Properties

Label 97.4.e.a
Level $97$
Weight $4$
Character orbit 97.e
Analytic conductor $5.723$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [97,4,Mod(36,97)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(97, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("97.36"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 97 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 97.e (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.72318527056\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-65})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 65x^{2} + 4225 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} - 1) q^{2} + ( - 4 \beta_{2} + 4) q^{3} + 7 \beta_{2} q^{4} + ( - 4 \beta_{2} + \beta_1 - 4) q^{5} + 4 \beta_{2} q^{6} + ( - 7 \beta_{2} + 3 \beta_1 - 7) q^{7} - 15 q^{8} + 11 \beta_{2} q^{9}+ \cdots + ( - 22 \beta_{3} - 121 \beta_{2} + \cdots + 121) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} + 8 q^{3} + 14 q^{4} - 24 q^{5} + 8 q^{6} - 42 q^{7} - 60 q^{8} + 22 q^{9} + 24 q^{10} - 22 q^{11} + 112 q^{12} + 60 q^{13} + 42 q^{14} - 96 q^{15} - 82 q^{16} + 162 q^{17} - 44 q^{18} - 168 q^{21}+ \cdots + 242 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 65x^{2} + 4225 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 65 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 65 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 65\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 65\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/97\mathbb{Z}\right)^\times\).

\(n\) \(5\)
\(\chi(n)\) \(\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
36.1
−6.98212 4.03113i
6.98212 + 4.03113i
−6.98212 + 4.03113i
6.98212 4.03113i
−0.500000 + 0.866025i 2.00000 3.46410i 3.50000 + 6.06218i −12.9821 7.49523i 2.00000 + 3.46410i −31.4464 18.1556i −15.0000 5.50000 + 9.52628i 12.9821 7.49523i
36.2 −0.500000 + 0.866025i 2.00000 3.46410i 3.50000 + 6.06218i 0.982120 + 0.567027i 2.00000 + 3.46410i 10.4464 + 6.03121i −15.0000 5.50000 + 9.52628i −0.982120 + 0.567027i
62.1 −0.500000 0.866025i 2.00000 + 3.46410i 3.50000 6.06218i −12.9821 + 7.49523i 2.00000 3.46410i −31.4464 + 18.1556i −15.0000 5.50000 9.52628i 12.9821 + 7.49523i
62.2 −0.500000 0.866025i 2.00000 + 3.46410i 3.50000 6.06218i 0.982120 0.567027i 2.00000 3.46410i 10.4464 6.03121i −15.0000 5.50000 9.52628i −0.982120 0.567027i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
97.e even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 97.4.e.a 4
97.e even 6 1 inner 97.4.e.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
97.4.e.a 4 1.a even 1 1 trivial
97.4.e.a 4 97.e even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + T_{2} + 1 \) acting on \(S_{4}^{\mathrm{new}}(97, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} - 4 T + 16)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} + 24 T^{3} + \cdots + 289 \) Copy content Toggle raw display
$7$ \( T^{4} + 42 T^{3} + \cdots + 191844 \) Copy content Toggle raw display
$11$ \( T^{4} + 22 T^{3} + \cdots + 5476 \) Copy content Toggle raw display
$13$ \( T^{4} - 60 T^{3} + \cdots + 1755625 \) Copy content Toggle raw display
$17$ \( T^{4} - 162 T^{3} + \cdots + 3892729 \) Copy content Toggle raw display
$19$ \( T^{4} + 30264 T^{2} + 199317924 \) Copy content Toggle raw display
$23$ \( T^{4} + 264 T^{3} + \cdots + 22733824 \) Copy content Toggle raw display
$29$ \( T^{4} - 276 T^{3} + \cdots + 37063744 \) Copy content Toggle raw display
$31$ \( T^{4} + 4 T^{3} + \cdots + 49224256 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 16670683225 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 11077983504 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 1948692736 \) Copy content Toggle raw display
$47$ \( (T^{2} + 462 T + 43806)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} - 96 T^{3} + \cdots + 6610041 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 12225282624 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 9167105025 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 307102172224 \) Copy content Toggle raw display
$71$ \( T^{4} + 474 T^{3} + \cdots + 22486564 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 11762703936 \) Copy content Toggle raw display
$79$ \( (T^{2} - 256 T - 11696)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 1275164909824 \) Copy content Toggle raw display
$89$ \( (T^{2} - 714 T - 1183731)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 832972004929 \) Copy content Toggle raw display
show more
show less