Properties

Label 9680.2.a.df.1.5
Level $9680$
Weight $2$
Character 9680.1
Self dual yes
Analytic conductor $77.295$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9680,2,Mod(1,9680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9680.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9680 = 2^{4} \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9680.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-1,0,8,0,6,0,19,0,0,0,12,0,-1,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(77.2951891566\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 21x^{6} + 15x^{5} + 140x^{4} - 60x^{3} - 295x^{2} + 50x + 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 440)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-0.569801\) of defining polynomial
Character \(\chi\) \(=\) 9680.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.569801 q^{3} +1.00000 q^{5} +1.82111 q^{7} -2.67533 q^{9} -3.92663 q^{13} +0.569801 q^{15} -3.18309 q^{17} +8.21268 q^{19} +1.03767 q^{21} -0.734122 q^{23} +1.00000 q^{25} -3.23381 q^{27} -4.42950 q^{29} +0.396984 q^{31} +1.82111 q^{35} +2.99377 q^{37} -2.23740 q^{39} +12.0514 q^{41} -8.72957 q^{43} -2.67533 q^{45} +10.5107 q^{47} -3.68356 q^{49} -1.81373 q^{51} +9.84643 q^{53} +4.67959 q^{57} -10.0121 q^{59} +8.50878 q^{61} -4.87206 q^{63} -3.92663 q^{65} -1.11105 q^{67} -0.418304 q^{69} -5.87172 q^{71} +4.03588 q^{73} +0.569801 q^{75} -3.26768 q^{79} +6.18335 q^{81} +11.8570 q^{83} -3.18309 q^{85} -2.52394 q^{87} -6.56220 q^{89} -7.15083 q^{91} +0.226202 q^{93} +8.21268 q^{95} +14.5430 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - q^{3} + 8 q^{5} + 6 q^{7} + 19 q^{9} + 12 q^{13} - q^{15} + 2 q^{17} + 6 q^{19} + 6 q^{21} - 10 q^{23} + 8 q^{25} - 13 q^{27} + 8 q^{29} - 19 q^{31} + 6 q^{35} + 12 q^{37} + 21 q^{39} - 3 q^{41}+ \cdots + 21 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.569801 0.328975 0.164487 0.986379i \(-0.447403\pi\)
0.164487 + 0.986379i \(0.447403\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 1.82111 0.688314 0.344157 0.938912i \(-0.388165\pi\)
0.344157 + 0.938912i \(0.388165\pi\)
\(8\) 0 0
\(9\) −2.67533 −0.891776
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −3.92663 −1.08905 −0.544526 0.838744i \(-0.683291\pi\)
−0.544526 + 0.838744i \(0.683291\pi\)
\(14\) 0 0
\(15\) 0.569801 0.147122
\(16\) 0 0
\(17\) −3.18309 −0.772014 −0.386007 0.922496i \(-0.626146\pi\)
−0.386007 + 0.922496i \(0.626146\pi\)
\(18\) 0 0
\(19\) 8.21268 1.88412 0.942059 0.335447i \(-0.108887\pi\)
0.942059 + 0.335447i \(0.108887\pi\)
\(20\) 0 0
\(21\) 1.03767 0.226438
\(22\) 0 0
\(23\) −0.734122 −0.153075 −0.0765376 0.997067i \(-0.524387\pi\)
−0.0765376 + 0.997067i \(0.524387\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −3.23381 −0.622346
\(28\) 0 0
\(29\) −4.42950 −0.822538 −0.411269 0.911514i \(-0.634914\pi\)
−0.411269 + 0.911514i \(0.634914\pi\)
\(30\) 0 0
\(31\) 0.396984 0.0713004 0.0356502 0.999364i \(-0.488650\pi\)
0.0356502 + 0.999364i \(0.488650\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.82111 0.307824
\(36\) 0 0
\(37\) 2.99377 0.492172 0.246086 0.969248i \(-0.420855\pi\)
0.246086 + 0.969248i \(0.420855\pi\)
\(38\) 0 0
\(39\) −2.23740 −0.358271
\(40\) 0 0
\(41\) 12.0514 1.88212 0.941060 0.338240i \(-0.109832\pi\)
0.941060 + 0.338240i \(0.109832\pi\)
\(42\) 0 0
\(43\) −8.72957 −1.33125 −0.665624 0.746288i \(-0.731834\pi\)
−0.665624 + 0.746288i \(0.731834\pi\)
\(44\) 0 0
\(45\) −2.67533 −0.398814
\(46\) 0 0
\(47\) 10.5107 1.53314 0.766570 0.642160i \(-0.221962\pi\)
0.766570 + 0.642160i \(0.221962\pi\)
\(48\) 0 0
\(49\) −3.68356 −0.526223
\(50\) 0 0
\(51\) −1.81373 −0.253973
\(52\) 0 0
\(53\) 9.84643 1.35251 0.676256 0.736667i \(-0.263602\pi\)
0.676256 + 0.736667i \(0.263602\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 4.67959 0.619827
\(58\) 0 0
\(59\) −10.0121 −1.30347 −0.651734 0.758448i \(-0.725958\pi\)
−0.651734 + 0.758448i \(0.725958\pi\)
\(60\) 0 0
\(61\) 8.50878 1.08944 0.544719 0.838619i \(-0.316636\pi\)
0.544719 + 0.838619i \(0.316636\pi\)
\(62\) 0 0
\(63\) −4.87206 −0.613822
\(64\) 0 0
\(65\) −3.92663 −0.487039
\(66\) 0 0
\(67\) −1.11105 −0.135737 −0.0678684 0.997694i \(-0.521620\pi\)
−0.0678684 + 0.997694i \(0.521620\pi\)
\(68\) 0 0
\(69\) −0.418304 −0.0503579
\(70\) 0 0
\(71\) −5.87172 −0.696845 −0.348422 0.937338i \(-0.613283\pi\)
−0.348422 + 0.937338i \(0.613283\pi\)
\(72\) 0 0
\(73\) 4.03588 0.472364 0.236182 0.971709i \(-0.424104\pi\)
0.236182 + 0.971709i \(0.424104\pi\)
\(74\) 0 0
\(75\) 0.569801 0.0657950
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −3.26768 −0.367643 −0.183821 0.982960i \(-0.558847\pi\)
−0.183821 + 0.982960i \(0.558847\pi\)
\(80\) 0 0
\(81\) 6.18335 0.687039
\(82\) 0 0
\(83\) 11.8570 1.30148 0.650739 0.759302i \(-0.274459\pi\)
0.650739 + 0.759302i \(0.274459\pi\)
\(84\) 0 0
\(85\) −3.18309 −0.345255
\(86\) 0 0
\(87\) −2.52394 −0.270594
\(88\) 0 0
\(89\) −6.56220 −0.695592 −0.347796 0.937570i \(-0.613070\pi\)
−0.347796 + 0.937570i \(0.613070\pi\)
\(90\) 0 0
\(91\) −7.15083 −0.749610
\(92\) 0 0
\(93\) 0.226202 0.0234560
\(94\) 0 0
\(95\) 8.21268 0.842603
\(96\) 0 0
\(97\) 14.5430 1.47662 0.738310 0.674462i \(-0.235624\pi\)
0.738310 + 0.674462i \(0.235624\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −9.89649 −0.984737 −0.492369 0.870387i \(-0.663869\pi\)
−0.492369 + 0.870387i \(0.663869\pi\)
\(102\) 0 0
\(103\) −7.21119 −0.710539 −0.355270 0.934764i \(-0.615611\pi\)
−0.355270 + 0.934764i \(0.615611\pi\)
\(104\) 0 0
\(105\) 1.03767 0.101266
\(106\) 0 0
\(107\) 9.77736 0.945213 0.472606 0.881274i \(-0.343313\pi\)
0.472606 + 0.881274i \(0.343313\pi\)
\(108\) 0 0
\(109\) 18.7329 1.79429 0.897143 0.441741i \(-0.145639\pi\)
0.897143 + 0.441741i \(0.145639\pi\)
\(110\) 0 0
\(111\) 1.70585 0.161912
\(112\) 0 0
\(113\) 12.8614 1.20990 0.604948 0.796265i \(-0.293194\pi\)
0.604948 + 0.796265i \(0.293194\pi\)
\(114\) 0 0
\(115\) −0.734122 −0.0684573
\(116\) 0 0
\(117\) 10.5050 0.971190
\(118\) 0 0
\(119\) −5.79676 −0.531388
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 6.86693 0.619170
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 2.84780 0.252701 0.126350 0.991986i \(-0.459674\pi\)
0.126350 + 0.991986i \(0.459674\pi\)
\(128\) 0 0
\(129\) −4.97412 −0.437947
\(130\) 0 0
\(131\) 9.49411 0.829504 0.414752 0.909934i \(-0.363868\pi\)
0.414752 + 0.909934i \(0.363868\pi\)
\(132\) 0 0
\(133\) 14.9562 1.29687
\(134\) 0 0
\(135\) −3.23381 −0.278322
\(136\) 0 0
\(137\) −7.03836 −0.601328 −0.300664 0.953730i \(-0.597208\pi\)
−0.300664 + 0.953730i \(0.597208\pi\)
\(138\) 0 0
\(139\) −3.73184 −0.316531 −0.158265 0.987397i \(-0.550590\pi\)
−0.158265 + 0.987397i \(0.550590\pi\)
\(140\) 0 0
\(141\) 5.98900 0.504365
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −4.42950 −0.367850
\(146\) 0 0
\(147\) −2.09890 −0.173114
\(148\) 0 0
\(149\) 12.2751 1.00561 0.502806 0.864399i \(-0.332301\pi\)
0.502806 + 0.864399i \(0.332301\pi\)
\(150\) 0 0
\(151\) 5.80255 0.472205 0.236102 0.971728i \(-0.424130\pi\)
0.236102 + 0.971728i \(0.424130\pi\)
\(152\) 0 0
\(153\) 8.51581 0.688463
\(154\) 0 0
\(155\) 0.396984 0.0318865
\(156\) 0 0
\(157\) −20.7356 −1.65488 −0.827440 0.561553i \(-0.810204\pi\)
−0.827440 + 0.561553i \(0.810204\pi\)
\(158\) 0 0
\(159\) 5.61051 0.444942
\(160\) 0 0
\(161\) −1.33692 −0.105364
\(162\) 0 0
\(163\) 11.8323 0.926778 0.463389 0.886155i \(-0.346633\pi\)
0.463389 + 0.886155i \(0.346633\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 18.1848 1.40718 0.703592 0.710604i \(-0.251578\pi\)
0.703592 + 0.710604i \(0.251578\pi\)
\(168\) 0 0
\(169\) 2.41846 0.186035
\(170\) 0 0
\(171\) −21.9716 −1.68021
\(172\) 0 0
\(173\) −10.2152 −0.776649 −0.388324 0.921523i \(-0.626946\pi\)
−0.388324 + 0.921523i \(0.626946\pi\)
\(174\) 0 0
\(175\) 1.82111 0.137663
\(176\) 0 0
\(177\) −5.70492 −0.428808
\(178\) 0 0
\(179\) −1.72353 −0.128823 −0.0644114 0.997923i \(-0.520517\pi\)
−0.0644114 + 0.997923i \(0.520517\pi\)
\(180\) 0 0
\(181\) 13.9521 1.03705 0.518525 0.855062i \(-0.326481\pi\)
0.518525 + 0.855062i \(0.326481\pi\)
\(182\) 0 0
\(183\) 4.84831 0.358398
\(184\) 0 0
\(185\) 2.99377 0.220106
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −5.88911 −0.428370
\(190\) 0 0
\(191\) −24.6929 −1.78672 −0.893359 0.449344i \(-0.851658\pi\)
−0.893359 + 0.449344i \(0.851658\pi\)
\(192\) 0 0
\(193\) 2.66652 0.191940 0.0959702 0.995384i \(-0.469405\pi\)
0.0959702 + 0.995384i \(0.469405\pi\)
\(194\) 0 0
\(195\) −2.23740 −0.160224
\(196\) 0 0
\(197\) 21.4277 1.52666 0.763330 0.646009i \(-0.223563\pi\)
0.763330 + 0.646009i \(0.223563\pi\)
\(198\) 0 0
\(199\) 5.78067 0.409781 0.204891 0.978785i \(-0.434316\pi\)
0.204891 + 0.978785i \(0.434316\pi\)
\(200\) 0 0
\(201\) −0.633079 −0.0446540
\(202\) 0 0
\(203\) −8.06661 −0.566165
\(204\) 0 0
\(205\) 12.0514 0.841709
\(206\) 0 0
\(207\) 1.96402 0.136509
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 11.5772 0.797006 0.398503 0.917167i \(-0.369530\pi\)
0.398503 + 0.917167i \(0.369530\pi\)
\(212\) 0 0
\(213\) −3.34571 −0.229244
\(214\) 0 0
\(215\) −8.72957 −0.595352
\(216\) 0 0
\(217\) 0.722951 0.0490771
\(218\) 0 0
\(219\) 2.29965 0.155396
\(220\) 0 0
\(221\) 12.4988 0.840763
\(222\) 0 0
\(223\) 11.8308 0.792252 0.396126 0.918196i \(-0.370354\pi\)
0.396126 + 0.918196i \(0.370354\pi\)
\(224\) 0 0
\(225\) −2.67533 −0.178355
\(226\) 0 0
\(227\) 6.18986 0.410835 0.205418 0.978674i \(-0.434145\pi\)
0.205418 + 0.978674i \(0.434145\pi\)
\(228\) 0 0
\(229\) 17.7699 1.17427 0.587133 0.809491i \(-0.300257\pi\)
0.587133 + 0.809491i \(0.300257\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −17.0269 −1.11547 −0.557733 0.830020i \(-0.688329\pi\)
−0.557733 + 0.830020i \(0.688329\pi\)
\(234\) 0 0
\(235\) 10.5107 0.685641
\(236\) 0 0
\(237\) −1.86193 −0.120945
\(238\) 0 0
\(239\) −1.18624 −0.0767313 −0.0383656 0.999264i \(-0.512215\pi\)
−0.0383656 + 0.999264i \(0.512215\pi\)
\(240\) 0 0
\(241\) 10.3606 0.667388 0.333694 0.942682i \(-0.391705\pi\)
0.333694 + 0.942682i \(0.391705\pi\)
\(242\) 0 0
\(243\) 13.2247 0.848365
\(244\) 0 0
\(245\) −3.68356 −0.235334
\(246\) 0 0
\(247\) −32.2482 −2.05190
\(248\) 0 0
\(249\) 6.75614 0.428153
\(250\) 0 0
\(251\) −19.6814 −1.24228 −0.621139 0.783701i \(-0.713330\pi\)
−0.621139 + 0.783701i \(0.713330\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −1.81373 −0.113580
\(256\) 0 0
\(257\) 13.4421 0.838496 0.419248 0.907872i \(-0.362294\pi\)
0.419248 + 0.907872i \(0.362294\pi\)
\(258\) 0 0
\(259\) 5.45197 0.338769
\(260\) 0 0
\(261\) 11.8504 0.733519
\(262\) 0 0
\(263\) 1.60780 0.0991410 0.0495705 0.998771i \(-0.484215\pi\)
0.0495705 + 0.998771i \(0.484215\pi\)
\(264\) 0 0
\(265\) 9.84643 0.604861
\(266\) 0 0
\(267\) −3.73915 −0.228832
\(268\) 0 0
\(269\) 9.01686 0.549767 0.274884 0.961477i \(-0.411361\pi\)
0.274884 + 0.961477i \(0.411361\pi\)
\(270\) 0 0
\(271\) 19.3857 1.17759 0.588797 0.808281i \(-0.299602\pi\)
0.588797 + 0.808281i \(0.299602\pi\)
\(272\) 0 0
\(273\) −4.07455 −0.246603
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 1.92697 0.115781 0.0578903 0.998323i \(-0.481563\pi\)
0.0578903 + 0.998323i \(0.481563\pi\)
\(278\) 0 0
\(279\) −1.06206 −0.0635840
\(280\) 0 0
\(281\) −2.19286 −0.130815 −0.0654076 0.997859i \(-0.520835\pi\)
−0.0654076 + 0.997859i \(0.520835\pi\)
\(282\) 0 0
\(283\) 28.9913 1.72335 0.861677 0.507458i \(-0.169415\pi\)
0.861677 + 0.507458i \(0.169415\pi\)
\(284\) 0 0
\(285\) 4.67959 0.277195
\(286\) 0 0
\(287\) 21.9470 1.29549
\(288\) 0 0
\(289\) −6.86792 −0.403995
\(290\) 0 0
\(291\) 8.28662 0.485770
\(292\) 0 0
\(293\) 6.09890 0.356301 0.178151 0.984003i \(-0.442989\pi\)
0.178151 + 0.984003i \(0.442989\pi\)
\(294\) 0 0
\(295\) −10.0121 −0.582929
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2.88263 0.166707
\(300\) 0 0
\(301\) −15.8975 −0.916317
\(302\) 0 0
\(303\) −5.63903 −0.323954
\(304\) 0 0
\(305\) 8.50878 0.487212
\(306\) 0 0
\(307\) −15.2560 −0.870706 −0.435353 0.900260i \(-0.643376\pi\)
−0.435353 + 0.900260i \(0.643376\pi\)
\(308\) 0 0
\(309\) −4.10894 −0.233750
\(310\) 0 0
\(311\) 3.46576 0.196525 0.0982627 0.995161i \(-0.468671\pi\)
0.0982627 + 0.995161i \(0.468671\pi\)
\(312\) 0 0
\(313\) 13.0464 0.737428 0.368714 0.929543i \(-0.379798\pi\)
0.368714 + 0.929543i \(0.379798\pi\)
\(314\) 0 0
\(315\) −4.87206 −0.274510
\(316\) 0 0
\(317\) −30.2860 −1.70103 −0.850517 0.525948i \(-0.823711\pi\)
−0.850517 + 0.525948i \(0.823711\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 5.57115 0.310951
\(322\) 0 0
\(323\) −26.1417 −1.45456
\(324\) 0 0
\(325\) −3.92663 −0.217810
\(326\) 0 0
\(327\) 10.6740 0.590275
\(328\) 0 0
\(329\) 19.1411 1.05528
\(330\) 0 0
\(331\) −4.19183 −0.230404 −0.115202 0.993342i \(-0.536752\pi\)
−0.115202 + 0.993342i \(0.536752\pi\)
\(332\) 0 0
\(333\) −8.00930 −0.438907
\(334\) 0 0
\(335\) −1.11105 −0.0607033
\(336\) 0 0
\(337\) 26.5352 1.44546 0.722731 0.691129i \(-0.242887\pi\)
0.722731 + 0.691129i \(0.242887\pi\)
\(338\) 0 0
\(339\) 7.32842 0.398025
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −19.4559 −1.05052
\(344\) 0 0
\(345\) −0.418304 −0.0225207
\(346\) 0 0
\(347\) −1.13932 −0.0611619 −0.0305809 0.999532i \(-0.509736\pi\)
−0.0305809 + 0.999532i \(0.509736\pi\)
\(348\) 0 0
\(349\) 16.2421 0.869420 0.434710 0.900571i \(-0.356851\pi\)
0.434710 + 0.900571i \(0.356851\pi\)
\(350\) 0 0
\(351\) 12.6980 0.677768
\(352\) 0 0
\(353\) −0.432655 −0.0230279 −0.0115140 0.999934i \(-0.503665\pi\)
−0.0115140 + 0.999934i \(0.503665\pi\)
\(354\) 0 0
\(355\) −5.87172 −0.311638
\(356\) 0 0
\(357\) −3.30300 −0.174813
\(358\) 0 0
\(359\) −0.0977164 −0.00515727 −0.00257864 0.999997i \(-0.500821\pi\)
−0.00257864 + 0.999997i \(0.500821\pi\)
\(360\) 0 0
\(361\) 48.4481 2.54990
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 4.03588 0.211248
\(366\) 0 0
\(367\) −14.3906 −0.751185 −0.375592 0.926785i \(-0.622561\pi\)
−0.375592 + 0.926785i \(0.622561\pi\)
\(368\) 0 0
\(369\) −32.2416 −1.67843
\(370\) 0 0
\(371\) 17.9314 0.930953
\(372\) 0 0
\(373\) −13.8834 −0.718855 −0.359428 0.933173i \(-0.617028\pi\)
−0.359428 + 0.933173i \(0.617028\pi\)
\(374\) 0 0
\(375\) 0.569801 0.0294244
\(376\) 0 0
\(377\) 17.3930 0.895787
\(378\) 0 0
\(379\) −17.8304 −0.915885 −0.457943 0.888982i \(-0.651414\pi\)
−0.457943 + 0.888982i \(0.651414\pi\)
\(380\) 0 0
\(381\) 1.62268 0.0831322
\(382\) 0 0
\(383\) −8.39655 −0.429044 −0.214522 0.976719i \(-0.568819\pi\)
−0.214522 + 0.976719i \(0.568819\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 23.3545 1.18717
\(388\) 0 0
\(389\) −7.89641 −0.400364 −0.200182 0.979759i \(-0.564153\pi\)
−0.200182 + 0.979759i \(0.564153\pi\)
\(390\) 0 0
\(391\) 2.33678 0.118176
\(392\) 0 0
\(393\) 5.40975 0.272886
\(394\) 0 0
\(395\) −3.26768 −0.164415
\(396\) 0 0
\(397\) −36.2170 −1.81768 −0.908840 0.417146i \(-0.863030\pi\)
−0.908840 + 0.417146i \(0.863030\pi\)
\(398\) 0 0
\(399\) 8.52205 0.426636
\(400\) 0 0
\(401\) −12.4872 −0.623582 −0.311791 0.950151i \(-0.600929\pi\)
−0.311791 + 0.950151i \(0.600929\pi\)
\(402\) 0 0
\(403\) −1.55881 −0.0776499
\(404\) 0 0
\(405\) 6.18335 0.307253
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −9.24803 −0.457286 −0.228643 0.973510i \(-0.573429\pi\)
−0.228643 + 0.973510i \(0.573429\pi\)
\(410\) 0 0
\(411\) −4.01047 −0.197822
\(412\) 0 0
\(413\) −18.2332 −0.897196
\(414\) 0 0
\(415\) 11.8570 0.582038
\(416\) 0 0
\(417\) −2.12641 −0.104131
\(418\) 0 0
\(419\) −28.9794 −1.41574 −0.707869 0.706344i \(-0.750343\pi\)
−0.707869 + 0.706344i \(0.750343\pi\)
\(420\) 0 0
\(421\) 22.8185 1.11210 0.556052 0.831148i \(-0.312316\pi\)
0.556052 + 0.831148i \(0.312316\pi\)
\(422\) 0 0
\(423\) −28.1195 −1.36722
\(424\) 0 0
\(425\) −3.18309 −0.154403
\(426\) 0 0
\(427\) 15.4954 0.749876
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −25.6107 −1.23362 −0.616811 0.787111i \(-0.711576\pi\)
−0.616811 + 0.787111i \(0.711576\pi\)
\(432\) 0 0
\(433\) 2.63416 0.126590 0.0632948 0.997995i \(-0.479839\pi\)
0.0632948 + 0.997995i \(0.479839\pi\)
\(434\) 0 0
\(435\) −2.52394 −0.121013
\(436\) 0 0
\(437\) −6.02911 −0.288412
\(438\) 0 0
\(439\) 7.16551 0.341991 0.170996 0.985272i \(-0.445302\pi\)
0.170996 + 0.985272i \(0.445302\pi\)
\(440\) 0 0
\(441\) 9.85473 0.469273
\(442\) 0 0
\(443\) −15.3877 −0.731092 −0.365546 0.930793i \(-0.619118\pi\)
−0.365546 + 0.930793i \(0.619118\pi\)
\(444\) 0 0
\(445\) −6.56220 −0.311078
\(446\) 0 0
\(447\) 6.99435 0.330821
\(448\) 0 0
\(449\) −4.63933 −0.218943 −0.109472 0.993990i \(-0.534916\pi\)
−0.109472 + 0.993990i \(0.534916\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 3.30630 0.155344
\(454\) 0 0
\(455\) −7.15083 −0.335236
\(456\) 0 0
\(457\) 12.8616 0.601639 0.300820 0.953681i \(-0.402740\pi\)
0.300820 + 0.953681i \(0.402740\pi\)
\(458\) 0 0
\(459\) 10.2935 0.480460
\(460\) 0 0
\(461\) −19.6157 −0.913594 −0.456797 0.889571i \(-0.651003\pi\)
−0.456797 + 0.889571i \(0.651003\pi\)
\(462\) 0 0
\(463\) 3.15807 0.146768 0.0733839 0.997304i \(-0.476620\pi\)
0.0733839 + 0.997304i \(0.476620\pi\)
\(464\) 0 0
\(465\) 0.226202 0.0104899
\(466\) 0 0
\(467\) 28.9593 1.34008 0.670038 0.742327i \(-0.266278\pi\)
0.670038 + 0.742327i \(0.266278\pi\)
\(468\) 0 0
\(469\) −2.02335 −0.0934296
\(470\) 0 0
\(471\) −11.8152 −0.544414
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 8.21268 0.376824
\(476\) 0 0
\(477\) −26.3424 −1.20614
\(478\) 0 0
\(479\) 21.2299 0.970021 0.485011 0.874508i \(-0.338816\pi\)
0.485011 + 0.874508i \(0.338816\pi\)
\(480\) 0 0
\(481\) −11.7554 −0.536001
\(482\) 0 0
\(483\) −0.761777 −0.0346620
\(484\) 0 0
\(485\) 14.5430 0.660364
\(486\) 0 0
\(487\) 13.9771 0.633365 0.316682 0.948532i \(-0.397431\pi\)
0.316682 + 0.948532i \(0.397431\pi\)
\(488\) 0 0
\(489\) 6.74206 0.304887
\(490\) 0 0
\(491\) 17.0953 0.771501 0.385751 0.922603i \(-0.373943\pi\)
0.385751 + 0.922603i \(0.373943\pi\)
\(492\) 0 0
\(493\) 14.0995 0.635010
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −10.6930 −0.479648
\(498\) 0 0
\(499\) −40.9501 −1.83318 −0.916590 0.399828i \(-0.869070\pi\)
−0.916590 + 0.399828i \(0.869070\pi\)
\(500\) 0 0
\(501\) 10.3617 0.462928
\(502\) 0 0
\(503\) −13.4389 −0.599212 −0.299606 0.954063i \(-0.596855\pi\)
−0.299606 + 0.954063i \(0.596855\pi\)
\(504\) 0 0
\(505\) −9.89649 −0.440388
\(506\) 0 0
\(507\) 1.37804 0.0612009
\(508\) 0 0
\(509\) 18.3442 0.813094 0.406547 0.913630i \(-0.366733\pi\)
0.406547 + 0.913630i \(0.366733\pi\)
\(510\) 0 0
\(511\) 7.34978 0.325135
\(512\) 0 0
\(513\) −26.5582 −1.17257
\(514\) 0 0
\(515\) −7.21119 −0.317763
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −5.82064 −0.255498
\(520\) 0 0
\(521\) 2.87412 0.125918 0.0629588 0.998016i \(-0.479946\pi\)
0.0629588 + 0.998016i \(0.479946\pi\)
\(522\) 0 0
\(523\) −37.6986 −1.64845 −0.824223 0.566266i \(-0.808387\pi\)
−0.824223 + 0.566266i \(0.808387\pi\)
\(524\) 0 0
\(525\) 1.03767 0.0452876
\(526\) 0 0
\(527\) −1.26364 −0.0550449
\(528\) 0 0
\(529\) −22.4611 −0.976568
\(530\) 0 0
\(531\) 26.7857 1.16240
\(532\) 0 0
\(533\) −47.3216 −2.04973
\(534\) 0 0
\(535\) 9.77736 0.422712
\(536\) 0 0
\(537\) −0.982071 −0.0423795
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 12.5509 0.539605 0.269802 0.962916i \(-0.413042\pi\)
0.269802 + 0.962916i \(0.413042\pi\)
\(542\) 0 0
\(543\) 7.94992 0.341164
\(544\) 0 0
\(545\) 18.7329 0.802429
\(546\) 0 0
\(547\) −35.5307 −1.51918 −0.759592 0.650400i \(-0.774601\pi\)
−0.759592 + 0.650400i \(0.774601\pi\)
\(548\) 0 0
\(549\) −22.7638 −0.971534
\(550\) 0 0
\(551\) −36.3781 −1.54976
\(552\) 0 0
\(553\) −5.95080 −0.253054
\(554\) 0 0
\(555\) 1.70585 0.0724093
\(556\) 0 0
\(557\) 39.8419 1.68815 0.844077 0.536222i \(-0.180149\pi\)
0.844077 + 0.536222i \(0.180149\pi\)
\(558\) 0 0
\(559\) 34.2778 1.44980
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −32.2632 −1.35973 −0.679866 0.733336i \(-0.737962\pi\)
−0.679866 + 0.733336i \(0.737962\pi\)
\(564\) 0 0
\(565\) 12.8614 0.541082
\(566\) 0 0
\(567\) 11.2606 0.472899
\(568\) 0 0
\(569\) 17.8955 0.750216 0.375108 0.926981i \(-0.377606\pi\)
0.375108 + 0.926981i \(0.377606\pi\)
\(570\) 0 0
\(571\) 11.9435 0.499819 0.249910 0.968269i \(-0.419599\pi\)
0.249910 + 0.968269i \(0.419599\pi\)
\(572\) 0 0
\(573\) −14.0701 −0.587785
\(574\) 0 0
\(575\) −0.734122 −0.0306150
\(576\) 0 0
\(577\) 11.9451 0.497282 0.248641 0.968596i \(-0.420016\pi\)
0.248641 + 0.968596i \(0.420016\pi\)
\(578\) 0 0
\(579\) 1.51939 0.0631435
\(580\) 0 0
\(581\) 21.5929 0.895825
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 10.5050 0.434330
\(586\) 0 0
\(587\) −15.8502 −0.654208 −0.327104 0.944988i \(-0.606073\pi\)
−0.327104 + 0.944988i \(0.606073\pi\)
\(588\) 0 0
\(589\) 3.26030 0.134338
\(590\) 0 0
\(591\) 12.2095 0.502233
\(592\) 0 0
\(593\) 40.0924 1.64640 0.823198 0.567754i \(-0.192188\pi\)
0.823198 + 0.567754i \(0.192188\pi\)
\(594\) 0 0
\(595\) −5.79676 −0.237644
\(596\) 0 0
\(597\) 3.29383 0.134808
\(598\) 0 0
\(599\) −32.5610 −1.33041 −0.665204 0.746662i \(-0.731655\pi\)
−0.665204 + 0.746662i \(0.731655\pi\)
\(600\) 0 0
\(601\) 5.80180 0.236660 0.118330 0.992974i \(-0.462246\pi\)
0.118330 + 0.992974i \(0.462246\pi\)
\(602\) 0 0
\(603\) 2.97243 0.121047
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 14.0588 0.570630 0.285315 0.958434i \(-0.407902\pi\)
0.285315 + 0.958434i \(0.407902\pi\)
\(608\) 0 0
\(609\) −4.59636 −0.186254
\(610\) 0 0
\(611\) −41.2716 −1.66967
\(612\) 0 0
\(613\) 30.8706 1.24685 0.623426 0.781882i \(-0.285740\pi\)
0.623426 + 0.781882i \(0.285740\pi\)
\(614\) 0 0
\(615\) 6.86693 0.276901
\(616\) 0 0
\(617\) 35.9658 1.44793 0.723963 0.689838i \(-0.242318\pi\)
0.723963 + 0.689838i \(0.242318\pi\)
\(618\) 0 0
\(619\) −8.85192 −0.355789 −0.177894 0.984050i \(-0.556929\pi\)
−0.177894 + 0.984050i \(0.556929\pi\)
\(620\) 0 0
\(621\) 2.37401 0.0952658
\(622\) 0 0
\(623\) −11.9505 −0.478786
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −9.52943 −0.379963
\(630\) 0 0
\(631\) 45.5152 1.81193 0.905967 0.423349i \(-0.139146\pi\)
0.905967 + 0.423349i \(0.139146\pi\)
\(632\) 0 0
\(633\) 6.59669 0.262195
\(634\) 0 0
\(635\) 2.84780 0.113011
\(636\) 0 0
\(637\) 14.4640 0.573085
\(638\) 0 0
\(639\) 15.7088 0.621429
\(640\) 0 0
\(641\) 23.7684 0.938796 0.469398 0.882987i \(-0.344471\pi\)
0.469398 + 0.882987i \(0.344471\pi\)
\(642\) 0 0
\(643\) 26.6580 1.05129 0.525644 0.850705i \(-0.323824\pi\)
0.525644 + 0.850705i \(0.323824\pi\)
\(644\) 0 0
\(645\) −4.97412 −0.195856
\(646\) 0 0
\(647\) 38.0457 1.49573 0.747865 0.663851i \(-0.231079\pi\)
0.747865 + 0.663851i \(0.231079\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0.411938 0.0161451
\(652\) 0 0
\(653\) −7.85962 −0.307571 −0.153785 0.988104i \(-0.549146\pi\)
−0.153785 + 0.988104i \(0.549146\pi\)
\(654\) 0 0
\(655\) 9.49411 0.370966
\(656\) 0 0
\(657\) −10.7973 −0.421243
\(658\) 0 0
\(659\) −27.5518 −1.07327 −0.536633 0.843816i \(-0.680304\pi\)
−0.536633 + 0.843816i \(0.680304\pi\)
\(660\) 0 0
\(661\) 39.6062 1.54050 0.770251 0.637741i \(-0.220131\pi\)
0.770251 + 0.637741i \(0.220131\pi\)
\(662\) 0 0
\(663\) 7.12185 0.276590
\(664\) 0 0
\(665\) 14.9562 0.579976
\(666\) 0 0
\(667\) 3.25180 0.125910
\(668\) 0 0
\(669\) 6.74123 0.260631
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −43.1226 −1.66225 −0.831127 0.556082i \(-0.812304\pi\)
−0.831127 + 0.556082i \(0.812304\pi\)
\(674\) 0 0
\(675\) −3.23381 −0.124469
\(676\) 0 0
\(677\) −21.6325 −0.831406 −0.415703 0.909500i \(-0.636464\pi\)
−0.415703 + 0.909500i \(0.636464\pi\)
\(678\) 0 0
\(679\) 26.4844 1.01638
\(680\) 0 0
\(681\) 3.52699 0.135154
\(682\) 0 0
\(683\) 1.01316 0.0387675 0.0193838 0.999812i \(-0.493830\pi\)
0.0193838 + 0.999812i \(0.493830\pi\)
\(684\) 0 0
\(685\) −7.03836 −0.268922
\(686\) 0 0
\(687\) 10.1253 0.386304
\(688\) 0 0
\(689\) −38.6633 −1.47296
\(690\) 0 0
\(691\) 17.1815 0.653616 0.326808 0.945091i \(-0.394027\pi\)
0.326808 + 0.945091i \(0.394027\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −3.73184 −0.141557
\(696\) 0 0
\(697\) −38.3609 −1.45302
\(698\) 0 0
\(699\) −9.70192 −0.366960
\(700\) 0 0
\(701\) 17.4446 0.658875 0.329437 0.944177i \(-0.393141\pi\)
0.329437 + 0.944177i \(0.393141\pi\)
\(702\) 0 0
\(703\) 24.5868 0.927310
\(704\) 0 0
\(705\) 5.98900 0.225559
\(706\) 0 0
\(707\) −18.0226 −0.677809
\(708\) 0 0
\(709\) −17.0730 −0.641191 −0.320595 0.947216i \(-0.603883\pi\)
−0.320595 + 0.947216i \(0.603883\pi\)
\(710\) 0 0
\(711\) 8.74212 0.327855
\(712\) 0 0
\(713\) −0.291435 −0.0109143
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −0.675919 −0.0252427
\(718\) 0 0
\(719\) 25.2508 0.941695 0.470848 0.882215i \(-0.343948\pi\)
0.470848 + 0.882215i \(0.343948\pi\)
\(720\) 0 0
\(721\) −13.1324 −0.489075
\(722\) 0 0
\(723\) 5.90351 0.219554
\(724\) 0 0
\(725\) −4.42950 −0.164508
\(726\) 0 0
\(727\) 49.9360 1.85202 0.926012 0.377493i \(-0.123214\pi\)
0.926012 + 0.377493i \(0.123214\pi\)
\(728\) 0 0
\(729\) −11.0146 −0.407949
\(730\) 0 0
\(731\) 27.7870 1.02774
\(732\) 0 0
\(733\) 14.9515 0.552246 0.276123 0.961122i \(-0.410950\pi\)
0.276123 + 0.961122i \(0.410950\pi\)
\(734\) 0 0
\(735\) −2.09890 −0.0774190
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −8.68720 −0.319564 −0.159782 0.987152i \(-0.551079\pi\)
−0.159782 + 0.987152i \(0.551079\pi\)
\(740\) 0 0
\(741\) −18.3751 −0.675025
\(742\) 0 0
\(743\) 11.9221 0.437380 0.218690 0.975794i \(-0.429822\pi\)
0.218690 + 0.975794i \(0.429822\pi\)
\(744\) 0 0
\(745\) 12.2751 0.449724
\(746\) 0 0
\(747\) −31.7214 −1.16063
\(748\) 0 0
\(749\) 17.8056 0.650604
\(750\) 0 0
\(751\) −52.3281 −1.90948 −0.954739 0.297444i \(-0.903866\pi\)
−0.954739 + 0.297444i \(0.903866\pi\)
\(752\) 0 0
\(753\) −11.2145 −0.408678
\(754\) 0 0
\(755\) 5.80255 0.211176
\(756\) 0 0
\(757\) −45.0769 −1.63835 −0.819174 0.573545i \(-0.805568\pi\)
−0.819174 + 0.573545i \(0.805568\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 22.7150 0.823417 0.411708 0.911316i \(-0.364932\pi\)
0.411708 + 0.911316i \(0.364932\pi\)
\(762\) 0 0
\(763\) 34.1146 1.23503
\(764\) 0 0
\(765\) 8.51581 0.307890
\(766\) 0 0
\(767\) 39.3140 1.41954
\(768\) 0 0
\(769\) −10.5711 −0.381202 −0.190601 0.981668i \(-0.561044\pi\)
−0.190601 + 0.981668i \(0.561044\pi\)
\(770\) 0 0
\(771\) 7.65933 0.275844
\(772\) 0 0
\(773\) −8.71357 −0.313405 −0.156703 0.987646i \(-0.550086\pi\)
−0.156703 + 0.987646i \(0.550086\pi\)
\(774\) 0 0
\(775\) 0.396984 0.0142601
\(776\) 0 0
\(777\) 3.10654 0.111446
\(778\) 0 0
\(779\) 98.9747 3.54614
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 14.3242 0.511904
\(784\) 0 0
\(785\) −20.7356 −0.740085
\(786\) 0 0
\(787\) 52.0753 1.85629 0.928143 0.372225i \(-0.121405\pi\)
0.928143 + 0.372225i \(0.121405\pi\)
\(788\) 0 0
\(789\) 0.916124 0.0326149
\(790\) 0 0
\(791\) 23.4220 0.832789
\(792\) 0 0
\(793\) −33.4109 −1.18646
\(794\) 0 0
\(795\) 5.61051 0.198984
\(796\) 0 0
\(797\) 48.7161 1.72561 0.862806 0.505535i \(-0.168705\pi\)
0.862806 + 0.505535i \(0.168705\pi\)
\(798\) 0 0
\(799\) −33.4565 −1.18361
\(800\) 0 0
\(801\) 17.5560 0.620312
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −1.33692 −0.0471201
\(806\) 0 0
\(807\) 5.13781 0.180860
\(808\) 0 0
\(809\) −15.0005 −0.527389 −0.263695 0.964606i \(-0.584941\pi\)
−0.263695 + 0.964606i \(0.584941\pi\)
\(810\) 0 0
\(811\) −37.2387 −1.30763 −0.653814 0.756656i \(-0.726832\pi\)
−0.653814 + 0.756656i \(0.726832\pi\)
\(812\) 0 0
\(813\) 11.0460 0.387399
\(814\) 0 0
\(815\) 11.8323 0.414468
\(816\) 0 0
\(817\) −71.6932 −2.50823
\(818\) 0 0
\(819\) 19.1308 0.668484
\(820\) 0 0
\(821\) −17.9737 −0.627285 −0.313642 0.949541i \(-0.601549\pi\)
−0.313642 + 0.949541i \(0.601549\pi\)
\(822\) 0 0
\(823\) 18.3732 0.640449 0.320224 0.947342i \(-0.396242\pi\)
0.320224 + 0.947342i \(0.396242\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −38.6104 −1.34262 −0.671308 0.741178i \(-0.734267\pi\)
−0.671308 + 0.741178i \(0.734267\pi\)
\(828\) 0 0
\(829\) 52.7170 1.83094 0.915469 0.402388i \(-0.131820\pi\)
0.915469 + 0.402388i \(0.131820\pi\)
\(830\) 0 0
\(831\) 1.09799 0.0380889
\(832\) 0 0
\(833\) 11.7251 0.406252
\(834\) 0 0
\(835\) 18.1848 0.629312
\(836\) 0 0
\(837\) −1.28377 −0.0443736
\(838\) 0 0
\(839\) 25.8498 0.892435 0.446217 0.894925i \(-0.352771\pi\)
0.446217 + 0.894925i \(0.352771\pi\)
\(840\) 0 0
\(841\) −9.37951 −0.323431
\(842\) 0 0
\(843\) −1.24949 −0.0430349
\(844\) 0 0
\(845\) 2.41846 0.0831975
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 16.5193 0.566940
\(850\) 0 0
\(851\) −2.19779 −0.0753393
\(852\) 0 0
\(853\) −25.3912 −0.869380 −0.434690 0.900580i \(-0.643142\pi\)
−0.434690 + 0.900580i \(0.643142\pi\)
\(854\) 0 0
\(855\) −21.9716 −0.751413
\(856\) 0 0
\(857\) 4.42328 0.151096 0.0755482 0.997142i \(-0.475929\pi\)
0.0755482 + 0.997142i \(0.475929\pi\)
\(858\) 0 0
\(859\) 13.1491 0.448643 0.224321 0.974515i \(-0.427983\pi\)
0.224321 + 0.974515i \(0.427983\pi\)
\(860\) 0 0
\(861\) 12.5054 0.426184
\(862\) 0 0
\(863\) −15.4387 −0.525539 −0.262770 0.964859i \(-0.584636\pi\)
−0.262770 + 0.964859i \(0.584636\pi\)
\(864\) 0 0
\(865\) −10.2152 −0.347328
\(866\) 0 0
\(867\) −3.91335 −0.132904
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 4.36270 0.147824
\(872\) 0 0
\(873\) −38.9073 −1.31681
\(874\) 0 0
\(875\) 1.82111 0.0615647
\(876\) 0 0
\(877\) 7.02185 0.237111 0.118556 0.992947i \(-0.462174\pi\)
0.118556 + 0.992947i \(0.462174\pi\)
\(878\) 0 0
\(879\) 3.47516 0.117214
\(880\) 0 0
\(881\) 22.0522 0.742958 0.371479 0.928441i \(-0.378851\pi\)
0.371479 + 0.928441i \(0.378851\pi\)
\(882\) 0 0
\(883\) −12.0558 −0.405709 −0.202855 0.979209i \(-0.565022\pi\)
−0.202855 + 0.979209i \(0.565022\pi\)
\(884\) 0 0
\(885\) −5.70492 −0.191769
\(886\) 0 0
\(887\) 33.1393 1.11271 0.556354 0.830946i \(-0.312200\pi\)
0.556354 + 0.830946i \(0.312200\pi\)
\(888\) 0 0
\(889\) 5.18614 0.173938
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 86.3209 2.88862
\(894\) 0 0
\(895\) −1.72353 −0.0576113
\(896\) 0 0
\(897\) 1.64253 0.0548423
\(898\) 0 0
\(899\) −1.75844 −0.0586473
\(900\) 0 0
\(901\) −31.3421 −1.04416
\(902\) 0 0
\(903\) −9.05841 −0.301445
\(904\) 0 0
\(905\) 13.9521 0.463783
\(906\) 0 0
\(907\) 21.2434 0.705376 0.352688 0.935741i \(-0.385268\pi\)
0.352688 + 0.935741i \(0.385268\pi\)
\(908\) 0 0
\(909\) 26.4763 0.878165
\(910\) 0 0
\(911\) −47.9763 −1.58952 −0.794762 0.606921i \(-0.792404\pi\)
−0.794762 + 0.606921i \(0.792404\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 4.84831 0.160280
\(916\) 0 0
\(917\) 17.2898 0.570960
\(918\) 0 0
\(919\) 6.85646 0.226174 0.113087 0.993585i \(-0.463926\pi\)
0.113087 + 0.993585i \(0.463926\pi\)
\(920\) 0 0
\(921\) −8.69289 −0.286440
\(922\) 0 0
\(923\) 23.0561 0.758901
\(924\) 0 0
\(925\) 2.99377 0.0984344
\(926\) 0 0
\(927\) 19.2923 0.633642
\(928\) 0 0
\(929\) −40.2466 −1.32045 −0.660224 0.751069i \(-0.729538\pi\)
−0.660224 + 0.751069i \(0.729538\pi\)
\(930\) 0 0
\(931\) −30.2519 −0.991467
\(932\) 0 0
\(933\) 1.97480 0.0646519
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 47.4498 1.55012 0.775058 0.631890i \(-0.217721\pi\)
0.775058 + 0.631890i \(0.217721\pi\)
\(938\) 0 0
\(939\) 7.43387 0.242595
\(940\) 0 0
\(941\) 18.5398 0.604382 0.302191 0.953247i \(-0.402282\pi\)
0.302191 + 0.953247i \(0.402282\pi\)
\(942\) 0 0
\(943\) −8.84724 −0.288106
\(944\) 0 0
\(945\) −5.88911 −0.191573
\(946\) 0 0
\(947\) 57.2726 1.86111 0.930555 0.366153i \(-0.119325\pi\)
0.930555 + 0.366153i \(0.119325\pi\)
\(948\) 0 0
\(949\) −15.8474 −0.514430
\(950\) 0 0
\(951\) −17.2570 −0.559597
\(952\) 0 0
\(953\) 1.12981 0.0365983 0.0182991 0.999833i \(-0.494175\pi\)
0.0182991 + 0.999833i \(0.494175\pi\)
\(954\) 0 0
\(955\) −24.6929 −0.799044
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −12.8176 −0.413903
\(960\) 0 0
\(961\) −30.8424 −0.994916
\(962\) 0 0
\(963\) −26.1576 −0.842918
\(964\) 0 0
\(965\) 2.66652 0.0858383
\(966\) 0 0
\(967\) 54.1275 1.74062 0.870311 0.492502i \(-0.163917\pi\)
0.870311 + 0.492502i \(0.163917\pi\)
\(968\) 0 0
\(969\) −14.8956 −0.478515
\(970\) 0 0
\(971\) −20.1605 −0.646980 −0.323490 0.946232i \(-0.604856\pi\)
−0.323490 + 0.946232i \(0.604856\pi\)
\(972\) 0 0
\(973\) −6.79609 −0.217873
\(974\) 0 0
\(975\) −2.23740 −0.0716542
\(976\) 0 0
\(977\) −42.3633 −1.35532 −0.677662 0.735374i \(-0.737007\pi\)
−0.677662 + 0.735374i \(0.737007\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −50.1166 −1.60010
\(982\) 0 0
\(983\) −52.7171 −1.68141 −0.840706 0.541491i \(-0.817860\pi\)
−0.840706 + 0.541491i \(0.817860\pi\)
\(984\) 0 0
\(985\) 21.4277 0.682743
\(986\) 0 0
\(987\) 10.9066 0.347162
\(988\) 0 0
\(989\) 6.40858 0.203781
\(990\) 0 0
\(991\) −25.8605 −0.821487 −0.410744 0.911751i \(-0.634731\pi\)
−0.410744 + 0.911751i \(0.634731\pi\)
\(992\) 0 0
\(993\) −2.38851 −0.0757971
\(994\) 0 0
\(995\) 5.78067 0.183260
\(996\) 0 0
\(997\) 0.222068 0.00703296 0.00351648 0.999994i \(-0.498881\pi\)
0.00351648 + 0.999994i \(0.498881\pi\)
\(998\) 0 0
\(999\) −9.68126 −0.306301
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9680.2.a.df.1.5 8
4.3 odd 2 4840.2.a.bg.1.4 8
11.3 even 5 880.2.bo.k.801.2 16
11.4 even 5 880.2.bo.k.401.2 16
11.10 odd 2 9680.2.a.de.1.5 8
44.3 odd 10 440.2.y.d.361.3 16
44.15 odd 10 440.2.y.d.401.3 yes 16
44.43 even 2 4840.2.a.bh.1.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
440.2.y.d.361.3 16 44.3 odd 10
440.2.y.d.401.3 yes 16 44.15 odd 10
880.2.bo.k.401.2 16 11.4 even 5
880.2.bo.k.801.2 16 11.3 even 5
4840.2.a.bg.1.4 8 4.3 odd 2
4840.2.a.bh.1.4 8 44.43 even 2
9680.2.a.de.1.5 8 11.10 odd 2
9680.2.a.df.1.5 8 1.1 even 1 trivial