Properties

Label 97.4.e.a.36.1
Level $97$
Weight $4$
Character 97.36
Analytic conductor $5.723$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [97,4,Mod(36,97)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(97, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("97.36"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 97 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 97.e (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.72318527056\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-65})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 65x^{2} + 4225 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 36.1
Root \(-6.98212 - 4.03113i\) of defining polynomial
Character \(\chi\) \(=\) 97.36
Dual form 97.4.e.a.62.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(2.00000 - 3.46410i) q^{3} +(3.50000 + 6.06218i) q^{4} +(-12.9821 - 7.49523i) q^{5} +(2.00000 + 3.46410i) q^{6} +(-31.4464 - 18.1556i) q^{7} -15.0000 q^{8} +(5.50000 + 9.52628i) q^{9} +(12.9821 - 7.49523i) q^{10} +(1.48212 + 2.56711i) q^{11} +28.0000 q^{12} +(-19.9106 - 11.4954i) q^{13} +(31.4464 - 18.1556i) q^{14} +(-51.9285 + 29.9809i) q^{15} +(-20.5000 + 35.5070i) q^{16} +(-15.3570 + 8.86635i) q^{17} -11.0000 q^{18} -143.451i q^{19} -104.933i q^{20} +(-125.785 + 72.6223i) q^{21} -2.96424 q^{22} +(-93.9285 + 54.2296i) q^{23} +(-30.0000 + 51.9615i) q^{24} +(49.8570 + 86.3548i) q^{25} +(19.9106 - 11.4954i) q^{26} +152.000 q^{27} -254.178i q^{28} +(82.9642 + 47.8994i) q^{29} -59.9618i q^{30} +(40.8927 - 70.8283i) q^{31} +(-80.5000 - 139.430i) q^{32} +11.8570 q^{33} -17.7327i q^{34} +(272.160 + 471.395i) q^{35} +(-38.5000 + 66.6840i) q^{36} +(-266.125 - 153.647i) q^{37} +(124.232 + 71.7253i) q^{38} +(-79.6424 + 45.9816i) q^{39} +(194.732 + 112.428i) q^{40} +(377.249 + 217.805i) q^{41} -145.245i q^{42} +(-47.6424 + 82.5191i) q^{43} +(-10.3748 + 17.9698i) q^{44} -164.895i q^{45} -108.459i q^{46} -133.250 q^{47} +(82.0000 + 142.028i) q^{48} +(487.749 + 844.806i) q^{49} -99.7139 q^{50} +70.9308i q^{51} -160.935i q^{52} +(-10.9106 + 18.8977i) q^{53} +(-76.0000 + 131.636i) q^{54} -44.4353i q^{55} +(471.695 + 272.333i) q^{56} +(-496.927 - 286.901i) q^{57} +(-82.9642 + 47.8994i) q^{58} +(-332.893 - 192.196i) q^{59} +(-363.499 - 209.866i) q^{60} +(313.696 - 543.337i) q^{61} +(40.8927 + 70.8283i) q^{62} -399.422i q^{63} -167.000 q^{64} +(172.321 + 298.469i) q^{65} +(-5.92848 + 10.2684i) q^{66} -615.824i q^{67} +(-107.499 - 62.0644i) q^{68} +433.837i q^{69} -544.321 q^{70} +(-251.160 + 145.007i) q^{71} +(-82.5000 - 142.894i) q^{72} +(66.3921 - 114.994i) q^{73} +(266.125 - 153.647i) q^{74} +398.856 q^{75} +(869.623 - 502.077i) q^{76} -107.635i q^{77} -91.9631i q^{78} +295.571 q^{79} +(532.267 - 307.304i) q^{80} +(155.500 - 269.334i) q^{81} +(-377.249 + 217.805i) q^{82} +(-1183.57 + 683.333i) q^{83} +(-880.498 - 508.356i) q^{84} +265.821 q^{85} +(-47.6424 - 82.5191i) q^{86} +(331.857 - 191.598i) q^{87} +(-22.2318 - 38.5066i) q^{88} -788.068 q^{89} +(142.803 + 82.4475i) q^{90} +(417.411 + 722.976i) q^{91} +(-657.499 - 379.607i) q^{92} +(-163.571 - 283.313i) q^{93} +(66.6252 - 115.398i) q^{94} +(-1075.19 + 1862.29i) q^{95} -644.000 q^{96} +(-719.284 + 628.732i) q^{97} -975.498 q^{98} +(-16.3033 + 28.2382i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} + 8 q^{3} + 14 q^{4} - 24 q^{5} + 8 q^{6} - 42 q^{7} - 60 q^{8} + 22 q^{9} + 24 q^{10} - 22 q^{11} + 112 q^{12} + 60 q^{13} + 42 q^{14} - 96 q^{15} - 82 q^{16} + 162 q^{17} - 44 q^{18} - 168 q^{21}+ \cdots + 242 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/97\mathbb{Z}\right)^\times\).

\(n\) \(5\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.176777 + 0.306186i −0.940775 0.339032i \(-0.889900\pi\)
0.763998 + 0.645219i \(0.223234\pi\)
\(3\) 2.00000 3.46410i 0.384900 0.666667i −0.606855 0.794812i \(-0.707569\pi\)
0.991755 + 0.128146i \(0.0409025\pi\)
\(4\) 3.50000 + 6.06218i 0.437500 + 0.757772i
\(5\) −12.9821 7.49523i −1.16116 0.670394i −0.209575 0.977793i \(-0.567208\pi\)
−0.951581 + 0.307399i \(0.900541\pi\)
\(6\) 2.00000 + 3.46410i 0.136083 + 0.235702i
\(7\) −31.4464 18.1556i −1.69794 0.980308i −0.947708 0.319138i \(-0.896607\pi\)
−0.750235 0.661171i \(-0.770060\pi\)
\(8\) −15.0000 −0.662913
\(9\) 5.50000 + 9.52628i 0.203704 + 0.352825i
\(10\) 12.9821 7.49523i 0.410531 0.237020i
\(11\) 1.48212 + 2.56711i 0.0406251 + 0.0703647i 0.885623 0.464405i \(-0.153732\pi\)
−0.844998 + 0.534770i \(0.820398\pi\)
\(12\) 28.0000 0.673575
\(13\) −19.9106 11.4954i −0.424785 0.245250i 0.272337 0.962202i \(-0.412203\pi\)
−0.697123 + 0.716952i \(0.745537\pi\)
\(14\) 31.4464 18.1556i 0.600314 0.346591i
\(15\) −51.9285 + 29.9809i −0.893858 + 0.516069i
\(16\) −20.5000 + 35.5070i −0.320312 + 0.554798i
\(17\) −15.3570 + 8.86635i −0.219095 + 0.126494i −0.605531 0.795822i \(-0.707039\pi\)
0.386436 + 0.922316i \(0.373706\pi\)
\(18\) −11.0000 −0.144040
\(19\) 143.451i 1.73210i −0.499962 0.866048i \(-0.666653\pi\)
0.499962 0.866048i \(-0.333347\pi\)
\(20\) 104.933i 1.17319i
\(21\) −125.785 + 72.6223i −1.30708 + 0.754642i
\(22\) −2.96424 −0.0287263
\(23\) −93.9285 + 54.2296i −0.851541 + 0.491637i −0.861170 0.508316i \(-0.830268\pi\)
0.00962953 + 0.999954i \(0.496935\pi\)
\(24\) −30.0000 + 51.9615i −0.255155 + 0.441942i
\(25\) 49.8570 + 86.3548i 0.398856 + 0.690838i
\(26\) 19.9106 11.4954i 0.150184 0.0867089i
\(27\) 152.000 1.08342
\(28\) 254.178i 1.71554i
\(29\) 82.9642 + 47.8994i 0.531244 + 0.306714i 0.741523 0.670928i \(-0.234104\pi\)
−0.210279 + 0.977641i \(0.567437\pi\)
\(30\) 59.9618i 0.364916i
\(31\) 40.8927 70.8283i 0.236921 0.410359i −0.722908 0.690944i \(-0.757195\pi\)
0.959829 + 0.280585i \(0.0905284\pi\)
\(32\) −80.5000 139.430i −0.444704 0.770250i
\(33\) 11.8570 0.0625464
\(34\) 17.7327i 0.0894450i
\(35\) 272.160 + 471.395i 1.31439 + 2.27658i
\(36\) −38.5000 + 66.6840i −0.178241 + 0.308722i
\(37\) −266.125 153.647i −1.18245 0.682689i −0.225871 0.974157i \(-0.572523\pi\)
−0.956580 + 0.291468i \(0.905856\pi\)
\(38\) 124.232 + 71.7253i 0.530344 + 0.306194i
\(39\) −79.6424 + 45.9816i −0.327000 + 0.188793i
\(40\) 194.732 + 112.428i 0.769745 + 0.444412i
\(41\) 377.249 + 217.805i 1.43699 + 0.829644i 0.997639 0.0686739i \(-0.0218768\pi\)
0.439346 + 0.898318i \(0.355210\pi\)
\(42\) 145.245i 0.533612i
\(43\) −47.6424 + 82.5191i −0.168963 + 0.292652i −0.938055 0.346485i \(-0.887375\pi\)
0.769093 + 0.639137i \(0.220708\pi\)
\(44\) −10.3748 + 17.9698i −0.0355470 + 0.0615691i
\(45\) 164.895i 0.546247i
\(46\) 108.459i 0.347640i
\(47\) −133.250 −0.413544 −0.206772 0.978389i \(-0.566296\pi\)
−0.206772 + 0.978389i \(0.566296\pi\)
\(48\) 82.0000 + 142.028i 0.246577 + 0.427083i
\(49\) 487.749 + 844.806i 1.42201 + 2.46299i
\(50\) −99.7139 −0.282034
\(51\) 70.9308i 0.194751i
\(52\) 160.935i 0.429187i
\(53\) −10.9106 + 18.8977i −0.0282771 + 0.0489774i −0.879818 0.475311i \(-0.842335\pi\)
0.851541 + 0.524289i \(0.175669\pi\)
\(54\) −76.0000 + 131.636i −0.191524 + 0.331729i
\(55\) 44.4353i 0.108939i
\(56\) 471.695 + 272.333i 1.12559 + 0.649859i
\(57\) −496.927 286.901i −1.15473 0.666684i
\(58\) −82.9642 + 47.8994i −0.187823 + 0.108440i
\(59\) −332.893 192.196i −0.734558 0.424097i 0.0855291 0.996336i \(-0.472742\pi\)
−0.820087 + 0.572238i \(0.806075\pi\)
\(60\) −363.499 209.866i −0.782126 0.451561i
\(61\) 313.696 543.337i 0.658437 1.14045i −0.322583 0.946541i \(-0.604551\pi\)
0.981020 0.193905i \(-0.0621155\pi\)
\(62\) 40.8927 + 70.8283i 0.0837642 + 0.145084i
\(63\) 399.422i 0.798770i
\(64\) −167.000 −0.326172
\(65\) 172.321 + 298.469i 0.328828 + 0.569547i
\(66\) −5.92848 + 10.2684i −0.0110567 + 0.0191509i
\(67\) 615.824i 1.12291i −0.827508 0.561454i \(-0.810242\pi\)
0.827508 0.561454i \(-0.189758\pi\)
\(68\) −107.499 62.0644i −0.191708 0.110683i
\(69\) 433.837i 0.756925i
\(70\) −544.321 −0.929411
\(71\) −251.160 + 145.007i −0.419820 + 0.242383i −0.695000 0.719009i \(-0.744596\pi\)
0.275180 + 0.961393i \(0.411263\pi\)
\(72\) −82.5000 142.894i −0.135038 0.233892i
\(73\) 66.3921 114.994i 0.106447 0.184371i −0.807882 0.589345i \(-0.799386\pi\)
0.914328 + 0.404974i \(0.132719\pi\)
\(74\) 266.125 153.647i 0.418060 0.241367i
\(75\) 398.856 0.614078
\(76\) 869.623 502.077i 1.31253 0.757792i
\(77\) 107.635i 0.159300i
\(78\) 91.9631i 0.133497i
\(79\) 295.571 0.420941 0.210470 0.977600i \(-0.432500\pi\)
0.210470 + 0.977600i \(0.432500\pi\)
\(80\) 532.267 307.304i 0.743866 0.429471i
\(81\) 155.500 269.334i 0.213306 0.369457i
\(82\) −377.249 + 217.805i −0.508051 + 0.293323i
\(83\) −1183.57 + 683.333i −1.56522 + 0.903682i −0.568509 + 0.822677i \(0.692480\pi\)
−0.996714 + 0.0810050i \(0.974187\pi\)
\(84\) −880.498 508.356i −1.14369 0.660311i
\(85\) 265.821 0.339204
\(86\) −47.6424 82.5191i −0.0597374 0.103468i
\(87\) 331.857 191.598i 0.408952 0.236108i
\(88\) −22.2318 38.5066i −0.0269309 0.0466457i
\(89\) −788.068 −0.938596 −0.469298 0.883040i \(-0.655493\pi\)
−0.469298 + 0.883040i \(0.655493\pi\)
\(90\) 142.803 + 82.4475i 0.167253 + 0.0965637i
\(91\) 417.411 + 722.976i 0.480841 + 0.832841i
\(92\) −657.499 379.607i −0.745098 0.430183i
\(93\) −163.571 283.313i −0.182382 0.315895i
\(94\) 66.6252 115.398i 0.0731049 0.126621i
\(95\) −1075.19 + 1862.29i −1.16119 + 2.01123i
\(96\) −644.000 −0.684666
\(97\) −719.284 + 628.732i −0.752909 + 0.658125i
\(98\) −975.498 −1.00551
\(99\) −16.3033 + 28.2382i −0.0165510 + 0.0286671i
\(100\) −348.999 + 604.484i −0.348999 + 0.604484i
\(101\) −573.232 992.868i −0.564740 0.978159i −0.997074 0.0764450i \(-0.975643\pi\)
0.432334 0.901714i \(-0.357690\pi\)
\(102\) −61.4278 35.4654i −0.0596300 0.0344274i
\(103\) −476.392 825.135i −0.455731 0.789349i 0.542999 0.839733i \(-0.317289\pi\)
−0.998730 + 0.0503840i \(0.983955\pi\)
\(104\) 298.659 + 172.431i 0.281595 + 0.162579i
\(105\) 2177.28 2.02363
\(106\) −10.9106 18.8977i −0.00999746 0.0173161i
\(107\) 1093.66 631.423i 0.988110 0.570486i 0.0834015 0.996516i \(-0.473422\pi\)
0.904709 + 0.426030i \(0.140088\pi\)
\(108\) 532.000 + 921.451i 0.473997 + 0.820988i
\(109\) −1175.46 −1.03293 −0.516463 0.856309i \(-0.672752\pi\)
−0.516463 + 0.856309i \(0.672752\pi\)
\(110\) 38.4821 + 22.2177i 0.0333557 + 0.0192579i
\(111\) −1064.50 + 614.590i −0.910252 + 0.525534i
\(112\) 1289.30 744.378i 1.08775 0.628010i
\(113\) −157.820 + 273.352i −0.131385 + 0.227565i −0.924211 0.381883i \(-0.875276\pi\)
0.792826 + 0.609448i \(0.208609\pi\)
\(114\) 496.927 286.901i 0.408259 0.235708i
\(115\) 1625.85 1.31836
\(116\) 670.592i 0.536749i
\(117\) 252.899i 0.199833i
\(118\) 332.893 192.196i 0.259706 0.149941i
\(119\) 643.894 0.496014
\(120\) 778.927 449.714i 0.592550 0.342109i
\(121\) 661.107 1145.07i 0.496699 0.860308i
\(122\) 313.696 + 543.337i 0.232793 + 0.403209i
\(123\) 1509.00 871.219i 1.10619 0.638660i
\(124\) 572.498 0.414612
\(125\) 379.050i 0.271226i
\(126\) 345.910 + 199.711i 0.244572 + 0.141204i
\(127\) 271.537i 0.189724i −0.995490 0.0948622i \(-0.969759\pi\)
0.995490 0.0948622i \(-0.0302410\pi\)
\(128\) 727.500 1260.07i 0.502363 0.870119i
\(129\) 190.570 + 330.076i 0.130068 + 0.225284i
\(130\) −344.642 −0.232516
\(131\) 1812.36i 1.20875i −0.796699 0.604377i \(-0.793422\pi\)
0.796699 0.604377i \(-0.206578\pi\)
\(132\) 41.4994 + 71.8790i 0.0273641 + 0.0473959i
\(133\) −2604.43 + 4511.00i −1.69799 + 2.94100i
\(134\) 533.319 + 307.912i 0.343819 + 0.198504i
\(135\) −1973.28 1139.28i −1.25802 0.726320i
\(136\) 230.354 132.995i 0.145241 0.0838547i
\(137\) 733.500 + 423.486i 0.457424 + 0.264094i 0.710961 0.703232i \(-0.248260\pi\)
−0.253536 + 0.967326i \(0.581594\pi\)
\(138\) −375.714 216.919i −0.231760 0.133807i
\(139\) 842.456i 0.514073i −0.966402 0.257037i \(-0.917254\pi\)
0.966402 0.257037i \(-0.0827461\pi\)
\(140\) −1905.12 + 3299.77i −1.15009 + 1.99201i
\(141\) −266.501 + 461.593i −0.159173 + 0.275696i
\(142\) 290.015i 0.171391i
\(143\) 68.1502i 0.0398532i
\(144\) −451.000 −0.260995
\(145\) −718.034 1243.67i −0.411238 0.712285i
\(146\) 66.3921 + 114.994i 0.0376346 + 0.0651850i
\(147\) 3901.99 2.18933
\(148\) 2151.06i 1.19471i
\(149\) 421.506i 0.231752i 0.993264 + 0.115876i \(0.0369676\pi\)
−0.993264 + 0.115876i \(0.963032\pi\)
\(150\) −199.428 + 345.419i −0.108555 + 0.188022i
\(151\) −204.445 + 354.109i −0.110182 + 0.190841i −0.915844 0.401535i \(-0.868477\pi\)
0.805661 + 0.592376i \(0.201810\pi\)
\(152\) 2151.76i 1.14823i
\(153\) −168.927 97.5298i −0.0892608 0.0515347i
\(154\) 93.2146 + 53.8175i 0.0487756 + 0.0281606i
\(155\) −1061.75 + 613.001i −0.550204 + 0.317661i
\(156\) −557.497 321.871i −0.286125 0.165194i
\(157\) −1429.19 825.145i −0.726510 0.419451i 0.0906343 0.995884i \(-0.471111\pi\)
−0.817144 + 0.576434i \(0.804444\pi\)
\(158\) −147.785 + 255.972i −0.0744125 + 0.128886i
\(159\) 43.6424 + 75.5909i 0.0217677 + 0.0377028i
\(160\) 2413.46i 1.19251i
\(161\) 3938.28 1.92782
\(162\) 155.500 + 269.334i 0.0754150 + 0.130623i
\(163\) 299.837 519.333i 0.144080 0.249554i −0.784949 0.619560i \(-0.787311\pi\)
0.929029 + 0.370006i \(0.120644\pi\)
\(164\) 3049.27i 1.45188i
\(165\) −153.928 88.8706i −0.0726262 0.0419307i
\(166\) 1366.67i 0.639000i
\(167\) 4230.88 1.96045 0.980226 0.197881i \(-0.0634059\pi\)
0.980226 + 0.197881i \(0.0634059\pi\)
\(168\) 1886.78 1089.33i 0.866478 0.500262i
\(169\) −834.212 1444.90i −0.379705 0.657668i
\(170\) −132.911 + 230.208i −0.0599634 + 0.103860i
\(171\) 1366.55 788.978i 0.611127 0.352834i
\(172\) −666.994 −0.295685
\(173\) −1583.17 + 914.046i −0.695760 + 0.401698i −0.805766 0.592233i \(-0.798246\pi\)
0.110006 + 0.993931i \(0.464913\pi\)
\(174\) 383.195i 0.166954i
\(175\) 3620.73i 1.56401i
\(176\) −121.534 −0.0520509
\(177\) −1331.57 + 768.783i −0.565463 + 0.326470i
\(178\) 394.034 682.487i 0.165922 0.287385i
\(179\) −2541.78 + 1467.50i −1.06135 + 0.612770i −0.925805 0.378001i \(-0.876612\pi\)
−0.135544 + 0.990771i \(0.543278\pi\)
\(180\) 999.623 577.133i 0.413931 0.238983i
\(181\) 2272.11 + 1311.80i 0.933062 + 0.538704i 0.887779 0.460270i \(-0.152248\pi\)
0.0452836 + 0.998974i \(0.485581\pi\)
\(182\) −834.821 −0.340006
\(183\) −1254.78 2173.35i −0.506865 0.877916i
\(184\) 1408.93 813.444i 0.564497 0.325913i
\(185\) 2303.25 + 3989.34i 0.915341 + 1.58542i
\(186\) 327.142 0.128963
\(187\) −45.5217 26.2820i −0.0178015 0.0102777i
\(188\) −466.376 807.787i −0.180925 0.313372i
\(189\) −4779.85 2759.65i −1.83959 1.06209i
\(190\) −1075.19 1862.29i −0.410541 0.711078i
\(191\) 1546.94 2679.38i 0.586035 1.01504i −0.408710 0.912664i \(-0.634021\pi\)
0.994746 0.102378i \(-0.0326452\pi\)
\(192\) −334.000 + 578.505i −0.125544 + 0.217448i
\(193\) −3014.35 −1.12424 −0.562118 0.827057i \(-0.690013\pi\)
−0.562118 + 0.827057i \(0.690013\pi\)
\(194\) −184.856 937.284i −0.0684119 0.346871i
\(195\) 1378.57 0.506264
\(196\) −3414.24 + 5913.64i −1.24426 + 2.15512i
\(197\) −2355.52 + 4079.88i −0.851897 + 1.47553i 0.0275976 + 0.999619i \(0.491214\pi\)
−0.879494 + 0.475909i \(0.842119\pi\)
\(198\) −16.3033 28.2382i −0.00585165 0.0101354i
\(199\) −1798.44 1038.33i −0.640644 0.369876i 0.144218 0.989546i \(-0.453933\pi\)
−0.784863 + 0.619670i \(0.787267\pi\)
\(200\) −747.854 1295.32i −0.264406 0.457965i
\(201\) −2133.28 1231.65i −0.748606 0.432208i
\(202\) 1146.46 0.399332
\(203\) −1739.28 3012.53i −0.601348 1.04157i
\(204\) −429.995 + 248.258i −0.147577 + 0.0852035i
\(205\) −3264.99 5655.14i −1.11238 1.92669i
\(206\) 952.784 0.322251
\(207\) −1033.21 596.526i −0.346924 0.200297i
\(208\) 816.335 471.311i 0.272128 0.157113i
\(209\) 368.253 212.611i 0.121878 0.0703665i
\(210\) −1088.64 + 1885.58i −0.357730 + 0.619607i
\(211\) 3653.30 2109.23i 1.19196 0.688178i 0.233208 0.972427i \(-0.425078\pi\)
0.958751 + 0.284249i \(0.0917442\pi\)
\(212\) −152.748 −0.0494849
\(213\) 1160.06i 0.373174i
\(214\) 1262.85i 0.403394i
\(215\) 1237.00 714.182i 0.392384 0.226543i
\(216\) −2280.00 −0.718215
\(217\) −2571.85 + 1484.86i −0.804557 + 0.464511i
\(218\) 587.732 1017.98i 0.182597 0.316268i
\(219\) −265.568 459.978i −0.0819427 0.141929i
\(220\) 269.375 155.524i 0.0825511 0.0476609i
\(221\) 407.688 0.124091
\(222\) 1229.18i 0.371609i
\(223\) 3730.09 + 2153.57i 1.12011 + 0.646697i 0.941430 0.337209i \(-0.109483\pi\)
0.178683 + 0.983907i \(0.442816\pi\)
\(224\) 5846.09i 1.74379i
\(225\) −548.427 + 949.903i −0.162497 + 0.281453i
\(226\) −157.820 273.352i −0.0464514 0.0804563i
\(227\) 6761.56 1.97701 0.988503 0.151201i \(-0.0483141\pi\)
0.988503 + 0.151201i \(0.0483141\pi\)
\(228\) 4016.61i 1.16670i
\(229\) 970.142 + 1680.33i 0.279951 + 0.484889i 0.971372 0.237562i \(-0.0763485\pi\)
−0.691421 + 0.722452i \(0.743015\pi\)
\(230\) −812.927 + 1408.03i −0.233056 + 0.403664i
\(231\) −372.858 215.270i −0.106200 0.0613148i
\(232\) −1244.46 718.491i −0.352168 0.203324i
\(233\) 156.100 90.1242i 0.0438902 0.0253400i −0.477894 0.878417i \(-0.658600\pi\)
0.521785 + 0.853077i \(0.325266\pi\)
\(234\) 219.017 + 126.449i 0.0611862 + 0.0353259i
\(235\) 1729.87 + 998.742i 0.480189 + 0.277237i
\(236\) 2690.74i 0.742171i
\(237\) 591.142 1023.89i 0.162020 0.280627i
\(238\) −321.947 + 557.629i −0.0876837 + 0.151873i
\(239\) 3060.21i 0.828237i 0.910223 + 0.414118i \(0.135910\pi\)
−0.910223 + 0.414118i \(0.864090\pi\)
\(240\) 2458.44i 0.661214i
\(241\) −5839.78 −1.56089 −0.780443 0.625227i \(-0.785006\pi\)
−0.780443 + 0.625227i \(0.785006\pi\)
\(242\) 661.107 + 1145.07i 0.175610 + 0.304165i
\(243\) 1430.00 + 2476.83i 0.377508 + 0.653864i
\(244\) 4391.74 1.15226
\(245\) 14623.2i 3.81322i
\(246\) 1742.44i 0.451601i
\(247\) −1649.02 + 2856.19i −0.424796 + 0.735768i
\(248\) −613.391 + 1062.42i −0.157058 + 0.272032i
\(249\) 5466.67i 1.39131i
\(250\) −328.267 189.525i −0.0830457 0.0479465i
\(251\) −6493.00 3748.73i −1.63281 0.942701i −0.983222 0.182412i \(-0.941610\pi\)
−0.649584 0.760290i \(-0.725057\pi\)
\(252\) 2421.37 1397.98i 0.605286 0.349462i
\(253\) −278.427 160.750i −0.0691879 0.0399456i
\(254\) 235.158 + 135.768i 0.0580910 + 0.0335388i
\(255\) 531.642 920.832i 0.130560 0.226136i
\(256\) 59.5000 + 103.057i 0.0145264 + 0.0251604i
\(257\) 1562.35i 0.379210i −0.981860 0.189605i \(-0.939279\pi\)
0.981860 0.189605i \(-0.0607208\pi\)
\(258\) −381.139 −0.0919717
\(259\) 5579.11 + 9663.30i 1.33849 + 2.31833i
\(260\) −1206.25 + 2089.28i −0.287724 + 0.498353i
\(261\) 1053.79i 0.249915i
\(262\) 1569.55 + 906.181i 0.370104 + 0.213680i
\(263\) 2143.13i 0.502476i 0.967925 + 0.251238i \(0.0808376\pi\)
−0.967925 + 0.251238i \(0.919162\pi\)
\(264\) −177.854 −0.0414628
\(265\) 283.285 163.555i 0.0656683 0.0379136i
\(266\) −2604.43 4511.00i −0.600329 1.03980i
\(267\) −1576.14 + 2729.95i −0.361266 + 0.625730i
\(268\) 3733.23 2155.38i 0.850909 0.491273i
\(269\) 2309.67 0.523506 0.261753 0.965135i \(-0.415699\pi\)
0.261753 + 0.965135i \(0.415699\pi\)
\(270\) 1973.28 1139.28i 0.444778 0.256793i
\(271\) 6242.12i 1.39919i 0.714537 + 0.699597i \(0.246637\pi\)
−0.714537 + 0.699597i \(0.753363\pi\)
\(272\) 727.040i 0.162071i
\(273\) 3339.28 0.740303
\(274\) −733.500 + 423.486i −0.161724 + 0.0933714i
\(275\) −147.788 + 255.976i −0.0324071 + 0.0561307i
\(276\) −2630.00 + 1518.43i −0.573577 + 0.331155i
\(277\) 4171.52 2408.43i 0.904847 0.522413i 0.0260771 0.999660i \(-0.491698\pi\)
0.878769 + 0.477247i \(0.158365\pi\)
\(278\) 729.588 + 421.228i 0.157402 + 0.0908762i
\(279\) 899.640 0.193047
\(280\) −4082.40 7070.93i −0.871323 1.50917i
\(281\) 1162.32 671.068i 0.246756 0.142465i −0.371522 0.928424i \(-0.621164\pi\)
0.618278 + 0.785959i \(0.287831\pi\)
\(282\) −266.501 461.593i −0.0562762 0.0974732i
\(283\) 5040.31 1.05871 0.529355 0.848400i \(-0.322434\pi\)
0.529355 + 0.848400i \(0.322434\pi\)
\(284\) −1758.12 1015.05i −0.367343 0.212085i
\(285\) 4300.78 + 7449.17i 0.893881 + 1.54825i
\(286\) 59.0198 + 34.0751i 0.0122025 + 0.00704511i
\(287\) −7908.74 13698.3i −1.62661 2.81738i
\(288\) 885.500 1533.73i 0.181176 0.313805i
\(289\) −2299.28 + 3982.46i −0.467998 + 0.810597i
\(290\) 1436.07 0.290789
\(291\) 739.425 + 3749.14i 0.148955 + 0.755252i
\(292\) 929.489 0.186282
\(293\) 133.833 231.805i 0.0266846 0.0462191i −0.852375 0.522931i \(-0.824838\pi\)
0.879059 + 0.476712i \(0.158172\pi\)
\(294\) −1951.00 + 3379.22i −0.387022 + 0.670341i
\(295\) 2881.10 + 4990.22i 0.568625 + 0.984887i
\(296\) 3991.88 + 2304.71i 0.783862 + 0.452563i
\(297\) 225.282 + 390.200i 0.0440141 + 0.0762347i
\(298\) −365.034 210.753i −0.0709593 0.0409684i
\(299\) 2493.56 0.482296
\(300\) 1395.99 + 2417.93i 0.268659 + 0.465332i
\(301\) 2996.36 1729.95i 0.573778 0.331271i
\(302\) −204.445 354.109i −0.0389553 0.0674725i
\(303\) −4585.86 −0.869474
\(304\) 5093.50 + 2940.74i 0.960962 + 0.554812i
\(305\) −8144.88 + 4702.45i −1.52910 + 0.882824i
\(306\) 168.927 97.5298i 0.0315585 0.0182203i
\(307\) 2195.82 3803.27i 0.408215 0.707049i −0.586475 0.809968i \(-0.699485\pi\)
0.994690 + 0.102918i \(0.0328180\pi\)
\(308\) 652.502 376.722i 0.120713 0.0696940i
\(309\) −3811.14 −0.701644
\(310\) 1226.00i 0.224620i
\(311\) 486.234i 0.0886554i 0.999017 + 0.0443277i \(0.0141146\pi\)
−0.999017 + 0.0443277i \(0.985885\pi\)
\(312\) 1194.64 689.723i 0.216772 0.125154i
\(313\) −1839.50 −0.332187 −0.166094 0.986110i \(-0.553115\pi\)
−0.166094 + 0.986110i \(0.553115\pi\)
\(314\) 1429.19 825.145i 0.256860 0.148298i
\(315\) −2993.76 + 5185.35i −0.535490 + 0.927496i
\(316\) 1034.50 + 1791.80i 0.184162 + 0.318977i
\(317\) 8214.97 4742.92i 1.45552 0.840343i 0.456731 0.889605i \(-0.349020\pi\)
0.998786 + 0.0492615i \(0.0156868\pi\)
\(318\) −87.2848 −0.0153921
\(319\) 283.971i 0.0498411i
\(320\) 2168.01 + 1251.70i 0.378736 + 0.218664i
\(321\) 5051.39i 0.878320i
\(322\) −1969.14 + 3410.65i −0.340795 + 0.590273i
\(323\) 1271.88 + 2202.96i 0.219100 + 0.379493i
\(324\) 2177.00 0.373285
\(325\) 2292.50i 0.391277i
\(326\) 299.837 + 519.333i 0.0509400 + 0.0882307i
\(327\) −2350.93 + 4071.93i −0.397574 + 0.688618i
\(328\) −5658.74 3267.07i −0.952596 0.549981i
\(329\) 4190.24 + 2419.23i 0.702174 + 0.405400i
\(330\) 153.928 88.8706i 0.0256772 0.0148248i
\(331\) −2098.30 1211.45i −0.348438 0.201171i 0.315559 0.948906i \(-0.397808\pi\)
−0.663997 + 0.747735i \(0.731141\pi\)
\(332\) −8284.98 4783.33i −1.36957 0.790722i
\(333\) 3380.24i 0.556265i
\(334\) −2115.44 + 3664.05i −0.346562 + 0.600263i
\(335\) −4615.74 + 7994.70i −0.752791 + 1.30387i
\(336\) 5955.03i 0.966885i
\(337\) 6785.50i 1.09682i 0.836208 + 0.548412i \(0.184768\pi\)
−0.836208 + 0.548412i \(0.815232\pi\)
\(338\) 1668.42 0.268492
\(339\) 631.280 + 1093.41i 0.101140 + 0.175179i
\(340\) 930.374 + 1611.46i 0.148402 + 0.257040i
\(341\) 242.432 0.0384997
\(342\) 1577.96i 0.249491i
\(343\) 22966.7i 3.61541i
\(344\) 714.636 1237.79i 0.112008 0.194003i
\(345\) 3251.71 5632.12i 0.507438 0.878908i
\(346\) 1828.09i 0.284043i
\(347\) 797.785 + 460.601i 0.123422 + 0.0712576i 0.560440 0.828195i \(-0.310632\pi\)
−0.437018 + 0.899453i \(0.643965\pi\)
\(348\) 2323.00 + 1341.18i 0.357833 + 0.206595i
\(349\) −7401.74 + 4273.40i −1.13526 + 0.655443i −0.945253 0.326339i \(-0.894185\pi\)
−0.190009 + 0.981782i \(0.560852\pi\)
\(350\) 3135.64 + 1810.36i 0.478877 + 0.276480i
\(351\) −3026.41 1747.30i −0.460222 0.265709i
\(352\) 238.621 413.304i 0.0361323 0.0625829i
\(353\) 3840.54 + 6652.01i 0.579069 + 1.00298i 0.995586 + 0.0938488i \(0.0299170\pi\)
−0.416518 + 0.909128i \(0.636750\pi\)
\(354\) 1537.57i 0.230849i
\(355\) 4347.46 0.649969
\(356\) −2758.24 4777.41i −0.410636 0.711242i
\(357\) 1287.79 2230.51i 0.190916 0.330676i
\(358\) 2935.00i 0.433294i
\(359\) 2603.73 + 1503.26i 0.382784 + 0.221000i 0.679029 0.734112i \(-0.262401\pi\)
−0.296245 + 0.955112i \(0.595734\pi\)
\(360\) 2473.43i 0.362114i
\(361\) −13719.1 −2.00015
\(362\) −2272.11 + 1311.80i −0.329887 + 0.190461i
\(363\) −2644.43 4580.28i −0.382359 0.662266i
\(364\) −2921.87 + 5060.83i −0.420736 + 0.728736i
\(365\) −1723.82 + 995.248i −0.247202 + 0.142722i
\(366\) 2509.57 0.358408
\(367\) −1922.23 + 1109.80i −0.273405 + 0.157851i −0.630434 0.776243i \(-0.717123\pi\)
0.357029 + 0.934093i \(0.383790\pi\)
\(368\) 4446.83i 0.629910i
\(369\) 4791.71i 0.676006i
\(370\) −4606.49 −0.647244
\(371\) 686.197 396.176i 0.0960258 0.0554405i
\(372\) 1145.00 1983.19i 0.159584 0.276408i
\(373\) 5462.99 3154.06i 0.758346 0.437831i −0.0703559 0.997522i \(-0.522413\pi\)
0.828701 + 0.559691i \(0.189080\pi\)
\(374\) 45.5217 26.2820i 0.00629378 0.00363371i
\(375\) 1313.07 + 758.100i 0.180817 + 0.104395i
\(376\) 1998.75 0.274143
\(377\) −1101.25 1907.41i −0.150443 0.260575i
\(378\) 4779.85 2759.65i 0.650394 0.375505i
\(379\) 2247.73 + 3893.18i 0.304639 + 0.527650i 0.977181 0.212409i \(-0.0681310\pi\)
−0.672542 + 0.740059i \(0.734798\pi\)
\(380\) −15052.7 −2.03208
\(381\) −940.631 543.073i −0.126483 0.0730249i
\(382\) 1546.94 + 2679.38i 0.207195 + 0.358872i
\(383\) −1495.25 863.283i −0.199488 0.115174i 0.396929 0.917849i \(-0.370076\pi\)
−0.596416 + 0.802675i \(0.703409\pi\)
\(384\) −2910.00 5040.27i −0.386720 0.669818i
\(385\) −806.748 + 1397.33i −0.106794 + 0.184973i
\(386\) 1507.17 2610.50i 0.198739 0.344225i
\(387\) −1048.13 −0.137673
\(388\) −6328.98 2159.86i −0.828106 0.282604i
\(389\) −7892.01 −1.02864 −0.514320 0.857598i \(-0.671956\pi\)
−0.514320 + 0.857598i \(0.671956\pi\)
\(390\) −689.285 + 1193.88i −0.0894956 + 0.155011i
\(391\) 961.637 1665.60i 0.124379 0.215430i
\(392\) −7316.24 12672.1i −0.942668 1.63275i
\(393\) −6278.20 3624.72i −0.805836 0.465250i
\(394\) −2355.52 4079.88i −0.301191 0.521678i
\(395\) −3837.14 2215.37i −0.488778 0.282196i
\(396\) −228.246 −0.0289642
\(397\) 962.503 + 1667.10i 0.121679 + 0.210755i 0.920430 0.390907i \(-0.127839\pi\)
−0.798751 + 0.601662i \(0.794505\pi\)
\(398\) 1798.44 1038.33i 0.226502 0.130771i
\(399\) 10417.7 + 18044.0i 1.30711 + 2.26398i
\(400\) −4088.27 −0.511034
\(401\) 2461.24 + 1421.00i 0.306505 + 0.176961i 0.645362 0.763877i \(-0.276707\pi\)
−0.338856 + 0.940838i \(0.610040\pi\)
\(402\) 2133.28 1231.65i 0.264672 0.152809i
\(403\) −1628.40 + 940.156i −0.201281 + 0.116210i
\(404\) 4012.63 6950.07i 0.494148 0.855889i
\(405\) −4037.44 + 2331.02i −0.495363 + 0.285998i
\(406\) 3478.56 0.425217
\(407\) 910.896i 0.110937i
\(408\) 1063.96i 0.129103i
\(409\) 1386.37 800.420i 0.167608 0.0967683i −0.413850 0.910345i \(-0.635816\pi\)
0.581457 + 0.813577i \(0.302483\pi\)
\(410\) 6529.99 0.786569
\(411\) 2934.00 1693.95i 0.352125 0.203300i
\(412\) 3334.74 5775.95i 0.398765 0.690681i
\(413\) 6978.84 + 12087.7i 0.831493 + 1.44019i
\(414\) 1033.21 596.526i 0.122656 0.0708156i
\(415\) 20487.0 2.42329
\(416\) 3701.52i 0.436254i
\(417\) −2918.35 1684.91i −0.342715 0.197867i
\(418\) 425.222i 0.0497566i
\(419\) 7105.04 12306.3i 0.828410 1.43485i −0.0708745 0.997485i \(-0.522579\pi\)
0.899285 0.437364i \(-0.144088\pi\)
\(420\) 7620.49 + 13199.1i 0.885337 + 1.53345i
\(421\) −5286.53 −0.611995 −0.305997 0.952032i \(-0.598990\pi\)
−0.305997 + 0.952032i \(0.598990\pi\)
\(422\) 4218.46i 0.486615i
\(423\) −732.877 1269.38i −0.0842404 0.145909i
\(424\) 163.659 283.466i 0.0187452 0.0324677i
\(425\) −1531.30 884.098i −0.174774 0.100906i
\(426\) −1004.64 580.030i −0.114261 0.0659684i
\(427\) −19729.2 + 11390.7i −2.23598 + 1.29094i
\(428\) 7655.60 + 4419.96i 0.864597 + 0.499175i
\(429\) −236.079 136.300i −0.0265688 0.0153395i
\(430\) 1428.36i 0.160190i
\(431\) −820.919 + 1421.87i −0.0917454 + 0.158908i −0.908246 0.418437i \(-0.862578\pi\)
0.816500 + 0.577345i \(0.195911\pi\)
\(432\) −3116.00 + 5397.07i −0.347034 + 0.601080i
\(433\) 8683.96i 0.963798i −0.876227 0.481899i \(-0.839947\pi\)
0.876227 0.481899i \(-0.160053\pi\)
\(434\) 2969.72i 0.328459i
\(435\) −5744.28 −0.633142
\(436\) −4114.12 7125.87i −0.451905 0.782723i
\(437\) 7779.27 + 13474.1i 0.851563 + 1.47495i
\(438\) 531.137 0.0579422
\(439\) 12070.8i 1.31232i −0.754622 0.656160i \(-0.772180\pi\)
0.754622 0.656160i \(-0.227820\pi\)
\(440\) 666.530i 0.0722172i
\(441\) −5365.24 + 9292.87i −0.579337 + 1.00344i
\(442\) −203.844 + 353.069i −0.0219364 + 0.0379949i
\(443\) 5333.66i 0.572031i −0.958225 0.286015i \(-0.907669\pi\)
0.958225 0.286015i \(-0.0923309\pi\)
\(444\) −7451.50 4302.13i −0.796470 0.459842i
\(445\) 10230.8 + 5906.75i 1.08986 + 0.629229i
\(446\) −3730.09 + 2153.57i −0.396020 + 0.228642i
\(447\) 1460.14 + 843.011i 0.154501 + 0.0892015i
\(448\) 5251.54 + 3031.98i 0.553822 + 0.319749i
\(449\) −1595.81 + 2764.02i −0.167730 + 0.290517i −0.937621 0.347658i \(-0.886977\pi\)
0.769891 + 0.638175i \(0.220310\pi\)
\(450\) −548.427 949.903i −0.0574513 0.0995085i
\(451\) 1291.25i 0.134817i
\(452\) −2209.48 −0.229923
\(453\) 817.780 + 1416.44i 0.0848183 + 0.146910i
\(454\) −3380.78 + 5855.68i −0.349489 + 0.605332i
\(455\) 12514.4i 1.28941i
\(456\) 7453.91 + 4303.52i 0.765485 + 0.441953i
\(457\) 1674.27i 0.171377i 0.996322 + 0.0856883i \(0.0273089\pi\)
−0.996322 + 0.0856883i \(0.972691\pi\)
\(458\) −1940.28 −0.197955
\(459\) −2334.26 + 1347.68i −0.237372 + 0.137047i
\(460\) 5690.49 + 9856.22i 0.576784 + 0.999019i
\(461\) 6128.92 10615.6i 0.619203 1.07249i −0.370429 0.928861i \(-0.620789\pi\)
0.989632 0.143630i \(-0.0458774\pi\)
\(462\) 372.858 215.270i 0.0375475 0.0216780i
\(463\) 4734.21 0.475200 0.237600 0.971363i \(-0.423639\pi\)
0.237600 + 0.971363i \(0.423639\pi\)
\(464\) −3401.53 + 1963.88i −0.340328 + 0.196489i
\(465\) 4904.01i 0.489071i
\(466\) 180.248i 0.0179181i
\(467\) 2039.53 0.202094 0.101047 0.994882i \(-0.467781\pi\)
0.101047 + 0.994882i \(0.467781\pi\)
\(468\) 1533.12 885.145i 0.151428 0.0874270i
\(469\) −11180.6 + 19365.4i −1.10080 + 1.90664i
\(470\) −1729.87 + 998.742i −0.169772 + 0.0980181i
\(471\) −5716.77 + 3300.58i −0.559267 + 0.322893i
\(472\) 4993.39 + 2882.94i 0.486948 + 0.281140i
\(473\) −282.447 −0.0274565
\(474\) 591.142 + 1023.89i 0.0572828 + 0.0992167i
\(475\) 12387.6 7152.01i 1.19660 0.690856i
\(476\) 2253.63 + 3903.40i 0.217006 + 0.375866i
\(477\) −240.033 −0.0230406
\(478\) −2650.22 1530.11i −0.253595 0.146413i
\(479\) −8882.75 15385.4i −0.847314 1.46759i −0.883597 0.468249i \(-0.844885\pi\)
0.0362827 0.999342i \(-0.488448\pi\)
\(480\) 8360.49 + 4826.93i 0.795005 + 0.458996i
\(481\) 3532.47 + 6118.43i 0.334859 + 0.579992i
\(482\) 2919.89 5057.40i 0.275928 0.477922i
\(483\) 7876.56 13642.6i 0.742020 1.28522i
\(484\) 9255.49 0.869224
\(485\) 14050.3 2771.08i 1.31545 0.259440i
\(486\) −2860.00 −0.266939
\(487\) −407.370 + 705.585i −0.0379049 + 0.0656532i −0.884355 0.466814i \(-0.845402\pi\)
0.846451 + 0.532467i \(0.178735\pi\)
\(488\) −4705.44 + 8150.06i −0.436486 + 0.756016i
\(489\) −1199.35 2077.33i −0.110913 0.192107i
\(490\) 12664.0 + 7311.58i 1.16756 + 0.674089i
\(491\) −7105.78 12307.6i −0.653115 1.13123i −0.982363 0.186985i \(-0.940128\pi\)
0.329248 0.944244i \(-0.393205\pi\)
\(492\) 10563.0 + 6098.54i 0.967918 + 0.558828i
\(493\) −1698.77 −0.155190
\(494\) −1649.02 2856.19i −0.150188 0.260133i
\(495\) 423.303 244.394i 0.0384365 0.0221913i
\(496\) 1676.60 + 2903.96i 0.151777 + 0.262886i
\(497\) 10530.8 0.950442
\(498\) −4734.27 2733.33i −0.426000 0.245951i
\(499\) −2605.04 + 1504.02i −0.233702 + 0.134928i −0.612279 0.790642i \(-0.709747\pi\)
0.378577 + 0.925570i \(0.376414\pi\)
\(500\) −2297.87 + 1326.67i −0.205528 + 0.118661i
\(501\) 8461.76 14656.2i 0.754578 1.30697i
\(502\) 6493.00 3748.73i 0.577284 0.333295i
\(503\) −21576.7 −1.91264 −0.956319 0.292325i \(-0.905571\pi\)
−0.956319 + 0.292325i \(0.905571\pi\)
\(504\) 5991.34i 0.529515i
\(505\) 17186.0i 1.51439i
\(506\) 278.427 160.750i 0.0244616 0.0141229i
\(507\) −6673.70 −0.584594
\(508\) 1646.10 950.379i 0.143768 0.0830044i
\(509\) 2546.84 4411.25i 0.221781 0.384136i −0.733568 0.679616i \(-0.762146\pi\)
0.955349 + 0.295480i \(0.0954797\pi\)
\(510\) 531.642 + 920.832i 0.0461598 + 0.0799512i
\(511\) −4175.58 + 2410.77i −0.361481 + 0.208701i
\(512\) 11521.0 0.994455
\(513\) 21804.5i 1.87659i
\(514\) 1353.04 + 781.177i 0.116109 + 0.0670355i
\(515\) 14282.7i 1.22208i
\(516\) −1333.99 + 2310.53i −0.113809 + 0.197123i
\(517\) −197.493 342.068i −0.0168003 0.0290989i
\(518\) −11158.2 −0.946456
\(519\) 7312.37i 0.618454i
\(520\) −2584.82 4477.04i −0.217984 0.377560i
\(521\) 7947.63 13765.7i 0.668315 1.15756i −0.310060 0.950717i \(-0.600349\pi\)
0.978375 0.206839i \(-0.0663175\pi\)
\(522\) −912.607 526.894i −0.0765205 0.0441791i
\(523\) 10657.0 + 6152.83i 0.891011 + 0.514426i 0.874273 0.485434i \(-0.161338\pi\)
0.0167383 + 0.999860i \(0.494672\pi\)
\(524\) 10986.9 6343.27i 0.915960 0.528830i
\(525\) −12542.6 7241.45i −1.04267 0.601986i
\(526\) −1856.01 1071.57i −0.153851 0.0888260i
\(527\) 1450.28i 0.119877i
\(528\) −243.068 + 421.006i −0.0200344 + 0.0347006i
\(529\) −201.794 + 349.517i −0.0165853 + 0.0287266i
\(530\) 327.110i 0.0268090i
\(531\) 4228.31i 0.345561i
\(532\) −36462.0 −2.97148
\(533\) −5007.50 8673.25i −0.406940 0.704841i
\(534\) −1576.14 2729.95i −0.127727 0.221229i
\(535\) −18930.7 −1.52980
\(536\) 9237.36i 0.744390i
\(537\) 11740.0i 0.943422i
\(538\) −1154.84 + 2000.23i −0.0925436 + 0.160290i
\(539\) −1445.81 + 2504.21i −0.115538 + 0.200119i
\(540\) 15949.9i 1.27106i
\(541\) −10066.3 5811.77i −0.799968 0.461862i 0.0434917 0.999054i \(-0.486152\pi\)
−0.843460 + 0.537192i \(0.819485\pi\)
\(542\) −5405.83 3121.06i −0.428414 0.247345i
\(543\) 9088.42 5247.20i 0.718272 0.414694i
\(544\) 2472.47 + 1427.48i 0.194865 + 0.112505i
\(545\) 15260.0 + 8810.37i 1.19939 + 0.692468i
\(546\) −1669.64 + 2891.91i −0.130868 + 0.226671i
\(547\) −1530.34 2650.63i −0.119621 0.207190i 0.799996 0.600005i \(-0.204835\pi\)
−0.919618 + 0.392815i \(0.871501\pi\)
\(548\) 5928.81i 0.462165i
\(549\) 6901.31 0.536504
\(550\) −147.788 255.976i −0.0114576 0.0198452i
\(551\) 6871.20 11901.3i 0.531257 0.920165i
\(552\) 6507.56i 0.501775i
\(553\) −9294.63 5366.26i −0.714734 0.412652i
\(554\) 4816.86i 0.369402i
\(555\) 18426.0 1.40926
\(556\) 5107.12 2948.60i 0.389550 0.224907i
\(557\) 2663.64 + 4613.55i 0.202625 + 0.350956i 0.949373 0.314150i \(-0.101720\pi\)
−0.746749 + 0.665106i \(0.768386\pi\)
\(558\) −449.820 + 779.111i −0.0341262 + 0.0591082i
\(559\) 1897.18 1095.34i 0.143546 0.0828762i
\(560\) −22317.1 −1.68406
\(561\) −182.087 + 105.128i −0.0137036 + 0.00791177i
\(562\) 1342.14i 0.100738i
\(563\) 19790.0i 1.48144i 0.671816 + 0.740718i \(0.265515\pi\)
−0.671816 + 0.740718i \(0.734485\pi\)
\(564\) −3731.01 −0.278553
\(565\) 4097.67 2365.79i 0.305116 0.176159i
\(566\) −2520.15 + 4365.03i −0.187155 + 0.324163i
\(567\) −9779.82 + 5646.38i −0.724363 + 0.418211i
\(568\) 3767.40 2175.11i 0.278304 0.160679i
\(569\) −19678.8 11361.5i −1.44987 0.837084i −0.451398 0.892323i \(-0.649075\pi\)
−0.998473 + 0.0552390i \(0.982408\pi\)
\(570\) −8601.56 −0.632070
\(571\) 8422.31 + 14587.9i 0.617272 + 1.06915i 0.989981 + 0.141199i \(0.0450957\pi\)
−0.372709 + 0.927948i \(0.621571\pi\)
\(572\) 413.139 238.526i 0.0301996 0.0174358i
\(573\) −6187.76 10717.5i −0.451130 0.781380i
\(574\) 15817.5 1.15019
\(575\) −9365.98 5407.45i −0.679284 0.392185i
\(576\) −918.500 1590.89i −0.0664424 0.115082i
\(577\) 13227.9 + 7637.13i 0.954393 + 0.551019i 0.894443 0.447182i \(-0.147573\pi\)
0.0599501 + 0.998201i \(0.480906\pi\)
\(578\) −2299.28 3982.46i −0.165462 0.286589i
\(579\) −6028.69 + 10442.0i −0.432718 + 0.749490i
\(580\) 5026.24 8705.71i 0.359833 0.623250i
\(581\) 49625.2 3.54355
\(582\) −3616.56 1234.21i −0.257579 0.0879029i
\(583\) −64.6833 −0.00459504
\(584\) −995.881 + 1724.92i −0.0705648 + 0.122222i
\(585\) −1895.53 + 3283.16i −0.133967 + 0.232038i
\(586\) 133.833 + 231.805i 0.00943443 + 0.0163409i
\(587\) −8976.08 5182.34i −0.631146 0.364392i 0.150050 0.988678i \(-0.452057\pi\)
−0.781196 + 0.624286i \(0.785390\pi\)
\(588\) 13657.0 + 23654.6i 0.957830 + 1.65901i
\(589\) −10160.4 5866.08i −0.710781 0.410370i
\(590\) −5762.20 −0.402078
\(591\) 9422.07 + 16319.5i 0.655790 + 1.13586i
\(592\) 10911.1 6299.54i 0.757508 0.437347i
\(593\) −3826.17 6627.12i −0.264961 0.458926i 0.702592 0.711593i \(-0.252026\pi\)
−0.967553 + 0.252666i \(0.918692\pi\)
\(594\) −450.564 −0.0311227
\(595\) −8359.11 4826.13i −0.575950 0.332525i
\(596\) −2555.24 + 1475.27i −0.175615 + 0.101392i
\(597\) −7193.77 + 4153.33i −0.493168 + 0.284731i
\(598\) −1246.78 + 2159.49i −0.0852587 + 0.147672i
\(599\) 3759.28 2170.42i 0.256428 0.148049i −0.366276 0.930506i \(-0.619367\pi\)
0.622704 + 0.782458i \(0.286034\pi\)
\(600\) −5982.84 −0.407080
\(601\) 10706.8i 0.726687i 0.931655 + 0.363343i \(0.118365\pi\)
−0.931655 + 0.363343i \(0.881635\pi\)
\(602\) 3459.90i 0.234244i
\(603\) 5866.51 3387.03i 0.396190 0.228741i
\(604\) −2862.23 −0.192819
\(605\) −17165.1 + 9910.29i −1.15349 + 0.665968i
\(606\) 2292.93 3971.47i 0.153703 0.266221i
\(607\) −2133.11 3694.66i −0.142636 0.247053i 0.785852 0.618414i \(-0.212225\pi\)
−0.928489 + 0.371361i \(0.878891\pi\)
\(608\) −20001.3 + 11547.8i −1.33415 + 0.770269i
\(609\) −13914.3 −0.925836
\(610\) 9404.90i 0.624251i
\(611\) 2653.09 + 1531.76i 0.175667 + 0.101422i
\(612\) 1365.42i 0.0901858i
\(613\) 4688.65 8120.98i 0.308928 0.535079i −0.669200 0.743082i \(-0.733363\pi\)
0.978128 + 0.208003i \(0.0666965\pi\)
\(614\) 2195.82 + 3803.27i 0.144326 + 0.249980i
\(615\) −26120.0 −1.71262
\(616\) 1614.52i 0.105602i
\(617\) −10090.5 17477.2i −0.658391 1.14037i −0.981032 0.193845i \(-0.937904\pi\)
0.322641 0.946521i \(-0.395429\pi\)
\(618\) 1905.57 3300.54i 0.124034 0.214834i
\(619\) −16139.9 9318.37i −1.04801 0.605068i −0.125917 0.992041i \(-0.540187\pi\)
−0.922091 + 0.386973i \(0.873521\pi\)
\(620\) −7432.24 4291.01i −0.481429 0.277953i
\(621\) −14277.1 + 8242.90i −0.922579 + 0.532651i
\(622\) −421.091 243.117i −0.0271451 0.0156722i
\(623\) 24781.9 + 14307.8i 1.59368 + 0.920113i
\(624\) 3770.49i 0.241892i
\(625\) 9073.19 15715.2i 0.580684 1.00577i
\(626\) 919.749 1593.05i 0.0587229 0.101711i
\(627\) 1700.89i 0.108336i
\(628\) 11552.0i 0.734038i
\(629\) 5449.16 0.345425
\(630\) −2993.76 5185.35i −0.189324 0.327919i
\(631\) −11681.1 20232.3i −0.736956 1.27645i −0.953860 0.300252i \(-0.902929\pi\)
0.216904 0.976193i \(-0.430404\pi\)
\(632\) −4433.56 −0.279047
\(633\) 16873.9i 1.05952i
\(634\) 9485.84i 0.594212i
\(635\) −2035.23 + 3525.12i −0.127190 + 0.220300i
\(636\) −305.497 + 529.136i −0.0190468 + 0.0329899i
\(637\) 22427.5i 1.39499i
\(638\) −245.926 141.985i −0.0152607 0.00881075i
\(639\) −2762.76 1595.08i −0.171038 0.0987488i
\(640\) −18889.0 + 10905.6i −1.16664 + 0.673563i
\(641\) 9434.24 + 5446.86i 0.581326 + 0.335629i 0.761660 0.647977i \(-0.224385\pi\)
−0.180334 + 0.983605i \(0.557718\pi\)
\(642\) 4374.63 + 2525.69i 0.268930 + 0.155267i
\(643\) 3136.17 5432.00i 0.192346 0.333153i −0.753681 0.657240i \(-0.771724\pi\)
0.946027 + 0.324087i \(0.105057\pi\)
\(644\) 13784.0 + 23874.5i 0.843423 + 1.46085i
\(645\) 5713.45i 0.348786i
\(646\) −2543.76 −0.154927
\(647\) −13402.1 23213.2i −0.814362 1.41052i −0.909785 0.415080i \(-0.863754\pi\)
0.0954230 0.995437i \(-0.469580\pi\)
\(648\) −2332.50 + 4040.01i −0.141403 + 0.244917i
\(649\) 1139.43i 0.0689160i
\(650\) 1985.36 + 1146.25i 0.119804 + 0.0691687i
\(651\) 11878.9i 0.715162i
\(652\) 4197.72 0.252140
\(653\) 9148.30 5281.77i 0.548240 0.316527i −0.200172 0.979761i \(-0.564150\pi\)
0.748412 + 0.663234i \(0.230817\pi\)
\(654\) −2350.93 4071.93i −0.140563 0.243463i
\(655\) −13584.1 + 23528.3i −0.810341 + 1.40355i
\(656\) −15467.2 + 8930.00i −0.920569 + 0.531491i
\(657\) 1460.63 0.0867343
\(658\) −4190.24 + 2419.23i −0.248256 + 0.143331i
\(659\) 22173.0i 1.31068i 0.755334 + 0.655340i \(0.227475\pi\)
−0.755334 + 0.655340i \(0.772525\pi\)
\(660\) 1244.19i 0.0733788i
\(661\) 10412.3 0.612693 0.306347 0.951920i \(-0.400893\pi\)
0.306347 + 0.951920i \(0.400893\pi\)
\(662\) 2098.30 1211.45i 0.123191 0.0711246i
\(663\) 815.377 1412.27i 0.0477626 0.0827273i
\(664\) 17753.5 10250.0i 1.03761 0.599062i
\(665\) 67621.9 39041.5i 3.94326 2.27664i
\(666\) 2927.38 + 1690.12i 0.170321 + 0.0983347i
\(667\) −10390.3 −0.603168
\(668\) 14808.1 + 25648.4i 0.857698 + 1.48558i
\(669\) 14920.3 8614.27i 0.862263 0.497828i
\(670\) −4615.74 7994.70i −0.266152 0.460988i
\(671\) 1859.74 0.106996
\(672\) 20251.5 + 11692.2i 1.16253 + 0.671184i
\(673\) −7506.16 13001.0i −0.429927 0.744656i 0.566939 0.823760i \(-0.308127\pi\)
−0.996866 + 0.0791039i \(0.974794\pi\)
\(674\) −5876.42 3392.75i −0.335833 0.193893i
\(675\) 7578.26 + 13125.9i 0.432129 + 0.748470i
\(676\) 5839.48 10114.3i 0.332242 0.575460i
\(677\) −9056.62 + 15686.5i −0.514142 + 0.890521i 0.485723 + 0.874113i \(0.338556\pi\)
−0.999865 + 0.0164079i \(0.994777\pi\)
\(678\) −1262.56 −0.0715167
\(679\) 34033.8 6712.34i 1.92356 0.379376i
\(680\) −3987.32 −0.224863
\(681\) 13523.1 23422.7i 0.760950 1.31800i
\(682\) −121.216 + 209.952i −0.00680586 + 0.0117881i
\(683\) 3688.52 + 6388.70i 0.206643 + 0.357916i 0.950655 0.310250i \(-0.100413\pi\)
−0.744012 + 0.668166i \(0.767079\pi\)
\(684\) 9565.85 + 5522.85i 0.534736 + 0.308730i
\(685\) −6348.26 10995.5i −0.354094 0.613309i
\(686\) 19889.8 + 11483.4i 1.10699 + 0.639121i
\(687\) 7761.13 0.431013
\(688\) −1953.34 3383.28i −0.108242 0.187480i
\(689\) 434.473 250.843i 0.0240234 0.0138699i
\(690\) 3251.71 + 5632.12i 0.179406 + 0.310741i
\(691\) −22293.0 −1.22730 −0.613650 0.789578i \(-0.710299\pi\)
−0.613650 + 0.789578i \(0.710299\pi\)
\(692\) −11082.2 6398.33i −0.608790 0.351485i
\(693\) 1025.36 591.992i 0.0562052 0.0324501i
\(694\) −797.785 + 460.601i −0.0436362 + 0.0251933i
\(695\) −6314.40 + 10936.9i −0.344631 + 0.596919i
\(696\) −4977.85 + 2873.97i −0.271099 + 0.156519i
\(697\) −7724.53 −0.419781
\(698\) 8546.80i 0.463469i
\(699\) 720.993i 0.0390135i
\(700\) 21949.5 12672.5i 1.18516 0.684253i
\(701\) −1704.01 −0.0918108 −0.0459054 0.998946i \(-0.514617\pi\)
−0.0459054 + 0.998946i \(0.514617\pi\)
\(702\) 3026.41 1747.30i 0.162713 0.0939424i
\(703\) −22040.8 + 38175.8i −1.18248 + 2.04812i
\(704\) −247.514 428.707i −0.0132508 0.0229510i
\(705\) 6919.49 3994.97i 0.369650 0.213417i
\(706\) −7681.08 −0.409463
\(707\) 41629.4i 2.21448i
\(708\) −9321.00 5381.48i −0.494780 0.285662i
\(709\) 8316.92i 0.440548i 0.975438 + 0.220274i \(0.0706951\pi\)
−0.975438 + 0.220274i \(0.929305\pi\)
\(710\) −2173.73 + 3765.01i −0.114899 + 0.199012i
\(711\) 1625.64 + 2815.69i 0.0857472 + 0.148519i
\(712\) 11821.0 0.622207
\(713\) 8870.39i 0.465917i
\(714\) 1287.79 + 2230.51i 0.0674990 + 0.116912i
\(715\) −510.801 + 884.734i −0.0267173 + 0.0462758i
\(716\) −17792.5 10272.5i −0.928681 0.536174i
\(717\) 10600.9 + 6120.42i 0.552158 + 0.318788i
\(718\) −2603.73 + 1503.26i −0.135335 + 0.0781354i
\(719\) −5881.37 3395.61i −0.305060 0.176126i 0.339654 0.940551i \(-0.389690\pi\)
−0.644714 + 0.764424i \(0.723023\pi\)
\(720\) 5854.94 + 3380.35i 0.303056 + 0.174970i
\(721\) 34596.7i 1.78703i
\(722\) 6859.53 11881.0i 0.353581 0.612419i
\(723\) −11679.6 + 20229.6i −0.600785 + 1.04059i
\(724\) 18365.2i 0.942732i
\(725\) 9552.48i 0.489338i
\(726\) 5288.85 0.270369
\(727\) −11917.7 20642.1i −0.607984 1.05306i −0.991572 0.129555i \(-0.958645\pi\)
0.383588 0.923504i \(-0.374688\pi\)
\(728\) −6261.16 10844.6i −0.318755 0.552101i
\(729\) 19837.0 1.00782
\(730\) 1990.50i 0.100920i
\(731\) 1689.66i 0.0854914i
\(732\) 8783.49 15213.4i 0.443507 0.768177i
\(733\) 13293.6 23025.1i 0.669862 1.16024i −0.308080 0.951360i \(-0.599686\pi\)
0.977942 0.208875i \(-0.0669802\pi\)
\(734\) 2219.60i 0.111617i
\(735\) −50656.1 29246.3i −2.54215 1.46771i
\(736\) 15122.5 + 8730.97i 0.757367 + 0.437266i
\(737\) 1580.89 912.725i 0.0790132 0.0456183i
\(738\) −4149.74 2395.85i −0.206984 0.119502i
\(739\) 11442.7 + 6606.45i 0.569590 + 0.328853i 0.756985 0.653432i \(-0.226671\pi\)
−0.187396 + 0.982285i \(0.560005\pi\)
\(740\) −16122.7 + 27925.4i −0.800923 + 1.38724i
\(741\) 6596.08 + 11424.7i 0.327008 + 0.566395i
\(742\) 792.352i 0.0392024i
\(743\) 11323.6 0.559116 0.279558 0.960129i \(-0.409812\pi\)
0.279558 + 0.960129i \(0.409812\pi\)
\(744\) 2453.56 + 4249.70i 0.120903 + 0.209411i
\(745\) 3159.28 5472.04i 0.155365 0.269100i
\(746\) 6308.12i 0.309593i
\(747\) −13019.3 7516.67i −0.637683 0.368167i
\(748\) 367.948i 0.0179860i
\(749\) −45855.4 −2.23701
\(750\) −1313.07 + 758.100i −0.0639286 + 0.0369092i
\(751\) 13146.8 + 22770.9i 0.638794 + 1.10642i 0.985698 + 0.168522i \(0.0538996\pi\)
−0.346904 + 0.937901i \(0.612767\pi\)
\(752\) 2731.63 4731.32i 0.132463 0.229433i
\(753\) −25972.0 + 14994.9i −1.25694 + 0.725692i
\(754\) 2202.49 0.106379
\(755\) 5308.26 3064.73i 0.255877 0.147731i
\(756\) 38635.0i 1.85865i
\(757\) 22466.3i 1.07867i 0.842092 + 0.539334i \(0.181324\pi\)
−0.842092 + 0.539334i \(0.818676\pi\)
\(758\) −4495.46 −0.215412
\(759\) −1113.71 + 642.999i −0.0532608 + 0.0307502i
\(760\) 16127.9 27934.4i 0.769765 1.33327i
\(761\) −27238.2 + 15726.0i −1.29748 + 0.749102i −0.979969 0.199151i \(-0.936181\pi\)
−0.317514 + 0.948253i \(0.602848\pi\)
\(762\) 940.631 543.073i 0.0447185 0.0258182i
\(763\) 36964.1 + 21341.2i 1.75385 + 1.01259i
\(764\) 21657.2 1.02556
\(765\) 1462.02 + 2532.29i 0.0690972 + 0.119680i
\(766\) 1495.25 863.283i 0.0705295 0.0407202i
\(767\) 4418.73 + 7653.46i 0.208020 + 0.360301i
\(768\) 476.000 0.0223648
\(769\) 18786.5 + 10846.4i 0.880962 + 0.508624i 0.870976 0.491326i \(-0.163488\pi\)
0.00998683 + 0.999950i \(0.496821\pi\)
\(770\) −806.748 1397.33i −0.0377574 0.0653977i
\(771\) −5412.16 3124.71i −0.252807 0.145958i
\(772\) −10550.2 18273.5i −0.491853 0.851915i
\(773\) −13182.6 + 22833.0i −0.613385 + 1.06241i 0.377280 + 0.926099i \(0.376859\pi\)
−0.990665 + 0.136315i \(0.956474\pi\)
\(774\) 524.066 907.710i 0.0243374 0.0421537i
\(775\) 8155.15 0.377989
\(776\) 10789.3 9430.98i 0.499113 0.436279i
\(777\) 44632.9 2.06074
\(778\) 3946.01 6834.68i 0.181840 0.314955i
\(779\) 31244.2 54116.6i 1.43702 2.48900i
\(780\) 4824.99 + 8357.13i 0.221490 + 0.383633i
\(781\) −744.499 429.837i −0.0341105 0.0196937i
\(782\) 961.637 + 1665.60i 0.0439745 + 0.0761661i
\(783\) 12610.6 + 7280.71i 0.575562 + 0.332301i
\(784\) −39995.4 −1.82195
\(785\) 12369.3 + 21424.3i 0.562394 + 0.974095i
\(786\) 6278.20 3624.72i 0.284906 0.164491i
\(787\) 6889.49 + 11932.9i 0.312051 + 0.540488i 0.978806 0.204789i \(-0.0656508\pi\)
−0.666756 + 0.745276i \(0.732317\pi\)
\(788\) −32977.2 −1.49082
\(789\) 7424.02 + 4286.26i 0.334984 + 0.193403i
\(790\) 3837.14 2215.37i 0.172809 0.0997714i
\(791\) 9925.72 5730.62i 0.446167 0.257595i
\(792\) 244.550 423.573i 0.0109718 0.0190038i
\(793\) −12491.8 + 7212.12i −0.559389 + 0.322963i
\(794\) −1925.01 −0.0860402
\(795\) 1308.44i 0.0583718i
\(796\) 14536.6i 0.647283i
\(797\) −3466.05 + 2001.13i −0.154045 + 0.0889379i −0.575041 0.818125i \(-0.695014\pi\)
0.420996 + 0.907062i \(0.361681\pi\)
\(798\) −20835.4 −0.924267
\(799\) 2046.32 1181.44i 0.0906052 0.0523110i
\(800\) 8026.97 13903.1i 0.354745 0.614437i
\(801\) −4334.37 7507.35i −0.191195 0.331160i
\(802\) −2461.24 + 1421.00i −0.108366 + 0.0625652i
\(803\) 393.604 0.0172976
\(804\) 17243.1i 0.756364i
\(805\) −51127.2 29518.3i −2.23851 1.29240i
\(806\) 1880.31i 0.0821726i
\(807\) 4619.34 8000.93i 0.201498 0.349004i
\(808\) 8598.49 + 14893.0i 0.374373 + 0.648434i
\(809\) −27398.6 −1.19071 −0.595355 0.803463i \(-0.702988\pi\)
−0.595355 + 0.803463i \(0.702988\pi\)
\(810\) 4662.03i 0.202231i
\(811\) −7910.15 13700.8i −0.342495 0.593218i 0.642401 0.766369i \(-0.277938\pi\)
−0.984895 + 0.173151i \(0.944605\pi\)
\(812\) 12175.0 21087.7i 0.526180 0.911370i
\(813\) 21623.3 + 12484.2i 0.932796 + 0.538550i
\(814\) 788.859 + 455.448i 0.0339674 + 0.0196111i
\(815\) −7785.04 + 4494.70i −0.334599 + 0.193181i
\(816\) −2518.54 1454.08i −0.108047 0.0623811i
\(817\) 11837.4 + 6834.33i 0.506901 + 0.292660i
\(818\) 1600.84i 0.0684255i
\(819\) −4591.52 + 7952.74i −0.195898 + 0.339306i
\(820\) 22855.0 39586.0i 0.973329 1.68586i
\(821\) 22532.0i 0.957822i −0.877863 0.478911i \(-0.841032\pi\)
0.877863 0.478911i \(-0.158968\pi\)
\(822\) 3387.89i 0.143755i
\(823\) 9804.48 0.415265 0.207632 0.978207i \(-0.433424\pi\)
0.207632 + 0.978207i \(0.433424\pi\)
\(824\) 7145.88 + 12377.0i 0.302110 + 0.523270i
\(825\) 591.152 + 1023.91i 0.0249470 + 0.0432095i
\(826\) −13957.7 −0.587954
\(827\) 19599.7i 0.824121i 0.911156 + 0.412061i \(0.135191\pi\)
−0.911156 + 0.412061i \(0.864809\pi\)
\(828\) 8351.36i 0.350519i
\(829\) −2341.04 + 4054.80i −0.0980791 + 0.169878i −0.910890 0.412650i \(-0.864603\pi\)
0.812810 + 0.582528i \(0.197936\pi\)
\(830\) −10243.5 + 17742.2i −0.428381 + 0.741978i
\(831\) 19267.4i 0.804308i
\(832\) 3325.07 + 1919.73i 0.138553 + 0.0799936i
\(833\) −14980.7 8649.10i −0.623109 0.359752i
\(834\) 2918.35 1684.91i 0.121168 0.0699565i
\(835\) −54925.8 31711.4i −2.27639 1.31427i
\(836\) 2577.77 + 1488.28i 0.106644 + 0.0615707i
\(837\) 6215.69 10765.9i 0.256686 0.444592i
\(838\) 7105.04 + 12306.3i 0.292887 + 0.507296i
\(839\) 31908.8i 1.31301i 0.754322 + 0.656505i \(0.227966\pi\)
−0.754322 + 0.656505i \(0.772034\pi\)
\(840\) −32659.2 −1.34149
\(841\) −7605.79 13173.6i −0.311853 0.540146i
\(842\) 2643.27 4578.27i 0.108186 0.187384i
\(843\) 5368.55i 0.219339i
\(844\) 25573.1 + 14764.6i 1.04296 + 0.602156i
\(845\) 25010.4i 1.01821i
\(846\) 1465.75 0.0595670
\(847\) −41578.8 + 24005.5i −1.68673 + 0.973837i
\(848\) −447.335 774.806i −0.0181150 0.0313761i
\(849\) 10080.6 17460.1i 0.407498 0.705807i
\(850\) 1531.30 884.098i 0.0617921 0.0356757i
\(851\) 33329.0 1.34254
\(852\) −7032.49 + 4060.21i −0.282781 + 0.163263i
\(853\) 14533.8i 0.583387i 0.956512 + 0.291693i \(0.0942187\pi\)
−0.956512 + 0.291693i \(0.905781\pi\)
\(854\) 22781.3i 0.912834i
\(855\) −23654.3 −0.946151
\(856\) −16404.9 + 9471.35i −0.655031 + 0.378182i
\(857\) 7546.98 13071.8i 0.300817 0.521030i −0.675504 0.737356i \(-0.736074\pi\)
0.976321 + 0.216326i \(0.0694074\pi\)
\(858\) 236.079 136.300i 0.00939349 0.00542333i
\(859\) −19490.8 + 11253.0i −0.774176 + 0.446971i −0.834362 0.551216i \(-0.814164\pi\)
0.0601862 + 0.998187i \(0.480831\pi\)
\(860\) 8658.99 + 4999.27i 0.343336 + 0.198225i
\(861\) −63269.9 −2.50434
\(862\) −820.919 1421.87i −0.0324369 0.0561824i
\(863\) 6014.35 3472.39i 0.237232 0.136966i −0.376672 0.926347i \(-0.622932\pi\)
0.613904 + 0.789381i \(0.289598\pi\)
\(864\) −12236.0 21193.4i −0.481802 0.834506i
\(865\) 27404.0 1.07718
\(866\) 7520.53 + 4341.98i 0.295102 + 0.170377i
\(867\) 9197.10 + 15929.9i 0.360265 + 0.623998i
\(868\) −18003.0 10394.0i −0.703987 0.406447i
\(869\) 438.072 + 758.762i 0.0171008 + 0.0296194i
\(870\) 2872.14 4974.69i 0.111925 0.193859i
\(871\) −7079.14 + 12261.4i −0.275393 + 0.476995i
\(872\) 17632.0 0.684740
\(873\) −9945.54 3394.07i −0.385573 0.131583i
\(874\) −15558.5 −0.602146
\(875\) 6881.87 11919.7i 0.265885 0.460527i
\(876\) 1858.98 3219.84i 0.0716998 0.124188i
\(877\) −12406.2 21488.2i −0.477682 0.827370i 0.521990 0.852951i \(-0.325190\pi\)
−0.999673 + 0.0255812i \(0.991856\pi\)
\(878\) 10453.6 + 6035.41i 0.401814 + 0.231988i
\(879\) −535.331 927.220i −0.0205418 0.0355795i
\(880\) 1577.77 + 910.924i 0.0604392 + 0.0348946i
\(881\) −15504.3 −0.592910 −0.296455 0.955047i \(-0.595804\pi\)
−0.296455 + 0.955047i \(0.595804\pi\)
\(882\) −5365.24 9292.87i −0.204827 0.354770i
\(883\) 6823.43 3939.51i 0.260053 0.150142i −0.364306 0.931279i \(-0.618694\pi\)
0.624359 + 0.781138i \(0.285360\pi\)
\(884\) 1426.91 + 2471.48i 0.0542898 + 0.0940326i
\(885\) 23048.8 0.875455
\(886\) 4619.08 + 2666.83i 0.175148 + 0.101122i
\(887\) −9256.64 + 5344.33i −0.350403 + 0.202305i −0.664863 0.746965i \(-0.731510\pi\)
0.314460 + 0.949271i \(0.398177\pi\)
\(888\) 15967.5 9218.85i 0.603417 0.348383i
\(889\) −4929.90 + 8538.84i −0.185988 + 0.322141i
\(890\) −10230.8 + 5906.75i −0.385322 + 0.222466i
\(891\) 921.879 0.0346623
\(892\) 30149.9i 1.13172i
\(893\) 19114.8i 0.716297i
\(894\) −1460.14 + 843.011i −0.0546245 + 0.0315375i
\(895\) 43996.9 1.64319
\(896\) −45754.5 + 26416.3i −1.70597 + 0.984942i
\(897\) 4987.13 8637.96i 0.185636 0.321531i
\(898\) −1595.81 2764.02i −0.0593015 0.102713i
\(899\) 6785.27 3917.48i 0.251726 0.145334i
\(900\) −7677.97 −0.284369
\(901\) 386.949i 0.0143076i
\(902\) −1118.26 645.626i −0.0412792 0.0238326i
\(903\) 13839.6i 0.510025i
\(904\) 2367.30 4100.28i 0.0870964 0.150855i
\(905\) −19664.5 34059.9i −0.722287 1.25104i
\(906\) −1635.56 −0.0599756
\(907\) 1446.72i 0.0529632i −0.999649 0.0264816i \(-0.991570\pi\)
0.999649 0.0264816i \(-0.00843033\pi\)
\(908\) 23665.5 + 40989.8i 0.864940 + 1.49812i
\(909\) 6305.56 10921.5i 0.230079 0.398509i
\(910\) 10837.7 + 6257.18i 0.394800 + 0.227938i
\(911\) −36216.8 20909.8i −1.31714 0.760452i −0.333873 0.942618i \(-0.608356\pi\)
−0.983268 + 0.182166i \(0.941689\pi\)
\(912\) 20374.0 11762.9i 0.739749 0.427094i
\(913\) −3508.38 2025.56i −0.127175 0.0734243i
\(914\) −1449.96 837.136i −0.0524732 0.0302954i
\(915\) 37619.6i 1.35920i
\(916\) −6790.99 + 11762.3i −0.244957 + 0.424278i
\(917\) −32904.4 + 56992.2i −1.18495 + 2.05240i
\(918\) 2695.37i 0.0969068i
\(919\) 39537.1i 1.41916i −0.704625 0.709580i \(-0.748885\pi\)
0.704625 0.709580i \(-0.251115\pi\)
\(920\) −24387.8 −0.873959
\(921\) −8783.28 15213.1i −0.314244 0.544287i
\(922\) 6128.92 + 10615.6i 0.218921 + 0.379183i
\(923\) 6667.67 0.237778
\(924\) 3013.78i 0.107301i
\(925\) 30641.6i 1.08918i
\(926\) −2367.11 + 4099.95i −0.0840043 + 0.145500i
\(927\) 5240.31 9076.49i 0.185668 0.321587i
\(928\) 15423.6i 0.545587i
\(929\) 21398.7 + 12354.5i 0.755723 + 0.436317i 0.827758 0.561085i \(-0.189616\pi\)
−0.0720348 + 0.997402i \(0.522949\pi\)
\(930\) −4246.99 2452.00i −0.149747 0.0864563i
\(931\) 121188. 69967.9i 4.26614 2.46305i
\(932\) 1092.70 + 630.869i 0.0384040 + 0.0221725i
\(933\) 1684.37 + 972.469i 0.0591036 + 0.0341235i
\(934\) −1019.76 + 1766.28i −0.0357256 + 0.0618785i
\(935\) 393.979 + 682.392i 0.0137802 + 0.0238680i
\(936\) 3793.48i 0.132472i
\(937\) −12011.0 −0.418765 −0.209383 0.977834i \(-0.567145\pi\)
−0.209383 + 0.977834i \(0.567145\pi\)
\(938\) −11180.6 19365.4i −0.389190 0.674098i
\(939\) −3679.00 + 6372.21i −0.127859 + 0.221458i
\(940\) 13982.4i 0.485165i
\(941\) 38826.6 + 22416.5i 1.34507 + 0.776576i 0.987546 0.157328i \(-0.0502879\pi\)
0.357523 + 0.933904i \(0.383621\pi\)
\(942\) 6601.16i 0.228320i
\(943\) −47245.9 −1.63154
\(944\) 13648.6 7880.02i 0.470576 0.271687i
\(945\) 41368.4 + 71652.1i 1.42403 + 2.46650i
\(946\) 141.224 244.606i 0.00485367 0.00840680i
\(947\) 9177.73 5298.76i 0.314927 0.181823i −0.334202 0.942501i \(-0.608467\pi\)
0.649129 + 0.760678i \(0.275133\pi\)
\(948\) 8275.98 0.283535
\(949\) −2643.81 + 1526.41i −0.0904339 + 0.0522120i
\(950\) 14304.0i 0.488509i
\(951\) 37943.3i 1.29379i
\(952\) −9658.41 −0.328814
\(953\) −10252.8 + 5919.43i −0.348499 + 0.201206i −0.664024 0.747711i \(-0.731153\pi\)
0.315525 + 0.948917i \(0.397819\pi\)
\(954\) 120.017 207.875i 0.00407304 0.00705471i
\(955\) −40165.1 + 23189.4i −1.36096 + 0.785749i
\(956\) −18551.5 + 10710.7i −0.627615 + 0.362354i
\(957\) 983.704 + 567.942i 0.0332274 + 0.0191838i
\(958\) 17765.5 0.599141
\(959\) −15377.3 26634.2i −0.517787 0.896834i
\(960\) 8672.06 5006.81i 0.291551 0.168327i
\(961\) 11551.1 + 20007.0i 0.387737 + 0.671580i
\(962\) −7064.95 −0.236781
\(963\) 12030.2 + 6945.66i 0.402564 + 0.232420i
\(964\) −20439.2 35401.8i −0.682887 1.18280i
\(965\) 39132.6 + 22593.2i 1.30541 + 0.753681i
\(966\) 7876.56 + 13642.6i 0.262344 + 0.454393i
\(967\) 26775.2 46376.1i 0.890417 1.54225i 0.0510413 0.998697i \(-0.483746\pi\)
0.839376 0.543551i \(-0.182921\pi\)
\(968\) −9916.60 + 17176.1i −0.329268 + 0.570309i
\(969\) 10175.1 0.337327
\(970\) −4625.33 + 13553.5i −0.153104 + 0.448635i
\(971\) 3061.09 0.101169 0.0505844 0.998720i \(-0.483892\pi\)
0.0505844 + 0.998720i \(0.483892\pi\)
\(972\) −10010.0 + 17337.8i −0.330320 + 0.572131i
\(973\) −15295.3 + 26492.2i −0.503950 + 0.872867i
\(974\) −407.370 705.585i −0.0134014 0.0232119i
\(975\) −7941.46 4585.00i −0.260851 0.150603i
\(976\) 12861.5 + 22276.8i 0.421811 + 0.730599i
\(977\) −8775.21 5066.37i −0.287353 0.165903i 0.349394 0.936976i \(-0.386387\pi\)
−0.636748 + 0.771072i \(0.719721\pi\)
\(978\) 2398.70 0.0784273
\(979\) −1168.01 2023.05i −0.0381305 0.0660440i
\(980\) 88648.2 51181.1i 2.88956 1.66829i
\(981\) −6465.05 11197.8i −0.210411 0.364442i
\(982\) 14211.6 0.461822
\(983\) 26488.3 + 15293.0i 0.859457 + 0.496208i 0.863831 0.503782i \(-0.168059\pi\)
−0.00437315 + 0.999990i \(0.501392\pi\)
\(984\) −22634.9 + 13068.3i −0.733309 + 0.423376i
\(985\) 61159.2 35310.3i 1.97837 1.14221i
\(986\) 849.386 1471.18i 0.0274340 0.0475171i
\(987\) 16761.0 9676.94i 0.540534 0.312077i
\(988\) −23086.3 −0.743393
\(989\) 10334.5i 0.332274i
\(990\) 488.789i 0.0156916i
\(991\) −50234.9 + 29003.1i −1.61026 + 0.929682i −0.620947 + 0.783853i \(0.713252\pi\)
−0.989310 + 0.145829i \(0.953415\pi\)
\(992\) −13167.5 −0.421439
\(993\) −8393.19 + 4845.81i −0.268228 + 0.154861i
\(994\) −5265.38 + 9119.91i −0.168016 + 0.291012i
\(995\) 15565.1 + 26959.5i 0.495925 + 0.858968i
\(996\) −33139.9 + 19133.3i −1.05430 + 0.608698i
\(997\) 30384.3 0.965176 0.482588 0.875848i \(-0.339697\pi\)
0.482588 + 0.875848i \(0.339697\pi\)
\(998\) 3008.04i 0.0954086i
\(999\) −40451.0 23354.4i −1.28109 0.739640i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 97.4.e.a.36.1 4
97.62 even 6 inner 97.4.e.a.62.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
97.4.e.a.36.1 4 1.1 even 1 trivial
97.4.e.a.62.1 yes 4 97.62 even 6 inner