Properties

Label 9680.2.a.cm.1.3
Level $9680$
Weight $2$
Character 9680.1
Self dual yes
Analytic conductor $77.295$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9680,2,Mod(1,9680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9680.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9680 = 2^{4} \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9680.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,-4,0,-3,0,0,0,0,0,1,0,0,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(77.2951891566\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.725.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 3x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.09529\) of defining polynomial
Character \(\chi\) \(=\) 9680.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.323071 q^{3} -1.00000 q^{5} +2.68522 q^{7} -2.89563 q^{9} +4.66785 q^{13} +0.323071 q^{15} +4.62632 q^{17} -4.34044 q^{19} -0.867517 q^{21} -2.77222 q^{23} +1.00000 q^{25} +1.90471 q^{27} +3.01341 q^{29} -2.38630 q^{31} -2.68522 q^{35} -10.6429 q^{37} -1.50805 q^{39} +2.21041 q^{41} -7.06719 q^{43} +2.89563 q^{45} -4.36215 q^{47} +0.210405 q^{49} -1.49463 q^{51} -6.33404 q^{53} +1.40227 q^{57} -11.7473 q^{59} +3.98263 q^{61} -7.77539 q^{63} -4.66785 q^{65} -7.31984 q^{67} +0.895625 q^{69} -1.19571 q^{71} -1.02171 q^{73} -0.323071 q^{75} +3.50213 q^{79} +8.07152 q^{81} +11.1158 q^{83} -4.62632 q^{85} -0.973547 q^{87} +2.76978 q^{89} +12.5342 q^{91} +0.770945 q^{93} +4.34044 q^{95} +18.5342 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{5} - 3 q^{7} + q^{13} - q^{17} - 20 q^{19} + 10 q^{21} - 5 q^{23} + 4 q^{25} + 15 q^{27} + 12 q^{29} + 5 q^{31} + 3 q^{35} + 7 q^{37} - 7 q^{39} + 11 q^{41} - 19 q^{43} - 5 q^{47} + 3 q^{49}+ \cdots + 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.323071 −0.186525 −0.0932626 0.995642i \(-0.529730\pi\)
−0.0932626 + 0.995642i \(0.529730\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 2.68522 1.01492 0.507459 0.861676i \(-0.330585\pi\)
0.507459 + 0.861676i \(0.330585\pi\)
\(8\) 0 0
\(9\) −2.89563 −0.965208
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 4.66785 1.29463 0.647314 0.762223i \(-0.275892\pi\)
0.647314 + 0.762223i \(0.275892\pi\)
\(14\) 0 0
\(15\) 0.323071 0.0834166
\(16\) 0 0
\(17\) 4.62632 1.12205 0.561024 0.827799i \(-0.310407\pi\)
0.561024 + 0.827799i \(0.310407\pi\)
\(18\) 0 0
\(19\) −4.34044 −0.995766 −0.497883 0.867244i \(-0.665889\pi\)
−0.497883 + 0.867244i \(0.665889\pi\)
\(20\) 0 0
\(21\) −0.867517 −0.189308
\(22\) 0 0
\(23\) −2.77222 −0.578048 −0.289024 0.957322i \(-0.593331\pi\)
−0.289024 + 0.957322i \(0.593331\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 1.90471 0.366561
\(28\) 0 0
\(29\) 3.01341 0.559577 0.279789 0.960062i \(-0.409736\pi\)
0.279789 + 0.960062i \(0.409736\pi\)
\(30\) 0 0
\(31\) −2.38630 −0.428592 −0.214296 0.976769i \(-0.568746\pi\)
−0.214296 + 0.976769i \(0.568746\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.68522 −0.453885
\(36\) 0 0
\(37\) −10.6429 −1.74968 −0.874842 0.484409i \(-0.839035\pi\)
−0.874842 + 0.484409i \(0.839035\pi\)
\(38\) 0 0
\(39\) −1.50805 −0.241481
\(40\) 0 0
\(41\) 2.21041 0.345207 0.172604 0.984991i \(-0.444782\pi\)
0.172604 + 0.984991i \(0.444782\pi\)
\(42\) 0 0
\(43\) −7.06719 −1.07774 −0.538868 0.842390i \(-0.681148\pi\)
−0.538868 + 0.842390i \(0.681148\pi\)
\(44\) 0 0
\(45\) 2.89563 0.431654
\(46\) 0 0
\(47\) −4.36215 −0.636285 −0.318142 0.948043i \(-0.603059\pi\)
−0.318142 + 0.948043i \(0.603059\pi\)
\(48\) 0 0
\(49\) 0.210405 0.0300579
\(50\) 0 0
\(51\) −1.49463 −0.209290
\(52\) 0 0
\(53\) −6.33404 −0.870047 −0.435024 0.900419i \(-0.643260\pi\)
−0.435024 + 0.900419i \(0.643260\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 1.40227 0.185735
\(58\) 0 0
\(59\) −11.7473 −1.52937 −0.764683 0.644407i \(-0.777104\pi\)
−0.764683 + 0.644407i \(0.777104\pi\)
\(60\) 0 0
\(61\) 3.98263 0.509923 0.254962 0.966951i \(-0.417937\pi\)
0.254962 + 0.966951i \(0.417937\pi\)
\(62\) 0 0
\(63\) −7.77539 −0.979607
\(64\) 0 0
\(65\) −4.66785 −0.578975
\(66\) 0 0
\(67\) −7.31984 −0.894260 −0.447130 0.894469i \(-0.647554\pi\)
−0.447130 + 0.894469i \(0.647554\pi\)
\(68\) 0 0
\(69\) 0.895625 0.107821
\(70\) 0 0
\(71\) −1.19571 −0.141905 −0.0709525 0.997480i \(-0.522604\pi\)
−0.0709525 + 0.997480i \(0.522604\pi\)
\(72\) 0 0
\(73\) −1.02171 −0.119582 −0.0597908 0.998211i \(-0.519043\pi\)
−0.0597908 + 0.998211i \(0.519043\pi\)
\(74\) 0 0
\(75\) −0.323071 −0.0373050
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 3.50213 0.394021 0.197010 0.980401i \(-0.436877\pi\)
0.197010 + 0.980401i \(0.436877\pi\)
\(80\) 0 0
\(81\) 8.07152 0.896836
\(82\) 0 0
\(83\) 11.1158 1.22012 0.610061 0.792355i \(-0.291145\pi\)
0.610061 + 0.792355i \(0.291145\pi\)
\(84\) 0 0
\(85\) −4.62632 −0.501795
\(86\) 0 0
\(87\) −0.973547 −0.104375
\(88\) 0 0
\(89\) 2.76978 0.293596 0.146798 0.989167i \(-0.453103\pi\)
0.146798 + 0.989167i \(0.453103\pi\)
\(90\) 0 0
\(91\) 12.5342 1.31394
\(92\) 0 0
\(93\) 0.770945 0.0799432
\(94\) 0 0
\(95\) 4.34044 0.445320
\(96\) 0 0
\(97\) 18.5342 1.88186 0.940931 0.338597i \(-0.109952\pi\)
0.940931 + 0.338597i \(0.109952\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 7.11455 0.707925 0.353962 0.935260i \(-0.384834\pi\)
0.353962 + 0.935260i \(0.384834\pi\)
\(102\) 0 0
\(103\) −7.52835 −0.741791 −0.370895 0.928675i \(-0.620949\pi\)
−0.370895 + 0.928675i \(0.620949\pi\)
\(104\) 0 0
\(105\) 0.867517 0.0846610
\(106\) 0 0
\(107\) 18.0292 1.74295 0.871475 0.490441i \(-0.163164\pi\)
0.871475 + 0.490441i \(0.163164\pi\)
\(108\) 0 0
\(109\) 16.3653 1.56751 0.783756 0.621068i \(-0.213301\pi\)
0.783756 + 0.621068i \(0.213301\pi\)
\(110\) 0 0
\(111\) 3.43842 0.326360
\(112\) 0 0
\(113\) −2.05377 −0.193203 −0.0966013 0.995323i \(-0.530797\pi\)
−0.0966013 + 0.995323i \(0.530797\pi\)
\(114\) 0 0
\(115\) 2.77222 0.258511
\(116\) 0 0
\(117\) −13.5163 −1.24959
\(118\) 0 0
\(119\) 12.4227 1.13879
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −0.714118 −0.0643899
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −0.0762667 −0.00676758 −0.00338379 0.999994i \(-0.501077\pi\)
−0.00338379 + 0.999994i \(0.501077\pi\)
\(128\) 0 0
\(129\) 2.28320 0.201025
\(130\) 0 0
\(131\) −11.4831 −1.00328 −0.501642 0.865075i \(-0.667270\pi\)
−0.501642 + 0.865075i \(0.667270\pi\)
\(132\) 0 0
\(133\) −11.6550 −1.01062
\(134\) 0 0
\(135\) −1.90471 −0.163931
\(136\) 0 0
\(137\) −18.3293 −1.56598 −0.782989 0.622036i \(-0.786306\pi\)
−0.782989 + 0.622036i \(0.786306\pi\)
\(138\) 0 0
\(139\) −23.1874 −1.96673 −0.983363 0.181653i \(-0.941855\pi\)
−0.983363 + 0.181653i \(0.941855\pi\)
\(140\) 0 0
\(141\) 1.40928 0.118683
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −3.01341 −0.250250
\(146\) 0 0
\(147\) −0.0679759 −0.00560655
\(148\) 0 0
\(149\) −14.6646 −1.20137 −0.600686 0.799485i \(-0.705106\pi\)
−0.600686 + 0.799485i \(0.705106\pi\)
\(150\) 0 0
\(151\) −7.51902 −0.611889 −0.305944 0.952049i \(-0.598972\pi\)
−0.305944 + 0.952049i \(0.598972\pi\)
\(152\) 0 0
\(153\) −13.3961 −1.08301
\(154\) 0 0
\(155\) 2.38630 0.191672
\(156\) 0 0
\(157\) −13.3819 −1.06799 −0.533996 0.845487i \(-0.679310\pi\)
−0.533996 + 0.845487i \(0.679310\pi\)
\(158\) 0 0
\(159\) 2.04635 0.162286
\(160\) 0 0
\(161\) −7.44403 −0.586672
\(162\) 0 0
\(163\) 0.771990 0.0604669 0.0302335 0.999543i \(-0.490375\pi\)
0.0302335 + 0.999543i \(0.490375\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −8.48232 −0.656381 −0.328191 0.944612i \(-0.606439\pi\)
−0.328191 + 0.944612i \(0.606439\pi\)
\(168\) 0 0
\(169\) 8.78880 0.676062
\(170\) 0 0
\(171\) 12.5683 0.961122
\(172\) 0 0
\(173\) −5.07871 −0.386127 −0.193064 0.981186i \(-0.561842\pi\)
−0.193064 + 0.981186i \(0.561842\pi\)
\(174\) 0 0
\(175\) 2.68522 0.202984
\(176\) 0 0
\(177\) 3.79521 0.285265
\(178\) 0 0
\(179\) 11.3170 0.845876 0.422938 0.906159i \(-0.360999\pi\)
0.422938 + 0.906159i \(0.360999\pi\)
\(180\) 0 0
\(181\) 7.40006 0.550042 0.275021 0.961438i \(-0.411315\pi\)
0.275021 + 0.961438i \(0.411315\pi\)
\(182\) 0 0
\(183\) −1.28667 −0.0951135
\(184\) 0 0
\(185\) 10.6429 0.782482
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 5.11455 0.372029
\(190\) 0 0
\(191\) 5.15608 0.373081 0.186540 0.982447i \(-0.440272\pi\)
0.186540 + 0.982447i \(0.440272\pi\)
\(192\) 0 0
\(193\) 4.03230 0.290251 0.145126 0.989413i \(-0.453641\pi\)
0.145126 + 0.989413i \(0.453641\pi\)
\(194\) 0 0
\(195\) 1.50805 0.107993
\(196\) 0 0
\(197\) −11.4176 −0.813469 −0.406734 0.913547i \(-0.633333\pi\)
−0.406734 + 0.913547i \(0.633333\pi\)
\(198\) 0 0
\(199\) 7.16644 0.508015 0.254008 0.967202i \(-0.418251\pi\)
0.254008 + 0.967202i \(0.418251\pi\)
\(200\) 0 0
\(201\) 2.36483 0.166802
\(202\) 0 0
\(203\) 8.09168 0.567925
\(204\) 0 0
\(205\) −2.21041 −0.154381
\(206\) 0 0
\(207\) 8.02732 0.557937
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 3.48359 0.239820 0.119910 0.992785i \(-0.461739\pi\)
0.119910 + 0.992785i \(0.461739\pi\)
\(212\) 0 0
\(213\) 0.386300 0.0264688
\(214\) 0 0
\(215\) 7.06719 0.481978
\(216\) 0 0
\(217\) −6.40774 −0.434986
\(218\) 0 0
\(219\) 0.330084 0.0223050
\(220\) 0 0
\(221\) 21.5950 1.45264
\(222\) 0 0
\(223\) −10.5449 −0.706141 −0.353071 0.935597i \(-0.614862\pi\)
−0.353071 + 0.935597i \(0.614862\pi\)
\(224\) 0 0
\(225\) −2.89563 −0.193042
\(226\) 0 0
\(227\) 0.216018 0.0143376 0.00716880 0.999974i \(-0.497718\pi\)
0.00716880 + 0.999974i \(0.497718\pi\)
\(228\) 0 0
\(229\) −0.0757097 −0.00500304 −0.00250152 0.999997i \(-0.500796\pi\)
−0.00250152 + 0.999997i \(0.500796\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −15.1201 −0.990548 −0.495274 0.868737i \(-0.664932\pi\)
−0.495274 + 0.868737i \(0.664932\pi\)
\(234\) 0 0
\(235\) 4.36215 0.284555
\(236\) 0 0
\(237\) −1.13144 −0.0734948
\(238\) 0 0
\(239\) −23.1646 −1.49839 −0.749197 0.662347i \(-0.769561\pi\)
−0.749197 + 0.662347i \(0.769561\pi\)
\(240\) 0 0
\(241\) 21.3349 1.37430 0.687151 0.726515i \(-0.258861\pi\)
0.687151 + 0.726515i \(0.258861\pi\)
\(242\) 0 0
\(243\) −8.32179 −0.533843
\(244\) 0 0
\(245\) −0.210405 −0.0134423
\(246\) 0 0
\(247\) −20.2605 −1.28915
\(248\) 0 0
\(249\) −3.59120 −0.227583
\(250\) 0 0
\(251\) 6.22186 0.392721 0.196360 0.980532i \(-0.437088\pi\)
0.196360 + 0.980532i \(0.437088\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 1.49463 0.0935975
\(256\) 0 0
\(257\) −14.2903 −0.891406 −0.445703 0.895181i \(-0.647046\pi\)
−0.445703 + 0.895181i \(0.647046\pi\)
\(258\) 0 0
\(259\) −28.5785 −1.77578
\(260\) 0 0
\(261\) −8.72572 −0.540108
\(262\) 0 0
\(263\) 4.13132 0.254748 0.127374 0.991855i \(-0.459345\pi\)
0.127374 + 0.991855i \(0.459345\pi\)
\(264\) 0 0
\(265\) 6.33404 0.389097
\(266\) 0 0
\(267\) −0.894835 −0.0547630
\(268\) 0 0
\(269\) −1.68394 −0.102672 −0.0513359 0.998681i \(-0.516348\pi\)
−0.0513359 + 0.998681i \(0.516348\pi\)
\(270\) 0 0
\(271\) −18.4310 −1.11960 −0.559801 0.828627i \(-0.689123\pi\)
−0.559801 + 0.828627i \(0.689123\pi\)
\(272\) 0 0
\(273\) −4.04944 −0.245083
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 3.42745 0.205935 0.102968 0.994685i \(-0.467166\pi\)
0.102968 + 0.994685i \(0.467166\pi\)
\(278\) 0 0
\(279\) 6.90983 0.413681
\(280\) 0 0
\(281\) 22.8217 1.36143 0.680715 0.732548i \(-0.261669\pi\)
0.680715 + 0.732548i \(0.261669\pi\)
\(282\) 0 0
\(283\) −29.0991 −1.72976 −0.864880 0.501978i \(-0.832606\pi\)
−0.864880 + 0.501978i \(0.832606\pi\)
\(284\) 0 0
\(285\) −1.40227 −0.0830634
\(286\) 0 0
\(287\) 5.93542 0.350357
\(288\) 0 0
\(289\) 4.40288 0.258993
\(290\) 0 0
\(291\) −5.98786 −0.351015
\(292\) 0 0
\(293\) −21.2136 −1.23931 −0.619655 0.784874i \(-0.712727\pi\)
−0.619655 + 0.784874i \(0.712727\pi\)
\(294\) 0 0
\(295\) 11.7473 0.683953
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −12.9403 −0.748358
\(300\) 0 0
\(301\) −18.9769 −1.09381
\(302\) 0 0
\(303\) −2.29851 −0.132046
\(304\) 0 0
\(305\) −3.98263 −0.228045
\(306\) 0 0
\(307\) −6.87520 −0.392388 −0.196194 0.980565i \(-0.562858\pi\)
−0.196194 + 0.980565i \(0.562858\pi\)
\(308\) 0 0
\(309\) 2.43219 0.138363
\(310\) 0 0
\(311\) −25.1577 −1.42656 −0.713280 0.700879i \(-0.752791\pi\)
−0.713280 + 0.700879i \(0.752791\pi\)
\(312\) 0 0
\(313\) −11.5793 −0.654503 −0.327251 0.944937i \(-0.606122\pi\)
−0.327251 + 0.944937i \(0.606122\pi\)
\(314\) 0 0
\(315\) 7.77539 0.438094
\(316\) 0 0
\(317\) 20.7413 1.16495 0.582473 0.812850i \(-0.302085\pi\)
0.582473 + 0.812850i \(0.302085\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −5.82472 −0.325104
\(322\) 0 0
\(323\) −20.0803 −1.11730
\(324\) 0 0
\(325\) 4.66785 0.258926
\(326\) 0 0
\(327\) −5.28716 −0.292381
\(328\) 0 0
\(329\) −11.7133 −0.645777
\(330\) 0 0
\(331\) 32.1415 1.76665 0.883327 0.468757i \(-0.155298\pi\)
0.883327 + 0.468757i \(0.155298\pi\)
\(332\) 0 0
\(333\) 30.8179 1.68881
\(334\) 0 0
\(335\) 7.31984 0.399925
\(336\) 0 0
\(337\) 17.9964 0.980326 0.490163 0.871631i \(-0.336937\pi\)
0.490163 + 0.871631i \(0.336937\pi\)
\(338\) 0 0
\(339\) 0.663514 0.0360371
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −18.2316 −0.984411
\(344\) 0 0
\(345\) −0.895625 −0.0482188
\(346\) 0 0
\(347\) −8.04981 −0.432137 −0.216068 0.976378i \(-0.569323\pi\)
−0.216068 + 0.976378i \(0.569323\pi\)
\(348\) 0 0
\(349\) −19.2294 −1.02932 −0.514662 0.857393i \(-0.672083\pi\)
−0.514662 + 0.857393i \(0.672083\pi\)
\(350\) 0 0
\(351\) 8.89088 0.474560
\(352\) 0 0
\(353\) 14.8497 0.790371 0.395186 0.918601i \(-0.370680\pi\)
0.395186 + 0.918601i \(0.370680\pi\)
\(354\) 0 0
\(355\) 1.19571 0.0634618
\(356\) 0 0
\(357\) −4.01341 −0.212412
\(358\) 0 0
\(359\) 10.2233 0.539563 0.269782 0.962922i \(-0.413048\pi\)
0.269782 + 0.962922i \(0.413048\pi\)
\(360\) 0 0
\(361\) −0.160555 −0.00845028
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1.02171 0.0534785
\(366\) 0 0
\(367\) −14.1434 −0.738279 −0.369139 0.929374i \(-0.620347\pi\)
−0.369139 + 0.929374i \(0.620347\pi\)
\(368\) 0 0
\(369\) −6.40050 −0.333197
\(370\) 0 0
\(371\) −17.0083 −0.883026
\(372\) 0 0
\(373\) −12.4600 −0.645154 −0.322577 0.946543i \(-0.604549\pi\)
−0.322577 + 0.946543i \(0.604549\pi\)
\(374\) 0 0
\(375\) 0.323071 0.0166833
\(376\) 0 0
\(377\) 14.0662 0.724444
\(378\) 0 0
\(379\) −16.3370 −0.839174 −0.419587 0.907715i \(-0.637825\pi\)
−0.419587 + 0.907715i \(0.637825\pi\)
\(380\) 0 0
\(381\) 0.0246396 0.00126232
\(382\) 0 0
\(383\) 0.812648 0.0415244 0.0207622 0.999784i \(-0.493391\pi\)
0.0207622 + 0.999784i \(0.493391\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 20.4639 1.04024
\(388\) 0 0
\(389\) −30.3941 −1.54104 −0.770521 0.637414i \(-0.780004\pi\)
−0.770521 + 0.637414i \(0.780004\pi\)
\(390\) 0 0
\(391\) −12.8252 −0.648598
\(392\) 0 0
\(393\) 3.70986 0.187138
\(394\) 0 0
\(395\) −3.50213 −0.176211
\(396\) 0 0
\(397\) −14.8996 −0.747789 −0.373894 0.927471i \(-0.621978\pi\)
−0.373894 + 0.927471i \(0.621978\pi\)
\(398\) 0 0
\(399\) 3.76541 0.188506
\(400\) 0 0
\(401\) 12.1692 0.607700 0.303850 0.952720i \(-0.401728\pi\)
0.303850 + 0.952720i \(0.401728\pi\)
\(402\) 0 0
\(403\) −11.1389 −0.554867
\(404\) 0 0
\(405\) −8.07152 −0.401077
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0.262108 0.0129604 0.00648020 0.999979i \(-0.497937\pi\)
0.00648020 + 0.999979i \(0.497937\pi\)
\(410\) 0 0
\(411\) 5.92166 0.292094
\(412\) 0 0
\(413\) −31.5440 −1.55218
\(414\) 0 0
\(415\) −11.1158 −0.545655
\(416\) 0 0
\(417\) 7.49116 0.366844
\(418\) 0 0
\(419\) 1.26916 0.0620023 0.0310012 0.999519i \(-0.490130\pi\)
0.0310012 + 0.999519i \(0.490130\pi\)
\(420\) 0 0
\(421\) −29.6655 −1.44581 −0.722903 0.690949i \(-0.757193\pi\)
−0.722903 + 0.690949i \(0.757193\pi\)
\(422\) 0 0
\(423\) 12.6311 0.614147
\(424\) 0 0
\(425\) 4.62632 0.224410
\(426\) 0 0
\(427\) 10.6942 0.517530
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 31.3549 1.51031 0.755156 0.655545i \(-0.227561\pi\)
0.755156 + 0.655545i \(0.227561\pi\)
\(432\) 0 0
\(433\) −26.0325 −1.25104 −0.625521 0.780207i \(-0.715114\pi\)
−0.625521 + 0.780207i \(0.715114\pi\)
\(434\) 0 0
\(435\) 0.973547 0.0466780
\(436\) 0 0
\(437\) 12.0327 0.575601
\(438\) 0 0
\(439\) 14.4191 0.688185 0.344093 0.938936i \(-0.388187\pi\)
0.344093 + 0.938936i \(0.388187\pi\)
\(440\) 0 0
\(441\) −0.609255 −0.0290121
\(442\) 0 0
\(443\) 0.330608 0.0157077 0.00785383 0.999969i \(-0.497500\pi\)
0.00785383 + 0.999969i \(0.497500\pi\)
\(444\) 0 0
\(445\) −2.76978 −0.131300
\(446\) 0 0
\(447\) 4.73771 0.224086
\(448\) 0 0
\(449\) 8.50828 0.401531 0.200765 0.979639i \(-0.435657\pi\)
0.200765 + 0.979639i \(0.435657\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 2.42918 0.114133
\(454\) 0 0
\(455\) −12.5342 −0.587612
\(456\) 0 0
\(457\) −1.13847 −0.0532555 −0.0266277 0.999645i \(-0.508477\pi\)
−0.0266277 + 0.999645i \(0.508477\pi\)
\(458\) 0 0
\(459\) 8.81179 0.411299
\(460\) 0 0
\(461\) −14.5073 −0.675670 −0.337835 0.941205i \(-0.609695\pi\)
−0.337835 + 0.941205i \(0.609695\pi\)
\(462\) 0 0
\(463\) 4.89739 0.227601 0.113801 0.993504i \(-0.463698\pi\)
0.113801 + 0.993504i \(0.463698\pi\)
\(464\) 0 0
\(465\) −0.770945 −0.0357517
\(466\) 0 0
\(467\) −32.4230 −1.50036 −0.750180 0.661234i \(-0.770033\pi\)
−0.750180 + 0.661234i \(0.770033\pi\)
\(468\) 0 0
\(469\) −19.6554 −0.907601
\(470\) 0 0
\(471\) 4.32330 0.199207
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −4.34044 −0.199153
\(476\) 0 0
\(477\) 18.3410 0.839777
\(478\) 0 0
\(479\) 17.7354 0.810352 0.405176 0.914239i \(-0.367210\pi\)
0.405176 + 0.914239i \(0.367210\pi\)
\(480\) 0 0
\(481\) −49.6795 −2.26519
\(482\) 0 0
\(483\) 2.40495 0.109429
\(484\) 0 0
\(485\) −18.5342 −0.841595
\(486\) 0 0
\(487\) 18.4603 0.836514 0.418257 0.908329i \(-0.362641\pi\)
0.418257 + 0.908329i \(0.362641\pi\)
\(488\) 0 0
\(489\) −0.249408 −0.0112786
\(490\) 0 0
\(491\) −11.4338 −0.516002 −0.258001 0.966145i \(-0.583064\pi\)
−0.258001 + 0.966145i \(0.583064\pi\)
\(492\) 0 0
\(493\) 13.9410 0.627873
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −3.21075 −0.144022
\(498\) 0 0
\(499\) −10.8815 −0.487125 −0.243562 0.969885i \(-0.578316\pi\)
−0.243562 + 0.969885i \(0.578316\pi\)
\(500\) 0 0
\(501\) 2.74039 0.122432
\(502\) 0 0
\(503\) 44.7247 1.99417 0.997087 0.0762683i \(-0.0243005\pi\)
0.997087 + 0.0762683i \(0.0243005\pi\)
\(504\) 0 0
\(505\) −7.11455 −0.316594
\(506\) 0 0
\(507\) −2.83941 −0.126103
\(508\) 0 0
\(509\) −13.8093 −0.612088 −0.306044 0.952017i \(-0.599006\pi\)
−0.306044 + 0.952017i \(0.599006\pi\)
\(510\) 0 0
\(511\) −2.74350 −0.121365
\(512\) 0 0
\(513\) −8.26727 −0.365009
\(514\) 0 0
\(515\) 7.52835 0.331739
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 1.64079 0.0720225
\(520\) 0 0
\(521\) −3.64972 −0.159897 −0.0799486 0.996799i \(-0.525476\pi\)
−0.0799486 + 0.996799i \(0.525476\pi\)
\(522\) 0 0
\(523\) −4.98707 −0.218069 −0.109035 0.994038i \(-0.534776\pi\)
−0.109035 + 0.994038i \(0.534776\pi\)
\(524\) 0 0
\(525\) −0.867517 −0.0378615
\(526\) 0 0
\(527\) −11.0398 −0.480901
\(528\) 0 0
\(529\) −15.3148 −0.665860
\(530\) 0 0
\(531\) 34.0157 1.47616
\(532\) 0 0
\(533\) 10.3178 0.446915
\(534\) 0 0
\(535\) −18.0292 −0.779471
\(536\) 0 0
\(537\) −3.65621 −0.157777
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −0.247594 −0.0106449 −0.00532246 0.999986i \(-0.501694\pi\)
−0.00532246 + 0.999986i \(0.501694\pi\)
\(542\) 0 0
\(543\) −2.39075 −0.102597
\(544\) 0 0
\(545\) −16.3653 −0.701013
\(546\) 0 0
\(547\) −25.3120 −1.08226 −0.541132 0.840938i \(-0.682004\pi\)
−0.541132 + 0.840938i \(0.682004\pi\)
\(548\) 0 0
\(549\) −11.5322 −0.492182
\(550\) 0 0
\(551\) −13.0796 −0.557208
\(552\) 0 0
\(553\) 9.40400 0.399899
\(554\) 0 0
\(555\) −3.43842 −0.145953
\(556\) 0 0
\(557\) 38.6671 1.63838 0.819190 0.573523i \(-0.194424\pi\)
0.819190 + 0.573523i \(0.194424\pi\)
\(558\) 0 0
\(559\) −32.9885 −1.39527
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 13.9362 0.587341 0.293671 0.955907i \(-0.405123\pi\)
0.293671 + 0.955907i \(0.405123\pi\)
\(564\) 0 0
\(565\) 2.05377 0.0864028
\(566\) 0 0
\(567\) 21.6738 0.910214
\(568\) 0 0
\(569\) −27.9125 −1.17015 −0.585076 0.810979i \(-0.698935\pi\)
−0.585076 + 0.810979i \(0.698935\pi\)
\(570\) 0 0
\(571\) −31.4113 −1.31452 −0.657261 0.753663i \(-0.728285\pi\)
−0.657261 + 0.753663i \(0.728285\pi\)
\(572\) 0 0
\(573\) −1.66578 −0.0695889
\(574\) 0 0
\(575\) −2.77222 −0.115610
\(576\) 0 0
\(577\) 20.7349 0.863206 0.431603 0.902064i \(-0.357948\pi\)
0.431603 + 0.902064i \(0.357948\pi\)
\(578\) 0 0
\(579\) −1.30272 −0.0541392
\(580\) 0 0
\(581\) 29.8485 1.23832
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 13.5163 0.558832
\(586\) 0 0
\(587\) −15.2367 −0.628886 −0.314443 0.949276i \(-0.601818\pi\)
−0.314443 + 0.949276i \(0.601818\pi\)
\(588\) 0 0
\(589\) 10.3576 0.426777
\(590\) 0 0
\(591\) 3.68869 0.151732
\(592\) 0 0
\(593\) −27.5413 −1.13098 −0.565492 0.824754i \(-0.691314\pi\)
−0.565492 + 0.824754i \(0.691314\pi\)
\(594\) 0 0
\(595\) −12.4227 −0.509281
\(596\) 0 0
\(597\) −2.31527 −0.0947576
\(598\) 0 0
\(599\) 26.7331 1.09228 0.546142 0.837693i \(-0.316096\pi\)
0.546142 + 0.837693i \(0.316096\pi\)
\(600\) 0 0
\(601\) −2.40680 −0.0981753 −0.0490876 0.998794i \(-0.515631\pi\)
−0.0490876 + 0.998794i \(0.515631\pi\)
\(602\) 0 0
\(603\) 21.1955 0.863147
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 10.2929 0.417774 0.208887 0.977940i \(-0.433016\pi\)
0.208887 + 0.977940i \(0.433016\pi\)
\(608\) 0 0
\(609\) −2.61419 −0.105932
\(610\) 0 0
\(611\) −20.3618 −0.823752
\(612\) 0 0
\(613\) −27.8756 −1.12589 −0.562943 0.826496i \(-0.690331\pi\)
−0.562943 + 0.826496i \(0.690331\pi\)
\(614\) 0 0
\(615\) 0.714118 0.0287960
\(616\) 0 0
\(617\) −28.7216 −1.15629 −0.578143 0.815935i \(-0.696222\pi\)
−0.578143 + 0.815935i \(0.696222\pi\)
\(618\) 0 0
\(619\) −22.6968 −0.912261 −0.456131 0.889913i \(-0.650765\pi\)
−0.456131 + 0.889913i \(0.650765\pi\)
\(620\) 0 0
\(621\) −5.28027 −0.211890
\(622\) 0 0
\(623\) 7.43746 0.297976
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −49.2375 −1.96323
\(630\) 0 0
\(631\) −28.5364 −1.13602 −0.568008 0.823023i \(-0.692286\pi\)
−0.568008 + 0.823023i \(0.692286\pi\)
\(632\) 0 0
\(633\) −1.12545 −0.0447326
\(634\) 0 0
\(635\) 0.0762667 0.00302655
\(636\) 0 0
\(637\) 0.982140 0.0389138
\(638\) 0 0
\(639\) 3.46233 0.136968
\(640\) 0 0
\(641\) 2.37375 0.0937575 0.0468788 0.998901i \(-0.485073\pi\)
0.0468788 + 0.998901i \(0.485073\pi\)
\(642\) 0 0
\(643\) −11.3603 −0.448007 −0.224004 0.974588i \(-0.571913\pi\)
−0.224004 + 0.974588i \(0.571913\pi\)
\(644\) 0 0
\(645\) −2.28320 −0.0899010
\(646\) 0 0
\(647\) 48.4220 1.90366 0.951832 0.306621i \(-0.0991984\pi\)
0.951832 + 0.306621i \(0.0991984\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 2.07016 0.0811358
\(652\) 0 0
\(653\) 29.7548 1.16440 0.582198 0.813047i \(-0.302193\pi\)
0.582198 + 0.813047i \(0.302193\pi\)
\(654\) 0 0
\(655\) 11.4831 0.448682
\(656\) 0 0
\(657\) 2.95848 0.115421
\(658\) 0 0
\(659\) −28.4931 −1.10993 −0.554966 0.831873i \(-0.687269\pi\)
−0.554966 + 0.831873i \(0.687269\pi\)
\(660\) 0 0
\(661\) −1.02875 −0.0400139 −0.0200070 0.999800i \(-0.506369\pi\)
−0.0200070 + 0.999800i \(0.506369\pi\)
\(662\) 0 0
\(663\) −6.97671 −0.270953
\(664\) 0 0
\(665\) 11.6550 0.451963
\(666\) 0 0
\(667\) −8.35386 −0.323463
\(668\) 0 0
\(669\) 3.40676 0.131713
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −13.0369 −0.502536 −0.251268 0.967918i \(-0.580848\pi\)
−0.251268 + 0.967918i \(0.580848\pi\)
\(674\) 0 0
\(675\) 1.90471 0.0733122
\(676\) 0 0
\(677\) 37.1064 1.42612 0.713058 0.701105i \(-0.247310\pi\)
0.713058 + 0.701105i \(0.247310\pi\)
\(678\) 0 0
\(679\) 49.7684 1.90994
\(680\) 0 0
\(681\) −0.0697890 −0.00267432
\(682\) 0 0
\(683\) 32.8992 1.25885 0.629426 0.777061i \(-0.283290\pi\)
0.629426 + 0.777061i \(0.283290\pi\)
\(684\) 0 0
\(685\) 18.3293 0.700326
\(686\) 0 0
\(687\) 0.0244596 0.000933193 0
\(688\) 0 0
\(689\) −29.5663 −1.12639
\(690\) 0 0
\(691\) −36.6998 −1.39613 −0.698064 0.716035i \(-0.745955\pi\)
−0.698064 + 0.716035i \(0.745955\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 23.1874 0.879546
\(696\) 0 0
\(697\) 10.2261 0.387339
\(698\) 0 0
\(699\) 4.88485 0.184762
\(700\) 0 0
\(701\) 36.2497 1.36913 0.684566 0.728951i \(-0.259992\pi\)
0.684566 + 0.728951i \(0.259992\pi\)
\(702\) 0 0
\(703\) 46.1949 1.74227
\(704\) 0 0
\(705\) −1.40928 −0.0530767
\(706\) 0 0
\(707\) 19.1041 0.718485
\(708\) 0 0
\(709\) −18.6013 −0.698585 −0.349293 0.937014i \(-0.613578\pi\)
−0.349293 + 0.937014i \(0.613578\pi\)
\(710\) 0 0
\(711\) −10.1409 −0.380312
\(712\) 0 0
\(713\) 6.61536 0.247747
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 7.48382 0.279488
\(718\) 0 0
\(719\) 37.4280 1.39583 0.697914 0.716181i \(-0.254112\pi\)
0.697914 + 0.716181i \(0.254112\pi\)
\(720\) 0 0
\(721\) −20.2153 −0.752856
\(722\) 0 0
\(723\) −6.89269 −0.256342
\(724\) 0 0
\(725\) 3.01341 0.111915
\(726\) 0 0
\(727\) −14.6011 −0.541526 −0.270763 0.962646i \(-0.587276\pi\)
−0.270763 + 0.962646i \(0.587276\pi\)
\(728\) 0 0
\(729\) −21.5260 −0.797260
\(730\) 0 0
\(731\) −32.6951 −1.20927
\(732\) 0 0
\(733\) −41.8369 −1.54528 −0.772640 0.634844i \(-0.781064\pi\)
−0.772640 + 0.634844i \(0.781064\pi\)
\(734\) 0 0
\(735\) 0.0679759 0.00250733
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −11.9299 −0.438849 −0.219424 0.975630i \(-0.570418\pi\)
−0.219424 + 0.975630i \(0.570418\pi\)
\(740\) 0 0
\(741\) 6.54559 0.240458
\(742\) 0 0
\(743\) 46.6803 1.71253 0.856267 0.516534i \(-0.172778\pi\)
0.856267 + 0.516534i \(0.172778\pi\)
\(744\) 0 0
\(745\) 14.6646 0.537270
\(746\) 0 0
\(747\) −32.1873 −1.17767
\(748\) 0 0
\(749\) 48.4124 1.76895
\(750\) 0 0
\(751\) −14.4039 −0.525607 −0.262803 0.964849i \(-0.584647\pi\)
−0.262803 + 0.964849i \(0.584647\pi\)
\(752\) 0 0
\(753\) −2.01010 −0.0732523
\(754\) 0 0
\(755\) 7.51902 0.273645
\(756\) 0 0
\(757\) −16.0616 −0.583768 −0.291884 0.956454i \(-0.594282\pi\)
−0.291884 + 0.956454i \(0.594282\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 38.8840 1.40954 0.704772 0.709433i \(-0.251049\pi\)
0.704772 + 0.709433i \(0.251049\pi\)
\(762\) 0 0
\(763\) 43.9445 1.59090
\(764\) 0 0
\(765\) 13.3961 0.484337
\(766\) 0 0
\(767\) −54.8345 −1.97996
\(768\) 0 0
\(769\) −43.0017 −1.55068 −0.775341 0.631543i \(-0.782422\pi\)
−0.775341 + 0.631543i \(0.782422\pi\)
\(770\) 0 0
\(771\) 4.61679 0.166270
\(772\) 0 0
\(773\) −7.85462 −0.282511 −0.141256 0.989973i \(-0.545114\pi\)
−0.141256 + 0.989973i \(0.545114\pi\)
\(774\) 0 0
\(775\) −2.38630 −0.0857184
\(776\) 0 0
\(777\) 9.23290 0.331228
\(778\) 0 0
\(779\) −9.59414 −0.343746
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 5.73967 0.205119
\(784\) 0 0
\(785\) 13.3819 0.477620
\(786\) 0 0
\(787\) −11.4249 −0.407253 −0.203627 0.979049i \(-0.565273\pi\)
−0.203627 + 0.979049i \(0.565273\pi\)
\(788\) 0 0
\(789\) −1.33471 −0.0475169
\(790\) 0 0
\(791\) −5.51483 −0.196085
\(792\) 0 0
\(793\) 18.5903 0.660161
\(794\) 0 0
\(795\) −2.04635 −0.0725764
\(796\) 0 0
\(797\) −4.28502 −0.151783 −0.0758915 0.997116i \(-0.524180\pi\)
−0.0758915 + 0.997116i \(0.524180\pi\)
\(798\) 0 0
\(799\) −20.1807 −0.713942
\(800\) 0 0
\(801\) −8.02024 −0.283381
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 7.44403 0.262368
\(806\) 0 0
\(807\) 0.544033 0.0191509
\(808\) 0 0
\(809\) 19.8484 0.697833 0.348917 0.937154i \(-0.386550\pi\)
0.348917 + 0.937154i \(0.386550\pi\)
\(810\) 0 0
\(811\) −3.13836 −0.110203 −0.0551014 0.998481i \(-0.517548\pi\)
−0.0551014 + 0.998481i \(0.517548\pi\)
\(812\) 0 0
\(813\) 5.95452 0.208834
\(814\) 0 0
\(815\) −0.771990 −0.0270416
\(816\) 0 0
\(817\) 30.6747 1.07317
\(818\) 0 0
\(819\) −36.2943 −1.26823
\(820\) 0 0
\(821\) −23.4999 −0.820151 −0.410076 0.912052i \(-0.634498\pi\)
−0.410076 + 0.912052i \(0.634498\pi\)
\(822\) 0 0
\(823\) 12.6564 0.441173 0.220586 0.975367i \(-0.429203\pi\)
0.220586 + 0.975367i \(0.429203\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 30.2236 1.05098 0.525488 0.850801i \(-0.323883\pi\)
0.525488 + 0.850801i \(0.323883\pi\)
\(828\) 0 0
\(829\) 2.00166 0.0695204 0.0347602 0.999396i \(-0.488933\pi\)
0.0347602 + 0.999396i \(0.488933\pi\)
\(830\) 0 0
\(831\) −1.10731 −0.0384121
\(832\) 0 0
\(833\) 0.973403 0.0337264
\(834\) 0 0
\(835\) 8.48232 0.293543
\(836\) 0 0
\(837\) −4.54520 −0.157105
\(838\) 0 0
\(839\) −35.3744 −1.22126 −0.610629 0.791917i \(-0.709083\pi\)
−0.610629 + 0.791917i \(0.709083\pi\)
\(840\) 0 0
\(841\) −19.9193 −0.686873
\(842\) 0 0
\(843\) −7.37304 −0.253941
\(844\) 0 0
\(845\) −8.78880 −0.302344
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 9.40107 0.322644
\(850\) 0 0
\(851\) 29.5045 1.01140
\(852\) 0 0
\(853\) 18.2034 0.623272 0.311636 0.950202i \(-0.399123\pi\)
0.311636 + 0.950202i \(0.399123\pi\)
\(854\) 0 0
\(855\) −12.5683 −0.429827
\(856\) 0 0
\(857\) 29.2837 1.00031 0.500156 0.865935i \(-0.333276\pi\)
0.500156 + 0.865935i \(0.333276\pi\)
\(858\) 0 0
\(859\) −8.44030 −0.287979 −0.143990 0.989579i \(-0.545993\pi\)
−0.143990 + 0.989579i \(0.545993\pi\)
\(860\) 0 0
\(861\) −1.91756 −0.0653504
\(862\) 0 0
\(863\) 19.3487 0.658636 0.329318 0.944219i \(-0.393181\pi\)
0.329318 + 0.944219i \(0.393181\pi\)
\(864\) 0 0
\(865\) 5.07871 0.172681
\(866\) 0 0
\(867\) −1.42244 −0.0483087
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −34.1679 −1.15773
\(872\) 0 0
\(873\) −53.6681 −1.81639
\(874\) 0 0
\(875\) −2.68522 −0.0907770
\(876\) 0 0
\(877\) −17.5140 −0.591405 −0.295702 0.955280i \(-0.595554\pi\)
−0.295702 + 0.955280i \(0.595554\pi\)
\(878\) 0 0
\(879\) 6.85349 0.231163
\(880\) 0 0
\(881\) −20.0575 −0.675754 −0.337877 0.941190i \(-0.609709\pi\)
−0.337877 + 0.941190i \(0.609709\pi\)
\(882\) 0 0
\(883\) −26.8980 −0.905189 −0.452594 0.891717i \(-0.649501\pi\)
−0.452594 + 0.891717i \(0.649501\pi\)
\(884\) 0 0
\(885\) −3.79521 −0.127574
\(886\) 0 0
\(887\) 6.80568 0.228512 0.114256 0.993451i \(-0.463552\pi\)
0.114256 + 0.993451i \(0.463552\pi\)
\(888\) 0 0
\(889\) −0.204793 −0.00686854
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 18.9337 0.633591
\(894\) 0 0
\(895\) −11.3170 −0.378287
\(896\) 0 0
\(897\) 4.18064 0.139588
\(898\) 0 0
\(899\) −7.19091 −0.239830
\(900\) 0 0
\(901\) −29.3033 −0.976235
\(902\) 0 0
\(903\) 6.13090 0.204024
\(904\) 0 0
\(905\) −7.40006 −0.245986
\(906\) 0 0
\(907\) 21.3313 0.708295 0.354148 0.935190i \(-0.384771\pi\)
0.354148 + 0.935190i \(0.384771\pi\)
\(908\) 0 0
\(909\) −20.6011 −0.683295
\(910\) 0 0
\(911\) 27.5888 0.914059 0.457029 0.889452i \(-0.348913\pi\)
0.457029 + 0.889452i \(0.348913\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 1.28667 0.0425361
\(916\) 0 0
\(917\) −30.8347 −1.01825
\(918\) 0 0
\(919\) −6.00889 −0.198215 −0.0991075 0.995077i \(-0.531599\pi\)
−0.0991075 + 0.995077i \(0.531599\pi\)
\(920\) 0 0
\(921\) 2.22118 0.0731903
\(922\) 0 0
\(923\) −5.58140 −0.183714
\(924\) 0 0
\(925\) −10.6429 −0.349937
\(926\) 0 0
\(927\) 21.7993 0.715982
\(928\) 0 0
\(929\) 9.59739 0.314880 0.157440 0.987529i \(-0.449676\pi\)
0.157440 + 0.987529i \(0.449676\pi\)
\(930\) 0 0
\(931\) −0.913252 −0.0299306
\(932\) 0 0
\(933\) 8.12771 0.266089
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 38.5917 1.26074 0.630369 0.776296i \(-0.282904\pi\)
0.630369 + 0.776296i \(0.282904\pi\)
\(938\) 0 0
\(939\) 3.74095 0.122081
\(940\) 0 0
\(941\) 29.1846 0.951391 0.475695 0.879610i \(-0.342196\pi\)
0.475695 + 0.879610i \(0.342196\pi\)
\(942\) 0 0
\(943\) −6.12774 −0.199547
\(944\) 0 0
\(945\) −5.11455 −0.166376
\(946\) 0 0
\(947\) −46.7623 −1.51957 −0.759785 0.650174i \(-0.774696\pi\)
−0.759785 + 0.650174i \(0.774696\pi\)
\(948\) 0 0
\(949\) −4.76917 −0.154814
\(950\) 0 0
\(951\) −6.70090 −0.217292
\(952\) 0 0
\(953\) 6.15238 0.199295 0.0996475 0.995023i \(-0.468228\pi\)
0.0996475 + 0.995023i \(0.468228\pi\)
\(954\) 0 0
\(955\) −5.15608 −0.166847
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −49.2182 −1.58934
\(960\) 0 0
\(961\) −25.3056 −0.816309
\(962\) 0 0
\(963\) −52.2058 −1.68231
\(964\) 0 0
\(965\) −4.03230 −0.129804
\(966\) 0 0
\(967\) 3.39625 0.109216 0.0546080 0.998508i \(-0.482609\pi\)
0.0546080 + 0.998508i \(0.482609\pi\)
\(968\) 0 0
\(969\) 6.48736 0.208404
\(970\) 0 0
\(971\) 9.39500 0.301500 0.150750 0.988572i \(-0.451831\pi\)
0.150750 + 0.988572i \(0.451831\pi\)
\(972\) 0 0
\(973\) −62.2631 −1.99606
\(974\) 0 0
\(975\) −1.50805 −0.0482961
\(976\) 0 0
\(977\) −16.5552 −0.529649 −0.264824 0.964297i \(-0.585314\pi\)
−0.264824 + 0.964297i \(0.585314\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −47.3878 −1.51298
\(982\) 0 0
\(983\) −50.8180 −1.62084 −0.810421 0.585848i \(-0.800762\pi\)
−0.810421 + 0.585848i \(0.800762\pi\)
\(984\) 0 0
\(985\) 11.4176 0.363794
\(986\) 0 0
\(987\) 3.78424 0.120454
\(988\) 0 0
\(989\) 19.5918 0.622983
\(990\) 0 0
\(991\) −11.3642 −0.360996 −0.180498 0.983575i \(-0.557771\pi\)
−0.180498 + 0.983575i \(0.557771\pi\)
\(992\) 0 0
\(993\) −10.3840 −0.329526
\(994\) 0 0
\(995\) −7.16644 −0.227191
\(996\) 0 0
\(997\) 29.1644 0.923647 0.461824 0.886972i \(-0.347195\pi\)
0.461824 + 0.886972i \(0.347195\pi\)
\(998\) 0 0
\(999\) −20.2716 −0.641365
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9680.2.a.cm.1.3 4
4.3 odd 2 605.2.a.k.1.2 4
11.7 odd 10 880.2.bo.h.401.1 8
11.8 odd 10 880.2.bo.h.801.1 8
11.10 odd 2 9680.2.a.cn.1.3 4
12.11 even 2 5445.2.a.bi.1.3 4
20.19 odd 2 3025.2.a.w.1.3 4
44.3 odd 10 605.2.g.k.251.1 8
44.7 even 10 55.2.g.b.16.2 8
44.15 odd 10 605.2.g.k.511.1 8
44.19 even 10 55.2.g.b.31.2 yes 8
44.27 odd 10 605.2.g.e.366.2 8
44.31 odd 10 605.2.g.e.81.2 8
44.35 even 10 605.2.g.m.81.1 8
44.39 even 10 605.2.g.m.366.1 8
44.43 even 2 605.2.a.j.1.3 4
132.95 odd 10 495.2.n.e.181.1 8
132.107 odd 10 495.2.n.e.361.1 8
132.131 odd 2 5445.2.a.bp.1.2 4
220.7 odd 20 275.2.z.a.49.2 16
220.19 even 10 275.2.h.a.251.1 8
220.63 odd 20 275.2.z.a.174.2 16
220.107 odd 20 275.2.z.a.174.3 16
220.139 even 10 275.2.h.a.126.1 8
220.183 odd 20 275.2.z.a.49.3 16
220.219 even 2 3025.2.a.bd.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.g.b.16.2 8 44.7 even 10
55.2.g.b.31.2 yes 8 44.19 even 10
275.2.h.a.126.1 8 220.139 even 10
275.2.h.a.251.1 8 220.19 even 10
275.2.z.a.49.2 16 220.7 odd 20
275.2.z.a.49.3 16 220.183 odd 20
275.2.z.a.174.2 16 220.63 odd 20
275.2.z.a.174.3 16 220.107 odd 20
495.2.n.e.181.1 8 132.95 odd 10
495.2.n.e.361.1 8 132.107 odd 10
605.2.a.j.1.3 4 44.43 even 2
605.2.a.k.1.2 4 4.3 odd 2
605.2.g.e.81.2 8 44.31 odd 10
605.2.g.e.366.2 8 44.27 odd 10
605.2.g.k.251.1 8 44.3 odd 10
605.2.g.k.511.1 8 44.15 odd 10
605.2.g.m.81.1 8 44.35 even 10
605.2.g.m.366.1 8 44.39 even 10
880.2.bo.h.401.1 8 11.7 odd 10
880.2.bo.h.801.1 8 11.8 odd 10
3025.2.a.w.1.3 4 20.19 odd 2
3025.2.a.bd.1.2 4 220.219 even 2
5445.2.a.bi.1.3 4 12.11 even 2
5445.2.a.bp.1.2 4 132.131 odd 2
9680.2.a.cm.1.3 4 1.1 even 1 trivial
9680.2.a.cn.1.3 4 11.10 odd 2