Properties

Label 440.2.y.d.361.3
Level $440$
Weight $2$
Character 440.361
Analytic conductor $3.513$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [440,2,Mod(81,440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(440, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("440.81");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 440 = 2^{3} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 440.y (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.51341768894\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 3 x^{15} + 14 x^{14} - 32 x^{13} + 141 x^{12} - 220 x^{11} + 1105 x^{10} - 1935 x^{9} + \cdots + 10000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 361.3
Root \(-0.460979 + 0.334921i\) of defining polynomial
Character \(\chi\) \(=\) 440.361
Dual form 440.2.y.d.401.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.460979 - 0.334921i) q^{3} +(0.309017 + 0.951057i) q^{5} +(1.47331 + 1.07042i) q^{7} +(-0.826721 + 2.54439i) q^{9} +(-1.20724 + 3.08910i) q^{11} +(-1.21340 + 3.73445i) q^{13} +(0.460979 + 0.334921i) q^{15} +(-0.983630 - 3.02730i) q^{17} +(6.64420 - 4.82729i) q^{19} +1.03767 q^{21} +0.734122 q^{23} +(-0.809017 + 0.587785i) q^{25} +(0.999301 + 3.07553i) q^{27} +(3.58354 + 2.60360i) q^{29} +(-0.122675 + 0.377554i) q^{31} +(0.478092 + 1.82834i) q^{33} +(-0.562754 + 1.73198i) q^{35} +(-2.42201 - 1.75969i) q^{37} +(0.691395 + 2.12789i) q^{39} +(-9.74982 + 7.08366i) q^{41} +8.72957 q^{43} -2.67533 q^{45} +(8.50332 - 6.17803i) q^{47} +(-1.13828 - 3.50328i) q^{49} +(-1.46734 - 1.06608i) q^{51} +(3.04271 - 9.36451i) q^{53} +(-3.31097 - 0.193570i) q^{55} +(1.44607 - 4.45056i) q^{57} +(-8.09998 - 5.88498i) q^{59} +(2.62936 + 8.09234i) q^{61} +(-3.94158 + 2.86373i) q^{63} -3.92663 q^{65} +1.11105 q^{67} +(0.338415 - 0.245873i) q^{69} +(1.81446 + 5.58434i) q^{71} +(-3.26510 - 2.37223i) q^{73} +(-0.176078 + 0.541913i) q^{75} +(-5.08528 + 3.25894i) q^{77} +(1.00977 - 3.10775i) q^{79} +(-5.00244 - 3.63448i) q^{81} +(-3.66402 - 11.2767i) q^{83} +(2.57518 - 1.87098i) q^{85} +2.52394 q^{87} -6.56220 q^{89} +(-5.78514 + 4.20315i) q^{91} +(0.0699002 + 0.215131i) q^{93} +(6.64420 + 4.82729i) q^{95} +(4.49404 - 13.8312i) q^{97} +(-6.86182 - 5.62552i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 3 q^{3} - 4 q^{5} + 8 q^{7} - 7 q^{9} - 7 q^{11} - 11 q^{13} - 3 q^{15} + 9 q^{17} - 2 q^{19} + 12 q^{21} + 20 q^{23} - 4 q^{25} - 9 q^{27} + q^{29} - 2 q^{31} - 32 q^{33} - 2 q^{35} - 16 q^{37}+ \cdots - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/440\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(221\) \(321\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.460979 0.334921i 0.266146 0.193367i −0.446706 0.894681i \(-0.647403\pi\)
0.712852 + 0.701314i \(0.247403\pi\)
\(4\) 0 0
\(5\) 0.309017 + 0.951057i 0.138197 + 0.425325i
\(6\) 0 0
\(7\) 1.47331 + 1.07042i 0.556858 + 0.404581i 0.830308 0.557305i \(-0.188165\pi\)
−0.273450 + 0.961886i \(0.588165\pi\)
\(8\) 0 0
\(9\) −0.826721 + 2.54439i −0.275574 + 0.848129i
\(10\) 0 0
\(11\) −1.20724 + 3.08910i −0.363997 + 0.931400i
\(12\) 0 0
\(13\) −1.21340 + 3.73445i −0.336536 + 1.03575i 0.629425 + 0.777061i \(0.283291\pi\)
−0.965961 + 0.258689i \(0.916709\pi\)
\(14\) 0 0
\(15\) 0.460979 + 0.334921i 0.119024 + 0.0864761i
\(16\) 0 0
\(17\) −0.983630 3.02730i −0.238565 0.734229i −0.996628 0.0820473i \(-0.973854\pi\)
0.758063 0.652181i \(-0.226146\pi\)
\(18\) 0 0
\(19\) 6.64420 4.82729i 1.52428 1.10746i 0.564971 0.825111i \(-0.308887\pi\)
0.959313 0.282346i \(-0.0911127\pi\)
\(20\) 0 0
\(21\) 1.03767 0.226438
\(22\) 0 0
\(23\) 0.734122 0.153075 0.0765376 0.997067i \(-0.475613\pi\)
0.0765376 + 0.997067i \(0.475613\pi\)
\(24\) 0 0
\(25\) −0.809017 + 0.587785i −0.161803 + 0.117557i
\(26\) 0 0
\(27\) 0.999301 + 3.07553i 0.192316 + 0.591887i
\(28\) 0 0
\(29\) 3.58354 + 2.60360i 0.665447 + 0.483476i 0.868498 0.495693i \(-0.165086\pi\)
−0.203051 + 0.979168i \(0.565086\pi\)
\(30\) 0 0
\(31\) −0.122675 + 0.377554i −0.0220330 + 0.0678107i −0.961468 0.274915i \(-0.911350\pi\)
0.939435 + 0.342726i \(0.111350\pi\)
\(32\) 0 0
\(33\) 0.478092 + 1.82834i 0.0832251 + 0.318273i
\(34\) 0 0
\(35\) −0.562754 + 1.73198i −0.0951227 + 0.292758i
\(36\) 0 0
\(37\) −2.42201 1.75969i −0.398175 0.289291i 0.370622 0.928784i \(-0.379145\pi\)
−0.768797 + 0.639492i \(0.779145\pi\)
\(38\) 0 0
\(39\) 0.691395 + 2.12789i 0.110712 + 0.340736i
\(40\) 0 0
\(41\) −9.74982 + 7.08366i −1.52267 + 1.10628i −0.562521 + 0.826783i \(0.690168\pi\)
−0.960146 + 0.279499i \(0.909832\pi\)
\(42\) 0 0
\(43\) 8.72957 1.33125 0.665624 0.746288i \(-0.268166\pi\)
0.665624 + 0.746288i \(0.268166\pi\)
\(44\) 0 0
\(45\) −2.67533 −0.398814
\(46\) 0 0
\(47\) 8.50332 6.17803i 1.24034 0.901158i 0.242716 0.970097i \(-0.421962\pi\)
0.997621 + 0.0689397i \(0.0219616\pi\)
\(48\) 0 0
\(49\) −1.13828 3.50328i −0.162612 0.500468i
\(50\) 0 0
\(51\) −1.46734 1.06608i −0.205468 0.149282i
\(52\) 0 0
\(53\) 3.04271 9.36451i 0.417949 1.28631i −0.491638 0.870800i \(-0.663602\pi\)
0.909587 0.415515i \(-0.136398\pi\)
\(54\) 0 0
\(55\) −3.31097 0.193570i −0.446451 0.0261009i
\(56\) 0 0
\(57\) 1.44607 4.45056i 0.191537 0.589491i
\(58\) 0 0
\(59\) −8.09998 5.88498i −1.05453 0.766159i −0.0814595 0.996677i \(-0.525958\pi\)
−0.973068 + 0.230517i \(0.925958\pi\)
\(60\) 0 0
\(61\) 2.62936 + 8.09234i 0.336655 + 1.03612i 0.965901 + 0.258911i \(0.0833637\pi\)
−0.629246 + 0.777206i \(0.716636\pi\)
\(62\) 0 0
\(63\) −3.94158 + 2.86373i −0.496592 + 0.360796i
\(64\) 0 0
\(65\) −3.92663 −0.487039
\(66\) 0 0
\(67\) 1.11105 0.135737 0.0678684 0.997694i \(-0.478380\pi\)
0.0678684 + 0.997694i \(0.478380\pi\)
\(68\) 0 0
\(69\) 0.338415 0.245873i 0.0407404 0.0295996i
\(70\) 0 0
\(71\) 1.81446 + 5.58434i 0.215337 + 0.662739i 0.999130 + 0.0417161i \(0.0132825\pi\)
−0.783793 + 0.621023i \(0.786717\pi\)
\(72\) 0 0
\(73\) −3.26510 2.37223i −0.382151 0.277649i 0.380081 0.924953i \(-0.375896\pi\)
−0.762232 + 0.647304i \(0.775896\pi\)
\(74\) 0 0
\(75\) −0.176078 + 0.541913i −0.0203318 + 0.0625747i
\(76\) 0 0
\(77\) −5.08528 + 3.25894i −0.579522 + 0.371391i
\(78\) 0 0
\(79\) 1.00977 3.10775i 0.113608 0.349649i −0.878046 0.478576i \(-0.841153\pi\)
0.991654 + 0.128927i \(0.0411532\pi\)
\(80\) 0 0
\(81\) −5.00244 3.63448i −0.555826 0.403832i
\(82\) 0 0
\(83\) −3.66402 11.2767i −0.402179 1.23778i −0.923228 0.384252i \(-0.874459\pi\)
0.521050 0.853526i \(-0.325541\pi\)
\(84\) 0 0
\(85\) 2.57518 1.87098i 0.279317 0.202936i
\(86\) 0 0
\(87\) 2.52394 0.270594
\(88\) 0 0
\(89\) −6.56220 −0.695592 −0.347796 0.937570i \(-0.613070\pi\)
−0.347796 + 0.937570i \(0.613070\pi\)
\(90\) 0 0
\(91\) −5.78514 + 4.20315i −0.606448 + 0.440610i
\(92\) 0 0
\(93\) 0.0699002 + 0.215131i 0.00724832 + 0.0223080i
\(94\) 0 0
\(95\) 6.64420 + 4.82729i 0.681680 + 0.495270i
\(96\) 0 0
\(97\) 4.49404 13.8312i 0.456300 1.40435i −0.413301 0.910594i \(-0.635624\pi\)
0.869602 0.493754i \(-0.164376\pi\)
\(98\) 0 0
\(99\) −6.86182 5.62552i −0.689639 0.565386i
\(100\) 0 0
\(101\) −3.05818 + 9.41212i −0.304301 + 0.936541i 0.675637 + 0.737235i \(0.263869\pi\)
−0.979937 + 0.199306i \(0.936131\pi\)
\(102\) 0 0
\(103\) −5.83397 4.23863i −0.574838 0.417645i 0.262021 0.965062i \(-0.415611\pi\)
−0.836860 + 0.547418i \(0.815611\pi\)
\(104\) 0 0
\(105\) 0.320658 + 0.986882i 0.0312930 + 0.0963099i
\(106\) 0 0
\(107\) 7.91005 5.74699i 0.764693 0.555582i −0.135653 0.990756i \(-0.543313\pi\)
0.900346 + 0.435174i \(0.143313\pi\)
\(108\) 0 0
\(109\) 18.7329 1.79429 0.897143 0.441741i \(-0.145639\pi\)
0.897143 + 0.441741i \(0.145639\pi\)
\(110\) 0 0
\(111\) −1.70585 −0.161912
\(112\) 0 0
\(113\) −10.4051 + 7.55973i −0.978827 + 0.711159i −0.957446 0.288612i \(-0.906806\pi\)
−0.0213805 + 0.999771i \(0.506806\pi\)
\(114\) 0 0
\(115\) 0.226856 + 0.698192i 0.0211545 + 0.0651067i
\(116\) 0 0
\(117\) −8.49875 6.17470i −0.785710 0.570851i
\(118\) 0 0
\(119\) 1.79130 5.51305i 0.164208 0.505380i
\(120\) 0 0
\(121\) −8.08513 7.45859i −0.735012 0.678054i
\(122\) 0 0
\(123\) −2.12200 + 6.53083i −0.191334 + 0.588866i
\(124\) 0 0
\(125\) −0.809017 0.587785i −0.0723607 0.0525731i
\(126\) 0 0
\(127\) −0.880017 2.70841i −0.0780889 0.240333i 0.904390 0.426707i \(-0.140326\pi\)
−0.982479 + 0.186374i \(0.940326\pi\)
\(128\) 0 0
\(129\) 4.02415 2.92371i 0.354306 0.257419i
\(130\) 0 0
\(131\) −9.49411 −0.829504 −0.414752 0.909934i \(-0.636132\pi\)
−0.414752 + 0.909934i \(0.636132\pi\)
\(132\) 0 0
\(133\) 14.9562 1.29687
\(134\) 0 0
\(135\) −2.61620 + 1.90078i −0.225167 + 0.163593i
\(136\) 0 0
\(137\) −2.17497 6.69388i −0.185821 0.571897i 0.814141 0.580667i \(-0.197208\pi\)
−0.999962 + 0.00877048i \(0.997208\pi\)
\(138\) 0 0
\(139\) −3.01913 2.19352i −0.256079 0.186052i 0.452338 0.891847i \(-0.350590\pi\)
−0.708417 + 0.705795i \(0.750590\pi\)
\(140\) 0 0
\(141\) 1.85070 5.69588i 0.155857 0.479679i
\(142\) 0 0
\(143\) −10.0712 8.25670i −0.842200 0.690460i
\(144\) 0 0
\(145\) −1.36879 + 4.21271i −0.113672 + 0.349846i
\(146\) 0 0
\(147\) −1.69804 1.23370i −0.140052 0.101754i
\(148\) 0 0
\(149\) 3.79320 + 11.6743i 0.310751 + 0.956394i 0.977468 + 0.211083i \(0.0676991\pi\)
−0.666717 + 0.745311i \(0.732301\pi\)
\(150\) 0 0
\(151\) 4.69436 3.41065i 0.382022 0.277555i −0.380157 0.924922i \(-0.624130\pi\)
0.762178 + 0.647367i \(0.224130\pi\)
\(152\) 0 0
\(153\) 8.51581 0.688463
\(154\) 0 0
\(155\) −0.396984 −0.0318865
\(156\) 0 0
\(157\) 16.7755 12.1881i 1.33883 0.972715i 0.339341 0.940664i \(-0.389796\pi\)
0.999486 0.0320511i \(-0.0102039\pi\)
\(158\) 0 0
\(159\) −1.73374 5.33591i −0.137495 0.423165i
\(160\) 0 0
\(161\) 1.08159 + 0.785820i 0.0852411 + 0.0619313i
\(162\) 0 0
\(163\) −3.65638 + 11.2532i −0.286390 + 0.881418i 0.699588 + 0.714546i \(0.253367\pi\)
−0.985979 + 0.166872i \(0.946633\pi\)
\(164\) 0 0
\(165\) −1.59112 + 1.01968i −0.123868 + 0.0793821i
\(166\) 0 0
\(167\) −5.61942 + 17.2948i −0.434844 + 1.33831i 0.458402 + 0.888745i \(0.348422\pi\)
−0.893246 + 0.449568i \(0.851578\pi\)
\(168\) 0 0
\(169\) −1.95657 1.42153i −0.150506 0.109349i
\(170\) 0 0
\(171\) 6.78960 + 20.8962i 0.519214 + 1.59798i
\(172\) 0 0
\(173\) 8.26429 6.00436i 0.628322 0.456503i −0.227496 0.973779i \(-0.573054\pi\)
0.855819 + 0.517276i \(0.173054\pi\)
\(174\) 0 0
\(175\) −1.82111 −0.137663
\(176\) 0 0
\(177\) −5.70492 −0.428808
\(178\) 0 0
\(179\) −1.39437 + 1.01307i −0.104220 + 0.0757202i −0.638675 0.769477i \(-0.720517\pi\)
0.534455 + 0.845197i \(0.320517\pi\)
\(180\) 0 0
\(181\) 4.31143 + 13.2692i 0.320466 + 0.986294i 0.973446 + 0.228918i \(0.0735188\pi\)
−0.652979 + 0.757376i \(0.726481\pi\)
\(182\) 0 0
\(183\) 3.92237 + 2.84977i 0.289950 + 0.210661i
\(184\) 0 0
\(185\) 0.925124 2.84724i 0.0680165 0.209333i
\(186\) 0 0
\(187\) 10.5391 + 0.616151i 0.770698 + 0.0450574i
\(188\) 0 0
\(189\) −1.81984 + 5.60088i −0.132374 + 0.407404i
\(190\) 0 0
\(191\) −19.9770 14.5141i −1.44548 1.05021i −0.986860 0.161576i \(-0.948342\pi\)
−0.458625 0.888630i \(-0.651658\pi\)
\(192\) 0 0
\(193\) 0.824000 + 2.53601i 0.0593128 + 0.182546i 0.976323 0.216318i \(-0.0694047\pi\)
−0.917010 + 0.398864i \(0.869405\pi\)
\(194\) 0 0
\(195\) −1.81009 + 1.31511i −0.129624 + 0.0941771i
\(196\) 0 0
\(197\) 21.4277 1.52666 0.763330 0.646009i \(-0.223563\pi\)
0.763330 + 0.646009i \(0.223563\pi\)
\(198\) 0 0
\(199\) −5.78067 −0.409781 −0.204891 0.978785i \(-0.565684\pi\)
−0.204891 + 0.978785i \(0.565684\pi\)
\(200\) 0 0
\(201\) 0.512172 0.372115i 0.0361258 0.0262469i
\(202\) 0 0
\(203\) 2.49272 + 7.67180i 0.174955 + 0.538455i
\(204\) 0 0
\(205\) −9.74982 7.08366i −0.680957 0.494744i
\(206\) 0 0
\(207\) −0.606915 + 1.86789i −0.0421835 + 0.129827i
\(208\) 0 0
\(209\) 6.89085 + 26.3523i 0.476650 + 1.82283i
\(210\) 0 0
\(211\) −3.57755 + 11.0106i −0.246288 + 0.757998i 0.749134 + 0.662419i \(0.230470\pi\)
−0.995422 + 0.0955786i \(0.969530\pi\)
\(212\) 0 0
\(213\) 2.70674 + 1.96656i 0.185463 + 0.134746i
\(214\) 0 0
\(215\) 2.69759 + 8.30232i 0.183974 + 0.566213i
\(216\) 0 0
\(217\) −0.584880 + 0.424940i −0.0397042 + 0.0288468i
\(218\) 0 0
\(219\) −2.29965 −0.155396
\(220\) 0 0
\(221\) 12.4988 0.840763
\(222\) 0 0
\(223\) 9.57136 6.95400i 0.640945 0.465674i −0.219229 0.975673i \(-0.570354\pi\)
0.860175 + 0.509999i \(0.170354\pi\)
\(224\) 0 0
\(225\) −0.826721 2.54439i −0.0551148 0.169626i
\(226\) 0 0
\(227\) 5.00770 + 3.63831i 0.332373 + 0.241483i 0.741437 0.671023i \(-0.234145\pi\)
−0.409064 + 0.912506i \(0.634145\pi\)
\(228\) 0 0
\(229\) 5.49119 16.9001i 0.362868 1.11679i −0.588437 0.808543i \(-0.700257\pi\)
0.951305 0.308250i \(-0.0997434\pi\)
\(230\) 0 0
\(231\) −1.25272 + 3.20547i −0.0824228 + 0.210904i
\(232\) 0 0
\(233\) −5.26159 + 16.1935i −0.344698 + 1.06087i 0.617047 + 0.786926i \(0.288329\pi\)
−0.961745 + 0.273946i \(0.911671\pi\)
\(234\) 0 0
\(235\) 8.50332 + 6.17803i 0.554696 + 0.403010i
\(236\) 0 0
\(237\) −0.575368 1.77080i −0.0373741 0.115026i
\(238\) 0 0
\(239\) −0.959686 + 0.697253i −0.0620769 + 0.0451015i −0.618391 0.785871i \(-0.712215\pi\)
0.556314 + 0.830972i \(0.312215\pi\)
\(240\) 0 0
\(241\) 10.3606 0.667388 0.333694 0.942682i \(-0.391705\pi\)
0.333694 + 0.942682i \(0.391705\pi\)
\(242\) 0 0
\(243\) −13.2247 −0.848365
\(244\) 0 0
\(245\) 2.98007 2.16514i 0.190389 0.138326i
\(246\) 0 0
\(247\) 9.96524 + 30.6699i 0.634073 + 1.95148i
\(248\) 0 0
\(249\) −5.46583 3.97116i −0.346383 0.251662i
\(250\) 0 0
\(251\) 6.08188 18.7181i 0.383885 1.18148i −0.553401 0.832915i \(-0.686670\pi\)
0.937286 0.348561i \(-0.113330\pi\)
\(252\) 0 0
\(253\) −0.886264 + 2.26778i −0.0557189 + 0.142574i
\(254\) 0 0
\(255\) 0.560473 1.72496i 0.0350982 0.108021i
\(256\) 0 0
\(257\) −10.8749 7.90107i −0.678357 0.492855i 0.194455 0.980911i \(-0.437706\pi\)
−0.872812 + 0.488056i \(0.837706\pi\)
\(258\) 0 0
\(259\) −1.68475 5.18513i −0.104685 0.322188i
\(260\) 0 0
\(261\) −9.58715 + 6.96547i −0.593430 + 0.431152i
\(262\) 0 0
\(263\) −1.60780 −0.0991410 −0.0495705 0.998771i \(-0.515785\pi\)
−0.0495705 + 0.998771i \(0.515785\pi\)
\(264\) 0 0
\(265\) 9.84643 0.604861
\(266\) 0 0
\(267\) −3.02503 + 2.19782i −0.185129 + 0.134504i
\(268\) 0 0
\(269\) 2.78636 + 8.57554i 0.169887 + 0.522860i 0.999363 0.0356829i \(-0.0113606\pi\)
−0.829476 + 0.558543i \(0.811361\pi\)
\(270\) 0 0
\(271\) 15.6833 + 11.3946i 0.952694 + 0.692173i 0.951443 0.307826i \(-0.0996016\pi\)
0.00125153 + 0.999999i \(0.499602\pi\)
\(272\) 0 0
\(273\) −1.25911 + 3.87513i −0.0762045 + 0.234533i
\(274\) 0 0
\(275\) −0.839051 3.20874i −0.0505967 0.193494i
\(276\) 0 0
\(277\) 0.595467 1.83266i 0.0357782 0.110114i −0.931572 0.363556i \(-0.881563\pi\)
0.967351 + 0.253442i \(0.0815626\pi\)
\(278\) 0 0
\(279\) −0.859226 0.624264i −0.0514405 0.0373737i
\(280\) 0 0
\(281\) −0.677631 2.08553i −0.0404241 0.124413i 0.928808 0.370562i \(-0.120835\pi\)
−0.969232 + 0.246149i \(0.920835\pi\)
\(282\) 0 0
\(283\) 23.4544 17.0407i 1.39422 1.01296i 0.398835 0.917023i \(-0.369415\pi\)
0.995387 0.0959389i \(-0.0305853\pi\)
\(284\) 0 0
\(285\) 4.67959 0.277195
\(286\) 0 0
\(287\) −21.9470 −1.29549
\(288\) 0 0
\(289\) 5.55626 4.03686i 0.326839 0.237462i
\(290\) 0 0
\(291\) −2.56071 7.88105i −0.150111 0.461995i
\(292\) 0 0
\(293\) −4.93411 3.58484i −0.288254 0.209429i 0.434256 0.900790i \(-0.357011\pi\)
−0.722510 + 0.691361i \(0.757011\pi\)
\(294\) 0 0
\(295\) 3.09392 9.52210i 0.180135 0.554398i
\(296\) 0 0
\(297\) −10.7070 0.625967i −0.621286 0.0363223i
\(298\) 0 0
\(299\) −0.890782 + 2.74154i −0.0515152 + 0.158548i
\(300\) 0 0
\(301\) 12.8613 + 9.34432i 0.741316 + 0.538597i
\(302\) 0 0
\(303\) 1.74256 + 5.36304i 0.100107 + 0.308098i
\(304\) 0 0
\(305\) −6.88375 + 5.00134i −0.394162 + 0.286376i
\(306\) 0 0
\(307\) 15.2560 0.870706 0.435353 0.900260i \(-0.356624\pi\)
0.435353 + 0.900260i \(0.356624\pi\)
\(308\) 0 0
\(309\) −4.10894 −0.233750
\(310\) 0 0
\(311\) 2.80386 2.03712i 0.158992 0.115515i −0.505444 0.862859i \(-0.668671\pi\)
0.664437 + 0.747344i \(0.268671\pi\)
\(312\) 0 0
\(313\) 4.03157 + 12.4079i 0.227878 + 0.701336i 0.997987 + 0.0634232i \(0.0202018\pi\)
−0.770109 + 0.637912i \(0.779798\pi\)
\(314\) 0 0
\(315\) −3.94158 2.86373i −0.222083 0.161353i
\(316\) 0 0
\(317\) −9.35890 + 28.8037i −0.525648 + 1.61778i 0.237382 + 0.971416i \(0.423711\pi\)
−0.763030 + 0.646363i \(0.776289\pi\)
\(318\) 0 0
\(319\) −12.3690 + 7.92677i −0.692530 + 0.443814i
\(320\) 0 0
\(321\) 1.72158 5.29848i 0.0960892 0.295732i
\(322\) 0 0
\(323\) −21.1491 15.3657i −1.17677 0.854972i
\(324\) 0 0
\(325\) −1.21340 3.73445i −0.0673071 0.207150i
\(326\) 0 0
\(327\) 8.63546 6.27403i 0.477542 0.346955i
\(328\) 0 0
\(329\) 19.1411 1.05528
\(330\) 0 0
\(331\) 4.19183 0.230404 0.115202 0.993342i \(-0.463248\pi\)
0.115202 + 0.993342i \(0.463248\pi\)
\(332\) 0 0
\(333\) 6.47966 4.70775i 0.355083 0.257983i
\(334\) 0 0
\(335\) 0.343334 + 1.05667i 0.0187584 + 0.0577323i
\(336\) 0 0
\(337\) −21.4674 15.5970i −1.16940 0.849621i −0.178466 0.983946i \(-0.557113\pi\)
−0.990937 + 0.134325i \(0.957113\pi\)
\(338\) 0 0
\(339\) −2.26461 + 6.96975i −0.122997 + 0.378545i
\(340\) 0 0
\(341\) −1.01821 0.834755i −0.0551389 0.0452045i
\(342\) 0 0
\(343\) 6.01221 18.5037i 0.324629 0.999105i
\(344\) 0 0
\(345\) 0.338415 + 0.245873i 0.0182196 + 0.0132373i
\(346\) 0 0
\(347\) 0.352069 + 1.08356i 0.0189001 + 0.0581684i 0.960062 0.279788i \(-0.0902643\pi\)
−0.941162 + 0.337957i \(0.890264\pi\)
\(348\) 0 0
\(349\) −13.1401 + 9.54687i −0.703375 + 0.511032i −0.881030 0.473061i \(-0.843149\pi\)
0.177654 + 0.984093i \(0.443149\pi\)
\(350\) 0 0
\(351\) −12.6980 −0.677768
\(352\) 0 0
\(353\) −0.432655 −0.0230279 −0.0115140 0.999934i \(-0.503665\pi\)
−0.0115140 + 0.999934i \(0.503665\pi\)
\(354\) 0 0
\(355\) −4.75032 + 3.45131i −0.252121 + 0.183176i
\(356\) 0 0
\(357\) −1.02068 3.14134i −0.0540203 0.166257i
\(358\) 0 0
\(359\) −0.0790542 0.0574363i −0.00417232 0.00303137i 0.585697 0.810530i \(-0.300821\pi\)
−0.589869 + 0.807499i \(0.700821\pi\)
\(360\) 0 0
\(361\) 14.9713 46.0769i 0.787963 2.42510i
\(362\) 0 0
\(363\) −6.22511 0.730376i −0.326734 0.0383348i
\(364\) 0 0
\(365\) 1.24716 3.83835i 0.0652792 0.200909i
\(366\) 0 0
\(367\) −11.6423 8.45860i −0.607721 0.441535i 0.240890 0.970552i \(-0.422561\pi\)
−0.848611 + 0.529017i \(0.822561\pi\)
\(368\) 0 0
\(369\) −9.96319 30.6635i −0.518663 1.59628i
\(370\) 0 0
\(371\) 14.5068 10.5398i 0.753157 0.547200i
\(372\) 0 0
\(373\) −13.8834 −0.718855 −0.359428 0.933173i \(-0.617028\pi\)
−0.359428 + 0.933173i \(0.617028\pi\)
\(374\) 0 0
\(375\) −0.569801 −0.0294244
\(376\) 0 0
\(377\) −14.0713 + 10.2234i −0.724707 + 0.526530i
\(378\) 0 0
\(379\) 5.50989 + 16.9577i 0.283024 + 0.871059i 0.986984 + 0.160819i \(0.0514135\pi\)
−0.703960 + 0.710240i \(0.748586\pi\)
\(380\) 0 0
\(381\) −1.31277 0.953785i −0.0672554 0.0488639i
\(382\) 0 0
\(383\) 2.59468 7.98559i 0.132582 0.408045i −0.862624 0.505845i \(-0.831181\pi\)
0.995206 + 0.0978004i \(0.0311807\pi\)
\(384\) 0 0
\(385\) −4.67088 3.82932i −0.238050 0.195160i
\(386\) 0 0
\(387\) −7.21693 + 22.2114i −0.366857 + 1.12907i
\(388\) 0 0
\(389\) 6.38833 + 4.64140i 0.323901 + 0.235328i 0.737838 0.674977i \(-0.235847\pi\)
−0.413937 + 0.910306i \(0.635847\pi\)
\(390\) 0 0
\(391\) −0.722105 2.22241i −0.0365184 0.112392i
\(392\) 0 0
\(393\) −4.37658 + 3.17977i −0.220769 + 0.160398i
\(394\) 0 0
\(395\) 3.26768 0.164415
\(396\) 0 0
\(397\) −36.2170 −1.81768 −0.908840 0.417146i \(-0.863030\pi\)
−0.908840 + 0.417146i \(0.863030\pi\)
\(398\) 0 0
\(399\) 6.89448 5.00914i 0.345156 0.250770i
\(400\) 0 0
\(401\) −3.85877 11.8761i −0.192698 0.593062i −0.999996 0.00291831i \(-0.999071\pi\)
0.807298 0.590144i \(-0.200929\pi\)
\(402\) 0 0
\(403\) −1.26110 0.916246i −0.0628201 0.0456415i
\(404\) 0 0
\(405\) 1.91076 5.88072i 0.0949465 0.292215i
\(406\) 0 0
\(407\) 8.35982 5.35746i 0.414381 0.265559i
\(408\) 0 0
\(409\) −2.85780 + 8.79540i −0.141309 + 0.434905i −0.996518 0.0833789i \(-0.973429\pi\)
0.855209 + 0.518284i \(0.173429\pi\)
\(410\) 0 0
\(411\) −3.24453 2.35729i −0.160041 0.116277i
\(412\) 0 0
\(413\) −5.63436 17.3408i −0.277249 0.853284i
\(414\) 0 0
\(415\) 9.59253 6.96938i 0.470879 0.342114i
\(416\) 0 0
\(417\) −2.12641 −0.104131
\(418\) 0 0
\(419\) 28.9794 1.41574 0.707869 0.706344i \(-0.249657\pi\)
0.707869 + 0.706344i \(0.249657\pi\)
\(420\) 0 0
\(421\) −18.4605 + 13.4124i −0.899711 + 0.653678i −0.938392 0.345574i \(-0.887684\pi\)
0.0386810 + 0.999252i \(0.487684\pi\)
\(422\) 0 0
\(423\) 8.68941 + 26.7432i 0.422494 + 1.30030i
\(424\) 0 0
\(425\) 2.57518 + 1.87098i 0.124914 + 0.0907556i
\(426\) 0 0
\(427\) −4.78835 + 14.7370i −0.231724 + 0.713174i
\(428\) 0 0
\(429\) −7.40797 0.433093i −0.357660 0.0209099i
\(430\) 0 0
\(431\) 7.91413 24.3572i 0.381210 1.17324i −0.557982 0.829853i \(-0.688424\pi\)
0.939192 0.343391i \(-0.111576\pi\)
\(432\) 0 0
\(433\) −2.13108 1.54832i −0.102413 0.0744075i 0.535400 0.844599i \(-0.320161\pi\)
−0.637813 + 0.770191i \(0.720161\pi\)
\(434\) 0 0
\(435\) 0.779939 + 2.40040i 0.0373952 + 0.115091i
\(436\) 0 0
\(437\) 4.87766 3.54382i 0.233330 0.169524i
\(438\) 0 0
\(439\) −7.16551 −0.341991 −0.170996 0.985272i \(-0.554698\pi\)
−0.170996 + 0.985272i \(0.554698\pi\)
\(440\) 0 0
\(441\) 9.85473 0.469273
\(442\) 0 0
\(443\) −12.4489 + 9.04467i −0.591466 + 0.429725i −0.842839 0.538165i \(-0.819118\pi\)
0.251374 + 0.967890i \(0.419118\pi\)
\(444\) 0 0
\(445\) −2.02783 6.24102i −0.0961284 0.295853i
\(446\) 0 0
\(447\) 5.65854 + 4.11117i 0.267640 + 0.194452i
\(448\) 0 0
\(449\) −1.43363 + 4.41226i −0.0676572 + 0.208228i −0.979169 0.203046i \(-0.934916\pi\)
0.911512 + 0.411274i \(0.134916\pi\)
\(450\) 0 0
\(451\) −10.1118 38.6699i −0.476145 1.82090i
\(452\) 0 0
\(453\) 1.02170 3.14448i 0.0480038 0.147740i
\(454\) 0 0
\(455\) −5.78514 4.20315i −0.271212 0.197047i
\(456\) 0 0
\(457\) 3.97445 + 12.2321i 0.185917 + 0.572193i 0.999963 0.00860706i \(-0.00273975\pi\)
−0.814046 + 0.580800i \(0.802740\pi\)
\(458\) 0 0
\(459\) 8.32762 6.05037i 0.388700 0.282407i
\(460\) 0 0
\(461\) −19.6157 −0.913594 −0.456797 0.889571i \(-0.651003\pi\)
−0.456797 + 0.889571i \(0.651003\pi\)
\(462\) 0 0
\(463\) −3.15807 −0.146768 −0.0733839 0.997304i \(-0.523380\pi\)
−0.0733839 + 0.997304i \(0.523380\pi\)
\(464\) 0 0
\(465\) −0.183001 + 0.132958i −0.00848648 + 0.00616579i
\(466\) 0 0
\(467\) −8.94891 27.5419i −0.414106 1.27449i −0.913048 0.407852i \(-0.866278\pi\)
0.498942 0.866635i \(-0.333722\pi\)
\(468\) 0 0
\(469\) 1.63692 + 1.18929i 0.0755861 + 0.0549165i
\(470\) 0 0
\(471\) 3.65109 11.2369i 0.168233 0.517769i
\(472\) 0 0
\(473\) −10.5387 + 26.9666i −0.484570 + 1.23992i
\(474\) 0 0
\(475\) −2.53786 + 7.81072i −0.116445 + 0.358381i
\(476\) 0 0
\(477\) 21.3115 + 15.4837i 0.975785 + 0.708949i
\(478\) 0 0
\(479\) −6.56042 20.1909i −0.299753 0.922545i −0.981583 0.191035i \(-0.938816\pi\)
0.681830 0.731510i \(-0.261184\pi\)
\(480\) 0 0
\(481\) 9.51034 6.90966i 0.433634 0.315054i
\(482\) 0 0
\(483\) 0.761777 0.0346620
\(484\) 0 0
\(485\) 14.5430 0.660364
\(486\) 0 0
\(487\) 11.3077 8.21556i 0.512403 0.372283i −0.301331 0.953519i \(-0.597431\pi\)
0.813734 + 0.581237i \(0.197431\pi\)
\(488\) 0 0
\(489\) 2.08341 + 6.41208i 0.0942151 + 0.289964i
\(490\) 0 0
\(491\) 13.8304 + 10.0484i 0.624158 + 0.453477i 0.854371 0.519663i \(-0.173943\pi\)
−0.230214 + 0.973140i \(0.573943\pi\)
\(492\) 0 0
\(493\) 4.35699 13.4094i 0.196229 0.603931i
\(494\) 0 0
\(495\) 3.22977 8.26436i 0.145167 0.371456i
\(496\) 0 0
\(497\) −3.30433 + 10.1697i −0.148219 + 0.456173i
\(498\) 0 0
\(499\) −33.1294 24.0699i −1.48307 1.07752i −0.976550 0.215291i \(-0.930930\pi\)
−0.506524 0.862226i \(-0.669070\pi\)
\(500\) 0 0
\(501\) 3.20195 + 9.85460i 0.143053 + 0.440271i
\(502\) 0 0
\(503\) −10.8723 + 7.89920i −0.484772 + 0.352208i −0.803170 0.595749i \(-0.796855\pi\)
0.318398 + 0.947957i \(0.396855\pi\)
\(504\) 0 0
\(505\) −9.89649 −0.440388
\(506\) 0 0
\(507\) −1.37804 −0.0612009
\(508\) 0 0
\(509\) −14.8408 + 10.7825i −0.657807 + 0.477925i −0.865922 0.500180i \(-0.833267\pi\)
0.208115 + 0.978104i \(0.433267\pi\)
\(510\) 0 0
\(511\) −2.27121 6.99006i −0.100472 0.309222i
\(512\) 0 0
\(513\) 21.4861 + 15.6105i 0.948633 + 0.689222i
\(514\) 0 0
\(515\) 2.22838 6.85825i 0.0981941 0.302210i
\(516\) 0 0
\(517\) 8.81900 + 33.7260i 0.387859 + 1.48327i
\(518\) 0 0
\(519\) 1.79868 5.53576i 0.0789532 0.242993i
\(520\) 0 0
\(521\) −2.32521 1.68937i −0.101870 0.0740125i 0.535684 0.844418i \(-0.320054\pi\)
−0.637554 + 0.770406i \(0.720054\pi\)
\(522\) 0 0
\(523\) 11.6495 + 35.8535i 0.509398 + 1.56776i 0.793250 + 0.608896i \(0.208387\pi\)
−0.283852 + 0.958868i \(0.591613\pi\)
\(524\) 0 0
\(525\) −0.839492 + 0.609927i −0.0366385 + 0.0266194i
\(526\) 0 0
\(527\) 1.26364 0.0550449
\(528\) 0 0
\(529\) −22.4611 −0.976568
\(530\) 0 0
\(531\) 21.6701 15.7442i 0.940402 0.683242i
\(532\) 0 0
\(533\) −14.6232 45.0055i −0.633400 1.94941i
\(534\) 0 0
\(535\) 7.91005 + 5.74699i 0.341981 + 0.248464i
\(536\) 0 0
\(537\) −0.303476 + 0.934005i −0.0130960 + 0.0403053i
\(538\) 0 0
\(539\) 12.1962 + 0.713027i 0.525326 + 0.0307122i
\(540\) 0 0
\(541\) 3.87844 11.9366i 0.166747 0.513195i −0.832414 0.554155i \(-0.813042\pi\)
0.999161 + 0.0409599i \(0.0130416\pi\)
\(542\) 0 0
\(543\) 6.43162 + 4.67284i 0.276007 + 0.200531i
\(544\) 0 0
\(545\) 5.78878 + 17.8160i 0.247964 + 0.763155i
\(546\) 0 0
\(547\) −28.7450 + 20.8844i −1.22905 + 0.892954i −0.996818 0.0797073i \(-0.974601\pi\)
−0.232228 + 0.972661i \(0.574601\pi\)
\(548\) 0 0
\(549\) −22.7638 −0.971534
\(550\) 0 0
\(551\) 36.3781 1.54976
\(552\) 0 0
\(553\) 4.81430 3.49779i 0.204725 0.148741i
\(554\) 0 0
\(555\) −0.527137 1.62236i −0.0223757 0.0688654i
\(556\) 0 0
\(557\) −32.2328 23.4185i −1.36575 0.992272i −0.998056 0.0623235i \(-0.980149\pi\)
−0.367689 0.929949i \(-0.619851\pi\)
\(558\) 0 0
\(559\) −10.5924 + 32.6002i −0.448012 + 1.37884i
\(560\) 0 0
\(561\) 5.06468 3.24574i 0.213831 0.137035i
\(562\) 0 0
\(563\) 9.96989 30.6842i 0.420181 1.29318i −0.487354 0.873205i \(-0.662038\pi\)
0.907534 0.419978i \(-0.137962\pi\)
\(564\) 0 0
\(565\) −10.4051 7.55973i −0.437745 0.318040i
\(566\) 0 0
\(567\) −3.47970 10.7094i −0.146134 0.449754i
\(568\) 0 0
\(569\) −14.4777 + 10.5187i −0.606938 + 0.440966i −0.848335 0.529460i \(-0.822394\pi\)
0.241397 + 0.970426i \(0.422394\pi\)
\(570\) 0 0
\(571\) −11.9435 −0.499819 −0.249910 0.968269i \(-0.580401\pi\)
−0.249910 + 0.968269i \(0.580401\pi\)
\(572\) 0 0
\(573\) −14.0701 −0.587785
\(574\) 0 0
\(575\) −0.593918 + 0.431506i −0.0247681 + 0.0179951i
\(576\) 0 0
\(577\) 3.69125 + 11.3605i 0.153669 + 0.472944i 0.998024 0.0628407i \(-0.0200160\pi\)
−0.844355 + 0.535784i \(0.820016\pi\)
\(578\) 0 0
\(579\) 1.22921 + 0.893073i 0.0510842 + 0.0371148i
\(580\) 0 0
\(581\) 6.67258 20.5361i 0.276825 0.851981i
\(582\) 0 0
\(583\) 25.2547 + 20.7045i 1.04594 + 0.857493i
\(584\) 0 0
\(585\) 3.24623 9.99088i 0.134215 0.413072i
\(586\) 0 0
\(587\) −12.8231 9.31652i −0.529265 0.384534i 0.290817 0.956779i \(-0.406073\pi\)
−0.820083 + 0.572245i \(0.806073\pi\)
\(588\) 0 0
\(589\) 1.00749 + 3.10073i 0.0415129 + 0.127763i
\(590\) 0 0
\(591\) 9.87771 7.17658i 0.406315 0.295205i
\(592\) 0 0
\(593\) 40.0924 1.64640 0.823198 0.567754i \(-0.192188\pi\)
0.823198 + 0.567754i \(0.192188\pi\)
\(594\) 0 0
\(595\) 5.79676 0.237644
\(596\) 0 0
\(597\) −2.66477 + 1.93607i −0.109062 + 0.0792380i
\(598\) 0 0
\(599\) 10.0619 + 30.9674i 0.411119 + 1.26529i 0.915677 + 0.401915i \(0.131655\pi\)
−0.504558 + 0.863378i \(0.668345\pi\)
\(600\) 0 0
\(601\) −4.69376 3.41021i −0.191462 0.139106i 0.487924 0.872886i \(-0.337754\pi\)
−0.679387 + 0.733780i \(0.737754\pi\)
\(602\) 0 0
\(603\) −0.918532 + 2.82695i −0.0374055 + 0.115122i
\(604\) 0 0
\(605\) 4.59510 9.99425i 0.186817 0.406324i
\(606\) 0 0
\(607\) −4.34442 + 13.3707i −0.176334 + 0.542702i −0.999692 0.0248215i \(-0.992098\pi\)
0.823357 + 0.567523i \(0.192098\pi\)
\(608\) 0 0
\(609\) 3.71853 + 2.70167i 0.150683 + 0.109477i
\(610\) 0 0
\(611\) 12.7536 + 39.2516i 0.515957 + 1.58795i
\(612\) 0 0
\(613\) −24.9748 + 18.1453i −1.00872 + 0.732881i −0.963941 0.266115i \(-0.914260\pi\)
−0.0447834 + 0.998997i \(0.514260\pi\)
\(614\) 0 0
\(615\) −6.86693 −0.276901
\(616\) 0 0
\(617\) 35.9658 1.44793 0.723963 0.689838i \(-0.242318\pi\)
0.723963 + 0.689838i \(0.242318\pi\)
\(618\) 0 0
\(619\) −7.16135 + 5.20303i −0.287839 + 0.209127i −0.722329 0.691549i \(-0.756929\pi\)
0.434490 + 0.900676i \(0.356929\pi\)
\(620\) 0 0
\(621\) 0.733610 + 2.25782i 0.0294387 + 0.0906031i
\(622\) 0 0
\(623\) −9.66814 7.02432i −0.387346 0.281423i
\(624\) 0 0
\(625\) 0.309017 0.951057i 0.0123607 0.0380423i
\(626\) 0 0
\(627\) 12.0025 + 9.83998i 0.479333 + 0.392971i
\(628\) 0 0
\(629\) −2.94476 + 9.06303i −0.117415 + 0.361367i
\(630\) 0 0
\(631\) 36.8226 + 26.7532i 1.46588 + 1.06503i 0.981781 + 0.190017i \(0.0608543\pi\)
0.484104 + 0.875011i \(0.339146\pi\)
\(632\) 0 0
\(633\) 2.03849 + 6.27382i 0.0810227 + 0.249362i
\(634\) 0 0
\(635\) 2.30391 1.67389i 0.0914281 0.0664264i
\(636\) 0 0
\(637\) 14.4640 0.573085
\(638\) 0 0
\(639\) −15.7088 −0.621429
\(640\) 0 0
\(641\) −19.2290 + 13.9707i −0.759502 + 0.551810i −0.898757 0.438446i \(-0.855529\pi\)
0.139256 + 0.990256i \(0.455529\pi\)
\(642\) 0 0
\(643\) −8.23777 25.3533i −0.324866 0.999835i −0.971501 0.237035i \(-0.923824\pi\)
0.646635 0.762799i \(-0.276176\pi\)
\(644\) 0 0
\(645\) 4.02415 + 2.92371i 0.158451 + 0.115121i
\(646\) 0 0
\(647\) −11.7568 + 36.1836i −0.462206 + 1.42252i 0.400256 + 0.916403i \(0.368921\pi\)
−0.862463 + 0.506121i \(0.831079\pi\)
\(648\) 0 0
\(649\) 27.9580 17.9171i 1.09745 0.703307i
\(650\) 0 0
\(651\) −0.127296 + 0.391776i −0.00498912 + 0.0153549i
\(652\) 0 0
\(653\) 6.35856 + 4.61977i 0.248830 + 0.180785i 0.705208 0.709000i \(-0.250854\pi\)
−0.456378 + 0.889786i \(0.650854\pi\)
\(654\) 0 0
\(655\) −2.93384 9.02943i −0.114635 0.352809i
\(656\) 0 0
\(657\) 8.73521 6.34650i 0.340793 0.247600i
\(658\) 0 0
\(659\) 27.5518 1.07327 0.536633 0.843816i \(-0.319696\pi\)
0.536633 + 0.843816i \(0.319696\pi\)
\(660\) 0 0
\(661\) 39.6062 1.54050 0.770251 0.637741i \(-0.220131\pi\)
0.770251 + 0.637741i \(0.220131\pi\)
\(662\) 0 0
\(663\) 5.76170 4.18612i 0.223766 0.162575i
\(664\) 0 0
\(665\) 4.62172 + 14.2242i 0.179222 + 0.551590i
\(666\) 0 0
\(667\) 2.63076 + 1.91136i 0.101863 + 0.0740081i
\(668\) 0 0
\(669\) 2.08315 6.41129i 0.0805394 0.247875i
\(670\) 0 0
\(671\) −28.1723 1.64704i −1.08758 0.0635834i
\(672\) 0 0
\(673\) −13.3256 + 41.0120i −0.513665 + 1.58090i 0.272033 + 0.962288i \(0.412304\pi\)
−0.785698 + 0.618610i \(0.787696\pi\)
\(674\) 0 0
\(675\) −2.61620 1.90078i −0.100698 0.0731612i
\(676\) 0 0
\(677\) −6.68482 20.5738i −0.256919 0.790714i −0.993446 0.114306i \(-0.963536\pi\)
0.736527 0.676408i \(-0.236464\pi\)
\(678\) 0 0
\(679\) 21.4263 15.5671i 0.822267 0.597412i
\(680\) 0 0
\(681\) 3.52699 0.135154
\(682\) 0 0
\(683\) −1.01316 −0.0387675 −0.0193838 0.999812i \(-0.506170\pi\)
−0.0193838 + 0.999812i \(0.506170\pi\)
\(684\) 0 0
\(685\) 5.69415 4.13704i 0.217562 0.158068i
\(686\) 0 0
\(687\) −3.12889 9.62972i −0.119374 0.367397i
\(688\) 0 0
\(689\) 31.2793 + 22.7257i 1.19165 + 0.865782i
\(690\) 0 0
\(691\) −5.30938 + 16.3406i −0.201978 + 0.621625i 0.797846 + 0.602862i \(0.205973\pi\)
−0.999824 + 0.0187636i \(0.994027\pi\)
\(692\) 0 0
\(693\) −4.08791 15.6332i −0.155287 0.593855i
\(694\) 0 0
\(695\) 1.15320 3.54919i 0.0437435 0.134629i
\(696\) 0 0
\(697\) 31.0346 + 22.5480i 1.17552 + 0.854065i
\(698\) 0 0
\(699\) 2.99806 + 9.22708i 0.113397 + 0.349000i
\(700\) 0 0
\(701\) −14.1130 + 10.2537i −0.533041 + 0.387277i −0.821494 0.570217i \(-0.806859\pi\)
0.288453 + 0.957494i \(0.406859\pi\)
\(702\) 0 0
\(703\) −24.5868 −0.927310
\(704\) 0 0
\(705\) 5.98900 0.225559
\(706\) 0 0
\(707\) −14.5806 + 10.5934i −0.548359 + 0.398406i
\(708\) 0 0
\(709\) −5.27585 16.2374i −0.198139 0.609809i −0.999926 0.0121985i \(-0.996117\pi\)
0.801787 0.597610i \(-0.203883\pi\)
\(710\) 0 0
\(711\) 7.07252 + 5.13849i 0.265240 + 0.192708i
\(712\) 0 0
\(713\) −0.0900583 + 0.277171i −0.00337271 + 0.0103801i
\(714\) 0 0
\(715\) 4.74040 12.1298i 0.177281 0.453628i
\(716\) 0 0
\(717\) −0.208870 + 0.642837i −0.00780041 + 0.0240072i
\(718\) 0 0
\(719\) 20.4283 + 14.8420i 0.761847 + 0.553514i 0.899476 0.436969i \(-0.143948\pi\)
−0.137629 + 0.990484i \(0.543948\pi\)
\(720\) 0 0
\(721\) −4.05812 12.4896i −0.151132 0.465138i
\(722\) 0 0
\(723\) 4.77604 3.46999i 0.177623 0.129050i
\(724\) 0 0
\(725\) −4.42950 −0.164508
\(726\) 0 0
\(727\) −49.9360 −1.85202 −0.926012 0.377493i \(-0.876786\pi\)
−0.926012 + 0.377493i \(0.876786\pi\)
\(728\) 0 0
\(729\) 8.91101 6.47423i 0.330037 0.239786i
\(730\) 0 0
\(731\) −8.58667 26.4271i −0.317589 0.977440i
\(732\) 0 0
\(733\) −12.0960 8.78827i −0.446777 0.324602i 0.341545 0.939865i \(-0.389050\pi\)
−0.788322 + 0.615263i \(0.789050\pi\)
\(734\) 0 0
\(735\) 0.648595 1.99617i 0.0239238 0.0736299i
\(736\) 0 0
\(737\) −1.34131 + 3.43216i −0.0494078 + 0.126425i
\(738\) 0 0
\(739\) 2.68449 8.26201i 0.0987506 0.303923i −0.889462 0.457008i \(-0.848921\pi\)
0.988213 + 0.153085i \(0.0489209\pi\)
\(740\) 0 0
\(741\) 14.8657 + 10.8006i 0.546106 + 0.396769i
\(742\) 0 0
\(743\) −3.68414 11.3386i −0.135158 0.415974i 0.860457 0.509524i \(-0.170178\pi\)
−0.995615 + 0.0935503i \(0.970178\pi\)
\(744\) 0 0
\(745\) −9.93074 + 7.21510i −0.363834 + 0.264341i
\(746\) 0 0
\(747\) 31.7214 1.16063
\(748\) 0 0
\(749\) 17.8056 0.650604
\(750\) 0 0
\(751\) −42.3343 + 30.7577i −1.54480 + 1.12236i −0.597567 + 0.801819i \(0.703866\pi\)
−0.947233 + 0.320545i \(0.896134\pi\)
\(752\) 0 0
\(753\) −3.46546 10.6656i −0.126288 0.388676i
\(754\) 0 0
\(755\) 4.69436 + 3.41065i 0.170845 + 0.124126i
\(756\) 0 0
\(757\) −13.9295 + 42.8707i −0.506277 + 1.55816i 0.292335 + 0.956316i \(0.405568\pi\)
−0.798612 + 0.601846i \(0.794432\pi\)
\(758\) 0 0
\(759\) 0.350978 + 1.34223i 0.0127397 + 0.0487197i
\(760\) 0 0
\(761\) 7.01931 21.6032i 0.254450 0.783116i −0.739488 0.673170i \(-0.764932\pi\)
0.993938 0.109946i \(-0.0350678\pi\)
\(762\) 0 0
\(763\) 27.5993 + 20.0521i 0.999162 + 0.725934i
\(764\) 0 0
\(765\) 2.63153 + 8.09902i 0.0951432 + 0.292821i
\(766\) 0 0
\(767\) 31.8057 23.1082i 1.14844 0.834388i
\(768\) 0 0
\(769\) −10.5711 −0.381202 −0.190601 0.981668i \(-0.561044\pi\)
−0.190601 + 0.981668i \(0.561044\pi\)
\(770\) 0 0
\(771\) −7.65933 −0.275844
\(772\) 0 0
\(773\) 7.04942 5.12171i 0.253550 0.184215i −0.453749 0.891130i \(-0.649914\pi\)
0.707299 + 0.706915i \(0.249914\pi\)
\(774\) 0 0
\(775\) −0.122675 0.377554i −0.00440661 0.0135621i
\(776\) 0 0
\(777\) −2.51324 1.82598i −0.0901621 0.0655066i
\(778\) 0 0
\(779\) −30.5849 + 94.1305i −1.09582 + 3.37258i
\(780\) 0 0
\(781\) −19.4411 1.13659i −0.695657 0.0406703i
\(782\) 0 0
\(783\) −4.42641 + 13.6231i −0.158187 + 0.486849i
\(784\) 0 0
\(785\) 16.7755 + 12.1881i 0.598742 + 0.435011i
\(786\) 0 0
\(787\) −16.0922 49.5266i −0.573624 1.76543i −0.640819 0.767692i \(-0.721405\pi\)
0.0671948 0.997740i \(-0.478595\pi\)
\(788\) 0 0
\(789\) −0.741160 + 0.538484i −0.0263860 + 0.0191705i
\(790\) 0 0
\(791\) −23.4220 −0.832789
\(792\) 0 0
\(793\) −33.4109 −1.18646
\(794\) 0 0
\(795\) 4.53899 3.29777i 0.160982 0.116960i
\(796\) 0 0
\(797\) 15.0541 + 46.3318i 0.533244 + 1.64116i 0.747414 + 0.664359i \(0.231295\pi\)
−0.214170 + 0.976796i \(0.568705\pi\)
\(798\) 0 0
\(799\) −27.0669 19.6652i −0.957557 0.695706i
\(800\) 0 0
\(801\) 5.42511 16.6968i 0.191687 0.589952i
\(802\) 0 0
\(803\) 11.2698 7.22237i 0.397704 0.254872i
\(804\) 0 0
\(805\) −0.413130 + 1.27148i −0.0145609 + 0.0448139i
\(806\) 0 0
\(807\) 4.15658 + 3.01993i 0.146319 + 0.106307i
\(808\) 0 0
\(809\) −4.63541 14.2663i −0.162972 0.501577i 0.835909 0.548868i \(-0.184941\pi\)
−0.998881 + 0.0472912i \(0.984941\pi\)
\(810\) 0 0
\(811\) −30.1267 + 21.8883i −1.05789 + 0.768604i −0.973697 0.227845i \(-0.926832\pi\)
−0.0841952 + 0.996449i \(0.526832\pi\)
\(812\) 0 0
\(813\) 11.0460 0.387399
\(814\) 0 0
\(815\) −11.8323 −0.414468
\(816\) 0 0
\(817\) 58.0010 42.1402i 2.02920 1.47430i
\(818\) 0 0
\(819\) −5.91174 18.1945i −0.206573 0.635766i
\(820\) 0 0
\(821\) 14.5410 + 10.5647i 0.507484 + 0.368709i 0.811868 0.583841i \(-0.198451\pi\)
−0.304384 + 0.952549i \(0.598451\pi\)
\(822\) 0 0
\(823\) −5.67762 + 17.4739i −0.197910 + 0.609103i 0.802021 + 0.597296i \(0.203758\pi\)
−0.999930 + 0.0118068i \(0.996242\pi\)
\(824\) 0 0
\(825\) −1.46146 1.19814i −0.0508814 0.0417140i
\(826\) 0 0
\(827\) 11.9313 36.7207i 0.414891 1.27690i −0.497457 0.867489i \(-0.665733\pi\)
0.912348 0.409415i \(-0.134267\pi\)
\(828\) 0 0
\(829\) −42.6490 30.9863i −1.48126 1.07620i −0.977148 0.212561i \(-0.931820\pi\)
−0.504113 0.863638i \(-0.668180\pi\)
\(830\) 0 0
\(831\) −0.339298 1.04425i −0.0117701 0.0362247i
\(832\) 0 0
\(833\) −9.48583 + 6.89186i −0.328664 + 0.238789i
\(834\) 0 0
\(835\) −18.1848 −0.629312
\(836\) 0 0
\(837\) −1.28377 −0.0443736
\(838\) 0 0
\(839\) 20.9129 15.1941i 0.721995 0.524560i −0.165026 0.986289i \(-0.552771\pi\)
0.887021 + 0.461729i \(0.152771\pi\)
\(840\) 0 0
\(841\) −2.89843 8.92044i −0.0999458 0.307601i
\(842\) 0 0
\(843\) −1.01086 0.734434i −0.0348159 0.0252953i
\(844\) 0 0
\(845\) 0.747345 2.30009i 0.0257094 0.0791255i
\(846\) 0 0
\(847\) −3.92805 19.6433i −0.134970 0.674952i
\(848\) 0 0
\(849\) 5.10473 15.7108i 0.175194 0.539192i
\(850\) 0 0
\(851\) −1.77805 1.29183i −0.0609508 0.0442833i
\(852\) 0 0
\(853\) −7.84633 24.1485i −0.268653 0.826829i −0.990829 0.135120i \(-0.956858\pi\)
0.722176 0.691709i \(-0.243142\pi\)
\(854\) 0 0
\(855\) −17.7754 + 12.9146i −0.607906 + 0.441670i
\(856\) 0 0
\(857\) 4.42328 0.151096 0.0755482 0.997142i \(-0.475929\pi\)
0.0755482 + 0.997142i \(0.475929\pi\)
\(858\) 0 0
\(859\) −13.1491 −0.448643 −0.224321 0.974515i \(-0.572017\pi\)
−0.224321 + 0.974515i \(0.572017\pi\)
\(860\) 0 0
\(861\) −10.1171 + 7.35050i −0.344790 + 0.250504i
\(862\) 0 0
\(863\) 4.77082 + 14.6831i 0.162401 + 0.499817i 0.998835 0.0482490i \(-0.0153641\pi\)
−0.836435 + 0.548066i \(0.815364\pi\)
\(864\) 0 0
\(865\) 8.26429 + 6.00436i 0.280994 + 0.204154i
\(866\) 0 0
\(867\) 1.20929 3.72181i 0.0410697 0.126399i
\(868\) 0 0
\(869\) 8.38113 + 6.87109i 0.284310 + 0.233086i
\(870\) 0 0
\(871\) −1.34815 + 4.14917i −0.0456803 + 0.140589i
\(872\) 0 0
\(873\) 31.4767 + 22.8691i 1.06532 + 0.774003i
\(874\) 0 0
\(875\) −0.562754 1.73198i −0.0190245 0.0585515i
\(876\) 0 0
\(877\) −5.68080 + 4.12734i −0.191827 + 0.139370i −0.679553 0.733626i \(-0.737826\pi\)
0.487726 + 0.872997i \(0.337826\pi\)
\(878\) 0 0
\(879\) −3.47516 −0.117214
\(880\) 0 0
\(881\) 22.0522 0.742958 0.371479 0.928441i \(-0.378851\pi\)
0.371479 + 0.928441i \(0.378851\pi\)
\(882\) 0 0
\(883\) −9.75332 + 7.08620i −0.328225 + 0.238470i −0.739677 0.672962i \(-0.765022\pi\)
0.411452 + 0.911432i \(0.365022\pi\)
\(884\) 0 0
\(885\) −1.76292 5.42570i −0.0592598 0.182383i
\(886\) 0 0
\(887\) 26.8102 + 19.4788i 0.900199 + 0.654033i 0.938517 0.345233i \(-0.112200\pi\)
−0.0383180 + 0.999266i \(0.512200\pi\)
\(888\) 0 0
\(889\) 1.60261 4.93232i 0.0537497 0.165425i
\(890\) 0 0
\(891\) 17.2665 11.0654i 0.578448 0.370703i
\(892\) 0 0
\(893\) 26.6746 82.0961i 0.892632 2.74724i
\(894\) 0 0
\(895\) −1.39437 1.01307i −0.0466085 0.0338631i
\(896\) 0 0
\(897\) 0.507568 + 1.56213i 0.0169472 + 0.0521582i
\(898\) 0 0
\(899\) −1.42261 + 1.03359i −0.0474467 + 0.0344720i
\(900\) 0 0
\(901\) −31.3421 −1.04416
\(902\) 0 0
\(903\) 9.05841 0.301445
\(904\) 0 0
\(905\) −11.2875 + 8.20083i −0.375208 + 0.272605i
\(906\) 0 0
\(907\) −6.56457 20.2037i −0.217973 0.670852i −0.998929 0.0462662i \(-0.985268\pi\)
0.780956 0.624586i \(-0.214732\pi\)
\(908\) 0 0
\(909\) −21.4198 15.5624i −0.710450 0.516172i
\(910\) 0 0
\(911\) 14.8255 45.6281i 0.491190 1.51173i −0.331621 0.943413i \(-0.607596\pi\)
0.822811 0.568315i \(-0.192404\pi\)
\(912\) 0 0
\(913\) 39.2583 + 2.29516i 1.29926 + 0.0759587i
\(914\) 0 0
\(915\) −1.49821 + 4.61102i −0.0495293 + 0.152436i
\(916\) 0 0
\(917\) −13.9877 10.1627i −0.461916 0.335602i
\(918\) 0 0
\(919\) −2.11876 6.52088i −0.0698915 0.215104i 0.910010 0.414587i \(-0.136074\pi\)
−0.979901 + 0.199483i \(0.936074\pi\)
\(920\) 0 0
\(921\) 7.03269 5.10955i 0.231735 0.168365i
\(922\) 0 0
\(923\) −23.0561 −0.758901
\(924\) 0 0
\(925\) 2.99377 0.0984344
\(926\) 0 0
\(927\) 15.6078 11.3397i 0.512627 0.372445i
\(928\) 0 0
\(929\) −12.4369 38.2768i −0.408041 1.25582i −0.918329 0.395817i \(-0.870462\pi\)
0.510289 0.860003i \(-0.329538\pi\)
\(930\) 0 0
\(931\) −24.4743 17.7816i −0.802114 0.582770i
\(932\) 0 0
\(933\) 0.610245 1.87814i 0.0199785 0.0614876i
\(934\) 0 0
\(935\) 2.67078 + 10.2137i 0.0873437 + 0.334024i
\(936\) 0 0
\(937\) 14.6628 45.1274i 0.479012 1.47425i −0.361457 0.932389i \(-0.617721\pi\)
0.840469 0.541859i \(-0.182279\pi\)
\(938\) 0 0
\(939\) 6.01413 + 4.36952i 0.196264 + 0.142594i
\(940\) 0 0
\(941\) 5.72913 + 17.6324i 0.186764 + 0.574801i 0.999974 0.00716913i \(-0.00228202\pi\)
−0.813210 + 0.581970i \(0.802282\pi\)
\(942\) 0 0
\(943\) −7.15756 + 5.20027i −0.233082 + 0.169344i
\(944\) 0 0
\(945\) −5.88911 −0.191573
\(946\) 0 0
\(947\) −57.2726 −1.86111 −0.930555 0.366153i \(-0.880675\pi\)
−0.930555 + 0.366153i \(0.880675\pi\)
\(948\) 0 0
\(949\) 12.8208 9.31489i 0.416182 0.302374i
\(950\) 0 0
\(951\) 5.33271 + 16.4124i 0.172925 + 0.532208i
\(952\) 0 0
\(953\) −0.914039 0.664088i −0.0296086 0.0215119i 0.572883 0.819637i \(-0.305825\pi\)
−0.602491 + 0.798126i \(0.705825\pi\)
\(954\) 0 0
\(955\) 7.63053 23.4844i 0.246918 0.759936i
\(956\) 0 0
\(957\) −3.04700 + 7.79670i −0.0984956 + 0.252031i
\(958\) 0 0
\(959\) 3.96086 12.1903i 0.127903 0.393645i
\(960\) 0 0
\(961\) 24.9520 + 18.1287i 0.804904 + 0.584797i
\(962\) 0 0
\(963\) 8.08315 + 24.8774i 0.260476 + 0.801662i
\(964\) 0 0
\(965\) −2.15726 + 1.56734i −0.0694447 + 0.0504545i
\(966\) 0 0
\(967\) −54.1275 −1.74062 −0.870311 0.492502i \(-0.836083\pi\)
−0.870311 + 0.492502i \(0.836083\pi\)
\(968\) 0 0
\(969\) −14.8956 −0.478515
\(970\) 0 0
\(971\) −16.3101 + 11.8500i −0.523418 + 0.380285i −0.817890 0.575375i \(-0.804856\pi\)
0.294472 + 0.955660i \(0.404856\pi\)
\(972\) 0 0
\(973\) −2.10011 6.46347i −0.0673264 0.207209i
\(974\) 0 0
\(975\) −1.81009 1.31511i −0.0579694 0.0421173i
\(976\) 0 0
\(977\) −13.0910 + 40.2899i −0.418818 + 1.28899i 0.489973 + 0.871738i \(0.337007\pi\)
−0.908791 + 0.417252i \(0.862993\pi\)
\(978\) 0 0
\(979\) 7.92217 20.2713i 0.253194 0.647874i
\(980\) 0 0
\(981\) −15.4869 + 47.6637i −0.494458 + 1.52179i
\(982\) 0 0
\(983\) −42.6490 30.9863i −1.36029 0.988310i −0.998426 0.0560793i \(-0.982140\pi\)
−0.361865 0.932230i \(-0.617860\pi\)
\(984\) 0 0
\(985\) 6.62152 + 20.3789i 0.210979 + 0.649327i
\(986\) 0 0
\(987\) 8.82364 6.41075i 0.280860 0.204056i
\(988\) 0 0
\(989\) 6.40858 0.203781
\(990\) 0 0
\(991\) 25.8605 0.821487 0.410744 0.911751i \(-0.365269\pi\)
0.410744 + 0.911751i \(0.365269\pi\)
\(992\) 0 0
\(993\) 1.93234 1.40393i 0.0613211 0.0445524i
\(994\) 0 0
\(995\) −1.78633 5.49775i −0.0566304 0.174290i
\(996\) 0 0
\(997\) −0.179657 0.130528i −0.00568978 0.00413387i 0.584937 0.811079i \(-0.301119\pi\)
−0.590627 + 0.806945i \(0.701119\pi\)
\(998\) 0 0
\(999\) 2.99167 9.20742i 0.0946524 0.291310i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 440.2.y.d.361.3 16
4.3 odd 2 880.2.bo.k.801.2 16
11.4 even 5 4840.2.a.bg.1.4 8
11.5 even 5 inner 440.2.y.d.401.3 yes 16
11.7 odd 10 4840.2.a.bh.1.4 8
44.7 even 10 9680.2.a.de.1.5 8
44.15 odd 10 9680.2.a.df.1.5 8
44.27 odd 10 880.2.bo.k.401.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
440.2.y.d.361.3 16 1.1 even 1 trivial
440.2.y.d.401.3 yes 16 11.5 even 5 inner
880.2.bo.k.401.2 16 44.27 odd 10
880.2.bo.k.801.2 16 4.3 odd 2
4840.2.a.bg.1.4 8 11.4 even 5
4840.2.a.bh.1.4 8 11.7 odd 10
9680.2.a.de.1.5 8 44.7 even 10
9680.2.a.df.1.5 8 44.15 odd 10