Properties

Label 961.4.a.i.1.12
Level $961$
Weight $4$
Character 961.1
Self dual yes
Analytic conductor $56.701$
Analytic rank $0$
Dimension $14$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,4,Mod(1,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 961.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,1,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(56.7008355155\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - x^{13} - 77 x^{12} + 54 x^{11} + 2250 x^{10} - 1046 x^{9} - 31002 x^{8} + 8912 x^{7} + \cdots - 79056 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 31)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.12
Root \(3.93746\) of defining polynomial
Character \(\chi\) \(=\) 961.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.93746 q^{2} -7.33613 q^{3} +7.50358 q^{4} -3.86557 q^{5} -28.8857 q^{6} -27.6218 q^{7} -1.95465 q^{8} +26.8188 q^{9} -15.2205 q^{10} +41.0757 q^{11} -55.0472 q^{12} -57.0896 q^{13} -108.759 q^{14} +28.3583 q^{15} -67.7250 q^{16} +27.9076 q^{17} +105.598 q^{18} -118.974 q^{19} -29.0056 q^{20} +202.637 q^{21} +161.734 q^{22} +43.8360 q^{23} +14.3396 q^{24} -110.057 q^{25} -224.788 q^{26} +1.32900 q^{27} -207.262 q^{28} -212.093 q^{29} +111.660 q^{30} -251.027 q^{32} -301.337 q^{33} +109.885 q^{34} +106.774 q^{35} +201.237 q^{36} +227.640 q^{37} -468.456 q^{38} +418.817 q^{39} +7.55582 q^{40} +343.496 q^{41} +797.874 q^{42} -44.6122 q^{43} +308.214 q^{44} -103.670 q^{45} +172.602 q^{46} +343.534 q^{47} +496.839 q^{48} +419.961 q^{49} -433.346 q^{50} -204.734 q^{51} -428.376 q^{52} -13.5385 q^{53} +5.23287 q^{54} -158.781 q^{55} +53.9908 q^{56} +872.811 q^{57} -835.108 q^{58} +410.515 q^{59} +212.789 q^{60} +316.862 q^{61} -740.783 q^{63} -446.609 q^{64} +220.684 q^{65} -1186.50 q^{66} -862.514 q^{67} +209.407 q^{68} -321.587 q^{69} +420.417 q^{70} +351.612 q^{71} -52.4214 q^{72} +858.483 q^{73} +896.325 q^{74} +807.396 q^{75} -892.732 q^{76} -1134.58 q^{77} +1649.07 q^{78} +743.505 q^{79} +261.795 q^{80} -733.858 q^{81} +1352.50 q^{82} -548.055 q^{83} +1520.50 q^{84} -107.879 q^{85} -175.659 q^{86} +1555.94 q^{87} -80.2885 q^{88} -22.7331 q^{89} -408.196 q^{90} +1576.91 q^{91} +328.927 q^{92} +1352.65 q^{94} +459.903 q^{95} +1841.57 q^{96} +1082.12 q^{97} +1653.58 q^{98} +1101.60 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + q^{2} - q^{3} + 43 q^{4} + 19 q^{6} + 5 q^{7} + 54 q^{8} + 107 q^{9} + 57 q^{10} + 79 q^{11} - 5 q^{12} + 47 q^{13} - 129 q^{14} + 228 q^{15} + 127 q^{16} + 143 q^{17} - 392 q^{18} + 47 q^{19}+ \cdots + 2002 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.93746 1.39210 0.696051 0.717993i \(-0.254939\pi\)
0.696051 + 0.717993i \(0.254939\pi\)
\(3\) −7.33613 −1.41184 −0.705920 0.708292i \(-0.749466\pi\)
−0.705920 + 0.708292i \(0.749466\pi\)
\(4\) 7.50358 0.937947
\(5\) −3.86557 −0.345747 −0.172873 0.984944i \(-0.555305\pi\)
−0.172873 + 0.984944i \(0.555305\pi\)
\(6\) −28.8857 −1.96542
\(7\) −27.6218 −1.49143 −0.745717 0.666263i \(-0.767893\pi\)
−0.745717 + 0.666263i \(0.767893\pi\)
\(8\) −1.95465 −0.0863841
\(9\) 26.8188 0.993290
\(10\) −15.2205 −0.481315
\(11\) 41.0757 1.12589 0.562945 0.826495i \(-0.309668\pi\)
0.562945 + 0.826495i \(0.309668\pi\)
\(12\) −55.0472 −1.32423
\(13\) −57.0896 −1.21799 −0.608993 0.793176i \(-0.708426\pi\)
−0.608993 + 0.793176i \(0.708426\pi\)
\(14\) −108.759 −2.07623
\(15\) 28.3583 0.488139
\(16\) −67.7250 −1.05820
\(17\) 27.9076 0.398152 0.199076 0.979984i \(-0.436206\pi\)
0.199076 + 0.979984i \(0.436206\pi\)
\(18\) 105.598 1.38276
\(19\) −118.974 −1.43656 −0.718278 0.695756i \(-0.755069\pi\)
−0.718278 + 0.695756i \(0.755069\pi\)
\(20\) −29.0056 −0.324292
\(21\) 202.637 2.10567
\(22\) 161.734 1.56735
\(23\) 43.8360 0.397410 0.198705 0.980059i \(-0.436326\pi\)
0.198705 + 0.980059i \(0.436326\pi\)
\(24\) 14.3396 0.121960
\(25\) −110.057 −0.880459
\(26\) −224.788 −1.69556
\(27\) 1.32900 0.00947280
\(28\) −207.262 −1.39889
\(29\) −212.093 −1.35809 −0.679047 0.734095i \(-0.737607\pi\)
−0.679047 + 0.734095i \(0.737607\pi\)
\(30\) 111.660 0.679539
\(31\) 0 0
\(32\) −251.027 −1.38674
\(33\) −301.337 −1.58957
\(34\) 109.885 0.554268
\(35\) 106.774 0.515659
\(36\) 201.237 0.931654
\(37\) 227.640 1.01146 0.505728 0.862693i \(-0.331224\pi\)
0.505728 + 0.862693i \(0.331224\pi\)
\(38\) −468.456 −1.99983
\(39\) 418.817 1.71960
\(40\) 7.55582 0.0298670
\(41\) 343.496 1.30842 0.654208 0.756314i \(-0.273002\pi\)
0.654208 + 0.756314i \(0.273002\pi\)
\(42\) 797.874 2.93130
\(43\) −44.6122 −0.158216 −0.0791081 0.996866i \(-0.525207\pi\)
−0.0791081 + 0.996866i \(0.525207\pi\)
\(44\) 308.214 1.05602
\(45\) −103.670 −0.343427
\(46\) 172.602 0.553235
\(47\) 343.534 1.06616 0.533080 0.846065i \(-0.321034\pi\)
0.533080 + 0.846065i \(0.321034\pi\)
\(48\) 496.839 1.49401
\(49\) 419.961 1.22438
\(50\) −433.346 −1.22569
\(51\) −204.734 −0.562127
\(52\) −428.376 −1.14241
\(53\) −13.5385 −0.0350879 −0.0175440 0.999846i \(-0.505585\pi\)
−0.0175440 + 0.999846i \(0.505585\pi\)
\(54\) 5.23287 0.0131871
\(55\) −158.781 −0.389272
\(56\) 53.9908 0.128836
\(57\) 872.811 2.02819
\(58\) −835.108 −1.89060
\(59\) 410.515 0.905838 0.452919 0.891552i \(-0.350383\pi\)
0.452919 + 0.891552i \(0.350383\pi\)
\(60\) 212.789 0.457848
\(61\) 316.862 0.665083 0.332541 0.943089i \(-0.392094\pi\)
0.332541 + 0.943089i \(0.392094\pi\)
\(62\) 0 0
\(63\) −740.783 −1.48143
\(64\) −446.609 −0.872282
\(65\) 220.684 0.421114
\(66\) −1186.50 −2.21285
\(67\) −862.514 −1.57273 −0.786365 0.617763i \(-0.788039\pi\)
−0.786365 + 0.617763i \(0.788039\pi\)
\(68\) 209.407 0.373445
\(69\) −321.587 −0.561079
\(70\) 420.417 0.717849
\(71\) 351.612 0.587728 0.293864 0.955847i \(-0.405059\pi\)
0.293864 + 0.955847i \(0.405059\pi\)
\(72\) −52.4214 −0.0858045
\(73\) 858.483 1.37641 0.688204 0.725517i \(-0.258399\pi\)
0.688204 + 0.725517i \(0.258399\pi\)
\(74\) 896.325 1.40805
\(75\) 807.396 1.24307
\(76\) −892.732 −1.34741
\(77\) −1134.58 −1.67919
\(78\) 1649.07 2.39386
\(79\) 743.505 1.05887 0.529436 0.848350i \(-0.322404\pi\)
0.529436 + 0.848350i \(0.322404\pi\)
\(80\) 261.795 0.365870
\(81\) −733.858 −1.00666
\(82\) 1352.50 1.82145
\(83\) −548.055 −0.724781 −0.362391 0.932026i \(-0.618039\pi\)
−0.362391 + 0.932026i \(0.618039\pi\)
\(84\) 1520.50 1.97500
\(85\) −107.879 −0.137660
\(86\) −175.659 −0.220253
\(87\) 1555.94 1.91741
\(88\) −80.2885 −0.0972589
\(89\) −22.7331 −0.0270753 −0.0135376 0.999908i \(-0.504309\pi\)
−0.0135376 + 0.999908i \(0.504309\pi\)
\(90\) −408.196 −0.478085
\(91\) 1576.91 1.81654
\(92\) 328.927 0.372750
\(93\) 0 0
\(94\) 1352.65 1.48420
\(95\) 459.903 0.496684
\(96\) 1841.57 1.95786
\(97\) 1082.12 1.13271 0.566353 0.824163i \(-0.308354\pi\)
0.566353 + 0.824163i \(0.308354\pi\)
\(98\) 1653.58 1.70446
\(99\) 1101.60 1.11833
\(100\) −825.824 −0.825824
\(101\) 135.285 0.133281 0.0666405 0.997777i \(-0.478772\pi\)
0.0666405 + 0.997777i \(0.478772\pi\)
\(102\) −806.131 −0.782537
\(103\) 585.804 0.560398 0.280199 0.959942i \(-0.409600\pi\)
0.280199 + 0.959942i \(0.409600\pi\)
\(104\) 111.590 0.105215
\(105\) −783.306 −0.728027
\(106\) −53.3074 −0.0488459
\(107\) −780.275 −0.704972 −0.352486 0.935817i \(-0.614664\pi\)
−0.352486 + 0.935817i \(0.614664\pi\)
\(108\) 9.97223 0.00888499
\(109\) 580.450 0.510065 0.255032 0.966933i \(-0.417914\pi\)
0.255032 + 0.966933i \(0.417914\pi\)
\(110\) −625.192 −0.541907
\(111\) −1670.00 −1.42801
\(112\) 1870.68 1.57824
\(113\) −1881.57 −1.56640 −0.783198 0.621772i \(-0.786413\pi\)
−0.783198 + 0.621772i \(0.786413\pi\)
\(114\) 3436.66 2.82344
\(115\) −169.451 −0.137403
\(116\) −1591.46 −1.27382
\(117\) −1531.08 −1.20981
\(118\) 1616.38 1.26102
\(119\) −770.856 −0.593818
\(120\) −55.4305 −0.0421674
\(121\) 356.211 0.267626
\(122\) 1247.63 0.925863
\(123\) −2519.93 −1.84727
\(124\) 0 0
\(125\) 908.630 0.650163
\(126\) −2916.80 −2.06230
\(127\) −1626.87 −1.13670 −0.568351 0.822786i \(-0.692418\pi\)
−0.568351 + 0.822786i \(0.692418\pi\)
\(128\) 249.713 0.172436
\(129\) 327.281 0.223376
\(130\) 868.932 0.586234
\(131\) −583.064 −0.388875 −0.194437 0.980915i \(-0.562288\pi\)
−0.194437 + 0.980915i \(0.562288\pi\)
\(132\) −2261.10 −1.49094
\(133\) 3286.28 2.14253
\(134\) −3396.11 −2.18940
\(135\) −5.13733 −0.00327519
\(136\) −54.5495 −0.0343940
\(137\) −1425.25 −0.888810 −0.444405 0.895826i \(-0.646585\pi\)
−0.444405 + 0.895826i \(0.646585\pi\)
\(138\) −1266.23 −0.781080
\(139\) 28.2129 0.0172158 0.00860788 0.999963i \(-0.497260\pi\)
0.00860788 + 0.999963i \(0.497260\pi\)
\(140\) 801.184 0.483660
\(141\) −2520.21 −1.50525
\(142\) 1384.46 0.818178
\(143\) −2344.99 −1.37132
\(144\) −1816.30 −1.05110
\(145\) 819.860 0.469556
\(146\) 3380.24 1.91610
\(147\) −3080.89 −1.72862
\(148\) 1708.12 0.948692
\(149\) −730.694 −0.401750 −0.200875 0.979617i \(-0.564379\pi\)
−0.200875 + 0.979617i \(0.564379\pi\)
\(150\) 3179.09 1.73048
\(151\) 2103.17 1.13347 0.566734 0.823901i \(-0.308207\pi\)
0.566734 + 0.823901i \(0.308207\pi\)
\(152\) 232.553 0.124096
\(153\) 748.449 0.395481
\(154\) −4467.37 −2.33760
\(155\) 0 0
\(156\) 3142.62 1.61289
\(157\) −440.764 −0.224056 −0.112028 0.993705i \(-0.535735\pi\)
−0.112028 + 0.993705i \(0.535735\pi\)
\(158\) 2927.52 1.47406
\(159\) 99.3204 0.0495385
\(160\) 970.361 0.479461
\(161\) −1210.83 −0.592711
\(162\) −2889.54 −1.40138
\(163\) −1654.86 −0.795205 −0.397603 0.917558i \(-0.630158\pi\)
−0.397603 + 0.917558i \(0.630158\pi\)
\(164\) 2577.45 1.22723
\(165\) 1164.84 0.549590
\(166\) −2157.94 −1.00897
\(167\) 1752.42 0.812014 0.406007 0.913870i \(-0.366921\pi\)
0.406007 + 0.913870i \(0.366921\pi\)
\(168\) −396.084 −0.181896
\(169\) 1062.22 0.483488
\(170\) −424.767 −0.191636
\(171\) −3190.75 −1.42692
\(172\) −334.751 −0.148398
\(173\) −724.020 −0.318186 −0.159093 0.987264i \(-0.550857\pi\)
−0.159093 + 0.987264i \(0.550857\pi\)
\(174\) 6126.46 2.66923
\(175\) 3039.98 1.31315
\(176\) −2781.85 −1.19142
\(177\) −3011.59 −1.27890
\(178\) −89.5105 −0.0376915
\(179\) 1328.04 0.554537 0.277268 0.960793i \(-0.410571\pi\)
0.277268 + 0.960793i \(0.410571\pi\)
\(180\) −777.896 −0.322116
\(181\) −1149.26 −0.471955 −0.235977 0.971759i \(-0.575829\pi\)
−0.235977 + 0.971759i \(0.575829\pi\)
\(182\) 6209.04 2.52882
\(183\) −2324.54 −0.938990
\(184\) −85.6840 −0.0343299
\(185\) −879.959 −0.349707
\(186\) 0 0
\(187\) 1146.32 0.448275
\(188\) 2577.73 1.00000
\(189\) −36.7092 −0.0141281
\(190\) 1810.85 0.691435
\(191\) −2272.77 −0.861005 −0.430502 0.902589i \(-0.641664\pi\)
−0.430502 + 0.902589i \(0.641664\pi\)
\(192\) 3276.38 1.23152
\(193\) 406.612 0.151651 0.0758253 0.997121i \(-0.475841\pi\)
0.0758253 + 0.997121i \(0.475841\pi\)
\(194\) 4260.79 1.57684
\(195\) −1618.96 −0.594546
\(196\) 3151.21 1.14840
\(197\) −3609.54 −1.30543 −0.652713 0.757605i \(-0.726369\pi\)
−0.652713 + 0.757605i \(0.726369\pi\)
\(198\) 4337.51 1.55684
\(199\) 3701.28 1.31848 0.659239 0.751934i \(-0.270879\pi\)
0.659239 + 0.751934i \(0.270879\pi\)
\(200\) 215.124 0.0760577
\(201\) 6327.52 2.22044
\(202\) 532.680 0.185541
\(203\) 5858.39 2.02551
\(204\) −1536.24 −0.527245
\(205\) −1327.81 −0.452381
\(206\) 2306.58 0.780131
\(207\) 1175.63 0.394744
\(208\) 3866.39 1.28887
\(209\) −4886.95 −1.61740
\(210\) −3084.23 −1.01349
\(211\) 2893.04 0.943911 0.471955 0.881622i \(-0.343548\pi\)
0.471955 + 0.881622i \(0.343548\pi\)
\(212\) −101.587 −0.0329106
\(213\) −2579.48 −0.829778
\(214\) −3072.30 −0.981393
\(215\) 172.451 0.0547028
\(216\) −2.59772 −0.000818300 0
\(217\) 0 0
\(218\) 2285.50 0.710062
\(219\) −6297.95 −1.94327
\(220\) −1191.42 −0.365117
\(221\) −1593.23 −0.484943
\(222\) −6575.56 −1.98794
\(223\) −3135.03 −0.941422 −0.470711 0.882288i \(-0.656003\pi\)
−0.470711 + 0.882288i \(0.656003\pi\)
\(224\) 6933.81 2.06823
\(225\) −2951.61 −0.874552
\(226\) −7408.59 −2.18058
\(227\) 5177.95 1.51398 0.756988 0.653429i \(-0.226670\pi\)
0.756988 + 0.653429i \(0.226670\pi\)
\(228\) 6549.20 1.90233
\(229\) 874.741 0.252421 0.126211 0.992003i \(-0.459718\pi\)
0.126211 + 0.992003i \(0.459718\pi\)
\(230\) −667.206 −0.191279
\(231\) 8323.44 2.37075
\(232\) 414.568 0.117318
\(233\) −1851.55 −0.520597 −0.260299 0.965528i \(-0.583821\pi\)
−0.260299 + 0.965528i \(0.583821\pi\)
\(234\) −6028.55 −1.68418
\(235\) −1327.95 −0.368621
\(236\) 3080.33 0.849628
\(237\) −5454.45 −1.49496
\(238\) −3035.21 −0.826654
\(239\) −1351.38 −0.365748 −0.182874 0.983136i \(-0.558540\pi\)
−0.182874 + 0.983136i \(0.558540\pi\)
\(240\) −1920.56 −0.516550
\(241\) −391.064 −0.104525 −0.0522627 0.998633i \(-0.516643\pi\)
−0.0522627 + 0.998633i \(0.516643\pi\)
\(242\) 1402.56 0.372563
\(243\) 5347.80 1.41178
\(244\) 2377.60 0.623812
\(245\) −1623.39 −0.423324
\(246\) −9922.13 −2.57159
\(247\) 6792.19 1.74970
\(248\) 0 0
\(249\) 4020.60 1.02328
\(250\) 3577.69 0.905092
\(251\) 5157.54 1.29698 0.648488 0.761225i \(-0.275402\pi\)
0.648488 + 0.761225i \(0.275402\pi\)
\(252\) −5558.52 −1.38950
\(253\) 1800.59 0.447440
\(254\) −6405.72 −1.58241
\(255\) 791.412 0.194353
\(256\) 4556.10 1.11233
\(257\) 5998.16 1.45586 0.727928 0.685654i \(-0.240484\pi\)
0.727928 + 0.685654i \(0.240484\pi\)
\(258\) 1288.66 0.310962
\(259\) −6287.83 −1.50852
\(260\) 1655.92 0.394983
\(261\) −5688.09 −1.34898
\(262\) −2295.79 −0.541353
\(263\) 6452.65 1.51288 0.756440 0.654063i \(-0.226937\pi\)
0.756440 + 0.654063i \(0.226937\pi\)
\(264\) 589.007 0.137314
\(265\) 52.3340 0.0121315
\(266\) 12939.6 2.98262
\(267\) 166.773 0.0382260
\(268\) −6471.94 −1.47514
\(269\) −8041.38 −1.82265 −0.911323 0.411693i \(-0.864938\pi\)
−0.911323 + 0.411693i \(0.864938\pi\)
\(270\) −20.2280 −0.00455940
\(271\) 5357.72 1.20095 0.600476 0.799642i \(-0.294978\pi\)
0.600476 + 0.799642i \(0.294978\pi\)
\(272\) −1890.04 −0.421325
\(273\) −11568.5 −2.56467
\(274\) −5611.85 −1.23731
\(275\) −4520.68 −0.991299
\(276\) −2413.05 −0.526263
\(277\) 4795.54 1.04020 0.520101 0.854105i \(-0.325894\pi\)
0.520101 + 0.854105i \(0.325894\pi\)
\(278\) 111.087 0.0239661
\(279\) 0 0
\(280\) −208.705 −0.0445447
\(281\) 2106.18 0.447133 0.223567 0.974689i \(-0.428230\pi\)
0.223567 + 0.974689i \(0.428230\pi\)
\(282\) −9923.21 −2.09546
\(283\) 3852.13 0.809135 0.404567 0.914508i \(-0.367422\pi\)
0.404567 + 0.914508i \(0.367422\pi\)
\(284\) 2638.35 0.551258
\(285\) −3373.91 −0.701239
\(286\) −9233.31 −1.90901
\(287\) −9487.97 −1.95142
\(288\) −6732.25 −1.37744
\(289\) −4134.17 −0.841475
\(290\) 3228.17 0.653670
\(291\) −7938.56 −1.59920
\(292\) 6441.69 1.29100
\(293\) −5684.55 −1.13343 −0.566715 0.823914i \(-0.691786\pi\)
−0.566715 + 0.823914i \(0.691786\pi\)
\(294\) −12130.9 −2.40642
\(295\) −1586.87 −0.313191
\(296\) −444.957 −0.0873737
\(297\) 54.5894 0.0106653
\(298\) −2877.08 −0.559277
\(299\) −2502.58 −0.484040
\(300\) 6058.35 1.16593
\(301\) 1232.27 0.235969
\(302\) 8281.15 1.57790
\(303\) −992.470 −0.188171
\(304\) 8057.52 1.52017
\(305\) −1224.85 −0.229950
\(306\) 2946.99 0.550549
\(307\) −5653.30 −1.05098 −0.525490 0.850800i \(-0.676118\pi\)
−0.525490 + 0.850800i \(0.676118\pi\)
\(308\) −8513.42 −1.57499
\(309\) −4297.54 −0.791192
\(310\) 0 0
\(311\) −7228.77 −1.31802 −0.659012 0.752132i \(-0.729026\pi\)
−0.659012 + 0.752132i \(0.729026\pi\)
\(312\) −818.640 −0.148546
\(313\) −5768.67 −1.04174 −0.520870 0.853636i \(-0.674392\pi\)
−0.520870 + 0.853636i \(0.674392\pi\)
\(314\) −1735.49 −0.311909
\(315\) 2863.55 0.512199
\(316\) 5578.95 0.993166
\(317\) −2628.64 −0.465738 −0.232869 0.972508i \(-0.574811\pi\)
−0.232869 + 0.972508i \(0.574811\pi\)
\(318\) 391.070 0.0689626
\(319\) −8711.87 −1.52906
\(320\) 1726.39 0.301589
\(321\) 5724.20 0.995307
\(322\) −4767.58 −0.825114
\(323\) −3320.28 −0.571967
\(324\) −5506.56 −0.944198
\(325\) 6283.13 1.07239
\(326\) −6515.93 −1.10701
\(327\) −4258.26 −0.720129
\(328\) −671.414 −0.113026
\(329\) −9489.00 −1.59011
\(330\) 4586.49 0.765085
\(331\) 2053.23 0.340953 0.170477 0.985362i \(-0.445469\pi\)
0.170477 + 0.985362i \(0.445469\pi\)
\(332\) −4112.37 −0.679807
\(333\) 6105.05 1.00467
\(334\) 6900.08 1.13041
\(335\) 3334.10 0.543766
\(336\) −13723.6 −2.22822
\(337\) 2568.86 0.415237 0.207618 0.978210i \(-0.433429\pi\)
0.207618 + 0.978210i \(0.433429\pi\)
\(338\) 4182.45 0.673064
\(339\) 13803.4 2.21150
\(340\) −809.475 −0.129118
\(341\) 0 0
\(342\) −12563.4 −1.98641
\(343\) −2125.80 −0.334643
\(344\) 87.2012 0.0136674
\(345\) 1243.11 0.193991
\(346\) −2850.80 −0.442947
\(347\) 6420.72 0.993320 0.496660 0.867945i \(-0.334560\pi\)
0.496660 + 0.867945i \(0.334560\pi\)
\(348\) 11675.1 1.79843
\(349\) 4101.17 0.629027 0.314514 0.949253i \(-0.398159\pi\)
0.314514 + 0.949253i \(0.398159\pi\)
\(350\) 11969.8 1.82803
\(351\) −75.8719 −0.0115377
\(352\) −10311.1 −1.56132
\(353\) 1918.18 0.289219 0.144610 0.989489i \(-0.453807\pi\)
0.144610 + 0.989489i \(0.453807\pi\)
\(354\) −11858.0 −1.78036
\(355\) −1359.18 −0.203205
\(356\) −170.579 −0.0253952
\(357\) 5655.10 0.838375
\(358\) 5229.09 0.771972
\(359\) −6955.40 −1.02254 −0.511270 0.859420i \(-0.670825\pi\)
−0.511270 + 0.859420i \(0.670825\pi\)
\(360\) 202.638 0.0296666
\(361\) 7295.86 1.06369
\(362\) −4525.16 −0.657009
\(363\) −2613.21 −0.377845
\(364\) 11832.5 1.70382
\(365\) −3318.52 −0.475889
\(366\) −9152.79 −1.30717
\(367\) −8722.11 −1.24057 −0.620286 0.784375i \(-0.712984\pi\)
−0.620286 + 0.784375i \(0.712984\pi\)
\(368\) −2968.79 −0.420541
\(369\) 9212.17 1.29964
\(370\) −3464.80 −0.486828
\(371\) 373.958 0.0523313
\(372\) 0 0
\(373\) −5918.53 −0.821581 −0.410790 0.911730i \(-0.634747\pi\)
−0.410790 + 0.911730i \(0.634747\pi\)
\(374\) 4513.60 0.624044
\(375\) −6665.83 −0.917925
\(376\) −671.488 −0.0920993
\(377\) 12108.3 1.65414
\(378\) −144.541 −0.0196677
\(379\) 6434.51 0.872081 0.436040 0.899927i \(-0.356380\pi\)
0.436040 + 0.899927i \(0.356380\pi\)
\(380\) 3450.91 0.465864
\(381\) 11934.9 1.60484
\(382\) −8948.94 −1.19861
\(383\) 7927.74 1.05767 0.528836 0.848724i \(-0.322629\pi\)
0.528836 + 0.848724i \(0.322629\pi\)
\(384\) −1831.93 −0.243451
\(385\) 4385.80 0.580574
\(386\) 1601.02 0.211113
\(387\) −1196.45 −0.157155
\(388\) 8119.75 1.06242
\(389\) 7852.20 1.02345 0.511725 0.859149i \(-0.329006\pi\)
0.511725 + 0.859149i \(0.329006\pi\)
\(390\) −6374.60 −0.827668
\(391\) 1223.36 0.158230
\(392\) −820.877 −0.105767
\(393\) 4277.44 0.549028
\(394\) −14212.4 −1.81729
\(395\) −2874.07 −0.366102
\(396\) 8265.95 1.04894
\(397\) −1154.64 −0.145969 −0.0729847 0.997333i \(-0.523252\pi\)
−0.0729847 + 0.997333i \(0.523252\pi\)
\(398\) 14573.6 1.83545
\(399\) −24108.6 −3.02491
\(400\) 7453.63 0.931704
\(401\) −2994.78 −0.372948 −0.186474 0.982460i \(-0.559706\pi\)
−0.186474 + 0.982460i \(0.559706\pi\)
\(402\) 24914.3 3.09108
\(403\) 0 0
\(404\) 1015.12 0.125010
\(405\) 2836.78 0.348051
\(406\) 23067.2 2.81971
\(407\) 9350.48 1.13879
\(408\) 400.183 0.0485588
\(409\) −5749.04 −0.695041 −0.347520 0.937672i \(-0.612976\pi\)
−0.347520 + 0.937672i \(0.612976\pi\)
\(410\) −5228.18 −0.629760
\(411\) 10455.8 1.25486
\(412\) 4395.63 0.525624
\(413\) −11339.1 −1.35100
\(414\) 4629.00 0.549524
\(415\) 2118.54 0.250591
\(416\) 14331.0 1.68903
\(417\) −206.974 −0.0243059
\(418\) −19242.1 −2.25159
\(419\) 8614.31 1.00438 0.502192 0.864756i \(-0.332527\pi\)
0.502192 + 0.864756i \(0.332527\pi\)
\(420\) −5877.60 −0.682851
\(421\) −9191.74 −1.06408 −0.532040 0.846719i \(-0.678574\pi\)
−0.532040 + 0.846719i \(0.678574\pi\)
\(422\) 11391.2 1.31402
\(423\) 9213.17 1.05901
\(424\) 26.4631 0.00303104
\(425\) −3071.44 −0.350557
\(426\) −10156.6 −1.15514
\(427\) −8752.29 −0.991927
\(428\) −5854.85 −0.661226
\(429\) 17203.2 1.93608
\(430\) 679.020 0.0761518
\(431\) 9278.16 1.03692 0.518461 0.855102i \(-0.326505\pi\)
0.518461 + 0.855102i \(0.326505\pi\)
\(432\) −90.0063 −0.0100241
\(433\) −10043.4 −1.11468 −0.557340 0.830284i \(-0.688178\pi\)
−0.557340 + 0.830284i \(0.688178\pi\)
\(434\) 0 0
\(435\) −6014.60 −0.662938
\(436\) 4355.45 0.478414
\(437\) −5215.35 −0.570902
\(438\) −24797.9 −2.70523
\(439\) −8869.71 −0.964301 −0.482150 0.876089i \(-0.660144\pi\)
−0.482150 + 0.876089i \(0.660144\pi\)
\(440\) 310.361 0.0336270
\(441\) 11262.9 1.21616
\(442\) −6273.29 −0.675090
\(443\) −12911.9 −1.38479 −0.692395 0.721518i \(-0.743445\pi\)
−0.692395 + 0.721518i \(0.743445\pi\)
\(444\) −12531.0 −1.33940
\(445\) 87.8762 0.00936119
\(446\) −12344.0 −1.31055
\(447\) 5360.47 0.567207
\(448\) 12336.1 1.30095
\(449\) −4088.78 −0.429759 −0.214879 0.976641i \(-0.568936\pi\)
−0.214879 + 0.976641i \(0.568936\pi\)
\(450\) −11621.8 −1.21746
\(451\) 14109.3 1.47313
\(452\) −14118.5 −1.46920
\(453\) −15429.2 −1.60028
\(454\) 20388.0 2.10761
\(455\) −6095.67 −0.628064
\(456\) −1706.04 −0.175203
\(457\) 3244.76 0.332130 0.166065 0.986115i \(-0.446894\pi\)
0.166065 + 0.986115i \(0.446894\pi\)
\(458\) 3444.26 0.351396
\(459\) 37.0891 0.00377161
\(460\) −1271.49 −0.128877
\(461\) 2196.48 0.221909 0.110955 0.993825i \(-0.464609\pi\)
0.110955 + 0.993825i \(0.464609\pi\)
\(462\) 32773.2 3.30032
\(463\) −1886.17 −0.189326 −0.0946630 0.995509i \(-0.530177\pi\)
−0.0946630 + 0.995509i \(0.530177\pi\)
\(464\) 14364.0 1.43714
\(465\) 0 0
\(466\) −7290.41 −0.724724
\(467\) 17294.0 1.71365 0.856823 0.515610i \(-0.172435\pi\)
0.856823 + 0.515610i \(0.172435\pi\)
\(468\) −11488.6 −1.13474
\(469\) 23824.1 2.34562
\(470\) −5228.75 −0.513158
\(471\) 3233.51 0.316331
\(472\) −802.412 −0.0782500
\(473\) −1832.48 −0.178134
\(474\) −21476.7 −2.08113
\(475\) 13094.0 1.26483
\(476\) −5784.18 −0.556969
\(477\) −363.087 −0.0348525
\(478\) −5321.01 −0.509158
\(479\) 16552.0 1.57887 0.789437 0.613832i \(-0.210373\pi\)
0.789437 + 0.613832i \(0.210373\pi\)
\(480\) −7118.70 −0.676922
\(481\) −12995.9 −1.23194
\(482\) −1539.80 −0.145510
\(483\) 8882.79 0.836813
\(484\) 2672.85 0.251019
\(485\) −4183.00 −0.391629
\(486\) 21056.7 1.96534
\(487\) 17930.7 1.66841 0.834206 0.551453i \(-0.185926\pi\)
0.834206 + 0.551453i \(0.185926\pi\)
\(488\) −619.355 −0.0574526
\(489\) 12140.3 1.12270
\(490\) −6392.02 −0.589310
\(491\) 20370.3 1.87230 0.936148 0.351606i \(-0.114364\pi\)
0.936148 + 0.351606i \(0.114364\pi\)
\(492\) −18908.5 −1.73265
\(493\) −5919.01 −0.540728
\(494\) 26744.0 2.43576
\(495\) −4258.31 −0.386661
\(496\) 0 0
\(497\) −9712.15 −0.876558
\(498\) 15831.0 1.42450
\(499\) 15528.6 1.39310 0.696550 0.717508i \(-0.254718\pi\)
0.696550 + 0.717508i \(0.254718\pi\)
\(500\) 6817.97 0.609818
\(501\) −12856.0 −1.14643
\(502\) 20307.6 1.80552
\(503\) −8978.44 −0.795882 −0.397941 0.917411i \(-0.630275\pi\)
−0.397941 + 0.917411i \(0.630275\pi\)
\(504\) 1447.97 0.127972
\(505\) −522.954 −0.0460814
\(506\) 7089.76 0.622882
\(507\) −7792.60 −0.682607
\(508\) −12207.3 −1.06617
\(509\) −7154.22 −0.622996 −0.311498 0.950247i \(-0.600831\pi\)
−0.311498 + 0.950247i \(0.600831\pi\)
\(510\) 3116.15 0.270560
\(511\) −23712.8 −2.05282
\(512\) 15941.8 1.37604
\(513\) −158.116 −0.0136082
\(514\) 23617.5 2.02670
\(515\) −2264.46 −0.193756
\(516\) 2455.78 0.209515
\(517\) 14110.9 1.20038
\(518\) −24758.1 −2.10001
\(519\) 5311.51 0.449228
\(520\) −431.359 −0.0363776
\(521\) 7468.61 0.628034 0.314017 0.949417i \(-0.398325\pi\)
0.314017 + 0.949417i \(0.398325\pi\)
\(522\) −22396.6 −1.87792
\(523\) −5183.00 −0.433340 −0.216670 0.976245i \(-0.569520\pi\)
−0.216670 + 0.976245i \(0.569520\pi\)
\(524\) −4375.07 −0.364744
\(525\) −22301.7 −1.85395
\(526\) 25407.0 2.10608
\(527\) 0 0
\(528\) 20408.0 1.68209
\(529\) −10245.4 −0.842065
\(530\) 206.063 0.0168883
\(531\) 11009.5 0.899761
\(532\) 24658.8 2.00958
\(533\) −19610.1 −1.59363
\(534\) 656.661 0.0532144
\(535\) 3016.20 0.243742
\(536\) 1685.91 0.135859
\(537\) −9742.65 −0.782917
\(538\) −31662.6 −2.53731
\(539\) 17250.2 1.37851
\(540\) −38.5483 −0.00307195
\(541\) 17866.2 1.41983 0.709914 0.704289i \(-0.248734\pi\)
0.709914 + 0.704289i \(0.248734\pi\)
\(542\) 21095.8 1.67185
\(543\) 8431.13 0.666325
\(544\) −7005.56 −0.552134
\(545\) −2243.77 −0.176353
\(546\) −45550.3 −3.57028
\(547\) 8761.76 0.684873 0.342437 0.939541i \(-0.388748\pi\)
0.342437 + 0.939541i \(0.388748\pi\)
\(548\) −10694.4 −0.833657
\(549\) 8497.88 0.660620
\(550\) −17800.0 −1.37999
\(551\) 25233.6 1.95098
\(552\) 628.589 0.0484684
\(553\) −20536.9 −1.57924
\(554\) 18882.2 1.44807
\(555\) 6455.49 0.493731
\(556\) 211.698 0.0161475
\(557\) −13924.6 −1.05925 −0.529626 0.848231i \(-0.677668\pi\)
−0.529626 + 0.848231i \(0.677668\pi\)
\(558\) 0 0
\(559\) 2546.89 0.192705
\(560\) −7231.24 −0.545671
\(561\) −8409.58 −0.632892
\(562\) 8293.01 0.622455
\(563\) 3735.18 0.279608 0.139804 0.990179i \(-0.455353\pi\)
0.139804 + 0.990179i \(0.455353\pi\)
\(564\) −18910.6 −1.41184
\(565\) 7273.31 0.541576
\(566\) 15167.6 1.12640
\(567\) 20270.5 1.50137
\(568\) −687.279 −0.0507704
\(569\) 26038.2 1.91841 0.959207 0.282706i \(-0.0912319\pi\)
0.959207 + 0.282706i \(0.0912319\pi\)
\(570\) −13284.6 −0.976195
\(571\) −1198.11 −0.0878101 −0.0439050 0.999036i \(-0.513980\pi\)
−0.0439050 + 0.999036i \(0.513980\pi\)
\(572\) −17595.8 −1.28622
\(573\) 16673.3 1.21560
\(574\) −37358.5 −2.71657
\(575\) −4824.48 −0.349904
\(576\) −11977.5 −0.866430
\(577\) 21602.0 1.55858 0.779292 0.626661i \(-0.215579\pi\)
0.779292 + 0.626661i \(0.215579\pi\)
\(578\) −16278.1 −1.17142
\(579\) −2982.96 −0.214106
\(580\) 6151.88 0.440419
\(581\) 15138.2 1.08096
\(582\) −31257.7 −2.22625
\(583\) −556.104 −0.0395051
\(584\) −1678.03 −0.118900
\(585\) 5918.48 0.418289
\(586\) −22382.7 −1.57785
\(587\) −24836.6 −1.74636 −0.873182 0.487394i \(-0.837948\pi\)
−0.873182 + 0.487394i \(0.837948\pi\)
\(588\) −23117.7 −1.62136
\(589\) 0 0
\(590\) −6248.24 −0.435993
\(591\) 26480.1 1.84305
\(592\) −15416.9 −1.07032
\(593\) −17604.1 −1.21908 −0.609538 0.792757i \(-0.708645\pi\)
−0.609538 + 0.792757i \(0.708645\pi\)
\(594\) 214.944 0.0148472
\(595\) 2979.80 0.205310
\(596\) −5482.82 −0.376821
\(597\) −27153.1 −1.86148
\(598\) −9853.80 −0.673833
\(599\) 3240.06 0.221010 0.110505 0.993876i \(-0.464753\pi\)
0.110505 + 0.993876i \(0.464753\pi\)
\(600\) −1578.18 −0.107381
\(601\) −974.286 −0.0661264 −0.0330632 0.999453i \(-0.510526\pi\)
−0.0330632 + 0.999453i \(0.510526\pi\)
\(602\) 4852.00 0.328493
\(603\) −23131.6 −1.56218
\(604\) 15781.3 1.06313
\(605\) −1376.96 −0.0925309
\(606\) −3907.81 −0.261954
\(607\) 7098.23 0.474643 0.237321 0.971431i \(-0.423731\pi\)
0.237321 + 0.971431i \(0.423731\pi\)
\(608\) 29865.7 1.99213
\(609\) −42977.9 −2.85969
\(610\) −4822.80 −0.320114
\(611\) −19612.2 −1.29857
\(612\) 5616.04 0.370940
\(613\) 5944.92 0.391701 0.195851 0.980634i \(-0.437253\pi\)
0.195851 + 0.980634i \(0.437253\pi\)
\(614\) −22259.6 −1.46307
\(615\) 9740.97 0.638689
\(616\) 2217.71 0.145055
\(617\) −19631.7 −1.28094 −0.640471 0.767982i \(-0.721261\pi\)
−0.640471 + 0.767982i \(0.721261\pi\)
\(618\) −16921.4 −1.10142
\(619\) −5497.45 −0.356965 −0.178482 0.983943i \(-0.557119\pi\)
−0.178482 + 0.983943i \(0.557119\pi\)
\(620\) 0 0
\(621\) 58.2579 0.00376459
\(622\) −28463.0 −1.83482
\(623\) 627.927 0.0403810
\(624\) −28364.4 −1.81968
\(625\) 10244.8 0.655668
\(626\) −22713.9 −1.45021
\(627\) 35851.3 2.28351
\(628\) −3307.31 −0.210153
\(629\) 6352.89 0.402713
\(630\) 11275.1 0.713033
\(631\) 20217.4 1.27550 0.637751 0.770243i \(-0.279865\pi\)
0.637751 + 0.770243i \(0.279865\pi\)
\(632\) −1453.29 −0.0914697
\(633\) −21223.7 −1.33265
\(634\) −10350.1 −0.648355
\(635\) 6288.76 0.393011
\(636\) 745.258 0.0464645
\(637\) −23975.4 −1.49127
\(638\) −34302.6 −2.12861
\(639\) 9429.84 0.583785
\(640\) −965.284 −0.0596190
\(641\) 21143.7 1.30285 0.651425 0.758713i \(-0.274172\pi\)
0.651425 + 0.758713i \(0.274172\pi\)
\(642\) 22538.8 1.38557
\(643\) 19515.6 1.19692 0.598462 0.801152i \(-0.295779\pi\)
0.598462 + 0.801152i \(0.295779\pi\)
\(644\) −9085.53 −0.555932
\(645\) −1265.13 −0.0772315
\(646\) −13073.5 −0.796237
\(647\) 7552.22 0.458900 0.229450 0.973320i \(-0.426307\pi\)
0.229450 + 0.973320i \(0.426307\pi\)
\(648\) 1434.44 0.0869598
\(649\) 16862.2 1.01987
\(650\) 24739.6 1.49287
\(651\) 0 0
\(652\) −12417.3 −0.745860
\(653\) −22432.2 −1.34432 −0.672160 0.740406i \(-0.734633\pi\)
−0.672160 + 0.740406i \(0.734633\pi\)
\(654\) −16766.7 −1.00249
\(655\) 2253.87 0.134452
\(656\) −23263.3 −1.38457
\(657\) 23023.5 1.36717
\(658\) −37362.5 −2.21359
\(659\) 5784.02 0.341902 0.170951 0.985280i \(-0.445316\pi\)
0.170951 + 0.985280i \(0.445316\pi\)
\(660\) 8740.44 0.515486
\(661\) 3886.64 0.228703 0.114352 0.993440i \(-0.463521\pi\)
0.114352 + 0.993440i \(0.463521\pi\)
\(662\) 8084.49 0.474641
\(663\) 11688.2 0.684662
\(664\) 1071.26 0.0626096
\(665\) −12703.3 −0.740772
\(666\) 24038.4 1.39860
\(667\) −9297.32 −0.539720
\(668\) 13149.4 0.761626
\(669\) 22999.0 1.32914
\(670\) 13127.9 0.756977
\(671\) 13015.3 0.748810
\(672\) −50867.3 −2.92001
\(673\) −9564.72 −0.547835 −0.273917 0.961753i \(-0.588319\pi\)
−0.273917 + 0.961753i \(0.588319\pi\)
\(674\) 10114.8 0.578052
\(675\) −146.266 −0.00834042
\(676\) 7970.46 0.453486
\(677\) 7377.22 0.418803 0.209401 0.977830i \(-0.432848\pi\)
0.209401 + 0.977830i \(0.432848\pi\)
\(678\) 54350.4 3.07863
\(679\) −29890.0 −1.68936
\(680\) 210.865 0.0118916
\(681\) −37986.1 −2.13749
\(682\) 0 0
\(683\) 14634.3 0.819862 0.409931 0.912117i \(-0.365553\pi\)
0.409931 + 0.912117i \(0.365553\pi\)
\(684\) −23942.0 −1.33837
\(685\) 5509.38 0.307303
\(686\) −8370.26 −0.465857
\(687\) −6417.22 −0.356379
\(688\) 3021.36 0.167425
\(689\) 772.909 0.0427365
\(690\) 4894.71 0.270056
\(691\) −18731.8 −1.03124 −0.515622 0.856816i \(-0.672439\pi\)
−0.515622 + 0.856816i \(0.672439\pi\)
\(692\) −5432.74 −0.298442
\(693\) −30428.2 −1.66792
\(694\) 25281.3 1.38280
\(695\) −109.059 −0.00595229
\(696\) −3041.33 −0.165634
\(697\) 9586.15 0.520949
\(698\) 16148.2 0.875670
\(699\) 13583.2 0.735000
\(700\) 22810.7 1.23166
\(701\) 27450.4 1.47901 0.739507 0.673149i \(-0.235059\pi\)
0.739507 + 0.673149i \(0.235059\pi\)
\(702\) −298.742 −0.0160617
\(703\) −27083.3 −1.45301
\(704\) −18344.7 −0.982093
\(705\) 9742.03 0.520434
\(706\) 7552.75 0.402622
\(707\) −3736.81 −0.198780
\(708\) −22597.7 −1.19954
\(709\) 13345.8 0.706930 0.353465 0.935448i \(-0.385003\pi\)
0.353465 + 0.935448i \(0.385003\pi\)
\(710\) −5351.72 −0.282882
\(711\) 19940.0 1.05177
\(712\) 44.4352 0.00233887
\(713\) 0 0
\(714\) 22266.7 1.16710
\(715\) 9064.73 0.474128
\(716\) 9965.02 0.520126
\(717\) 9913.93 0.516377
\(718\) −27386.6 −1.42348
\(719\) 4546.57 0.235825 0.117913 0.993024i \(-0.462380\pi\)
0.117913 + 0.993024i \(0.462380\pi\)
\(720\) 7021.05 0.363415
\(721\) −16180.9 −0.835797
\(722\) 28727.2 1.48077
\(723\) 2868.90 0.147573
\(724\) −8623.56 −0.442669
\(725\) 23342.4 1.19575
\(726\) −10289.4 −0.525999
\(727\) 38724.4 1.97553 0.987764 0.155959i \(-0.0498468\pi\)
0.987764 + 0.155959i \(0.0498468\pi\)
\(728\) −3082.32 −0.156921
\(729\) −19418.0 −0.986536
\(730\) −13066.5 −0.662486
\(731\) −1245.02 −0.0629941
\(732\) −17442.4 −0.880723
\(733\) 8916.47 0.449301 0.224650 0.974439i \(-0.427876\pi\)
0.224650 + 0.974439i \(0.427876\pi\)
\(734\) −34342.9 −1.72700
\(735\) 11909.4 0.597666
\(736\) −11004.0 −0.551105
\(737\) −35428.3 −1.77072
\(738\) 36272.5 1.80923
\(739\) −2544.14 −0.126641 −0.0633205 0.997993i \(-0.520169\pi\)
−0.0633205 + 0.997993i \(0.520169\pi\)
\(740\) −6602.84 −0.328007
\(741\) −49828.4 −2.47030
\(742\) 1472.44 0.0728505
\(743\) −6065.14 −0.299473 −0.149736 0.988726i \(-0.547842\pi\)
−0.149736 + 0.988726i \(0.547842\pi\)
\(744\) 0 0
\(745\) 2824.55 0.138904
\(746\) −23303.9 −1.14372
\(747\) −14698.2 −0.719919
\(748\) 8601.52 0.420458
\(749\) 21552.6 1.05142
\(750\) −26246.4 −1.27785
\(751\) 14418.7 0.700595 0.350298 0.936638i \(-0.386080\pi\)
0.350298 + 0.936638i \(0.386080\pi\)
\(752\) −23265.8 −1.12821
\(753\) −37836.4 −1.83112
\(754\) 47676.0 2.30273
\(755\) −8129.95 −0.391893
\(756\) −275.451 −0.0132514
\(757\) 31317.4 1.50363 0.751816 0.659373i \(-0.229178\pi\)
0.751816 + 0.659373i \(0.229178\pi\)
\(758\) 25335.6 1.21403
\(759\) −13209.4 −0.631713
\(760\) −898.948 −0.0429056
\(761\) 5149.33 0.245286 0.122643 0.992451i \(-0.460863\pi\)
0.122643 + 0.992451i \(0.460863\pi\)
\(762\) 46993.2 2.23410
\(763\) −16033.0 −0.760728
\(764\) −17053.9 −0.807577
\(765\) −2893.18 −0.136736
\(766\) 31215.1 1.47239
\(767\) −23436.1 −1.10330
\(768\) −33424.2 −1.57043
\(769\) 10708.8 0.502171 0.251085 0.967965i \(-0.419212\pi\)
0.251085 + 0.967965i \(0.419212\pi\)
\(770\) 17268.9 0.808218
\(771\) −44003.3 −2.05543
\(772\) 3051.04 0.142240
\(773\) −25374.4 −1.18067 −0.590333 0.807160i \(-0.701004\pi\)
−0.590333 + 0.807160i \(0.701004\pi\)
\(774\) −4710.96 −0.218775
\(775\) 0 0
\(776\) −2115.16 −0.0978477
\(777\) 46128.3 2.12979
\(778\) 30917.7 1.42475
\(779\) −40867.2 −1.87961
\(780\) −12148.0 −0.557652
\(781\) 14442.7 0.661717
\(782\) 4816.92 0.220272
\(783\) −281.871 −0.0128650
\(784\) −28441.9 −1.29564
\(785\) 1703.80 0.0774667
\(786\) 16842.2 0.764303
\(787\) 9331.86 0.422675 0.211337 0.977413i \(-0.432218\pi\)
0.211337 + 0.977413i \(0.432218\pi\)
\(788\) −27084.5 −1.22442
\(789\) −47337.5 −2.13594
\(790\) −11316.5 −0.509651
\(791\) 51972.1 2.33618
\(792\) −2153.25 −0.0966064
\(793\) −18089.5 −0.810061
\(794\) −4546.36 −0.203204
\(795\) −383.929 −0.0171278
\(796\) 27772.9 1.23666
\(797\) 10372.8 0.461007 0.230503 0.973072i \(-0.425963\pi\)
0.230503 + 0.973072i \(0.425963\pi\)
\(798\) −94926.4 −4.21098
\(799\) 9587.19 0.424494
\(800\) 27627.4 1.22097
\(801\) −609.675 −0.0268936
\(802\) −11791.8 −0.519182
\(803\) 35262.8 1.54968
\(804\) 47479.0 2.08266
\(805\) 4680.53 0.204928
\(806\) 0 0
\(807\) 58992.6 2.57328
\(808\) −264.435 −0.0115134
\(809\) −42221.8 −1.83491 −0.917454 0.397842i \(-0.869759\pi\)
−0.917454 + 0.397842i \(0.869759\pi\)
\(810\) 11169.7 0.484522
\(811\) 19901.0 0.861675 0.430838 0.902429i \(-0.358218\pi\)
0.430838 + 0.902429i \(0.358218\pi\)
\(812\) 43958.8 1.89982
\(813\) −39304.9 −1.69555
\(814\) 36817.1 1.58531
\(815\) 6396.96 0.274940
\(816\) 13865.6 0.594844
\(817\) 5307.70 0.227286
\(818\) −22636.6 −0.967568
\(819\) 42291.0 1.80436
\(820\) −9963.30 −0.424309
\(821\) 25067.5 1.06560 0.532802 0.846240i \(-0.321139\pi\)
0.532802 + 0.846240i \(0.321139\pi\)
\(822\) 41169.3 1.74689
\(823\) 14560.2 0.616692 0.308346 0.951274i \(-0.400225\pi\)
0.308346 + 0.951274i \(0.400225\pi\)
\(824\) −1145.04 −0.0484095
\(825\) 33164.3 1.39956
\(826\) −44647.4 −1.88073
\(827\) −12171.5 −0.511784 −0.255892 0.966705i \(-0.582369\pi\)
−0.255892 + 0.966705i \(0.582369\pi\)
\(828\) 8821.43 0.370249
\(829\) 4987.97 0.208974 0.104487 0.994526i \(-0.466680\pi\)
0.104487 + 0.994526i \(0.466680\pi\)
\(830\) 8341.67 0.348848
\(831\) −35180.7 −1.46860
\(832\) 25496.7 1.06243
\(833\) 11720.1 0.487488
\(834\) −814.951 −0.0338362
\(835\) −6774.10 −0.280751
\(836\) −36669.6 −1.51704
\(837\) 0 0
\(838\) 33918.5 1.39820
\(839\) −9728.61 −0.400320 −0.200160 0.979763i \(-0.564146\pi\)
−0.200160 + 0.979763i \(0.564146\pi\)
\(840\) 1531.09 0.0628900
\(841\) 20594.5 0.844419
\(842\) −36192.1 −1.48131
\(843\) −15451.3 −0.631280
\(844\) 21708.2 0.885338
\(845\) −4106.09 −0.167164
\(846\) 36276.5 1.47424
\(847\) −9839.16 −0.399147
\(848\) 916.896 0.0371301
\(849\) −28259.7 −1.14237
\(850\) −12093.7 −0.488010
\(851\) 9978.84 0.401963
\(852\) −19355.3 −0.778288
\(853\) −29848.9 −1.19813 −0.599066 0.800700i \(-0.704461\pi\)
−0.599066 + 0.800700i \(0.704461\pi\)
\(854\) −34461.8 −1.38086
\(855\) 12334.1 0.493352
\(856\) 1525.16 0.0608984
\(857\) 26680.8 1.06348 0.531739 0.846909i \(-0.321539\pi\)
0.531739 + 0.846909i \(0.321539\pi\)
\(858\) 67736.8 2.69522
\(859\) 22831.9 0.906886 0.453443 0.891285i \(-0.350196\pi\)
0.453443 + 0.891285i \(0.350196\pi\)
\(860\) 1294.00 0.0513083
\(861\) 69605.0 2.75509
\(862\) 36532.4 1.44350
\(863\) 31928.4 1.25939 0.629696 0.776841i \(-0.283179\pi\)
0.629696 + 0.776841i \(0.283179\pi\)
\(864\) −333.614 −0.0131363
\(865\) 2798.75 0.110012
\(866\) −39545.6 −1.55175
\(867\) 30328.8 1.18803
\(868\) 0 0
\(869\) 30540.0 1.19217
\(870\) −23682.2 −0.922878
\(871\) 49240.6 1.91556
\(872\) −1134.58 −0.0440615
\(873\) 29021.1 1.12511
\(874\) −20535.2 −0.794754
\(875\) −25097.9 −0.969675
\(876\) −47257.1 −1.82268
\(877\) −12402.6 −0.477543 −0.238771 0.971076i \(-0.576745\pi\)
−0.238771 + 0.971076i \(0.576745\pi\)
\(878\) −34924.1 −1.34240
\(879\) 41702.6 1.60022
\(880\) 10753.4 0.411929
\(881\) 26441.7 1.01117 0.505586 0.862776i \(-0.331276\pi\)
0.505586 + 0.862776i \(0.331276\pi\)
\(882\) 44347.1 1.69302
\(883\) −30371.3 −1.15750 −0.578752 0.815504i \(-0.696460\pi\)
−0.578752 + 0.815504i \(0.696460\pi\)
\(884\) −11954.9 −0.454851
\(885\) 11641.5 0.442175
\(886\) −50840.0 −1.92777
\(887\) −7701.79 −0.291545 −0.145773 0.989318i \(-0.546567\pi\)
−0.145773 + 0.989318i \(0.546567\pi\)
\(888\) 3264.26 0.123358
\(889\) 44936.9 1.69532
\(890\) 346.009 0.0130317
\(891\) −30143.7 −1.13339
\(892\) −23523.9 −0.883004
\(893\) −40871.6 −1.53160
\(894\) 21106.6 0.789610
\(895\) −5133.61 −0.191729
\(896\) −6897.52 −0.257176
\(897\) 18359.3 0.683386
\(898\) −16099.4 −0.598268
\(899\) 0 0
\(900\) −22147.6 −0.820283
\(901\) −377.827 −0.0139703
\(902\) 55554.9 2.05075
\(903\) −9040.08 −0.333151
\(904\) 3677.80 0.135312
\(905\) 4442.54 0.163177
\(906\) −60751.6 −2.22775
\(907\) −25476.5 −0.932672 −0.466336 0.884608i \(-0.654426\pi\)
−0.466336 + 0.884608i \(0.654426\pi\)
\(908\) 38853.1 1.42003
\(909\) 3628.19 0.132387
\(910\) −24001.4 −0.874329
\(911\) 21011.1 0.764136 0.382068 0.924134i \(-0.375212\pi\)
0.382068 + 0.924134i \(0.375212\pi\)
\(912\) −59111.1 −2.14623
\(913\) −22511.7 −0.816024
\(914\) 12776.1 0.462359
\(915\) 8985.67 0.324653
\(916\) 6563.69 0.236758
\(917\) 16105.3 0.579981
\(918\) 146.037 0.00525047
\(919\) −4177.21 −0.149938 −0.0749692 0.997186i \(-0.523886\pi\)
−0.0749692 + 0.997186i \(0.523886\pi\)
\(920\) 331.217 0.0118695
\(921\) 41473.4 1.48381
\(922\) 8648.55 0.308921
\(923\) −20073.4 −0.715844
\(924\) 62455.6 2.22363
\(925\) −25053.5 −0.890545
\(926\) −7426.73 −0.263561
\(927\) 15710.6 0.556638
\(928\) 53241.1 1.88332
\(929\) −10575.2 −0.373477 −0.186738 0.982410i \(-0.559792\pi\)
−0.186738 + 0.982410i \(0.559792\pi\)
\(930\) 0 0
\(931\) −49964.6 −1.75889
\(932\) −13893.3 −0.488293
\(933\) 53031.2 1.86084
\(934\) 68094.6 2.38557
\(935\) −4431.19 −0.154990
\(936\) 2992.72 0.104509
\(937\) −22543.0 −0.785962 −0.392981 0.919547i \(-0.628556\pi\)
−0.392981 + 0.919547i \(0.628556\pi\)
\(938\) 93806.6 3.26534
\(939\) 42319.7 1.47077
\(940\) −9964.38 −0.345747
\(941\) −32825.7 −1.13718 −0.568590 0.822621i \(-0.692511\pi\)
−0.568590 + 0.822621i \(0.692511\pi\)
\(942\) 12731.8 0.440366
\(943\) 15057.5 0.519978
\(944\) −27802.1 −0.958560
\(945\) 141.902 0.00488473
\(946\) −7215.30 −0.247981
\(947\) 5907.20 0.202701 0.101351 0.994851i \(-0.467684\pi\)
0.101351 + 0.994851i \(0.467684\pi\)
\(948\) −40927.9 −1.40219
\(949\) −49010.5 −1.67645
\(950\) 51557.1 1.76077
\(951\) 19284.0 0.657547
\(952\) 1506.75 0.0512964
\(953\) 12764.2 0.433865 0.216933 0.976187i \(-0.430395\pi\)
0.216933 + 0.976187i \(0.430395\pi\)
\(954\) −1429.64 −0.0485182
\(955\) 8785.54 0.297689
\(956\) −10140.2 −0.343052
\(957\) 63911.4 2.15879
\(958\) 65172.8 2.19795
\(959\) 39367.8 1.32560
\(960\) −12665.1 −0.425795
\(961\) 0 0
\(962\) −51170.8 −1.71498
\(963\) −20926.1 −0.700242
\(964\) −2934.38 −0.0980393
\(965\) −1571.79 −0.0524327
\(966\) 34975.6 1.16493
\(967\) 22933.8 0.762669 0.381335 0.924437i \(-0.375465\pi\)
0.381335 + 0.924437i \(0.375465\pi\)
\(968\) −696.267 −0.0231187
\(969\) 24358.0 0.807526
\(970\) −16470.4 −0.545188
\(971\) −37376.4 −1.23529 −0.617645 0.786457i \(-0.711913\pi\)
−0.617645 + 0.786457i \(0.711913\pi\)
\(972\) 40127.6 1.32417
\(973\) −779.291 −0.0256762
\(974\) 70601.3 2.32260
\(975\) −46093.9 −1.51404
\(976\) −21459.5 −0.703792
\(977\) −44440.0 −1.45523 −0.727616 0.685984i \(-0.759372\pi\)
−0.727616 + 0.685984i \(0.759372\pi\)
\(978\) 47801.7 1.56292
\(979\) −933.776 −0.0304838
\(980\) −12181.2 −0.397056
\(981\) 15567.0 0.506642
\(982\) 80207.1 2.60643
\(983\) 5362.30 0.173989 0.0869944 0.996209i \(-0.472274\pi\)
0.0869944 + 0.996209i \(0.472274\pi\)
\(984\) 4925.59 0.159575
\(985\) 13952.9 0.451347
\(986\) −23305.9 −0.752748
\(987\) 69612.6 2.24498
\(988\) 50965.7 1.64113
\(989\) −1955.62 −0.0628768
\(990\) −16766.9 −0.538271
\(991\) 28863.1 0.925194 0.462597 0.886569i \(-0.346918\pi\)
0.462597 + 0.886569i \(0.346918\pi\)
\(992\) 0 0
\(993\) −15062.7 −0.481371
\(994\) −38241.2 −1.22026
\(995\) −14307.6 −0.455859
\(996\) 30168.9 0.959778
\(997\) 12638.6 0.401474 0.200737 0.979645i \(-0.435666\pi\)
0.200737 + 0.979645i \(0.435666\pi\)
\(998\) 61143.3 1.93934
\(999\) 302.533 0.00958132
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.4.a.i.1.12 14
31.4 even 5 31.4.d.a.16.2 yes 28
31.8 even 5 31.4.d.a.2.2 28
31.30 odd 2 961.4.a.j.1.12 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.4.d.a.2.2 28 31.8 even 5
31.4.d.a.16.2 yes 28 31.4 even 5
961.4.a.i.1.12 14 1.1 even 1 trivial
961.4.a.j.1.12 14 31.30 odd 2