Properties

Label 605.2.g.k.251.1
Level $605$
Weight $2$
Character 605.251
Analytic conductor $4.831$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [605,2,Mod(81,605)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(605, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("605.81"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 605.g (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,2,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.83094932229\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.13140625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + 5x^{6} - 3x^{5} + 4x^{4} + 3x^{3} + 5x^{2} + 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 251.1
Root \(-0.386111 + 0.280526i\) of defining polynomial
Character \(\chi\) \(=\) 605.251
Dual form 605.2.g.k.511.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.147481 + 0.453901i) q^{2} +(-0.261370 + 0.189896i) q^{3} +(1.43376 + 1.04169i) q^{4} +(-0.309017 - 0.951057i) q^{5} +(-0.0476470 - 0.146642i) q^{6} +(2.17239 + 1.57833i) q^{7} +(-1.45650 + 1.05821i) q^{8} +(-0.894797 + 2.75390i) q^{9} +0.477260 q^{10} -0.572554 q^{12} +(1.44244 - 4.43939i) q^{13} +(-1.03679 + 0.753275i) q^{14} +(0.261370 + 0.189896i) q^{15} +(0.829779 + 2.55380i) q^{16} +(1.42961 + 4.39990i) q^{17} +(-1.11803 - 0.812299i) q^{18} +(-3.51149 + 2.55125i) q^{19} +(0.547647 - 1.68548i) q^{20} -0.867517 q^{21} +2.77222 q^{23} +(0.179735 - 0.553168i) q^{24} +(-0.809017 + 0.587785i) q^{25} +(1.80231 + 1.30945i) q^{26} +(-0.588587 - 1.81148i) q^{27} +(1.47055 + 4.52590i) q^{28} +(-2.43790 - 1.77124i) q^{29} +(-0.124741 + 0.0906300i) q^{30} +(0.737407 - 2.26951i) q^{31} -4.88221 q^{32} -2.20796 q^{34} +(0.829779 - 2.55380i) q^{35} +(-4.15163 + 3.01633i) q^{36} +(8.61029 + 6.25574i) q^{37} +(-0.640135 - 1.97013i) q^{38} +(0.466012 + 1.43424i) q^{39} +(1.45650 + 1.05821i) q^{40} +(-1.78826 + 1.29924i) q^{41} +(0.127943 - 0.393767i) q^{42} +7.06719 q^{43} +2.89563 q^{45} +(-0.408851 + 1.25832i) q^{46} +(-3.52905 + 2.56401i) q^{47} +(-0.701836 - 0.509914i) q^{48} +(0.0650188 + 0.200107i) q^{49} +(-0.147481 - 0.453901i) q^{50} +(-1.20918 - 0.878523i) q^{51} +(6.69257 - 4.86243i) q^{52} +(-1.95733 + 6.02403i) q^{53} +0.909040 q^{54} -4.83428 q^{56} +(0.433326 - 1.33364i) q^{57} +(1.16351 - 0.845342i) q^{58} +(-9.50375 - 6.90488i) q^{59} +(0.176929 + 0.544531i) q^{60} +(1.23070 + 3.78770i) q^{61} +(0.921378 + 0.669420i) q^{62} +(-6.29042 + 4.57026i) q^{63} +(-0.939522 + 2.89155i) q^{64} -4.66785 q^{65} +7.31984 q^{67} +(-2.53359 + 7.79760i) q^{68} +(-0.724576 + 0.526435i) q^{69} +(1.03679 + 0.753275i) q^{70} +(0.369495 + 1.13719i) q^{71} +(-1.61093 - 4.95794i) q^{72} +(0.826577 + 0.600544i) q^{73} +(-4.10935 + 2.98562i) q^{74} +(0.0998345 - 0.307259i) q^{75} -7.69223 q^{76} -0.719730 q^{78} +(-1.08222 + 3.33073i) q^{79} +(2.17239 - 1.57833i) q^{80} +(-6.53000 - 4.74432i) q^{81} +(-0.325994 - 1.00331i) q^{82} +(-3.43498 - 10.5718i) q^{83} +(-1.24381 - 0.903681i) q^{84} +(3.74278 - 2.71929i) q^{85} +(-1.04228 + 3.20780i) q^{86} +0.973547 q^{87} +2.76978 q^{89} +(-0.427051 + 1.31433i) q^{90} +(10.1404 - 7.36742i) q^{91} +(3.97470 + 2.88779i) q^{92} +(0.238235 + 0.733212i) q^{93} +(-0.643336 - 1.97998i) q^{94} +(3.51149 + 2.55125i) q^{95} +(1.27606 - 0.927114i) q^{96} +(5.72738 - 17.6271i) q^{97} -0.100418 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} - 5 q^{3} - 2 q^{4} + 2 q^{5} + 7 q^{6} + q^{7} - 4 q^{8} - 5 q^{9} - 2 q^{10} + 16 q^{12} + 2 q^{13} - 16 q^{14} + 5 q^{15} + 4 q^{16} + 13 q^{17} - 15 q^{19} - 3 q^{20} + 20 q^{21} + 10 q^{23}+ \cdots - 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/605\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(486\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.147481 + 0.453901i −0.104285 + 0.320957i −0.989562 0.144108i \(-0.953969\pi\)
0.885277 + 0.465064i \(0.153969\pi\)
\(3\) −0.261370 + 0.189896i −0.150902 + 0.109637i −0.660674 0.750673i \(-0.729730\pi\)
0.509772 + 0.860309i \(0.329730\pi\)
\(4\) 1.43376 + 1.04169i 0.716879 + 0.520843i
\(5\) −0.309017 0.951057i −0.138197 0.425325i
\(6\) −0.0476470 0.146642i −0.0194518 0.0598665i
\(7\) 2.17239 + 1.57833i 0.821086 + 0.596554i 0.917023 0.398834i \(-0.130585\pi\)
−0.0959376 + 0.995387i \(0.530585\pi\)
\(8\) −1.45650 + 1.05821i −0.514950 + 0.374133i
\(9\) −0.894797 + 2.75390i −0.298266 + 0.917968i
\(10\) 0.477260 0.150923
\(11\) 0 0
\(12\) −0.572554 −0.165282
\(13\) 1.44244 4.43939i 0.400062 1.23126i −0.524886 0.851172i \(-0.675892\pi\)
0.924949 0.380092i \(-0.124108\pi\)
\(14\) −1.03679 + 0.753275i −0.277095 + 0.201321i
\(15\) 0.261370 + 0.189896i 0.0674854 + 0.0490310i
\(16\) 0.829779 + 2.55380i 0.207445 + 0.638449i
\(17\) 1.42961 + 4.39990i 0.346732 + 1.06713i 0.960650 + 0.277762i \(0.0895926\pi\)
−0.613918 + 0.789370i \(0.710407\pi\)
\(18\) −1.11803 0.812299i −0.263523 0.191461i
\(19\) −3.51149 + 2.55125i −0.805592 + 0.585297i −0.912549 0.408967i \(-0.865889\pi\)
0.106958 + 0.994264i \(0.465889\pi\)
\(20\) 0.547647 1.68548i 0.122458 0.376886i
\(21\) −0.867517 −0.189308
\(22\) 0 0
\(23\) 2.77222 0.578048 0.289024 0.957322i \(-0.406669\pi\)
0.289024 + 0.957322i \(0.406669\pi\)
\(24\) 0.179735 0.553168i 0.0366883 0.112915i
\(25\) −0.809017 + 0.587785i −0.161803 + 0.117557i
\(26\) 1.80231 + 1.30945i 0.353462 + 0.256805i
\(27\) −0.588587 1.81148i −0.113274 0.348620i
\(28\) 1.47055 + 4.52590i 0.277908 + 0.855314i
\(29\) −2.43790 1.77124i −0.452707 0.328911i 0.337956 0.941162i \(-0.390264\pi\)
−0.790664 + 0.612251i \(0.790264\pi\)
\(30\) −0.124741 + 0.0906300i −0.0227746 + 0.0165467i
\(31\) 0.737407 2.26951i 0.132442 0.407615i −0.862741 0.505646i \(-0.831254\pi\)
0.995183 + 0.0980305i \(0.0312543\pi\)
\(32\) −4.88221 −0.863061
\(33\) 0 0
\(34\) −2.20796 −0.378662
\(35\) 0.829779 2.55380i 0.140258 0.431670i
\(36\) −4.15163 + 3.01633i −0.691938 + 0.502722i
\(37\) 8.61029 + 6.25574i 1.41552 + 1.02844i 0.992490 + 0.122324i \(0.0390346\pi\)
0.423033 + 0.906114i \(0.360965\pi\)
\(38\) −0.640135 1.97013i −0.103844 0.319598i
\(39\) 0.466012 + 1.43424i 0.0746217 + 0.229662i
\(40\) 1.45650 + 1.05821i 0.230293 + 0.167317i
\(41\) −1.78826 + 1.29924i −0.279279 + 0.202908i −0.718603 0.695421i \(-0.755218\pi\)
0.439324 + 0.898329i \(0.355218\pi\)
\(42\) 0.127943 0.393767i 0.0197420 0.0607596i
\(43\) 7.06719 1.07774 0.538868 0.842390i \(-0.318852\pi\)
0.538868 + 0.842390i \(0.318852\pi\)
\(44\) 0 0
\(45\) 2.89563 0.431654
\(46\) −0.408851 + 1.25832i −0.0602819 + 0.185528i
\(47\) −3.52905 + 2.56401i −0.514765 + 0.373999i −0.814628 0.579983i \(-0.803059\pi\)
0.299863 + 0.953982i \(0.403059\pi\)
\(48\) −0.701836 0.509914i −0.101301 0.0735997i
\(49\) 0.0650188 + 0.200107i 0.00928840 + 0.0285868i
\(50\) −0.147481 0.453901i −0.0208570 0.0641913i
\(51\) −1.20918 0.878523i −0.169319 0.123018i
\(52\) 6.69257 4.86243i 0.928092 0.674298i
\(53\) −1.95733 + 6.02403i −0.268859 + 0.827464i 0.721920 + 0.691977i \(0.243260\pi\)
−0.990779 + 0.135487i \(0.956740\pi\)
\(54\) 0.909040 0.123705
\(55\) 0 0
\(56\) −4.83428 −0.646008
\(57\) 0.433326 1.33364i 0.0573954 0.176645i
\(58\) 1.16351 0.845342i 0.152777 0.110999i
\(59\) −9.50375 6.90488i −1.23728 0.898939i −0.239869 0.970805i \(-0.577104\pi\)
−0.997414 + 0.0718667i \(0.977104\pi\)
\(60\) 0.176929 + 0.544531i 0.0228414 + 0.0702987i
\(61\) 1.23070 + 3.78770i 0.157575 + 0.484966i 0.998413 0.0563214i \(-0.0179372\pi\)
−0.840838 + 0.541287i \(0.817937\pi\)
\(62\) 0.921378 + 0.669420i 0.117015 + 0.0850164i
\(63\) −6.29042 + 4.57026i −0.792519 + 0.575799i
\(64\) −0.939522 + 2.89155i −0.117440 + 0.361444i
\(65\) −4.66785 −0.578975
\(66\) 0 0
\(67\) 7.31984 0.894260 0.447130 0.894469i \(-0.352446\pi\)
0.447130 + 0.894469i \(0.352446\pi\)
\(68\) −2.53359 + 7.79760i −0.307243 + 0.945598i
\(69\) −0.724576 + 0.526435i −0.0872287 + 0.0633754i
\(70\) 1.03679 + 0.753275i 0.123921 + 0.0900336i
\(71\) 0.369495 + 1.13719i 0.0438510 + 0.134960i 0.970585 0.240758i \(-0.0773961\pi\)
−0.926734 + 0.375718i \(0.877396\pi\)
\(72\) −1.61093 4.95794i −0.189850 0.584299i
\(73\) 0.826577 + 0.600544i 0.0967436 + 0.0702883i 0.635105 0.772425i \(-0.280957\pi\)
−0.538362 + 0.842714i \(0.680957\pi\)
\(74\) −4.10935 + 2.98562i −0.477702 + 0.347071i
\(75\) 0.0998345 0.307259i 0.0115279 0.0354792i
\(76\) −7.69223 −0.882360
\(77\) 0 0
\(78\) −0.719730 −0.0814934
\(79\) −1.08222 + 3.33073i −0.121759 + 0.374736i −0.993297 0.115593i \(-0.963123\pi\)
0.871538 + 0.490329i \(0.163123\pi\)
\(80\) 2.17239 1.57833i 0.242880 0.176463i
\(81\) −6.53000 4.74432i −0.725555 0.527147i
\(82\) −0.325994 1.00331i −0.0360000 0.110797i
\(83\) −3.43498 10.5718i −0.377038 1.16040i −0.942093 0.335351i \(-0.891145\pi\)
0.565055 0.825053i \(-0.308855\pi\)
\(84\) −1.24381 0.903681i −0.135711 0.0985996i
\(85\) 3.74278 2.71929i 0.405961 0.294948i
\(86\) −1.04228 + 3.20780i −0.112392 + 0.345906i
\(87\) 0.973547 0.104375
\(88\) 0 0
\(89\) 2.76978 0.293596 0.146798 0.989167i \(-0.453103\pi\)
0.146798 + 0.989167i \(0.453103\pi\)
\(90\) −0.427051 + 1.31433i −0.0450151 + 0.138542i
\(91\) 10.1404 7.36742i 1.06300 0.772315i
\(92\) 3.97470 + 2.88779i 0.414391 + 0.301073i
\(93\) 0.238235 + 0.733212i 0.0247038 + 0.0760305i
\(94\) −0.643336 1.97998i −0.0663550 0.204220i
\(95\) 3.51149 + 2.55125i 0.360271 + 0.261753i
\(96\) 1.27606 0.927114i 0.130238 0.0946232i
\(97\) 5.72738 17.6271i 0.581528 1.78976i −0.0312615 0.999511i \(-0.509952\pi\)
0.612789 0.790247i \(-0.290048\pi\)
\(98\) −0.100418 −0.0101438
\(99\) 0 0
\(100\) −1.77222 −0.177222
\(101\) 2.19852 6.76634i 0.218761 0.673276i −0.780104 0.625649i \(-0.784834\pi\)
0.998865 0.0476270i \(-0.0151659\pi\)
\(102\) 0.577094 0.419284i 0.0571409 0.0415153i
\(103\) −6.09056 4.42505i −0.600121 0.436014i 0.245801 0.969320i \(-0.420949\pi\)
−0.845922 + 0.533307i \(0.820949\pi\)
\(104\) 2.59688 + 7.99237i 0.254645 + 0.783716i
\(105\) 0.268077 + 0.825058i 0.0261617 + 0.0805174i
\(106\) −2.44565 1.77687i −0.237542 0.172584i
\(107\) 14.5859 10.5973i 1.41008 1.02448i 0.416764 0.909015i \(-0.363164\pi\)
0.993312 0.115465i \(-0.0368358\pi\)
\(108\) 1.04311 3.21035i 0.100373 0.308916i
\(109\) 16.3653 1.56751 0.783756 0.621068i \(-0.213301\pi\)
0.783756 + 0.621068i \(0.213301\pi\)
\(110\) 0 0
\(111\) −3.43842 −0.326360
\(112\) −2.22814 + 6.85750i −0.210539 + 0.647973i
\(113\) 1.66154 1.20718i 0.156304 0.113562i −0.506884 0.862014i \(-0.669203\pi\)
0.663188 + 0.748453i \(0.269203\pi\)
\(114\) 0.541433 + 0.393374i 0.0507099 + 0.0368429i
\(115\) −0.856664 2.63654i −0.0798843 0.245859i
\(116\) −1.65029 5.07906i −0.153225 0.471579i
\(117\) 10.9349 + 7.94470i 1.01094 + 0.734488i
\(118\) 4.53576 3.29542i 0.417551 0.303368i
\(119\) −3.83883 + 11.8147i −0.351905 + 1.08305i
\(120\) −0.581635 −0.0530958
\(121\) 0 0
\(122\) −1.90075 −0.172086
\(123\) 0.220675 0.679167i 0.0198976 0.0612384i
\(124\) 3.42138 2.48578i 0.307249 0.223229i
\(125\) 0.809017 + 0.587785i 0.0723607 + 0.0525731i
\(126\) −1.14673 3.52926i −0.102158 0.314411i
\(127\) 0.0235677 + 0.0725340i 0.00209130 + 0.00643635i 0.952097 0.305797i \(-0.0989229\pi\)
−0.950005 + 0.312233i \(0.898923\pi\)
\(128\) −9.07350 6.59228i −0.801992 0.582681i
\(129\) −1.84715 + 1.34203i −0.162633 + 0.118159i
\(130\) 0.688421 2.11874i 0.0603785 0.185826i
\(131\) 11.4831 1.00328 0.501642 0.865075i \(-0.332730\pi\)
0.501642 + 0.865075i \(0.332730\pi\)
\(132\) 0 0
\(133\) −11.6550 −1.01062
\(134\) −1.07954 + 3.32248i −0.0932580 + 0.287019i
\(135\) −1.54094 + 1.11956i −0.132623 + 0.0963562i
\(136\) −6.73823 4.89561i −0.577799 0.419795i
\(137\) −5.66406 17.4322i −0.483914 1.48933i −0.833548 0.552447i \(-0.813694\pi\)
0.349635 0.936886i \(-0.386306\pi\)
\(138\) −0.132088 0.406525i −0.0112441 0.0346057i
\(139\) −18.7590 13.6292i −1.59111 1.15601i −0.902330 0.431046i \(-0.858145\pi\)
−0.688785 0.724966i \(-0.741855\pi\)
\(140\) 3.84996 2.79716i 0.325381 0.236403i
\(141\) 0.435493 1.34031i 0.0366751 0.112874i
\(142\) −0.570666 −0.0478892
\(143\) 0 0
\(144\) −7.77539 −0.647949
\(145\) −0.931196 + 2.86593i −0.0773317 + 0.238002i
\(146\) −0.394492 + 0.286615i −0.0326484 + 0.0237205i
\(147\) −0.0549936 0.0399552i −0.00453580 0.00329545i
\(148\) 5.82856 + 17.9385i 0.479104 + 1.47453i
\(149\) −4.53161 13.9469i −0.371244 1.14257i −0.945978 0.324232i \(-0.894894\pi\)
0.574733 0.818341i \(-0.305106\pi\)
\(150\) 0.124741 + 0.0906300i 0.0101851 + 0.00739991i
\(151\) −6.08301 + 4.41957i −0.495028 + 0.359659i −0.807115 0.590394i \(-0.798972\pi\)
0.312086 + 0.950054i \(0.398972\pi\)
\(152\) 2.41473 7.43178i 0.195861 0.602797i
\(153\) −13.3961 −1.08301
\(154\) 0 0
\(155\) −2.38630 −0.191672
\(156\) −0.825877 + 2.54179i −0.0661231 + 0.203506i
\(157\) 10.8262 7.86568i 0.864023 0.627750i −0.0649531 0.997888i \(-0.520690\pi\)
0.928977 + 0.370139i \(0.120690\pi\)
\(158\) −1.35221 0.982441i −0.107576 0.0781588i
\(159\) −0.632355 1.94619i −0.0501491 0.154343i
\(160\) 1.50869 + 4.64326i 0.119272 + 0.367082i
\(161\) 6.02234 + 4.37549i 0.474627 + 0.344837i
\(162\) 3.11651 2.26427i 0.244856 0.177898i
\(163\) −0.238558 + 0.734206i −0.0186853 + 0.0575075i −0.959964 0.280122i \(-0.909625\pi\)
0.941279 + 0.337629i \(0.109625\pi\)
\(164\) −3.91733 −0.305892
\(165\) 0 0
\(166\) 5.30514 0.411759
\(167\) 2.62118 8.06716i 0.202833 0.624256i −0.796962 0.604029i \(-0.793561\pi\)
0.999795 0.0202268i \(-0.00643884\pi\)
\(168\) 1.26354 0.918013i 0.0974840 0.0708263i
\(169\) −7.11029 5.16593i −0.546946 0.397379i
\(170\) 0.682297 + 2.09989i 0.0523298 + 0.161055i
\(171\) −3.88382 11.9532i −0.297003 0.914081i
\(172\) 10.1326 + 7.36179i 0.772606 + 0.561331i
\(173\) 4.10876 2.98519i 0.312384 0.226960i −0.420535 0.907276i \(-0.638158\pi\)
0.732919 + 0.680316i \(0.238158\pi\)
\(174\) −0.143580 + 0.441894i −0.0108848 + 0.0334999i
\(175\) −2.68522 −0.202984
\(176\) 0 0
\(177\) 3.79521 0.285265
\(178\) −0.408491 + 1.25721i −0.0306177 + 0.0942315i
\(179\) 9.15568 6.65199i 0.684328 0.497193i −0.190463 0.981694i \(-0.560999\pi\)
0.874791 + 0.484501i \(0.160999\pi\)
\(180\) 4.15163 + 3.01633i 0.309444 + 0.224824i
\(181\) 2.28674 + 7.03787i 0.169972 + 0.523121i 0.999368 0.0355402i \(-0.0113152\pi\)
−0.829396 + 0.558661i \(0.811315\pi\)
\(182\) 1.84856 + 5.68929i 0.137025 + 0.421718i
\(183\) −1.04094 0.756287i −0.0769485 0.0559063i
\(184\) −4.03774 + 2.93359i −0.297666 + 0.216267i
\(185\) 3.28884 10.1220i 0.241800 0.744185i
\(186\) −0.367941 −0.0269787
\(187\) 0 0
\(188\) −7.73070 −0.563819
\(189\) 1.58048 4.86423i 0.114963 0.353821i
\(190\) −1.67589 + 1.21761i −0.121582 + 0.0883346i
\(191\) 4.17135 + 3.03067i 0.301829 + 0.219291i 0.728382 0.685171i \(-0.240272\pi\)
−0.426554 + 0.904462i \(0.640272\pi\)
\(192\) −0.303532 0.934176i −0.0219056 0.0674184i
\(193\) 1.24605 + 3.83494i 0.0896925 + 0.276045i 0.985834 0.167723i \(-0.0536414\pi\)
−0.896142 + 0.443768i \(0.853641\pi\)
\(194\) 7.15627 + 5.19933i 0.513790 + 0.373290i
\(195\) 1.22004 0.886408i 0.0873686 0.0634770i
\(196\) −0.115228 + 0.354635i −0.00823056 + 0.0253311i
\(197\) −11.4176 −0.813469 −0.406734 0.913547i \(-0.633333\pi\)
−0.406734 + 0.913547i \(0.633333\pi\)
\(198\) 0 0
\(199\) −7.16644 −0.508015 −0.254008 0.967202i \(-0.581749\pi\)
−0.254008 + 0.967202i \(0.581749\pi\)
\(200\) 0.556333 1.71222i 0.0393387 0.121072i
\(201\) −1.91319 + 1.39001i −0.134946 + 0.0980438i
\(202\) 2.74701 + 1.99582i 0.193279 + 0.140425i
\(203\) −2.50047 7.69565i −0.175498 0.540128i
\(204\) −0.818531 2.51918i −0.0573086 0.176378i
\(205\) 1.78826 + 1.29924i 0.124897 + 0.0907431i
\(206\) 2.90678 2.11190i 0.202525 0.147143i
\(207\) −2.48058 + 7.63443i −0.172412 + 0.530630i
\(208\) 12.5342 0.869090
\(209\) 0 0
\(210\) −0.414031 −0.0285709
\(211\) −1.07649 + 3.31309i −0.0741086 + 0.228083i −0.981249 0.192746i \(-0.938261\pi\)
0.907140 + 0.420829i \(0.138261\pi\)
\(212\) −9.08148 + 6.59808i −0.623719 + 0.453158i
\(213\) −0.312523 0.227061i −0.0214137 0.0155580i
\(214\) 2.65897 + 8.18348i 0.181764 + 0.559411i
\(215\) −2.18388 6.72129i −0.148939 0.458388i
\(216\) 2.77420 + 2.01558i 0.188760 + 0.137143i
\(217\) 5.18397 3.76638i 0.351911 0.255678i
\(218\) −2.41358 + 7.42824i −0.163468 + 0.503104i
\(219\) −0.330084 −0.0223050
\(220\) 0 0
\(221\) 21.5950 1.45264
\(222\) 0.507102 1.56070i 0.0340345 0.104747i
\(223\) −8.53103 + 6.19816i −0.571280 + 0.415059i −0.835570 0.549384i \(-0.814862\pi\)
0.264290 + 0.964443i \(0.414862\pi\)
\(224\) −10.6061 7.70575i −0.708647 0.514862i
\(225\) −0.894797 2.75390i −0.0596532 0.183594i
\(226\) 0.302893 + 0.932209i 0.0201481 + 0.0620096i
\(227\) 0.174762 + 0.126972i 0.0115994 + 0.00842743i 0.593570 0.804782i \(-0.297718\pi\)
−0.581970 + 0.813210i \(0.697718\pi\)
\(228\) 2.01052 1.46073i 0.133150 0.0967390i
\(229\) −0.0233956 + 0.0720042i −0.00154602 + 0.00475817i −0.951827 0.306637i \(-0.900796\pi\)
0.950281 + 0.311395i \(0.100796\pi\)
\(230\) 1.32307 0.0872407
\(231\) 0 0
\(232\) 5.42514 0.356178
\(233\) −4.67235 + 14.3800i −0.306096 + 0.942067i 0.673170 + 0.739488i \(0.264932\pi\)
−0.979266 + 0.202579i \(0.935068\pi\)
\(234\) −5.21881 + 3.79169i −0.341164 + 0.247870i
\(235\) 3.52905 + 2.56401i 0.230210 + 0.167257i
\(236\) −6.43336 19.7999i −0.418776 1.28886i
\(237\) −0.349634 1.07606i −0.0227111 0.0698977i
\(238\) −4.79655 3.48489i −0.310914 0.225892i
\(239\) −18.7406 + 13.6158i −1.21223 + 0.880734i −0.995431 0.0954825i \(-0.969561\pi\)
−0.216796 + 0.976217i \(0.569561\pi\)
\(240\) −0.268077 + 0.825058i −0.0173043 + 0.0532572i
\(241\) 21.3349 1.37430 0.687151 0.726515i \(-0.258861\pi\)
0.687151 + 0.726515i \(0.258861\pi\)
\(242\) 0 0
\(243\) 8.32179 0.533843
\(244\) −2.18107 + 6.71266i −0.139629 + 0.429734i
\(245\) 0.170221 0.123673i 0.0108750 0.00790119i
\(246\) 0.275729 + 0.200329i 0.0175798 + 0.0127725i
\(247\) 6.26085 + 19.2689i 0.398368 + 1.22605i
\(248\) 1.32758 + 4.08586i 0.0843012 + 0.259453i
\(249\) 2.90535 + 2.11086i 0.184119 + 0.133770i
\(250\) −0.386111 + 0.280526i −0.0244198 + 0.0177420i
\(251\) −1.92266 + 5.91734i −0.121357 + 0.373499i −0.993220 0.116251i \(-0.962912\pi\)
0.871863 + 0.489751i \(0.162912\pi\)
\(252\) −13.7797 −0.868041
\(253\) 0 0
\(254\) −0.0363991 −0.00228388
\(255\) −0.461867 + 1.42148i −0.0289232 + 0.0890165i
\(256\) −0.588982 + 0.427920i −0.0368113 + 0.0267450i
\(257\) 11.5611 + 8.39964i 0.721163 + 0.523955i 0.886755 0.462239i \(-0.152954\pi\)
−0.165593 + 0.986194i \(0.552954\pi\)
\(258\) −0.336730 1.03635i −0.0209639 0.0645203i
\(259\) 8.83126 + 27.1798i 0.548748 + 1.68887i
\(260\) −6.69257 4.86243i −0.415055 0.301555i
\(261\) 7.05926 5.12885i 0.436957 0.317468i
\(262\) −1.69355 + 5.21220i −0.104628 + 0.322011i
\(263\) −4.13132 −0.254748 −0.127374 0.991855i \(-0.540655\pi\)
−0.127374 + 0.991855i \(0.540655\pi\)
\(264\) 0 0
\(265\) 6.33404 0.389097
\(266\) 1.71890 5.29024i 0.105393 0.324365i
\(267\) −0.723937 + 0.525971i −0.0443042 + 0.0321889i
\(268\) 10.4949 + 7.62497i 0.641077 + 0.465769i
\(269\) −0.520367 1.60152i −0.0317273 0.0976466i 0.933939 0.357433i \(-0.116348\pi\)
−0.965666 + 0.259786i \(0.916348\pi\)
\(270\) −0.280909 0.864548i −0.0170956 0.0526147i
\(271\) −14.9110 10.8335i −0.905778 0.658086i 0.0341657 0.999416i \(-0.489123\pi\)
−0.939943 + 0.341330i \(0.889123\pi\)
\(272\) −10.0502 + 7.30188i −0.609381 + 0.442741i
\(273\) −1.25134 + 3.85124i −0.0757348 + 0.233088i
\(274\) 8.74784 0.528476
\(275\) 0 0
\(276\) −1.58725 −0.0955411
\(277\) 1.05914 3.25969i 0.0636375 0.195856i −0.914183 0.405303i \(-0.867166\pi\)
0.977820 + 0.209446i \(0.0671662\pi\)
\(278\) 8.95290 6.50466i 0.536959 0.390124i
\(279\) 5.59017 + 4.06150i 0.334675 + 0.243155i
\(280\) 1.49388 + 4.59768i 0.0892762 + 0.274764i
\(281\) 7.05230 + 21.7048i 0.420705 + 1.29480i 0.907047 + 0.421029i \(0.138331\pi\)
−0.486342 + 0.873769i \(0.661669\pi\)
\(282\) 0.544141 + 0.395341i 0.0324031 + 0.0235422i
\(283\) −23.5416 + 17.1040i −1.39941 + 1.01673i −0.404647 + 0.914473i \(0.632606\pi\)
−0.994758 + 0.102255i \(0.967394\pi\)
\(284\) −0.654828 + 2.01535i −0.0388569 + 0.119589i
\(285\) −1.40227 −0.0830634
\(286\) 0 0
\(287\) −5.93542 −0.350357
\(288\) 4.36859 13.4451i 0.257422 0.792262i
\(289\) −3.56201 + 2.58795i −0.209530 + 0.152232i
\(290\) −1.16351 0.845342i −0.0683239 0.0496402i
\(291\) 1.85035 + 5.69480i 0.108470 + 0.333835i
\(292\) 0.559534 + 1.72207i 0.0327443 + 0.100776i
\(293\) 17.1621 + 12.4690i 1.00262 + 0.728448i 0.962649 0.270753i \(-0.0872725\pi\)
0.0399740 + 0.999201i \(0.487273\pi\)
\(294\) 0.0262463 0.0190690i 0.00153071 0.00111213i
\(295\) −3.63011 + 11.1723i −0.211353 + 0.650478i
\(296\) −19.1608 −1.11370
\(297\) 0 0
\(298\) 6.99883 0.405432
\(299\) 3.99878 12.3070i 0.231255 0.711731i
\(300\) 0.463206 0.336539i 0.0267432 0.0194301i
\(301\) 15.3527 + 11.1544i 0.884913 + 0.642927i
\(302\) −1.10892 3.41289i −0.0638109 0.196390i
\(303\) 0.710278 + 2.18601i 0.0408044 + 0.125583i
\(304\) −9.42913 6.85066i −0.540798 0.392912i
\(305\) 3.22201 2.34093i 0.184492 0.134041i
\(306\) 1.97568 6.08051i 0.112942 0.347599i
\(307\) 6.87520 0.392388 0.196194 0.980565i \(-0.437142\pi\)
0.196194 + 0.980565i \(0.437142\pi\)
\(308\) 0 0
\(309\) 2.43219 0.138363
\(310\) 0.351935 1.08314i 0.0199886 0.0615185i
\(311\) −20.3530 + 14.7873i −1.15411 + 0.838511i −0.989022 0.147768i \(-0.952791\pi\)
−0.165089 + 0.986279i \(0.552791\pi\)
\(312\) −2.19647 1.59583i −0.124350 0.0903459i
\(313\) −3.57821 11.0126i −0.202252 0.622469i −0.999815 0.0192328i \(-0.993878\pi\)
0.797563 0.603236i \(-0.206122\pi\)
\(314\) 1.97358 + 6.07406i 0.111376 + 0.342779i
\(315\) 6.29042 + 4.57026i 0.354425 + 0.257505i
\(316\) −5.02121 + 3.64812i −0.282465 + 0.205223i
\(317\) 6.40940 19.7261i 0.359988 1.10793i −0.593073 0.805149i \(-0.702085\pi\)
0.953061 0.302780i \(-0.0979146\pi\)
\(318\) 0.976639 0.0547672
\(319\) 0 0
\(320\) 3.04036 0.169961
\(321\) −1.79994 + 5.53963i −0.100463 + 0.309192i
\(322\) −2.87422 + 2.08825i −0.160174 + 0.116373i
\(323\) −16.2453 11.8029i −0.903913 0.656731i
\(324\) −4.42034 13.6044i −0.245575 0.755801i
\(325\) 1.44244 + 4.43939i 0.0800124 + 0.246253i
\(326\) −0.298074 0.216564i −0.0165088 0.0119943i
\(327\) −4.27740 + 3.10771i −0.236541 + 0.171857i
\(328\) 1.22972 3.78469i 0.0679000 0.208975i
\(329\) −11.7133 −0.645777
\(330\) 0 0
\(331\) −32.1415 −1.76665 −0.883327 0.468757i \(-0.844702\pi\)
−0.883327 + 0.468757i \(0.844702\pi\)
\(332\) 6.08755 18.7356i 0.334098 1.02825i
\(333\) −24.9322 + 18.1143i −1.36627 + 0.992657i
\(334\) 3.27512 + 2.37951i 0.179207 + 0.130201i
\(335\) −2.26195 6.96158i −0.123584 0.380352i
\(336\) −0.719847 2.21546i −0.0392709 0.120863i
\(337\) −14.5594 10.5780i −0.793100 0.576221i 0.115782 0.993275i \(-0.463063\pi\)
−0.908882 + 0.417054i \(0.863063\pi\)
\(338\) 3.39346 2.46549i 0.184580 0.134105i
\(339\) −0.205037 + 0.631039i −0.0111361 + 0.0342734i
\(340\) 8.19888 0.444647
\(341\) 0 0
\(342\) 5.99834 0.324353
\(343\) 5.63386 17.3392i 0.304200 0.936231i
\(344\) −10.2933 + 7.47855i −0.554980 + 0.403217i
\(345\) 0.724576 + 0.526435i 0.0390099 + 0.0283423i
\(346\) 0.749016 + 2.30523i 0.0402673 + 0.123930i
\(347\) 2.48753 + 7.65583i 0.133538 + 0.410986i 0.995360 0.0962243i \(-0.0306766\pi\)
−0.861822 + 0.507211i \(0.830677\pi\)
\(348\) 1.39583 + 1.01413i 0.0748244 + 0.0543631i
\(349\) 15.5569 11.3027i 0.832741 0.605022i −0.0875926 0.996156i \(-0.527917\pi\)
0.920333 + 0.391135i \(0.127917\pi\)
\(350\) 0.396020 1.21882i 0.0211682 0.0651489i
\(351\) −8.89088 −0.474560
\(352\) 0 0
\(353\) 14.8497 0.790371 0.395186 0.918601i \(-0.370680\pi\)
0.395186 + 0.918601i \(0.370680\pi\)
\(354\) −0.559723 + 1.72265i −0.0297489 + 0.0915578i
\(355\) 0.967351 0.702822i 0.0513417 0.0373019i
\(356\) 3.97119 + 2.88524i 0.210473 + 0.152917i
\(357\) −1.24021 3.81698i −0.0656391 0.202016i
\(358\) 1.66905 + 5.13682i 0.0882123 + 0.271489i
\(359\) 8.27079 + 6.00908i 0.436516 + 0.317147i 0.784249 0.620446i \(-0.213048\pi\)
−0.347733 + 0.937594i \(0.613048\pi\)
\(360\) −4.21747 + 3.06417i −0.222280 + 0.161496i
\(361\) −0.0496143 + 0.152697i −0.00261128 + 0.00803670i
\(362\) −3.53175 −0.185625
\(363\) 0 0
\(364\) 22.2134 1.16430
\(365\) 0.315724 0.971700i 0.0165258 0.0508611i
\(366\) 0.496799 0.360945i 0.0259681 0.0188669i
\(367\) −11.4422 8.31327i −0.597280 0.433949i 0.247632 0.968854i \(-0.420347\pi\)
−0.844912 + 0.534905i \(0.820347\pi\)
\(368\) 2.30033 + 7.07969i 0.119913 + 0.369054i
\(369\) −1.97786 6.08724i −0.102964 0.316889i
\(370\) 4.10935 + 2.98562i 0.213635 + 0.155215i
\(371\) −13.7600 + 9.99722i −0.714383 + 0.519030i
\(372\) −0.422205 + 1.29941i −0.0218903 + 0.0673715i
\(373\) −12.4600 −0.645154 −0.322577 0.946543i \(-0.604549\pi\)
−0.322577 + 0.946543i \(0.604549\pi\)
\(374\) 0 0
\(375\) −0.323071 −0.0166833
\(376\) 2.42681 7.46894i 0.125153 0.385181i
\(377\) −11.3798 + 8.26788i −0.586088 + 0.425818i
\(378\) 1.97479 + 1.43477i 0.101572 + 0.0737965i
\(379\) 5.04840 + 15.5374i 0.259319 + 0.798102i 0.992948 + 0.118552i \(0.0378251\pi\)
−0.733629 + 0.679550i \(0.762175\pi\)
\(380\) 2.37703 + 7.31575i 0.121939 + 0.375290i
\(381\) −0.0199338 0.0144828i −0.00102124 0.000741975i
\(382\) −1.99082 + 1.44642i −0.101859 + 0.0740051i
\(383\) −0.251122 + 0.772874i −0.0128317 + 0.0394920i −0.957267 0.289204i \(-0.906609\pi\)
0.944436 + 0.328696i \(0.106609\pi\)
\(384\) 3.62339 0.184905
\(385\) 0 0
\(386\) −1.92445 −0.0979522
\(387\) −6.32370 + 19.4623i −0.321452 + 0.989327i
\(388\) 26.5736 19.3068i 1.34907 0.980155i
\(389\) 24.5894 + 17.8652i 1.24673 + 0.905802i 0.998028 0.0627780i \(-0.0199960\pi\)
0.248702 + 0.968580i \(0.419996\pi\)
\(390\) 0.222409 + 0.684504i 0.0112621 + 0.0346612i
\(391\) 3.96321 + 12.1975i 0.200428 + 0.616854i
\(392\) −0.306455 0.222653i −0.0154783 0.0112457i
\(393\) −3.00134 + 2.18060i −0.151398 + 0.109997i
\(394\) 1.68388 5.18245i 0.0848327 0.261088i
\(395\) 3.50213 0.176211
\(396\) 0 0
\(397\) −14.8996 −0.747789 −0.373894 0.927471i \(-0.621978\pi\)
−0.373894 + 0.927471i \(0.621978\pi\)
\(398\) 1.05692 3.25285i 0.0529784 0.163051i
\(399\) 3.04628 2.21325i 0.152505 0.110801i
\(400\) −2.17239 1.57833i −0.108619 0.0789166i
\(401\) 3.76049 + 11.5736i 0.187790 + 0.577957i 0.999985 0.00542792i \(-0.00172777\pi\)
−0.812196 + 0.583385i \(0.801728\pi\)
\(402\) −0.348768 1.07340i −0.0173950 0.0535362i
\(403\) −9.01155 6.54727i −0.448897 0.326143i
\(404\) 10.2006 7.41114i 0.507496 0.368718i
\(405\) −2.49424 + 7.67647i −0.123940 + 0.381447i
\(406\) 3.86184 0.191660
\(407\) 0 0
\(408\) 2.69083 0.133216
\(409\) 0.0809957 0.249279i 0.00400498 0.0123261i −0.949034 0.315174i \(-0.897937\pi\)
0.953039 + 0.302847i \(0.0979373\pi\)
\(410\) −0.853463 + 0.620077i −0.0421495 + 0.0306234i
\(411\) 4.79073 + 3.48067i 0.236309 + 0.171689i
\(412\) −4.12288 12.6889i −0.203120 0.625138i
\(413\) −9.74764 30.0002i −0.479650 1.47621i
\(414\) −3.09944 2.25187i −0.152329 0.110674i
\(415\) −8.99290 + 6.53372i −0.441444 + 0.320728i
\(416\) −7.04232 + 21.6740i −0.345278 + 1.06266i
\(417\) 7.49116 0.366844
\(418\) 0 0
\(419\) −1.26916 −0.0620023 −0.0310012 0.999519i \(-0.509870\pi\)
−0.0310012 + 0.999519i \(0.509870\pi\)
\(420\) −0.475093 + 1.46219i −0.0231822 + 0.0713474i
\(421\) 23.9999 17.4369i 1.16968 0.849824i 0.178712 0.983902i \(-0.442807\pi\)
0.990971 + 0.134078i \(0.0428071\pi\)
\(422\) −1.34506 0.977240i −0.0654763 0.0475713i
\(423\) −3.90324 12.0129i −0.189782 0.584089i
\(424\) −3.52384 10.8452i −0.171133 0.526692i
\(425\) −3.74278 2.71929i −0.181551 0.131905i
\(426\) 0.149155 0.108367i 0.00722658 0.00525041i
\(427\) −3.30470 + 10.1708i −0.159926 + 0.492200i
\(428\) 31.9518 1.54445
\(429\) 0 0
\(430\) 3.37289 0.162655
\(431\) −9.68919 + 29.8203i −0.466712 + 1.43639i 0.390105 + 0.920771i \(0.372439\pi\)
−0.856817 + 0.515621i \(0.827561\pi\)
\(432\) 4.13776 3.00626i 0.199078 0.144639i
\(433\) 21.0607 + 15.3015i 1.01212 + 0.735345i 0.964652 0.263528i \(-0.0848863\pi\)
0.0474634 + 0.998873i \(0.484886\pi\)
\(434\) 0.945023 + 2.90848i 0.0453625 + 0.139612i
\(435\) −0.300843 0.925898i −0.0144243 0.0443934i
\(436\) 23.4639 + 17.0475i 1.12372 + 0.816429i
\(437\) −9.73464 + 7.07263i −0.465671 + 0.338330i
\(438\) 0.0486812 0.149825i 0.00232608 0.00715893i
\(439\) −14.4191 −0.688185 −0.344093 0.938936i \(-0.611813\pi\)
−0.344093 + 0.938936i \(0.611813\pi\)
\(440\) 0 0
\(441\) −0.609255 −0.0290121
\(442\) −3.18486 + 9.80199i −0.151488 + 0.466233i
\(443\) 0.267467 0.194326i 0.0127078 0.00923273i −0.581413 0.813608i \(-0.697500\pi\)
0.594121 + 0.804376i \(0.297500\pi\)
\(444\) −4.92986 3.58175i −0.233961 0.169982i
\(445\) −0.855908 2.63421i −0.0405739 0.124874i
\(446\) −1.55518 4.78636i −0.0736400 0.226641i
\(447\) 3.83289 + 2.78476i 0.181289 + 0.131715i
\(448\) −6.60483 + 4.79869i −0.312049 + 0.226717i
\(449\) 2.62920 8.09185i 0.124080 0.381878i −0.869653 0.493664i \(-0.835657\pi\)
0.993732 + 0.111786i \(0.0356571\pi\)
\(450\) 1.38197 0.0651465
\(451\) 0 0
\(452\) 3.63974 0.171199
\(453\) 0.750657 2.31028i 0.0352689 0.108547i
\(454\) −0.0834069 + 0.0605986i −0.00391448 + 0.00284404i
\(455\) −10.1404 7.36742i −0.475388 0.345390i
\(456\) 0.780130 + 2.40099i 0.0365329 + 0.112437i
\(457\) −0.351807 1.08275i −0.0164569 0.0506490i 0.942491 0.334232i \(-0.108477\pi\)
−0.958948 + 0.283583i \(0.908477\pi\)
\(458\) −0.0292324 0.0212386i −0.00136594 0.000992413i
\(459\) 7.12889 5.17944i 0.332748 0.241756i
\(460\) 1.51820 4.67254i 0.0707864 0.217858i
\(461\) −14.5073 −0.675670 −0.337835 0.941205i \(-0.609695\pi\)
−0.337835 + 0.941205i \(0.609695\pi\)
\(462\) 0 0
\(463\) −4.89739 −0.227601 −0.113801 0.993504i \(-0.536302\pi\)
−0.113801 + 0.993504i \(0.536302\pi\)
\(464\) 2.50047 7.69565i 0.116081 0.357261i
\(465\) 0.623707 0.453150i 0.0289237 0.0210143i
\(466\) −5.83803 4.24157i −0.270441 0.196487i
\(467\) 10.0193 + 30.8361i 0.463637 + 1.42693i 0.860689 + 0.509131i \(0.170033\pi\)
−0.397053 + 0.917796i \(0.629967\pi\)
\(468\) 7.40218 + 22.7816i 0.342166 + 1.05308i
\(469\) 15.9015 + 11.5531i 0.734264 + 0.533474i
\(470\) −1.68428 + 1.22370i −0.0776898 + 0.0564450i
\(471\) −1.33597 + 4.11171i −0.0615585 + 0.189457i
\(472\) 21.1490 0.973461
\(473\) 0 0
\(474\) 0.539990 0.0248026
\(475\) 1.34127 4.12801i 0.0615417 0.189406i
\(476\) −17.8111 + 12.9406i −0.816373 + 0.593129i
\(477\) −14.8382 10.7806i −0.679394 0.493609i
\(478\) −3.41635 10.5145i −0.156260 0.480920i
\(479\) −5.48054 16.8674i −0.250412 0.770690i −0.994699 0.102830i \(-0.967210\pi\)
0.744287 0.667860i \(-0.232790\pi\)
\(480\) −1.27606 0.927114i −0.0582441 0.0423168i
\(481\) 40.1915 29.2009i 1.83258 1.33144i
\(482\) −3.14650 + 9.68394i −0.143319 + 0.441091i
\(483\) −2.40495 −0.109429
\(484\) 0 0
\(485\) −18.5342 −0.841595
\(486\) −1.22731 + 3.77727i −0.0556719 + 0.171341i
\(487\) 14.9347 10.8507i 0.676754 0.491691i −0.195525 0.980699i \(-0.562641\pi\)
0.872279 + 0.489008i \(0.162641\pi\)
\(488\) −5.80069 4.21445i −0.262585 0.190779i
\(489\) −0.0770712 0.237201i −0.00348528 0.0107266i
\(490\) 0.0310309 + 0.0955032i 0.00140183 + 0.00431440i
\(491\) −9.25018 6.72065i −0.417455 0.303299i 0.359158 0.933277i \(-0.383064\pi\)
−0.776613 + 0.629978i \(0.783064\pi\)
\(492\) 1.02387 0.743887i 0.0461597 0.0335370i
\(493\) 4.30802 13.2587i 0.194023 0.597142i
\(494\) −9.66954 −0.435053
\(495\) 0 0
\(496\) 6.40774 0.287716
\(497\) −0.992176 + 3.05360i −0.0445052 + 0.136973i
\(498\) −1.38661 + 1.00743i −0.0621353 + 0.0451439i
\(499\) −8.80335 6.39601i −0.394092 0.286325i 0.373038 0.927816i \(-0.378316\pi\)
−0.767130 + 0.641491i \(0.778316\pi\)
\(500\) 0.547647 + 1.68548i 0.0244915 + 0.0753771i
\(501\) 0.846827 + 2.60627i 0.0378335 + 0.116439i
\(502\) −2.40233 1.74540i −0.107221 0.0779009i
\(503\) 36.1830 26.2885i 1.61332 1.17215i 0.761831 0.647776i \(-0.224301\pi\)
0.851490 0.524371i \(-0.175699\pi\)
\(504\) 4.32571 13.3132i 0.192682 0.593015i
\(505\) −7.11455 −0.316594
\(506\) 0 0
\(507\) 2.83941 0.126103
\(508\) −0.0417673 + 0.128546i −0.00185312 + 0.00570332i
\(509\) 11.1720 8.11693i 0.495190 0.359777i −0.311987 0.950086i \(-0.600994\pi\)
0.807177 + 0.590310i \(0.200994\pi\)
\(510\) −0.577094 0.419284i −0.0255542 0.0185662i
\(511\) 0.847790 + 2.60923i 0.0375040 + 0.115425i
\(512\) −7.03891 21.6635i −0.311079 0.957402i
\(513\) 6.68836 + 4.85938i 0.295298 + 0.214547i
\(514\) −5.51766 + 4.00881i −0.243374 + 0.176821i
\(515\) −2.32639 + 7.15989i −0.102513 + 0.315502i
\(516\) −4.04635 −0.178130
\(517\) 0 0
\(518\) −13.6394 −0.599281
\(519\) −0.507030 + 1.56048i −0.0222562 + 0.0684974i
\(520\) 6.79871 4.93955i 0.298143 0.216614i
\(521\) 2.95269 + 2.14525i 0.129360 + 0.0939852i 0.650584 0.759435i \(-0.274524\pi\)
−0.521224 + 0.853420i \(0.674524\pi\)
\(522\) 1.28688 + 3.96061i 0.0563253 + 0.173351i
\(523\) 1.54109 + 4.74299i 0.0673872 + 0.207396i 0.979080 0.203476i \(-0.0652240\pi\)
−0.911693 + 0.410873i \(0.865224\pi\)
\(524\) 16.4640 + 11.9618i 0.719233 + 0.522553i
\(525\) 0.701836 0.509914i 0.0306306 0.0222545i
\(526\) 0.609292 1.87521i 0.0265664 0.0817630i
\(527\) 11.0398 0.480901
\(528\) 0 0
\(529\) −15.3148 −0.665860
\(530\) −0.934153 + 2.87503i −0.0405770 + 0.124883i
\(531\) 27.5193 19.9939i 1.19424 0.867663i
\(532\) −16.7105 12.1409i −0.724493 0.526375i
\(533\) 3.18839 + 9.81284i 0.138104 + 0.425041i
\(534\) −0.131972 0.406167i −0.00571097 0.0175766i
\(535\) −14.5859 10.5973i −0.630605 0.458161i
\(536\) −10.6613 + 7.74591i −0.460499 + 0.334572i
\(537\) −1.12983 + 3.47726i −0.0487558 + 0.150055i
\(538\) 0.803678 0.0346490
\(539\) 0 0
\(540\) −3.37556 −0.145261
\(541\) −0.0765109 + 0.235476i −0.00328946 + 0.0101239i −0.952688 0.303951i \(-0.901694\pi\)
0.949398 + 0.314075i \(0.101694\pi\)
\(542\) 7.11642 5.17038i 0.305676 0.222087i
\(543\) −1.93415 1.40524i −0.0830025 0.0603048i
\(544\) −6.97967 21.4812i −0.299251 0.921000i
\(545\) −5.05716 15.5643i −0.216625 0.666703i
\(546\) −1.56353 1.13597i −0.0669131 0.0486152i
\(547\) −20.4779 + 14.8780i −0.875570 + 0.636139i −0.932076 0.362263i \(-0.882004\pi\)
0.0565056 + 0.998402i \(0.482004\pi\)
\(548\) 10.0380 30.8937i 0.428801 1.31971i
\(549\) −11.5322 −0.492182
\(550\) 0 0
\(551\) 13.0796 0.557208
\(552\) 0.498266 1.53350i 0.0212076 0.0652703i
\(553\) −7.60799 + 5.52753i −0.323525 + 0.235054i
\(554\) 1.32338 + 0.961489i 0.0562249 + 0.0408498i
\(555\) 1.06253 + 3.27013i 0.0451018 + 0.138809i
\(556\) −12.6985 39.0819i −0.538536 1.65744i
\(557\) −31.2824 22.7280i −1.32548 0.963015i −0.999847 0.0175177i \(-0.994424\pi\)
−0.325630 0.945497i \(-0.605576\pi\)
\(558\) −2.66796 + 1.93839i −0.112944 + 0.0820586i
\(559\) 10.1940 31.3740i 0.431161 1.32698i
\(560\) 7.21041 0.304695
\(561\) 0 0
\(562\) −10.8919 −0.459447
\(563\) −4.30653 + 13.2541i −0.181498 + 0.558595i −0.999870 0.0160940i \(-0.994877\pi\)
0.818372 + 0.574689i \(0.194877\pi\)
\(564\) 2.02057 1.46803i 0.0850815 0.0618153i
\(565\) −1.66154 1.20718i −0.0699013 0.0507863i
\(566\) −4.29157 13.2081i −0.180388 0.555178i
\(567\) −6.69757 20.6130i −0.281272 0.865665i
\(568\) −1.74155 1.26531i −0.0730739 0.0530913i
\(569\) 22.5817 16.4065i 0.946672 0.687798i −0.00334520 0.999994i \(-0.501065\pi\)
0.950017 + 0.312197i \(0.101065\pi\)
\(570\) 0.206809 0.636493i 0.00866228 0.0266598i
\(571\) 31.4113 1.31452 0.657261 0.753663i \(-0.271715\pi\)
0.657261 + 0.753663i \(0.271715\pi\)
\(572\) 0 0
\(573\) −1.66578 −0.0695889
\(574\) 0.875365 2.69410i 0.0365370 0.112449i
\(575\) −2.24278 + 1.62947i −0.0935302 + 0.0679537i
\(576\) −7.12237 5.17470i −0.296765 0.215613i
\(577\) 6.40744 + 19.7201i 0.266745 + 0.820958i 0.991286 + 0.131726i \(0.0420519\pi\)
−0.724541 + 0.689232i \(0.757948\pi\)
\(578\) −0.649343 1.99847i −0.0270091 0.0831255i
\(579\) −1.05392 0.765719i −0.0437995 0.0318222i
\(580\) −4.32051 + 3.13903i −0.179399 + 0.130341i
\(581\) 9.22368 28.3876i 0.382663 1.17771i
\(582\) −2.85777 −0.118458
\(583\) 0 0
\(584\) −1.83941 −0.0761153
\(585\) 4.17678 12.8548i 0.172689 0.531481i
\(586\) −8.19080 + 5.95097i −0.338359 + 0.245832i
\(587\) −12.3267 8.95591i −0.508779 0.369650i 0.303581 0.952806i \(-0.401818\pi\)
−0.812360 + 0.583156i \(0.801818\pi\)
\(588\) −0.0372268 0.114572i −0.00153521 0.00472488i
\(589\) 3.20067 + 9.85066i 0.131881 + 0.405889i
\(590\) −4.53576 3.29542i −0.186734 0.135670i
\(591\) 2.98421 2.16816i 0.122754 0.0891860i
\(592\) −8.83126 + 27.1798i −0.362962 + 1.11708i
\(593\) −27.5413 −1.13098 −0.565492 0.824754i \(-0.691314\pi\)
−0.565492 + 0.824754i \(0.691314\pi\)
\(594\) 0 0
\(595\) 12.4227 0.509281
\(596\) 8.03103 24.7170i 0.328964 1.01245i
\(597\) 1.87309 1.36088i 0.0766605 0.0556971i
\(598\) 4.99640 + 3.63010i 0.204318 + 0.148446i
\(599\) −8.26097 25.4247i −0.337534 1.03882i −0.965460 0.260551i \(-0.916096\pi\)
0.627926 0.778273i \(-0.283904\pi\)
\(600\) 0.179735 + 0.553168i 0.00733765 + 0.0225830i
\(601\) 1.94714 + 1.41468i 0.0794255 + 0.0577060i 0.626789 0.779189i \(-0.284369\pi\)
−0.547364 + 0.836895i \(0.684369\pi\)
\(602\) −7.32722 + 5.32353i −0.298635 + 0.216971i
\(603\) −6.54977 + 20.1581i −0.266727 + 0.820902i
\(604\) −13.3254 −0.542202
\(605\) 0 0
\(606\) −1.09699 −0.0445620
\(607\) −3.18067 + 9.78909i −0.129099 + 0.397327i −0.994626 0.103536i \(-0.966984\pi\)
0.865526 + 0.500864i \(0.166984\pi\)
\(608\) 17.1438 12.4557i 0.695275 0.505147i
\(609\) 2.11492 + 1.53658i 0.0857010 + 0.0622654i
\(610\) 0.587364 + 1.80772i 0.0237817 + 0.0731924i
\(611\) 6.29216 + 19.3653i 0.254553 + 0.783435i
\(612\) −19.2068 13.9545i −0.776388 0.564079i
\(613\) 22.5519 16.3849i 0.910861 0.661779i −0.0303715 0.999539i \(-0.509669\pi\)
0.941232 + 0.337759i \(0.109669\pi\)
\(614\) −1.01396 + 3.12066i −0.0409203 + 0.125940i
\(615\) −0.714118 −0.0287960
\(616\) 0 0
\(617\) −28.7216 −1.15629 −0.578143 0.815935i \(-0.696222\pi\)
−0.578143 + 0.815935i \(0.696222\pi\)
\(618\) −0.358703 + 1.10398i −0.0144292 + 0.0444084i
\(619\) −18.3621 + 13.3408i −0.738035 + 0.536214i −0.892095 0.451848i \(-0.850765\pi\)
0.154060 + 0.988061i \(0.450765\pi\)
\(620\) −3.42138 2.48578i −0.137406 0.0998312i
\(621\) −1.63169 5.02183i −0.0654776 0.201519i
\(622\) −3.71029 11.4191i −0.148769 0.457864i
\(623\) 6.01703 + 4.37163i 0.241067 + 0.175146i
\(624\) −3.27606 + 2.38020i −0.131147 + 0.0952842i
\(625\) 0.309017 0.951057i 0.0123607 0.0380423i
\(626\) 5.52635 0.220877
\(627\) 0 0
\(628\) 23.7157 0.946360
\(629\) −15.2152 + 46.8277i −0.606671 + 1.86714i
\(630\) −3.00217 + 2.18120i −0.119609 + 0.0869012i
\(631\) −23.0864 16.7733i −0.919056 0.667733i 0.0242327 0.999706i \(-0.492286\pi\)
−0.943289 + 0.331973i \(0.892286\pi\)
\(632\) −1.94835 5.99641i −0.0775013 0.238524i
\(633\) −0.347783 1.07037i −0.0138231 0.0425432i
\(634\) 8.00844 + 5.81847i 0.318056 + 0.231081i
\(635\) 0.0617011 0.0448285i 0.00244853 0.00177896i
\(636\) 1.12067 3.44908i 0.0444376 0.136765i
\(637\) 0.982140 0.0389138
\(638\) 0 0
\(639\) −3.46233 −0.136968
\(640\) −3.46577 + 10.6665i −0.136997 + 0.421632i
\(641\) −1.92040 + 1.39526i −0.0758514 + 0.0551093i −0.625065 0.780573i \(-0.714927\pi\)
0.549213 + 0.835682i \(0.314927\pi\)
\(642\) −2.24899 1.63399i −0.0887605 0.0644883i
\(643\) 3.51053 + 10.8043i 0.138442 + 0.426080i 0.996109 0.0881244i \(-0.0280873\pi\)
−0.857668 + 0.514204i \(0.828087\pi\)
\(644\) 4.07670 + 12.5468i 0.160644 + 0.494413i
\(645\) 1.84715 + 1.34203i 0.0727315 + 0.0528425i
\(646\) 7.75323 5.63305i 0.305047 0.221630i
\(647\) −14.9632 + 46.0520i −0.588264 + 1.81049i −0.00251822 + 0.999997i \(0.500802\pi\)
−0.585746 + 0.810495i \(0.699198\pi\)
\(648\) 14.5314 0.570848
\(649\) 0 0
\(650\) −2.22778 −0.0873806
\(651\) −0.639713 + 1.96883i −0.0250723 + 0.0771647i
\(652\) −1.10685 + 0.804171i −0.0433475 + 0.0314938i
\(653\) −24.0722 17.4894i −0.942016 0.684415i 0.00688905 0.999976i \(-0.497807\pi\)
−0.948905 + 0.315562i \(0.897807\pi\)
\(654\) −0.779758 2.39985i −0.0304910 0.0938415i
\(655\) −3.54847 10.9211i −0.138650 0.426722i
\(656\) −4.80186 3.48875i −0.187481 0.136213i
\(657\) −2.39346 + 1.73895i −0.0933777 + 0.0678429i
\(658\) 1.72750 5.31669i 0.0673449 0.207266i
\(659\) 28.4931 1.10993 0.554966 0.831873i \(-0.312731\pi\)
0.554966 + 0.831873i \(0.312731\pi\)
\(660\) 0 0
\(661\) −1.02875 −0.0400139 −0.0200070 0.999800i \(-0.506369\pi\)
−0.0200070 + 0.999800i \(0.506369\pi\)
\(662\) 4.74027 14.5890i 0.184236 0.567019i
\(663\) −5.64428 + 4.10081i −0.219206 + 0.159262i
\(664\) 16.1902 + 11.7629i 0.628301 + 0.456488i
\(665\) 3.60161 + 11.0846i 0.139664 + 0.429843i
\(666\) −4.54506 13.9883i −0.176118 0.542034i
\(667\) −6.75841 4.91027i −0.261687 0.190127i
\(668\) 12.1616 8.83591i 0.470546 0.341872i
\(669\) 1.05275 3.24002i 0.0407016 0.125267i
\(670\) 3.49346 0.134964
\(671\) 0 0
\(672\) 4.23540 0.163384
\(673\) −4.02863 + 12.3988i −0.155292 + 0.477940i −0.998190 0.0601327i \(-0.980848\pi\)
0.842898 + 0.538073i \(0.180848\pi\)
\(674\) 6.94861 5.04846i 0.267651 0.194459i
\(675\) 1.54094 + 1.11956i 0.0593108 + 0.0430918i
\(676\) −4.81316 14.8134i −0.185122 0.569746i
\(677\) 11.4665 + 35.2903i 0.440694 + 1.35632i 0.887138 + 0.461505i \(0.152690\pi\)
−0.446444 + 0.894812i \(0.647310\pi\)
\(678\) −0.256190 0.186133i −0.00983893 0.00714840i
\(679\) 40.2635 29.2531i 1.54517 1.12263i
\(680\) −2.57378 + 7.92127i −0.0986998 + 0.303767i
\(681\) −0.0697890 −0.00267432
\(682\) 0 0
\(683\) −32.8992 −1.25885 −0.629426 0.777061i \(-0.716710\pi\)
−0.629426 + 0.777061i \(0.716710\pi\)
\(684\) 6.88299 21.1837i 0.263178 0.809978i
\(685\) −14.8287 + 10.7737i −0.566576 + 0.411641i
\(686\) 7.03941 + 5.11443i 0.268766 + 0.195270i
\(687\) −0.00755844 0.0232625i −0.000288372 0.000887519i
\(688\) 5.86420 + 18.0481i 0.223570 + 0.688079i
\(689\) 23.9197 + 17.3787i 0.911267 + 0.662074i
\(690\) −0.345811 + 0.251246i −0.0131648 + 0.00956479i
\(691\) 11.3409 34.9036i 0.431427 1.32780i −0.465277 0.885165i \(-0.654045\pi\)
0.896704 0.442631i \(-0.145955\pi\)
\(692\) 9.00061 0.342152
\(693\) 0 0
\(694\) −3.84185 −0.145835
\(695\) −7.16529 + 22.0525i −0.271795 + 0.836498i
\(696\) −1.41797 + 1.03022i −0.0537480 + 0.0390502i
\(697\) −8.27305 6.01072i −0.313364 0.227672i
\(698\) 2.83597 + 8.72823i 0.107343 + 0.330368i
\(699\) −1.50950 4.64577i −0.0570946 0.175719i
\(700\) −3.84996 2.79716i −0.145515 0.105723i
\(701\) −29.3266 + 21.3070i −1.10765 + 0.804755i −0.982292 0.187356i \(-0.940008\pi\)
−0.125359 + 0.992111i \(0.540008\pi\)
\(702\) 1.31124 4.03558i 0.0494895 0.152313i
\(703\) −46.1949 −1.74227
\(704\) 0 0
\(705\) −1.40928 −0.0530767
\(706\) −2.19006 + 6.74031i −0.0824240 + 0.253675i
\(707\) 15.4556 11.2291i 0.581267 0.422315i
\(708\) 5.44141 + 3.95342i 0.204501 + 0.148578i
\(709\) −5.74811 17.6909i −0.215875 0.664394i −0.999090 0.0426440i \(-0.986422\pi\)
0.783216 0.621750i \(-0.213578\pi\)
\(710\) 0.176345 + 0.542735i 0.00661812 + 0.0203685i
\(711\) −8.20413 5.96065i −0.307679 0.223542i
\(712\) −4.03418 + 2.93100i −0.151187 + 0.109844i
\(713\) 2.04426 6.29158i 0.0765580 0.235621i
\(714\) 1.91544 0.0716836
\(715\) 0 0
\(716\) 20.0563 0.749540
\(717\) 2.31263 7.11754i 0.0863667 0.265809i
\(718\) −3.94732 + 2.86790i −0.147313 + 0.107029i
\(719\) 30.2799 + 21.9996i 1.12925 + 0.820447i 0.985585 0.169179i \(-0.0541117\pi\)
0.143664 + 0.989627i \(0.454112\pi\)
\(720\) 2.40273 + 7.39484i 0.0895444 + 0.275589i
\(721\) −6.24687 19.2259i −0.232645 0.716009i
\(722\) −0.0619923 0.0450400i −0.00230711 0.00167622i
\(723\) −5.57630 + 4.05142i −0.207385 + 0.150674i
\(724\) −4.05262 + 12.4727i −0.150614 + 0.463544i
\(725\) 3.01341 0.111915
\(726\) 0 0
\(727\) 14.6011 0.541526 0.270763 0.962646i \(-0.412724\pi\)
0.270763 + 0.962646i \(0.412724\pi\)
\(728\) −6.97319 + 21.4613i −0.258443 + 0.795407i
\(729\) 17.4149 12.6527i 0.644997 0.468618i
\(730\) 0.394492 + 0.286615i 0.0146008 + 0.0106081i
\(731\) 10.1033 + 31.0949i 0.373686 + 1.15009i
\(732\) −0.704642 2.16867i −0.0260443 0.0801562i
\(733\) 33.8468 + 24.5911i 1.25016 + 0.908293i 0.998231 0.0594528i \(-0.0189356\pi\)
0.251927 + 0.967746i \(0.418936\pi\)
\(734\) 5.46092 3.96759i 0.201566 0.146447i
\(735\) −0.0210057 + 0.0646489i −0.000774807 + 0.00238461i
\(736\) −13.5346 −0.498891
\(737\) 0 0
\(738\) 3.05470 0.112445
\(739\) 3.68654 11.3460i 0.135612 0.417370i −0.860073 0.510171i \(-0.829582\pi\)
0.995685 + 0.0928012i \(0.0295821\pi\)
\(740\) 15.2594 11.0866i 0.560945 0.407550i
\(741\) −5.29549 3.84740i −0.194535 0.141338i
\(742\) −2.50841 7.72008i −0.0920865 0.283413i
\(743\) −14.4250 44.3956i −0.529202 1.62872i −0.755854 0.654740i \(-0.772778\pi\)
0.226652 0.973976i \(-0.427222\pi\)
\(744\) −1.12288 0.815820i −0.0411668 0.0299094i
\(745\) −11.8639 + 8.61964i −0.434660 + 0.315799i
\(746\) 1.83762 5.65561i 0.0672800 0.207067i
\(747\) 32.1873 1.17767
\(748\) 0 0
\(749\) 48.4124 1.76895
\(750\) 0.0476470 0.146642i 0.00173982 0.00535462i
\(751\) −11.6530 + 8.46642i −0.425225 + 0.308944i −0.779737 0.626108i \(-0.784647\pi\)
0.354512 + 0.935052i \(0.384647\pi\)
\(752\) −9.47628 6.88492i −0.345564 0.251067i
\(753\) −0.621156 1.91172i −0.0226362 0.0696670i
\(754\) −2.07450 6.38465i −0.0755488 0.232515i
\(755\) 6.08301 + 4.41957i 0.221383 + 0.160845i
\(756\) 7.33304 5.32776i 0.266700 0.193769i
\(757\) −4.96330 + 15.2755i −0.180394 + 0.555196i −0.999839 0.0179624i \(-0.994282\pi\)
0.819444 + 0.573159i \(0.194282\pi\)
\(758\) −7.79698 −0.283199
\(759\) 0 0
\(760\) −7.81423 −0.283452
\(761\) 12.0158 36.9809i 0.435573 1.34056i −0.456925 0.889505i \(-0.651049\pi\)
0.892498 0.451051i \(-0.148951\pi\)
\(762\) 0.00951362 0.00691205i 0.000344642 0.000250397i
\(763\) 35.5518 + 25.8299i 1.28706 + 0.935106i
\(764\) 2.82371 + 8.69049i 0.102158 + 0.314411i
\(765\) 4.13962 + 12.7405i 0.149668 + 0.460632i
\(766\) −0.313773 0.227969i −0.0113371 0.00823686i
\(767\) −44.3621 + 32.2309i −1.60182 + 1.16379i
\(768\) 0.0726816 0.223691i 0.00262267 0.00807175i
\(769\) −43.0017 −1.55068 −0.775341 0.631543i \(-0.782422\pi\)
−0.775341 + 0.631543i \(0.782422\pi\)
\(770\) 0 0
\(771\) −4.61679 −0.166270
\(772\) −2.20828 + 6.79637i −0.0794776 + 0.244607i
\(773\) 6.35452 4.61683i 0.228556 0.166056i −0.467613 0.883933i \(-0.654886\pi\)
0.696170 + 0.717877i \(0.254886\pi\)
\(774\) −7.90135 5.74067i −0.284008 0.206344i
\(775\) 0.737407 + 2.26951i 0.0264885 + 0.0815231i
\(776\) 10.3112 + 31.7346i 0.370150 + 1.13920i
\(777\) −7.46957 5.42696i −0.267969 0.194691i
\(778\) −11.7355 + 8.52635i −0.420739 + 0.305684i
\(779\) 2.96475 9.12457i 0.106223 0.326922i
\(780\) 2.67259 0.0956942
\(781\) 0 0
\(782\) −6.12096 −0.218885
\(783\) −1.77366 + 5.45875i −0.0633853 + 0.195080i
\(784\) −0.457082 + 0.332090i −0.0163244 + 0.0118603i
\(785\) −10.8262 7.86568i −0.386403 0.280738i
\(786\) −0.547135 1.68391i −0.0195157 0.0600631i
\(787\) 3.53048 + 10.8657i 0.125848 + 0.387321i 0.994055 0.108882i \(-0.0347271\pi\)
−0.868206 + 0.496203i \(0.834727\pi\)
\(788\) −16.3700 11.8935i −0.583159 0.423690i
\(789\) 1.07980 0.784522i 0.0384420 0.0279297i
\(790\) −0.516500 + 1.58962i −0.0183762 + 0.0565562i
\(791\) 5.51483 0.196085
\(792\) 0 0
\(793\) 18.5903 0.660161
\(794\) 2.19741 6.76294i 0.0779832 0.240008i
\(795\) −1.65553 + 1.20281i −0.0587155 + 0.0426593i
\(796\) −10.2749 7.46518i −0.364186 0.264596i
\(797\) −1.32414 4.07529i −0.0469035 0.144354i 0.924862 0.380303i \(-0.124180\pi\)
−0.971766 + 0.235949i \(0.924180\pi\)
\(798\) 0.555328 + 1.70912i 0.0196584 + 0.0605023i
\(799\) −16.3265 11.8619i −0.577592 0.419645i
\(800\) 3.94979 2.86969i 0.139646 0.101459i
\(801\) −2.47839 + 7.62770i −0.0875696 + 0.269511i
\(802\) −5.80787 −0.205083
\(803\) 0 0
\(804\) −4.19100 −0.147805
\(805\) 2.30033 7.07969i 0.0810760 0.249526i
\(806\) 4.30085 3.12475i 0.151491 0.110065i
\(807\) 0.440132 + 0.319774i 0.0154934 + 0.0112566i
\(808\) 3.95806 + 12.1817i 0.139244 + 0.428549i
\(809\) 6.13350 + 18.8770i 0.215642 + 0.663679i 0.999107 + 0.0422430i \(0.0134504\pi\)
−0.783465 + 0.621436i \(0.786550\pi\)
\(810\) −3.11651 2.26427i −0.109503 0.0795585i
\(811\) −2.53899 + 1.84468i −0.0891559 + 0.0647756i −0.631470 0.775400i \(-0.717548\pi\)
0.542314 + 0.840176i \(0.317548\pi\)
\(812\) 4.43138 13.6384i 0.155511 0.478614i
\(813\) 5.95452 0.208834
\(814\) 0 0
\(815\) 0.771990 0.0270416
\(816\) 1.24021 3.81698i 0.0434162 0.133621i
\(817\) −24.8164 + 18.0301i −0.868215 + 0.630795i
\(818\) 0.101203 + 0.0735281i 0.00353847 + 0.00257085i
\(819\) 11.2156 + 34.5180i 0.391904 + 1.20616i
\(820\) 1.21052 + 3.72560i 0.0422733 + 0.130104i
\(821\) 19.0118 + 13.8129i 0.663516 + 0.482073i 0.867849 0.496829i \(-0.165502\pi\)
−0.204332 + 0.978902i \(0.565502\pi\)
\(822\) −2.28642 + 1.66118i −0.0797481 + 0.0579404i
\(823\) −3.91103 + 12.0369i −0.136330 + 0.419580i −0.995795 0.0916150i \(-0.970797\pi\)
0.859465 + 0.511195i \(0.170797\pi\)
\(824\) 13.5535 0.472159
\(825\) 0 0
\(826\) 15.0547 0.523820
\(827\) −9.33959 + 28.7443i −0.324770 + 0.999538i 0.646775 + 0.762681i \(0.276117\pi\)
−0.971545 + 0.236857i \(0.923883\pi\)
\(828\) −11.5092 + 8.36195i −0.399974 + 0.290598i
\(829\) −1.61937 1.17654i −0.0562432 0.0408630i 0.559308 0.828960i \(-0.311067\pi\)
−0.615552 + 0.788097i \(0.711067\pi\)
\(830\) −1.63938 5.04549i −0.0569037 0.175132i
\(831\) 0.342177 + 1.05311i 0.0118700 + 0.0365321i
\(832\) 11.4815 + 8.34180i 0.398050 + 0.289200i
\(833\) −0.787500 + 0.572152i −0.0272852 + 0.0198239i
\(834\) −1.10481 + 3.40025i −0.0382564 + 0.117741i
\(835\) −8.48232 −0.293543
\(836\) 0 0
\(837\) −4.54520 −0.157105
\(838\) 0.187177 0.576072i 0.00646592 0.0199001i
\(839\) −28.6185 + 20.7925i −0.988019 + 0.717838i −0.959486 0.281755i \(-0.909083\pi\)
−0.0285326 + 0.999593i \(0.509083\pi\)
\(840\) −1.26354 0.918013i −0.0435962 0.0316745i
\(841\) −6.15541 18.9444i −0.212256 0.653255i
\(842\) 4.37511 + 13.4652i 0.150776 + 0.464041i
\(843\) −5.96492 4.33377i −0.205443 0.149263i
\(844\) −4.99463 + 3.62881i −0.171922 + 0.124909i
\(845\) −2.71589 + 8.35865i −0.0934295 + 0.287546i
\(846\) 6.02834 0.207259
\(847\) 0 0
\(848\) −17.0083 −0.584067
\(849\) 2.90509 8.94095i 0.0997024 0.306853i
\(850\) 1.78628 1.29781i 0.0612688 0.0445144i
\(851\) 23.8696 + 17.3423i 0.818241 + 0.594487i
\(852\) −0.211556 0.651102i −0.00724779 0.0223064i
\(853\) 5.62515 + 17.3124i 0.192602 + 0.592767i 0.999996 + 0.00275489i \(0.000876911\pi\)
−0.807395 + 0.590012i \(0.799123\pi\)
\(854\) −4.12917 3.00001i −0.141297 0.102658i
\(855\) −10.1680 + 7.38746i −0.347737 + 0.252646i
\(856\) −10.0302 + 30.8699i −0.342827 + 1.05511i
\(857\) 29.2837 1.00031 0.500156 0.865935i \(-0.333276\pi\)
0.500156 + 0.865935i \(0.333276\pi\)
\(858\) 0 0
\(859\) 8.44030 0.287979 0.143990 0.989579i \(-0.454007\pi\)
0.143990 + 0.989579i \(0.454007\pi\)
\(860\) 3.87032 11.9116i 0.131977 0.406183i
\(861\) 1.55134 1.12712i 0.0528696 0.0384120i
\(862\) −12.1065 8.79587i −0.412348 0.299589i
\(863\) −5.97907 18.4017i −0.203530 0.626400i −0.999771 0.0214204i \(-0.993181\pi\)
0.796241 0.604980i \(-0.206819\pi\)
\(864\) 2.87360 + 8.84404i 0.0977620 + 0.300880i
\(865\) −4.10876 2.98519i −0.139702 0.101500i
\(866\) −10.0515 + 7.30281i −0.341562 + 0.248160i
\(867\) 0.439559 1.35282i 0.0149282 0.0459443i
\(868\) 11.3559 0.385446
\(869\) 0 0
\(870\) 0.464635 0.0157526
\(871\) 10.5585 32.4956i 0.357760 1.10107i
\(872\) −23.8361 + 17.3179i −0.807191 + 0.586458i
\(873\) 43.4184 + 31.5453i 1.46949 + 1.06765i
\(874\) −1.77460 5.46165i −0.0600266 0.184743i
\(875\) 0.829779 + 2.55380i 0.0280516 + 0.0863341i
\(876\) −0.473260 0.343844i −0.0159900 0.0116174i
\(877\) 14.1691 10.2945i 0.478456 0.347619i −0.322271 0.946647i \(-0.604446\pi\)
0.800728 + 0.599028i \(0.204446\pi\)
\(878\) 2.12655 6.54484i 0.0717675 0.220878i
\(879\) −6.85349 −0.231163
\(880\) 0 0
\(881\) −20.0575 −0.675754 −0.337877 0.941190i \(-0.609709\pi\)
−0.337877 + 0.941190i \(0.609709\pi\)
\(882\) 0.0898538 0.276542i 0.00302553 0.00931164i
\(883\) −21.7609 + 15.8102i −0.732313 + 0.532057i −0.890294 0.455386i \(-0.849501\pi\)
0.157981 + 0.987442i \(0.449501\pi\)
\(884\) 30.9620 + 22.4952i 1.04136 + 0.756595i
\(885\) −1.17278 3.60946i −0.0394227 0.121331i
\(886\) 0.0487585 + 0.150063i 0.00163807 + 0.00504148i
\(887\) 5.50591 + 4.00028i 0.184870 + 0.134316i 0.676371 0.736561i \(-0.263552\pi\)
−0.491501 + 0.870877i \(0.663552\pi\)
\(888\) 5.00805 3.63856i 0.168059 0.122102i
\(889\) −0.0632845 + 0.194770i −0.00212249 + 0.00653237i
\(890\) 1.32190 0.0443103
\(891\) 0 0
\(892\) −18.6880 −0.625720
\(893\) 5.85082 18.0070i 0.195790 0.602581i
\(894\) −1.82928 + 1.32905i −0.0611804 + 0.0444502i
\(895\) −9.15568 6.65199i −0.306041 0.222352i
\(896\) −9.30635 28.6420i −0.310903 0.956862i
\(897\) 1.29189 + 3.97603i 0.0431349 + 0.132756i
\(898\) 3.28514 + 2.38680i 0.109627 + 0.0796484i
\(899\) −5.81757 + 4.22671i −0.194027 + 0.140969i
\(900\) 1.58578 4.88053i 0.0528593 0.162684i
\(901\) −29.3033 −0.976235
\(902\) 0 0
\(903\) −6.13090 −0.204024
\(904\) −1.14258 + 3.51650i −0.0380017 + 0.116957i
\(905\) 5.98677 4.34965i 0.199007 0.144587i
\(906\) 0.937933 + 0.681448i 0.0311607 + 0.0226396i
\(907\) −6.59174 20.2873i −0.218875 0.673629i −0.998856 0.0478248i \(-0.984771\pi\)
0.779981 0.625804i \(-0.215229\pi\)
\(908\) 0.118301 + 0.364094i 0.00392597 + 0.0120829i
\(909\) 16.6666 + 12.1090i 0.552797 + 0.401631i
\(910\) 4.83960 3.51617i 0.160431 0.116560i
\(911\) −8.52542 + 26.2385i −0.282460 + 0.869322i 0.704689 + 0.709516i \(0.251087\pi\)
−0.987149 + 0.159805i \(0.948913\pi\)
\(912\) 3.76541 0.124685
\(913\) 0 0
\(914\) 0.543347 0.0179723
\(915\) −0.397604 + 1.22370i −0.0131444 + 0.0404542i
\(916\) −0.108549 + 0.0788658i −0.00358657 + 0.00260580i
\(917\) 24.9458 + 18.1242i 0.823782 + 0.598512i
\(918\) 1.29958 + 3.99968i 0.0428924 + 0.132009i
\(919\) 1.85685 + 5.71479i 0.0612518 + 0.188514i 0.977000 0.213239i \(-0.0684012\pi\)
−0.915748 + 0.401752i \(0.868401\pi\)
\(920\) 4.03774 + 2.93359i 0.133120 + 0.0967176i
\(921\) −1.79697 + 1.30558i −0.0592122 + 0.0430202i
\(922\) 2.13955 6.58486i 0.0704624 0.216861i
\(923\) 5.58140 0.183714
\(924\) 0 0
\(925\) −10.6429 −0.349937
\(926\) 0.722274 2.22293i 0.0237354 0.0730501i
\(927\) 17.6360 12.8133i 0.579242 0.420844i
\(928\) 11.9024 + 8.64757i 0.390714 + 0.283870i
\(929\) 2.96576 + 9.12766i 0.0973034 + 0.299469i 0.987847 0.155429i \(-0.0496759\pi\)
−0.890544 + 0.454898i \(0.849676\pi\)
\(930\) 0.113700 + 0.349933i 0.00372837 + 0.0114747i
\(931\) −0.738836 0.536796i −0.0242144 0.0175928i
\(932\) −21.6785 + 15.7504i −0.710103 + 0.515920i
\(933\) 2.51160 7.72992i 0.0822261 0.253066i
\(934\) −15.4742 −0.506332
\(935\) 0 0
\(936\) −24.3339 −0.795378
\(937\) 11.9255 36.7029i 0.389589 1.19903i −0.543507 0.839405i \(-0.682904\pi\)
0.933096 0.359628i \(-0.117096\pi\)
\(938\) −7.58916 + 5.51385i −0.247795 + 0.180034i
\(939\) 3.02649 + 2.19887i 0.0987658 + 0.0717575i
\(940\) 2.38892 + 7.35233i 0.0779179 + 0.239807i
\(941\) 9.01854 + 27.7562i 0.293996 + 0.904826i 0.983557 + 0.180599i \(0.0578035\pi\)
−0.689561 + 0.724228i \(0.742196\pi\)
\(942\) −1.66928 1.21280i −0.0543880 0.0395152i
\(943\) −4.95744 + 3.60179i −0.161437 + 0.117291i
\(944\) 9.74764 30.0002i 0.317259 0.976422i
\(945\) −5.11455 −0.166376
\(946\) 0 0
\(947\) 46.7623 1.51957 0.759785 0.650174i \(-0.225304\pi\)
0.759785 + 0.650174i \(0.225304\pi\)
\(948\) 0.619629 1.90702i 0.0201246 0.0619371i
\(949\) 3.85834 2.80325i 0.125247 0.0909972i
\(950\) 1.67589 + 1.21761i 0.0543732 + 0.0395044i
\(951\) 2.07069 + 6.37293i 0.0671468 + 0.206657i
\(952\) −6.91116 21.2704i −0.223992 0.689376i
\(953\) −4.97738 3.61628i −0.161233 0.117143i 0.504243 0.863562i \(-0.331772\pi\)
−0.665476 + 0.746419i \(0.731772\pi\)
\(954\) 7.08167 5.14514i 0.229278 0.166580i
\(955\) 1.59332 4.90372i 0.0515585 0.158681i
\(956\) −41.0529 −1.32774
\(957\) 0 0
\(958\) 8.46440 0.273472
\(959\) 15.2093 46.8093i 0.491132 1.51155i
\(960\) −0.794658 + 0.577353i −0.0256475 + 0.0186340i
\(961\) 20.4726 + 14.8742i 0.660408 + 0.479814i
\(962\) 7.32680 + 22.5496i 0.236226 + 0.727027i
\(963\) 16.1325 + 49.6507i 0.519862 + 1.59997i
\(964\) 30.5891 + 22.2243i 0.985209 + 0.715796i
\(965\) 3.26220 2.37013i 0.105014 0.0762970i
\(966\) 0.354686 1.09161i 0.0114118 0.0351220i
\(967\) −3.39625 −0.109216 −0.0546080 0.998508i \(-0.517391\pi\)
−0.0546080 + 0.998508i \(0.517391\pi\)
\(968\) 0 0
\(969\) 6.48736 0.208404
\(970\) 2.73345 8.41270i 0.0877658 0.270115i
\(971\) 7.60072 5.52224i 0.243919 0.177217i −0.459109 0.888380i \(-0.651831\pi\)
0.703027 + 0.711163i \(0.251831\pi\)
\(972\) 11.9314 + 8.66870i 0.382701 + 0.278049i
\(973\) −19.2404 59.2158i −0.616818 1.89837i
\(974\) 2.72255 + 8.37914i 0.0872360 + 0.268485i
\(975\) −1.22004 0.886408i −0.0390724 0.0283878i
\(976\) −8.65182 + 6.28591i −0.276938 + 0.201207i
\(977\) −5.11585 + 15.7450i −0.163671 + 0.503726i −0.998936 0.0461210i \(-0.985314\pi\)
0.835265 + 0.549847i \(0.185314\pi\)
\(978\) 0.119032 0.00380623
\(979\) 0 0
\(980\) 0.372885 0.0119114
\(981\) −14.6436 + 45.0685i −0.467535 + 1.43893i
\(982\) 4.41474 3.20750i 0.140880 0.102355i
\(983\) −41.1126 29.8701i −1.31129 0.952707i −0.999997 0.00239240i \(-0.999238\pi\)
−0.311291 0.950315i \(-0.600762\pi\)
\(984\) 0.397287 + 1.22272i 0.0126651 + 0.0389790i
\(985\) 3.52822 + 10.8588i 0.112419 + 0.345989i
\(986\) 5.38279 + 3.91083i 0.171423 + 0.124546i
\(987\) 3.06151 2.22432i 0.0974490 0.0708009i
\(988\) −11.0956 + 34.1488i −0.352999 + 1.08642i
\(989\) 19.5918 0.622983
\(990\) 0 0
\(991\) 11.3642 0.360996 0.180498 0.983575i \(-0.442229\pi\)
0.180498 + 0.983575i \(0.442229\pi\)
\(992\) −3.60018 + 11.0802i −0.114306 + 0.351797i
\(993\) 8.40081 6.10355i 0.266592 0.193690i
\(994\) −1.23971 0.900700i −0.0393211 0.0285685i
\(995\) 2.21455 + 6.81569i 0.0702060 + 0.216072i
\(996\) 1.96671 + 6.05292i 0.0623177 + 0.191794i
\(997\) −23.5945 17.1424i −0.747246 0.542906i 0.147726 0.989028i \(-0.452805\pi\)
−0.894972 + 0.446122i \(0.852805\pi\)
\(998\) 4.20149 3.05256i 0.132996 0.0966271i
\(999\) 6.26427 19.2794i 0.198193 0.609975i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 605.2.g.k.251.1 8
11.2 odd 10 605.2.g.m.366.1 8
11.3 even 5 605.2.g.e.81.2 8
11.4 even 5 605.2.a.k.1.2 4
11.5 even 5 inner 605.2.g.k.511.1 8
11.6 odd 10 55.2.g.b.16.2 8
11.7 odd 10 605.2.a.j.1.3 4
11.8 odd 10 605.2.g.m.81.1 8
11.9 even 5 605.2.g.e.366.2 8
11.10 odd 2 55.2.g.b.31.2 yes 8
33.17 even 10 495.2.n.e.181.1 8
33.26 odd 10 5445.2.a.bi.1.3 4
33.29 even 10 5445.2.a.bp.1.2 4
33.32 even 2 495.2.n.e.361.1 8
44.7 even 10 9680.2.a.cn.1.3 4
44.15 odd 10 9680.2.a.cm.1.3 4
44.39 even 10 880.2.bo.h.401.1 8
44.43 even 2 880.2.bo.h.801.1 8
55.4 even 10 3025.2.a.w.1.3 4
55.17 even 20 275.2.z.a.49.2 16
55.28 even 20 275.2.z.a.49.3 16
55.29 odd 10 3025.2.a.bd.1.2 4
55.32 even 4 275.2.z.a.174.3 16
55.39 odd 10 275.2.h.a.126.1 8
55.43 even 4 275.2.z.a.174.2 16
55.54 odd 2 275.2.h.a.251.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.g.b.16.2 8 11.6 odd 10
55.2.g.b.31.2 yes 8 11.10 odd 2
275.2.h.a.126.1 8 55.39 odd 10
275.2.h.a.251.1 8 55.54 odd 2
275.2.z.a.49.2 16 55.17 even 20
275.2.z.a.49.3 16 55.28 even 20
275.2.z.a.174.2 16 55.43 even 4
275.2.z.a.174.3 16 55.32 even 4
495.2.n.e.181.1 8 33.17 even 10
495.2.n.e.361.1 8 33.32 even 2
605.2.a.j.1.3 4 11.7 odd 10
605.2.a.k.1.2 4 11.4 even 5
605.2.g.e.81.2 8 11.3 even 5
605.2.g.e.366.2 8 11.9 even 5
605.2.g.k.251.1 8 1.1 even 1 trivial
605.2.g.k.511.1 8 11.5 even 5 inner
605.2.g.m.81.1 8 11.8 odd 10
605.2.g.m.366.1 8 11.2 odd 10
880.2.bo.h.401.1 8 44.39 even 10
880.2.bo.h.801.1 8 44.43 even 2
3025.2.a.w.1.3 4 55.4 even 10
3025.2.a.bd.1.2 4 55.29 odd 10
5445.2.a.bi.1.3 4 33.26 odd 10
5445.2.a.bp.1.2 4 33.29 even 10
9680.2.a.cm.1.3 4 44.15 odd 10
9680.2.a.cn.1.3 4 44.7 even 10