Properties

Label 2-97-97.62-c3-0-10
Degree $2$
Conductor $97$
Sign $0.774 + 0.632i$
Analytic cond. $5.72318$
Root an. cond. $2.39231$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 − 0.866i)2-s + (2 + 3.46i)3-s + (3.5 − 6.06i)4-s + (0.982 − 0.567i)5-s + (1.99 − 3.46i)6-s + (10.4 − 6.03i)7-s − 15·8-s + (5.50 − 9.52i)9-s + (−0.982 − 0.567i)10-s + (−12.4 + 21.6i)11-s + 28·12-s + (49.9 − 28.8i)13-s + (−10.4 − 6.03i)14-s + (3.92 + 2.26i)15-s + (−20.5 − 35.5i)16-s + (96.3 + 55.6i)17-s + ⋯
L(s)  = 1  + (−0.176 − 0.306i)2-s + (0.384 + 0.666i)3-s + (0.437 − 0.757i)4-s + (0.0878 − 0.0507i)5-s + (0.136 − 0.235i)6-s + (0.564 − 0.325i)7-s − 0.662·8-s + (0.203 − 0.352i)9-s + (−0.0310 − 0.0179i)10-s + (−0.342 + 0.592i)11-s + 0.673·12-s + (1.06 − 0.614i)13-s + (−0.199 − 0.115i)14-s + (0.0676 + 0.0390i)15-s + (−0.320 − 0.554i)16-s + (1.37 + 0.793i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 97 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.774 + 0.632i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 97 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.774 + 0.632i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(97\)
Sign: $0.774 + 0.632i$
Analytic conductor: \(5.72318\)
Root analytic conductor: \(2.39231\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{97} (62, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 97,\ (\ :3/2),\ 0.774 + 0.632i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.76980 - 0.630839i\)
\(L(\frac12)\) \(\approx\) \(1.76980 - 0.630839i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad97 \( 1 + (-621. - 725. i)T \)
good2 \( 1 + (0.5 + 0.866i)T + (-4 + 6.92i)T^{2} \)
3 \( 1 + (-2 - 3.46i)T + (-13.5 + 23.3i)T^{2} \)
5 \( 1 + (-0.982 + 0.567i)T + (62.5 - 108. i)T^{2} \)
7 \( 1 + (-10.4 + 6.03i)T + (171.5 - 297. i)T^{2} \)
11 \( 1 + (12.4 - 21.6i)T + (-665.5 - 1.15e3i)T^{2} \)
13 \( 1 + (-49.9 + 28.8i)T + (1.09e3 - 1.90e3i)T^{2} \)
17 \( 1 + (-96.3 - 55.6i)T + (2.45e3 + 4.25e3i)T^{2} \)
19 \( 1 + 98.4iT - 6.85e3T^{2} \)
23 \( 1 + (38.0 + 21.9i)T + (6.08e3 + 1.05e4i)T^{2} \)
29 \( 1 + (-55.0 + 31.7i)T + (1.21e4 - 2.11e4i)T^{2} \)
31 \( 1 + (42.8 + 74.2i)T + (-1.48e4 + 2.57e4i)T^{2} \)
37 \( 1 + (363. - 210. i)T + (2.53e4 - 4.38e4i)T^{2} \)
41 \( 1 + (209. - 120. i)T + (3.44e4 - 5.96e4i)T^{2} \)
43 \( 1 + (-231. - 401. i)T + (-3.97e4 + 6.88e4i)T^{2} \)
47 \( 1 + 328.T + 1.03e5T^{2} \)
53 \( 1 + (-58.9 - 102. i)T + (-7.44e4 + 1.28e5i)T^{2} \)
59 \( 1 + (249. - 143. i)T + (1.02e5 - 1.77e5i)T^{2} \)
61 \( 1 + (-76.3 - 132. i)T + (-1.13e5 + 1.96e5i)T^{2} \)
67 \( 1 + 899. iT - 3.00e5T^{2} \)
71 \( 1 + (-14.1 - 8.17i)T + (1.78e5 + 3.09e5i)T^{2} \)
73 \( 1 + (408. + 707. i)T + (-1.94e5 + 3.36e5i)T^{2} \)
79 \( 1 + 39.5T + 4.93e5T^{2} \)
83 \( 1 + (-715. - 413. i)T + (2.85e5 + 4.95e5i)T^{2} \)
89 \( 1 - 1.50e3T + 7.04e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.44287927788870927014629321746, −12.10396720831428148817651785045, −10.88452977518360312129093292698, −10.18323281947056171138671539257, −9.251521270607732902972552381415, −7.895483047854451039788831638280, −6.32742313330055159721289787359, −4.94761146252885544825803118870, −3.32052905352415152248387237935, −1.34577867981263116491605203601, 1.88377419722512242022034212304, 3.50417371124120395350634452152, 5.63509862821192293263431686574, 7.01709261773556322872601797340, 8.030215997347656041600303988196, 8.644722133592956943309885372429, 10.40498820207924090098762402871, 11.71296093376819956289248052995, 12.42674789524452169534402050135, 13.70612091930937170125019993025

Graph of the $Z$-function along the critical line