.557371
\(898\) 1.60236e7 0.663086
\(899\) 2.42835e7i 1.00210i
\(900\) −8.10387e6 −0.333493
\(901\) 938260.i 0.0385045i
\(902\) 1.69671e7i 0.694371i
\(903\) 2.54712e7i 1.03951i
\(904\) −1.47616e6 −0.0600775
\(905\) −1.27328e7 −0.516777
\(906\) 1.40782e7 0.569806
\(907\) 4.46116e6i 0.180065i 0.995939 + 0.0900325i \(0.0286971\pi\)
−0.995939 + 0.0900325i \(0.971303\pi\)
\(908\) −98967.7 −0.00398363
\(909\) 3.43041e6 0.137701
\(910\) 4.03835e7i 1.61659i
\(911\) 3.26294e7i 1.30260i 0.758818 + 0.651302i \(0.225777\pi\)
−0.758818 + 0.651302i \(0.774223\pi\)
\(912\) 6.55089e6i 0.260803i
\(913\) 4.07525e7i 1.61800i
\(914\) 2.55932e7i 1.01335i
\(915\) 4.50151e7i 1.77748i
\(916\) −4.93351e6 −0.194275
\(917\) −1.04595e7 −0.410759
\(918\) 2.86822e7i 1.12333i
\(919\) 7.65662e6i 0.299053i 0.988758 + 0.149527i \(0.0477749\pi\)
−0.988758 + 0.149527i \(0.952225\pi\)
\(920\) −7.92716e7 −3.08779
\(921\) −1.69718e7 −0.659294
\(922\) −2.66558e7 −1.03268
\(923\) 6.34350e6 0.245089
\(924\) 5.96023e6i 0.229659i
\(925\) 2.79316e7i 1.07335i
\(926\) 4.56181e7 1.74828
\(927\) 923188. 0.0352851
\(928\) 9.42623e6i 0.359309i
\(929\) 4.85091e7i 1.84410i −0.387074 0.922049i \(-0.626514\pi\)
0.387074 0.922049i \(-0.373486\pi\)
\(930\) 2.41462e7i 0.915464i
\(931\) 1.70382e7i 0.644242i
\(932\) 635326.i 0.0239583i
\(933\) 9.29716e6i 0.349660i
\(934\) 4.38031e6 0.164300
\(935\) −1.11033e8 −4.15359
\(936\) 1.40829e7i 0.525414i
\(937\) −2.54091e7 −0.945454 −0.472727 0.881209i \(-0.656730\pi\)
−0.472727 + 0.881209i \(0.656730\pi\)
\(938\) −1.86840e7 −0.693367
\(939\) 6.61250e6 0.244738
\(940\) 1.25909e7i 0.464769i
\(941\) 9.25927e6i 0.340881i −0.985368 0.170440i \(-0.945481\pi\)
0.985368 0.170440i \(-0.0545191\pi\)
\(942\) 1.55826e6i 0.0572154i
\(943\) 2.00509e7 0.734269
\(944\) 9.16810e6i 0.334849i
\(945\) −6.57869e7 −2.39640
\(946\) 5.60541e7 2.03648
\(947\) 4.85770e7i 1.76017i −0.474812 0.880087i \(-0.657484\pi\)
0.474812 0.880087i \(-0.342516\pi\)
\(948\) 1.97339e6 0.0713168
\(949\) 1.11114e7i 0.400499i
\(950\) 3.91634e7i 1.40790i
\(951\) 1.96675e7i 0.705177i
\(952\) −5.82680e7 −2.08371
\(953\) 2.31081e6i 0.0824200i 0.999151 + 0.0412100i \(0.0131213\pi\)
−0.999151 + 0.0412100i \(0.986879\pi\)
\(954\) 512642. 0.0182366
\(955\) 2.84075e7i 1.00791i
\(956\) 1.61878e6i 0.0572854i
\(957\) 2.35780e7i 0.832198i
\(958\) 3.13671e7 1.10423
\(959\) −682097. −0.0239497
\(960\) 3.11270e7i 1.09008i
\(961\) 2.05913e6 0.0719242
\(962\) 7.69137e6 0.267958
\(963\) 3.05572e7i 1.06181i
\(964\) 9.48886e6 0.328868
\(965\) 3.36490e7i 1.16320i
\(966\) −3.03638e7 −1.04692
\(967\) −2.50588e7 −0.861775 −0.430888 0.902406i \(-0.641799\pi\)
−0.430888 + 0.902406i \(0.641799\pi\)
\(968\) 5.15659e7 1.76878
\(969\) 1.34735e7 0.460969
\(970\) −8.32476e6 4.83673e7i −0.284081 1.65053i
\(971\) −2.18812e7 −0.744773 −0.372386 0.928078i \(-0.621460\pi\)
−0.372386 + 0.928078i \(0.621460\pi\)
\(972\) 5.74725e6 0.195117
\(973\) 5.60432e7 1.89776
\(974\) 1.21163e7 0.409234
\(975\) 2.61850e7i 0.882148i
\(976\) −4.18383e7 −1.40588
\(977\) 1.36900e7i 0.458845i 0.973327 + 0.229423i \(0.0736838\pi\)
−0.973327 + 0.229423i \(0.926316\pi\)
\(978\) −3.57979e6 −0.119677
\(979\) −4.19428e7 −1.39862
\(980\) 1.06536e7i 0.354349i
\(981\) −1.31243e7 −0.435417
\(982\) 1.85955e7 0.615361
\(983\) 1.70915e7i 0.564152i −0.959392 0.282076i \(-0.908977\pi\)
0.959392 0.282076i \(-0.0910230\pi\)
\(984\) 8.12457e6i 0.267493i
\(985\) 6.60300e7i 2.16846i
\(986\) −3.65245e7 −1.19644
\(987\) 3.04358e7i 0.994471i
\(988\) 2.50163e6 0.0815324
\(989\) 6.62420e7i 2.15349i
\(990\) 6.06657e7i 1.96723i
\(991\) 1.56307e7i 0.505584i 0.967521 + 0.252792i \(0.0813488\pi\)
−0.967521 + 0.252792i \(0.918651\pi\)
\(992\) −1.19124e7 −0.384344
\(993\) 3.22739e7i 1.03867i
\(994\) −1.43403e7 −0.460355
\(995\) −1.00699e8 −3.22454
\(996\) 3.09212e6i 0.0987662i
\(997\) −8.66923e6 −0.276212 −0.138106 0.990417i \(-0.544101\pi\)
−0.138106 + 0.990417i \(0.544101\pi\)
\(998\) 4.33482e7i 1.37767i
\(999\) 1.25297e7i 0.397216i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 97.6.b.a.96.12 yes 40
97.96 even 2 inner 97.6.b.a.96.11 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
97.6.b.a.96.11 40 97.96 even 2 inner
97.6.b.a.96.12 yes 40 1.1 even 1 trivial