Properties

Label 961.2.a.l.1.5
Level $961$
Weight $2$
Character 961.1
Self dual yes
Analytic conductor $7.674$
Analytic rank $1$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(1,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-8,0,8,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.67362363425\)
Analytic rank: \(1\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 24x^{14} + 220x^{12} - 992x^{10} + 2366x^{8} - 2944x^{6} + 1688x^{4} - 288x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-2.46287\) of defining polynomial
Character \(\chi\) \(=\) 961.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.45116 q^{2} -2.46287 q^{3} +0.105856 q^{4} -3.68139 q^{5} +3.57401 q^{6} -0.804403 q^{7} +2.74870 q^{8} +3.06572 q^{9} +5.34227 q^{10} -2.63285 q^{11} -0.260710 q^{12} +1.95809 q^{13} +1.16731 q^{14} +9.06678 q^{15} -4.20051 q^{16} -0.337845 q^{17} -4.44885 q^{18} +2.70022 q^{19} -0.389698 q^{20} +1.98114 q^{21} +3.82067 q^{22} +2.03034 q^{23} -6.76969 q^{24} +8.55262 q^{25} -2.84150 q^{26} -0.161872 q^{27} -0.0851512 q^{28} +10.0042 q^{29} -13.1573 q^{30} +0.598196 q^{32} +6.48436 q^{33} +0.490266 q^{34} +2.96132 q^{35} +0.324526 q^{36} +3.22174 q^{37} -3.91845 q^{38} -4.82252 q^{39} -10.1190 q^{40} -7.11112 q^{41} -2.87494 q^{42} +3.61543 q^{43} -0.278704 q^{44} -11.2861 q^{45} -2.94634 q^{46} -11.0484 q^{47} +10.3453 q^{48} -6.35294 q^{49} -12.4112 q^{50} +0.832068 q^{51} +0.207276 q^{52} -3.87793 q^{53} +0.234902 q^{54} +9.69253 q^{55} -2.21106 q^{56} -6.65029 q^{57} -14.5177 q^{58} -7.58824 q^{59} +0.959776 q^{60} +9.67616 q^{61} -2.46608 q^{63} +7.53294 q^{64} -7.20849 q^{65} -9.40982 q^{66} +7.35125 q^{67} -0.0357631 q^{68} -5.00045 q^{69} -4.29734 q^{70} +1.63738 q^{71} +8.42676 q^{72} +1.16793 q^{73} -4.67525 q^{74} -21.0640 q^{75} +0.285836 q^{76} +2.11787 q^{77} +6.99823 q^{78} -15.6642 q^{79} +15.4637 q^{80} -8.79851 q^{81} +10.3194 q^{82} +1.22692 q^{83} +0.209716 q^{84} +1.24374 q^{85} -5.24655 q^{86} -24.6391 q^{87} -7.23691 q^{88} +3.85715 q^{89} +16.3779 q^{90} -1.57509 q^{91} +0.214924 q^{92} +16.0330 q^{94} -9.94057 q^{95} -1.47328 q^{96} +6.14722 q^{97} +9.21911 q^{98} -8.07158 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{2} + 8 q^{4} - 16 q^{5} - 16 q^{7} + 8 q^{10} - 8 q^{14} - 8 q^{16} - 24 q^{18} - 32 q^{19} - 24 q^{20} - 8 q^{28} - 8 q^{32} - 32 q^{33} - 16 q^{35} - 40 q^{36} - 24 q^{38} - 32 q^{39} - 32 q^{41}+ \cdots + 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.45116 −1.02612 −0.513061 0.858352i \(-0.671489\pi\)
−0.513061 + 0.858352i \(0.671489\pi\)
\(3\) −2.46287 −1.42194 −0.710969 0.703223i \(-0.751743\pi\)
−0.710969 + 0.703223i \(0.751743\pi\)
\(4\) 0.105856 0.0529282
\(5\) −3.68139 −1.64637 −0.823183 0.567775i \(-0.807804\pi\)
−0.823183 + 0.567775i \(0.807804\pi\)
\(6\) 3.57401 1.45908
\(7\) −0.804403 −0.304036 −0.152018 0.988378i \(-0.548577\pi\)
−0.152018 + 0.988378i \(0.548577\pi\)
\(8\) 2.74870 0.971812
\(9\) 3.06572 1.02191
\(10\) 5.34227 1.68937
\(11\) −2.63285 −0.793833 −0.396917 0.917855i \(-0.629920\pi\)
−0.396917 + 0.917855i \(0.629920\pi\)
\(12\) −0.260710 −0.0752606
\(13\) 1.95809 0.543077 0.271538 0.962428i \(-0.412468\pi\)
0.271538 + 0.962428i \(0.412468\pi\)
\(14\) 1.16731 0.311978
\(15\) 9.06678 2.34103
\(16\) −4.20051 −1.05013
\(17\) −0.337845 −0.0819395 −0.0409697 0.999160i \(-0.513045\pi\)
−0.0409697 + 0.999160i \(0.513045\pi\)
\(18\) −4.44885 −1.04860
\(19\) 2.70022 0.619473 0.309737 0.950822i \(-0.399759\pi\)
0.309737 + 0.950822i \(0.399759\pi\)
\(20\) −0.389698 −0.0871392
\(21\) 1.98114 0.432320
\(22\) 3.82067 0.814570
\(23\) 2.03034 0.423354 0.211677 0.977340i \(-0.432107\pi\)
0.211677 + 0.977340i \(0.432107\pi\)
\(24\) −6.76969 −1.38186
\(25\) 8.55262 1.71052
\(26\) −2.84150 −0.557263
\(27\) −0.161872 −0.0311523
\(28\) −0.0851512 −0.0160921
\(29\) 10.0042 1.85774 0.928868 0.370412i \(-0.120783\pi\)
0.928868 + 0.370412i \(0.120783\pi\)
\(30\) −13.1573 −2.40219
\(31\) 0 0
\(32\) 0.598196 0.105747
\(33\) 6.48436 1.12878
\(34\) 0.490266 0.0840800
\(35\) 2.96132 0.500554
\(36\) 0.324526 0.0540877
\(37\) 3.22174 0.529651 0.264825 0.964296i \(-0.414686\pi\)
0.264825 + 0.964296i \(0.414686\pi\)
\(38\) −3.91845 −0.635656
\(39\) −4.82252 −0.772221
\(40\) −10.1190 −1.59996
\(41\) −7.11112 −1.11057 −0.555285 0.831660i \(-0.687391\pi\)
−0.555285 + 0.831660i \(0.687391\pi\)
\(42\) −2.87494 −0.443613
\(43\) 3.61543 0.551348 0.275674 0.961251i \(-0.411099\pi\)
0.275674 + 0.961251i \(0.411099\pi\)
\(44\) −0.278704 −0.0420161
\(45\) −11.2861 −1.68244
\(46\) −2.94634 −0.434414
\(47\) −11.0484 −1.61158 −0.805788 0.592205i \(-0.798258\pi\)
−0.805788 + 0.592205i \(0.798258\pi\)
\(48\) 10.3453 1.49322
\(49\) −6.35294 −0.907562
\(50\) −12.4112 −1.75521
\(51\) 0.832068 0.116513
\(52\) 0.207276 0.0287441
\(53\) −3.87793 −0.532674 −0.266337 0.963880i \(-0.585813\pi\)
−0.266337 + 0.963880i \(0.585813\pi\)
\(54\) 0.234902 0.0319661
\(55\) 9.69253 1.30694
\(56\) −2.21106 −0.295466
\(57\) −6.65029 −0.880853
\(58\) −14.5177 −1.90626
\(59\) −7.58824 −0.987904 −0.493952 0.869489i \(-0.664448\pi\)
−0.493952 + 0.869489i \(0.664448\pi\)
\(60\) 0.959776 0.123907
\(61\) 9.67616 1.23891 0.619453 0.785034i \(-0.287355\pi\)
0.619453 + 0.785034i \(0.287355\pi\)
\(62\) 0 0
\(63\) −2.46608 −0.310697
\(64\) 7.53294 0.941617
\(65\) −7.20849 −0.894103
\(66\) −9.40982 −1.15827
\(67\) 7.35125 0.898098 0.449049 0.893507i \(-0.351763\pi\)
0.449049 + 0.893507i \(0.351763\pi\)
\(68\) −0.0357631 −0.00433691
\(69\) −5.00045 −0.601984
\(70\) −4.29734 −0.513630
\(71\) 1.63738 0.194321 0.0971605 0.995269i \(-0.469024\pi\)
0.0971605 + 0.995269i \(0.469024\pi\)
\(72\) 8.42676 0.993103
\(73\) 1.16793 0.136696 0.0683482 0.997662i \(-0.478227\pi\)
0.0683482 + 0.997662i \(0.478227\pi\)
\(74\) −4.67525 −0.543487
\(75\) −21.0640 −2.43226
\(76\) 0.285836 0.0327876
\(77\) 2.11787 0.241354
\(78\) 6.99823 0.792394
\(79\) −15.6642 −1.76236 −0.881182 0.472777i \(-0.843252\pi\)
−0.881182 + 0.472777i \(0.843252\pi\)
\(80\) 15.4637 1.72889
\(81\) −8.79851 −0.977612
\(82\) 10.3194 1.13958
\(83\) 1.22692 0.134672 0.0673362 0.997730i \(-0.478550\pi\)
0.0673362 + 0.997730i \(0.478550\pi\)
\(84\) 0.209716 0.0228819
\(85\) 1.24374 0.134902
\(86\) −5.24655 −0.565750
\(87\) −24.6391 −2.64158
\(88\) −7.23691 −0.771457
\(89\) 3.85715 0.408857 0.204428 0.978882i \(-0.434466\pi\)
0.204428 + 0.978882i \(0.434466\pi\)
\(90\) 16.3779 1.72639
\(91\) −1.57509 −0.165115
\(92\) 0.214924 0.0224074
\(93\) 0 0
\(94\) 16.0330 1.65367
\(95\) −9.94057 −1.01988
\(96\) −1.47328 −0.150366
\(97\) 6.14722 0.624156 0.312078 0.950057i \(-0.398975\pi\)
0.312078 + 0.950057i \(0.398975\pi\)
\(98\) 9.21911 0.931270
\(99\) −8.07158 −0.811225
\(100\) 0.905349 0.0905349
\(101\) −6.30373 −0.627245 −0.313622 0.949548i \(-0.601543\pi\)
−0.313622 + 0.949548i \(0.601543\pi\)
\(102\) −1.20746 −0.119557
\(103\) 10.8617 1.07023 0.535115 0.844779i \(-0.320268\pi\)
0.535115 + 0.844779i \(0.320268\pi\)
\(104\) 5.38220 0.527768
\(105\) −7.29334 −0.711757
\(106\) 5.62748 0.546589
\(107\) 7.27395 0.703199 0.351600 0.936150i \(-0.385638\pi\)
0.351600 + 0.936150i \(0.385638\pi\)
\(108\) −0.0171352 −0.00164883
\(109\) 10.0689 0.964421 0.482211 0.876055i \(-0.339834\pi\)
0.482211 + 0.876055i \(0.339834\pi\)
\(110\) −14.0654 −1.34108
\(111\) −7.93473 −0.753131
\(112\) 3.37890 0.319276
\(113\) −6.74387 −0.634410 −0.317205 0.948357i \(-0.602744\pi\)
−0.317205 + 0.948357i \(0.602744\pi\)
\(114\) 9.65062 0.903863
\(115\) −7.47446 −0.696997
\(116\) 1.05901 0.0983266
\(117\) 6.00297 0.554974
\(118\) 11.0117 1.01371
\(119\) 0.271764 0.0249125
\(120\) 24.9218 2.27504
\(121\) −4.06812 −0.369829
\(122\) −14.0416 −1.27127
\(123\) 17.5138 1.57916
\(124\) 0 0
\(125\) −13.0786 −1.16978
\(126\) 3.57867 0.318813
\(127\) 10.5932 0.939992 0.469996 0.882668i \(-0.344255\pi\)
0.469996 + 0.882668i \(0.344255\pi\)
\(128\) −12.1279 −1.07196
\(129\) −8.90432 −0.783982
\(130\) 10.4607 0.917460
\(131\) −5.66035 −0.494547 −0.247273 0.968946i \(-0.579535\pi\)
−0.247273 + 0.968946i \(0.579535\pi\)
\(132\) 0.686410 0.0597444
\(133\) −2.17207 −0.188342
\(134\) −10.6678 −0.921559
\(135\) 0.595914 0.0512881
\(136\) −0.928635 −0.0796298
\(137\) 19.6630 1.67992 0.839961 0.542647i \(-0.182578\pi\)
0.839961 + 0.542647i \(0.182578\pi\)
\(138\) 7.25644 0.617709
\(139\) −13.6363 −1.15662 −0.578309 0.815818i \(-0.696287\pi\)
−0.578309 + 0.815818i \(0.696287\pi\)
\(140\) 0.313475 0.0264934
\(141\) 27.2108 2.29156
\(142\) −2.37609 −0.199397
\(143\) −5.15535 −0.431112
\(144\) −12.8776 −1.07313
\(145\) −36.8294 −3.05851
\(146\) −1.69486 −0.140267
\(147\) 15.6465 1.29050
\(148\) 0.341042 0.0280335
\(149\) 10.2733 0.841625 0.420813 0.907148i \(-0.361745\pi\)
0.420813 + 0.907148i \(0.361745\pi\)
\(150\) 30.5671 2.49580
\(151\) −2.69534 −0.219344 −0.109672 0.993968i \(-0.534980\pi\)
−0.109672 + 0.993968i \(0.534980\pi\)
\(152\) 7.42210 0.602012
\(153\) −1.03574 −0.0837346
\(154\) −3.07336 −0.247659
\(155\) 0 0
\(156\) −0.510494 −0.0408723
\(157\) −20.2177 −1.61355 −0.806776 0.590858i \(-0.798789\pi\)
−0.806776 + 0.590858i \(0.798789\pi\)
\(158\) 22.7313 1.80840
\(159\) 9.55083 0.757430
\(160\) −2.20219 −0.174098
\(161\) −1.63321 −0.128715
\(162\) 12.7680 1.00315
\(163\) 16.6109 1.30106 0.650531 0.759480i \(-0.274546\pi\)
0.650531 + 0.759480i \(0.274546\pi\)
\(164\) −0.752757 −0.0587805
\(165\) −23.8714 −1.85839
\(166\) −1.78046 −0.138190
\(167\) 8.76987 0.678633 0.339316 0.940672i \(-0.389804\pi\)
0.339316 + 0.940672i \(0.389804\pi\)
\(168\) 5.44556 0.420134
\(169\) −9.16588 −0.705068
\(170\) −1.80486 −0.138426
\(171\) 8.27814 0.633045
\(172\) 0.382716 0.0291818
\(173\) −3.01862 −0.229501 −0.114751 0.993394i \(-0.536607\pi\)
−0.114751 + 0.993394i \(0.536607\pi\)
\(174\) 35.7551 2.71059
\(175\) −6.87975 −0.520060
\(176\) 11.0593 0.833626
\(177\) 18.6888 1.40474
\(178\) −5.59733 −0.419538
\(179\) −23.2975 −1.74134 −0.870669 0.491870i \(-0.836313\pi\)
−0.870669 + 0.491870i \(0.836313\pi\)
\(180\) −1.19471 −0.0890483
\(181\) 10.0945 0.750320 0.375160 0.926960i \(-0.377588\pi\)
0.375160 + 0.926960i \(0.377588\pi\)
\(182\) 2.28571 0.169428
\(183\) −23.8311 −1.76165
\(184\) 5.58078 0.411421
\(185\) −11.8605 −0.872000
\(186\) 0 0
\(187\) 0.889494 0.0650463
\(188\) −1.16954 −0.0852978
\(189\) 0.130210 0.00947141
\(190\) 14.4253 1.04652
\(191\) −18.5623 −1.34312 −0.671559 0.740951i \(-0.734375\pi\)
−0.671559 + 0.740951i \(0.734375\pi\)
\(192\) −18.5526 −1.33892
\(193\) 21.6917 1.56140 0.780701 0.624905i \(-0.214862\pi\)
0.780701 + 0.624905i \(0.214862\pi\)
\(194\) −8.92058 −0.640460
\(195\) 17.7536 1.27136
\(196\) −0.672499 −0.0480356
\(197\) −1.08846 −0.0775495 −0.0387748 0.999248i \(-0.512345\pi\)
−0.0387748 + 0.999248i \(0.512345\pi\)
\(198\) 11.7131 0.832416
\(199\) −19.1493 −1.35746 −0.678730 0.734388i \(-0.737469\pi\)
−0.678730 + 0.734388i \(0.737469\pi\)
\(200\) 23.5086 1.66231
\(201\) −18.1052 −1.27704
\(202\) 9.14771 0.643630
\(203\) −8.04742 −0.564818
\(204\) 0.0880797 0.00616681
\(205\) 26.1788 1.82841
\(206\) −15.7620 −1.09819
\(207\) 6.22445 0.432629
\(208\) −8.22497 −0.570299
\(209\) −7.10927 −0.491759
\(210\) 10.5838 0.730351
\(211\) −1.08773 −0.0748826 −0.0374413 0.999299i \(-0.511921\pi\)
−0.0374413 + 0.999299i \(0.511921\pi\)
\(212\) −0.410503 −0.0281935
\(213\) −4.03265 −0.276313
\(214\) −10.5556 −0.721569
\(215\) −13.3098 −0.907720
\(216\) −0.444937 −0.0302742
\(217\) 0 0
\(218\) −14.6115 −0.989615
\(219\) −2.87647 −0.194374
\(220\) 1.02602 0.0691740
\(221\) −0.661531 −0.0444994
\(222\) 11.5145 0.772805
\(223\) −7.61758 −0.510111 −0.255055 0.966926i \(-0.582094\pi\)
−0.255055 + 0.966926i \(0.582094\pi\)
\(224\) −0.481190 −0.0321509
\(225\) 26.2200 1.74800
\(226\) 9.78642 0.650983
\(227\) 9.50717 0.631013 0.315507 0.948923i \(-0.397826\pi\)
0.315507 + 0.948923i \(0.397826\pi\)
\(228\) −0.703976 −0.0466219
\(229\) 3.64526 0.240885 0.120443 0.992720i \(-0.461569\pi\)
0.120443 + 0.992720i \(0.461569\pi\)
\(230\) 10.8466 0.715204
\(231\) −5.21604 −0.343190
\(232\) 27.4986 1.80537
\(233\) −22.5815 −1.47936 −0.739681 0.672958i \(-0.765023\pi\)
−0.739681 + 0.672958i \(0.765023\pi\)
\(234\) −8.71125 −0.569472
\(235\) 40.6735 2.65324
\(236\) −0.803263 −0.0522880
\(237\) 38.5790 2.50597
\(238\) −0.394372 −0.0255633
\(239\) 0.370713 0.0239794 0.0119897 0.999928i \(-0.496183\pi\)
0.0119897 + 0.999928i \(0.496183\pi\)
\(240\) −38.0851 −2.45838
\(241\) 21.8633 1.40834 0.704170 0.710032i \(-0.251319\pi\)
0.704170 + 0.710032i \(0.251319\pi\)
\(242\) 5.90348 0.379490
\(243\) 22.1552 1.42126
\(244\) 1.02428 0.0655730
\(245\) 23.3876 1.49418
\(246\) −25.4152 −1.62041
\(247\) 5.28728 0.336422
\(248\) 0 0
\(249\) −3.02175 −0.191496
\(250\) 18.9791 1.20034
\(251\) −16.1640 −1.02026 −0.510131 0.860097i \(-0.670403\pi\)
−0.510131 + 0.860097i \(0.670403\pi\)
\(252\) −0.261050 −0.0164446
\(253\) −5.34556 −0.336073
\(254\) −15.3724 −0.964548
\(255\) −3.06317 −0.191823
\(256\) 2.53356 0.158348
\(257\) 15.6247 0.974645 0.487323 0.873222i \(-0.337974\pi\)
0.487323 + 0.873222i \(0.337974\pi\)
\(258\) 12.9216 0.804462
\(259\) −2.59158 −0.161033
\(260\) −0.763065 −0.0473233
\(261\) 30.6702 1.89844
\(262\) 8.21405 0.507466
\(263\) −18.0040 −1.11017 −0.555087 0.831792i \(-0.687315\pi\)
−0.555087 + 0.831792i \(0.687315\pi\)
\(264\) 17.8236 1.09696
\(265\) 14.2762 0.876977
\(266\) 3.15201 0.193262
\(267\) −9.49965 −0.581369
\(268\) 0.778176 0.0475347
\(269\) 27.9191 1.70226 0.851129 0.524956i \(-0.175918\pi\)
0.851129 + 0.524956i \(0.175918\pi\)
\(270\) −0.864764 −0.0526279
\(271\) −23.1794 −1.40805 −0.704025 0.710175i \(-0.748616\pi\)
−0.704025 + 0.710175i \(0.748616\pi\)
\(272\) 1.41912 0.0860468
\(273\) 3.87925 0.234783
\(274\) −28.5341 −1.72381
\(275\) −22.5177 −1.35787
\(276\) −0.529330 −0.0318619
\(277\) 12.0314 0.722894 0.361447 0.932393i \(-0.382283\pi\)
0.361447 + 0.932393i \(0.382283\pi\)
\(278\) 19.7884 1.18683
\(279\) 0 0
\(280\) 8.13978 0.486445
\(281\) −4.13615 −0.246742 −0.123371 0.992361i \(-0.539370\pi\)
−0.123371 + 0.992361i \(0.539370\pi\)
\(282\) −39.4871 −2.35142
\(283\) −26.9812 −1.60387 −0.801933 0.597414i \(-0.796195\pi\)
−0.801933 + 0.597414i \(0.796195\pi\)
\(284\) 0.173327 0.0102851
\(285\) 24.4823 1.45021
\(286\) 7.48123 0.442374
\(287\) 5.72021 0.337653
\(288\) 1.83390 0.108064
\(289\) −16.8859 −0.993286
\(290\) 53.4452 3.13841
\(291\) −15.1398 −0.887511
\(292\) 0.123633 0.00723509
\(293\) −9.23220 −0.539351 −0.269676 0.962951i \(-0.586916\pi\)
−0.269676 + 0.962951i \(0.586916\pi\)
\(294\) −22.7055 −1.32421
\(295\) 27.9352 1.62645
\(296\) 8.85560 0.514721
\(297\) 0.426184 0.0247297
\(298\) −14.9082 −0.863611
\(299\) 3.97558 0.229914
\(300\) −2.22976 −0.128735
\(301\) −2.90826 −0.167629
\(302\) 3.91137 0.225074
\(303\) 15.5253 0.891903
\(304\) −11.3423 −0.650526
\(305\) −35.6217 −2.03969
\(306\) 1.50302 0.0859220
\(307\) 13.2188 0.754435 0.377217 0.926125i \(-0.376881\pi\)
0.377217 + 0.926125i \(0.376881\pi\)
\(308\) 0.224190 0.0127744
\(309\) −26.7508 −1.52180
\(310\) 0 0
\(311\) −11.2939 −0.640417 −0.320208 0.947347i \(-0.603753\pi\)
−0.320208 + 0.947347i \(0.603753\pi\)
\(312\) −13.2557 −0.750454
\(313\) 0.835438 0.0472217 0.0236109 0.999721i \(-0.492484\pi\)
0.0236109 + 0.999721i \(0.492484\pi\)
\(314\) 29.3391 1.65570
\(315\) 9.07859 0.511521
\(316\) −1.65816 −0.0932788
\(317\) 19.1556 1.07589 0.537943 0.842981i \(-0.319202\pi\)
0.537943 + 0.842981i \(0.319202\pi\)
\(318\) −13.8597 −0.777216
\(319\) −26.3396 −1.47473
\(320\) −27.7317 −1.55025
\(321\) −17.9148 −0.999906
\(322\) 2.37004 0.132077
\(323\) −0.912257 −0.0507593
\(324\) −0.931378 −0.0517432
\(325\) 16.7468 0.928946
\(326\) −24.1050 −1.33505
\(327\) −24.7983 −1.37135
\(328\) −19.5463 −1.07927
\(329\) 8.88737 0.489977
\(330\) 34.6412 1.90694
\(331\) −11.9078 −0.654512 −0.327256 0.944936i \(-0.606124\pi\)
−0.327256 + 0.944936i \(0.606124\pi\)
\(332\) 0.129878 0.00712796
\(333\) 9.87697 0.541255
\(334\) −12.7265 −0.696361
\(335\) −27.0628 −1.47860
\(336\) −8.32179 −0.453991
\(337\) 6.28775 0.342516 0.171258 0.985226i \(-0.445217\pi\)
0.171258 + 0.985226i \(0.445217\pi\)
\(338\) 13.3011 0.723486
\(339\) 16.6093 0.902092
\(340\) 0.131658 0.00714014
\(341\) 0 0
\(342\) −12.0129 −0.649582
\(343\) 10.7411 0.579967
\(344\) 9.93772 0.535806
\(345\) 18.4086 0.991086
\(346\) 4.38049 0.235497
\(347\) −15.9236 −0.854823 −0.427411 0.904057i \(-0.640574\pi\)
−0.427411 + 0.904057i \(0.640574\pi\)
\(348\) −2.60820 −0.139814
\(349\) 9.16029 0.490339 0.245169 0.969480i \(-0.421156\pi\)
0.245169 + 0.969480i \(0.421156\pi\)
\(350\) 9.98360 0.533646
\(351\) −0.316960 −0.0169181
\(352\) −1.57496 −0.0839455
\(353\) −24.5217 −1.30516 −0.652580 0.757720i \(-0.726313\pi\)
−0.652580 + 0.757720i \(0.726313\pi\)
\(354\) −27.1204 −1.44143
\(355\) −6.02783 −0.319924
\(356\) 0.408304 0.0216401
\(357\) −0.669318 −0.0354241
\(358\) 33.8083 1.78683
\(359\) 4.83492 0.255177 0.127589 0.991827i \(-0.459276\pi\)
0.127589 + 0.991827i \(0.459276\pi\)
\(360\) −31.0222 −1.63501
\(361\) −11.7088 −0.616253
\(362\) −14.6487 −0.769920
\(363\) 10.0192 0.525874
\(364\) −0.166734 −0.00873922
\(365\) −4.29962 −0.225052
\(366\) 34.5827 1.80767
\(367\) 6.30941 0.329348 0.164674 0.986348i \(-0.447343\pi\)
0.164674 + 0.986348i \(0.447343\pi\)
\(368\) −8.52844 −0.444576
\(369\) −21.8007 −1.13490
\(370\) 17.2114 0.894779
\(371\) 3.11942 0.161952
\(372\) 0 0
\(373\) −22.8028 −1.18069 −0.590343 0.807153i \(-0.701007\pi\)
−0.590343 + 0.807153i \(0.701007\pi\)
\(374\) −1.29080 −0.0667455
\(375\) 32.2108 1.66336
\(376\) −30.3687 −1.56615
\(377\) 19.5892 1.00889
\(378\) −0.188956 −0.00971883
\(379\) −4.65946 −0.239340 −0.119670 0.992814i \(-0.538184\pi\)
−0.119670 + 0.992814i \(0.538184\pi\)
\(380\) −1.05227 −0.0539804
\(381\) −26.0896 −1.33661
\(382\) 26.9368 1.37820
\(383\) −30.6191 −1.56456 −0.782282 0.622925i \(-0.785944\pi\)
−0.782282 + 0.622925i \(0.785944\pi\)
\(384\) 29.8694 1.52426
\(385\) −7.79670 −0.397357
\(386\) −31.4780 −1.60219
\(387\) 11.0839 0.563427
\(388\) 0.650722 0.0330354
\(389\) −25.9587 −1.31616 −0.658080 0.752948i \(-0.728631\pi\)
−0.658080 + 0.752948i \(0.728631\pi\)
\(390\) −25.7632 −1.30457
\(391\) −0.685939 −0.0346894
\(392\) −17.4623 −0.881980
\(393\) 13.9407 0.703215
\(394\) 1.57953 0.0795753
\(395\) 57.6661 2.90150
\(396\) −0.854429 −0.0429366
\(397\) −1.16988 −0.0587146 −0.0293573 0.999569i \(-0.509346\pi\)
−0.0293573 + 0.999569i \(0.509346\pi\)
\(398\) 27.7887 1.39292
\(399\) 5.34952 0.267811
\(400\) −35.9253 −1.79627
\(401\) 14.0956 0.703901 0.351951 0.936019i \(-0.385519\pi\)
0.351951 + 0.936019i \(0.385519\pi\)
\(402\) 26.2734 1.31040
\(403\) 0 0
\(404\) −0.667290 −0.0331989
\(405\) 32.3907 1.60951
\(406\) 11.6781 0.579573
\(407\) −8.48235 −0.420454
\(408\) 2.28711 0.113229
\(409\) −10.2362 −0.506149 −0.253074 0.967447i \(-0.581442\pi\)
−0.253074 + 0.967447i \(0.581442\pi\)
\(410\) −37.9895 −1.87617
\(411\) −48.4273 −2.38874
\(412\) 1.14977 0.0566453
\(413\) 6.10400 0.300358
\(414\) −9.03266 −0.443931
\(415\) −4.51678 −0.221720
\(416\) 1.17132 0.0574288
\(417\) 33.5845 1.64464
\(418\) 10.3167 0.504605
\(419\) −16.3036 −0.796483 −0.398242 0.917281i \(-0.630379\pi\)
−0.398242 + 0.917281i \(0.630379\pi\)
\(420\) −0.772047 −0.0376720
\(421\) −1.13829 −0.0554770 −0.0277385 0.999615i \(-0.508831\pi\)
−0.0277385 + 0.999615i \(0.508831\pi\)
\(422\) 1.57847 0.0768387
\(423\) −33.8714 −1.64688
\(424\) −10.6593 −0.517659
\(425\) −2.88946 −0.140159
\(426\) 5.85201 0.283531
\(427\) −7.78353 −0.376672
\(428\) 0.769994 0.0372191
\(429\) 12.6970 0.613015
\(430\) 19.3146 0.931433
\(431\) 17.6823 0.851725 0.425862 0.904788i \(-0.359971\pi\)
0.425862 + 0.904788i \(0.359971\pi\)
\(432\) 0.679944 0.0327138
\(433\) −25.9217 −1.24572 −0.622859 0.782334i \(-0.714029\pi\)
−0.622859 + 0.782334i \(0.714029\pi\)
\(434\) 0 0
\(435\) 90.7060 4.34902
\(436\) 1.06585 0.0510451
\(437\) 5.48236 0.262257
\(438\) 4.17421 0.199451
\(439\) 17.7168 0.845576 0.422788 0.906229i \(-0.361052\pi\)
0.422788 + 0.906229i \(0.361052\pi\)
\(440\) 26.6419 1.27010
\(441\) −19.4764 −0.927445
\(442\) 0.959986 0.0456619
\(443\) 4.20714 0.199887 0.0999437 0.994993i \(-0.468134\pi\)
0.0999437 + 0.994993i \(0.468134\pi\)
\(444\) −0.839941 −0.0398618
\(445\) −14.1997 −0.673129
\(446\) 11.0543 0.523436
\(447\) −25.3019 −1.19674
\(448\) −6.05952 −0.286285
\(449\) 0.940169 0.0443693 0.0221847 0.999754i \(-0.492938\pi\)
0.0221847 + 0.999754i \(0.492938\pi\)
\(450\) −38.0493 −1.79366
\(451\) 18.7225 0.881608
\(452\) −0.713882 −0.0335782
\(453\) 6.63828 0.311894
\(454\) −13.7964 −0.647497
\(455\) 5.79853 0.271839
\(456\) −18.2797 −0.856024
\(457\) −9.75840 −0.456479 −0.228239 0.973605i \(-0.573297\pi\)
−0.228239 + 0.973605i \(0.573297\pi\)
\(458\) −5.28984 −0.247178
\(459\) 0.0546877 0.00255260
\(460\) −0.791219 −0.0368908
\(461\) −8.95245 −0.416957 −0.208478 0.978027i \(-0.566851\pi\)
−0.208478 + 0.978027i \(0.566851\pi\)
\(462\) 7.56929 0.352155
\(463\) −30.7935 −1.43109 −0.715547 0.698564i \(-0.753823\pi\)
−0.715547 + 0.698564i \(0.753823\pi\)
\(464\) −42.0228 −1.95086
\(465\) 0 0
\(466\) 32.7693 1.51801
\(467\) −23.9225 −1.10700 −0.553501 0.832848i \(-0.686709\pi\)
−0.553501 + 0.832848i \(0.686709\pi\)
\(468\) 0.635452 0.0293738
\(469\) −5.91336 −0.273054
\(470\) −59.0236 −2.72255
\(471\) 49.7937 2.29437
\(472\) −20.8578 −0.960057
\(473\) −9.51887 −0.437678
\(474\) −55.9841 −2.57144
\(475\) 23.0940 1.05962
\(476\) 0.0287679 0.00131857
\(477\) −11.8887 −0.544344
\(478\) −0.537963 −0.0246058
\(479\) −21.3748 −0.976640 −0.488320 0.872665i \(-0.662390\pi\)
−0.488320 + 0.872665i \(0.662390\pi\)
\(480\) 5.42371 0.247557
\(481\) 6.30846 0.287641
\(482\) −31.7271 −1.44513
\(483\) 4.02238 0.183025
\(484\) −0.430636 −0.0195744
\(485\) −22.6303 −1.02759
\(486\) −32.1506 −1.45838
\(487\) −14.5002 −0.657066 −0.328533 0.944492i \(-0.606554\pi\)
−0.328533 + 0.944492i \(0.606554\pi\)
\(488\) 26.5969 1.20398
\(489\) −40.9104 −1.85003
\(490\) −33.9391 −1.53321
\(491\) 8.09491 0.365318 0.182659 0.983176i \(-0.441530\pi\)
0.182659 + 0.983176i \(0.441530\pi\)
\(492\) 1.85394 0.0835822
\(493\) −3.37987 −0.152222
\(494\) −7.67267 −0.345210
\(495\) 29.7146 1.33557
\(496\) 0 0
\(497\) −1.31711 −0.0590806
\(498\) 4.38504 0.196498
\(499\) −13.3542 −0.597815 −0.298908 0.954282i \(-0.596622\pi\)
−0.298908 + 0.954282i \(0.596622\pi\)
\(500\) −1.38445 −0.0619145
\(501\) −21.5990 −0.964974
\(502\) 23.4565 1.04691
\(503\) −34.8655 −1.55458 −0.777288 0.629146i \(-0.783405\pi\)
−0.777288 + 0.629146i \(0.783405\pi\)
\(504\) −6.77851 −0.301939
\(505\) 23.2065 1.03268
\(506\) 7.75725 0.344852
\(507\) 22.5744 1.00256
\(508\) 1.12136 0.0497521
\(509\) −12.6151 −0.559156 −0.279578 0.960123i \(-0.590195\pi\)
−0.279578 + 0.960123i \(0.590195\pi\)
\(510\) 4.44514 0.196834
\(511\) −0.939490 −0.0415606
\(512\) 20.5791 0.909478
\(513\) −0.437090 −0.0192980
\(514\) −22.6740 −1.00011
\(515\) −39.9860 −1.76199
\(516\) −0.942579 −0.0414947
\(517\) 29.0888 1.27932
\(518\) 3.76079 0.165239
\(519\) 7.43446 0.326337
\(520\) −19.8140 −0.868900
\(521\) 29.3709 1.28676 0.643382 0.765546i \(-0.277531\pi\)
0.643382 + 0.765546i \(0.277531\pi\)
\(522\) −44.5072 −1.94803
\(523\) 26.5759 1.16208 0.581041 0.813874i \(-0.302646\pi\)
0.581041 + 0.813874i \(0.302646\pi\)
\(524\) −0.599184 −0.0261755
\(525\) 16.9439 0.739494
\(526\) 26.1266 1.13917
\(527\) 0 0
\(528\) −27.2376 −1.18536
\(529\) −18.8777 −0.820771
\(530\) −20.7169 −0.899886
\(531\) −23.2634 −1.00955
\(532\) −0.229927 −0.00996860
\(533\) −13.9242 −0.603125
\(534\) 13.7855 0.596556
\(535\) −26.7782 −1.15772
\(536\) 20.2064 0.872782
\(537\) 57.3787 2.47607
\(538\) −40.5150 −1.74673
\(539\) 16.7263 0.720453
\(540\) 0.0630812 0.00271458
\(541\) 5.09485 0.219045 0.109522 0.993984i \(-0.465068\pi\)
0.109522 + 0.993984i \(0.465068\pi\)
\(542\) 33.6370 1.44483
\(543\) −24.8615 −1.06691
\(544\) −0.202097 −0.00866486
\(545\) −37.0674 −1.58779
\(546\) −5.62940 −0.240916
\(547\) 17.9635 0.768064 0.384032 0.923320i \(-0.374535\pi\)
0.384032 + 0.923320i \(0.374535\pi\)
\(548\) 2.08145 0.0889152
\(549\) 29.6644 1.26605
\(550\) 32.6768 1.39334
\(551\) 27.0136 1.15082
\(552\) −13.7447 −0.585015
\(553\) 12.6004 0.535822
\(554\) −17.4594 −0.741778
\(555\) 29.2108 1.23993
\(556\) −1.44349 −0.0612176
\(557\) 7.73709 0.327831 0.163915 0.986474i \(-0.447588\pi\)
0.163915 + 0.986474i \(0.447588\pi\)
\(558\) 0 0
\(559\) 7.07933 0.299424
\(560\) −12.4390 −0.525646
\(561\) −2.19071 −0.0924918
\(562\) 6.00220 0.253187
\(563\) 32.5640 1.37241 0.686204 0.727409i \(-0.259276\pi\)
0.686204 + 0.727409i \(0.259276\pi\)
\(564\) 2.88043 0.121288
\(565\) 24.8268 1.04447
\(566\) 39.1540 1.64576
\(567\) 7.07754 0.297229
\(568\) 4.50066 0.188844
\(569\) 42.2518 1.77129 0.885643 0.464367i \(-0.153718\pi\)
0.885643 + 0.464367i \(0.153718\pi\)
\(570\) −35.5277 −1.48809
\(571\) 13.1181 0.548977 0.274489 0.961590i \(-0.411491\pi\)
0.274489 + 0.961590i \(0.411491\pi\)
\(572\) −0.545727 −0.0228180
\(573\) 45.7164 1.90983
\(574\) −8.30092 −0.346474
\(575\) 17.3647 0.724158
\(576\) 23.0939 0.962247
\(577\) −26.5738 −1.10628 −0.553141 0.833088i \(-0.686571\pi\)
−0.553141 + 0.833088i \(0.686571\pi\)
\(578\) 24.5040 1.01923
\(579\) −53.4238 −2.22022
\(580\) −3.89862 −0.161882
\(581\) −0.986941 −0.0409452
\(582\) 21.9702 0.910695
\(583\) 10.2100 0.422855
\(584\) 3.21030 0.132843
\(585\) −22.0993 −0.913692
\(586\) 13.3974 0.553440
\(587\) 29.9704 1.23701 0.618505 0.785781i \(-0.287739\pi\)
0.618505 + 0.785781i \(0.287739\pi\)
\(588\) 1.65628 0.0683037
\(589\) 0 0
\(590\) −40.5384 −1.66894
\(591\) 2.68073 0.110271
\(592\) −13.5329 −0.556201
\(593\) 9.66897 0.397057 0.198528 0.980095i \(-0.436384\pi\)
0.198528 + 0.980095i \(0.436384\pi\)
\(594\) −0.618460 −0.0253757
\(595\) −1.00047 −0.0410152
\(596\) 1.08750 0.0445457
\(597\) 47.1623 1.93023
\(598\) −5.76919 −0.235920
\(599\) −20.5576 −0.839962 −0.419981 0.907533i \(-0.637963\pi\)
−0.419981 + 0.907533i \(0.637963\pi\)
\(600\) −57.8986 −2.36370
\(601\) −3.58806 −0.146360 −0.0731801 0.997319i \(-0.523315\pi\)
−0.0731801 + 0.997319i \(0.523315\pi\)
\(602\) 4.22034 0.172008
\(603\) 22.5369 0.917773
\(604\) −0.285319 −0.0116095
\(605\) 14.9763 0.608874
\(606\) −22.5296 −0.915203
\(607\) −38.9073 −1.57920 −0.789600 0.613622i \(-0.789712\pi\)
−0.789600 + 0.613622i \(0.789712\pi\)
\(608\) 1.61526 0.0655075
\(609\) 19.8197 0.803136
\(610\) 51.6927 2.09298
\(611\) −21.6338 −0.875209
\(612\) −0.109640 −0.00443192
\(613\) 5.90364 0.238446 0.119223 0.992868i \(-0.461960\pi\)
0.119223 + 0.992868i \(0.461960\pi\)
\(614\) −19.1825 −0.774143
\(615\) −64.4750 −2.59988
\(616\) 5.82139 0.234550
\(617\) −8.19887 −0.330074 −0.165037 0.986287i \(-0.552774\pi\)
−0.165037 + 0.986287i \(0.552774\pi\)
\(618\) 38.8196 1.56156
\(619\) −28.1122 −1.12992 −0.564962 0.825117i \(-0.691109\pi\)
−0.564962 + 0.825117i \(0.691109\pi\)
\(620\) 0 0
\(621\) −0.328655 −0.0131885
\(622\) 16.3892 0.657146
\(623\) −3.10270 −0.124307
\(624\) 20.2570 0.810930
\(625\) 5.38421 0.215368
\(626\) −1.21235 −0.0484553
\(627\) 17.5092 0.699250
\(628\) −2.14018 −0.0854023
\(629\) −1.08845 −0.0433993
\(630\) −13.1745 −0.524883
\(631\) 29.4301 1.17160 0.585798 0.810457i \(-0.300781\pi\)
0.585798 + 0.810457i \(0.300781\pi\)
\(632\) −43.0563 −1.71269
\(633\) 2.67894 0.106478
\(634\) −27.7978 −1.10399
\(635\) −38.9976 −1.54757
\(636\) 1.01102 0.0400894
\(637\) −12.4396 −0.492876
\(638\) 38.2228 1.51326
\(639\) 5.01975 0.198578
\(640\) 44.6474 1.76484
\(641\) 21.4049 0.845441 0.422720 0.906260i \(-0.361075\pi\)
0.422720 + 0.906260i \(0.361075\pi\)
\(642\) 25.9972 1.02603
\(643\) −28.8174 −1.13645 −0.568223 0.822875i \(-0.692369\pi\)
−0.568223 + 0.822875i \(0.692369\pi\)
\(644\) −0.172886 −0.00681264
\(645\) 32.7803 1.29072
\(646\) 1.32383 0.0520853
\(647\) 23.8618 0.938104 0.469052 0.883170i \(-0.344596\pi\)
0.469052 + 0.883170i \(0.344596\pi\)
\(648\) −24.1844 −0.950055
\(649\) 19.9787 0.784231
\(650\) −24.3022 −0.953212
\(651\) 0 0
\(652\) 1.75836 0.0688629
\(653\) 30.8291 1.20644 0.603218 0.797576i \(-0.293885\pi\)
0.603218 + 0.797576i \(0.293885\pi\)
\(654\) 35.9862 1.40717
\(655\) 20.8379 0.814206
\(656\) 29.8703 1.16624
\(657\) 3.58056 0.139691
\(658\) −12.8970 −0.502776
\(659\) −28.1233 −1.09553 −0.547764 0.836633i \(-0.684521\pi\)
−0.547764 + 0.836633i \(0.684521\pi\)
\(660\) −2.52694 −0.0983611
\(661\) −37.1871 −1.44641 −0.723205 0.690633i \(-0.757332\pi\)
−0.723205 + 0.690633i \(0.757332\pi\)
\(662\) 17.2801 0.671610
\(663\) 1.62927 0.0632754
\(664\) 3.37244 0.130876
\(665\) 7.99622 0.310080
\(666\) −14.3330 −0.555394
\(667\) 20.3119 0.786480
\(668\) 0.928347 0.0359188
\(669\) 18.7611 0.725346
\(670\) 39.2724 1.51722
\(671\) −25.4758 −0.983484
\(672\) 1.18511 0.0457166
\(673\) 41.2504 1.59009 0.795044 0.606552i \(-0.207448\pi\)
0.795044 + 0.606552i \(0.207448\pi\)
\(674\) −9.12451 −0.351463
\(675\) −1.38443 −0.0532867
\(676\) −0.970267 −0.0373180
\(677\) −15.3831 −0.591221 −0.295610 0.955309i \(-0.595523\pi\)
−0.295610 + 0.955309i \(0.595523\pi\)
\(678\) −24.1027 −0.925657
\(679\) −4.94484 −0.189766
\(680\) 3.41866 0.131100
\(681\) −23.4149 −0.897262
\(682\) 0 0
\(683\) 8.40720 0.321693 0.160846 0.986979i \(-0.448578\pi\)
0.160846 + 0.986979i \(0.448578\pi\)
\(684\) 0.876294 0.0335059
\(685\) −72.3871 −2.76577
\(686\) −15.5871 −0.595118
\(687\) −8.97779 −0.342524
\(688\) −15.1866 −0.578985
\(689\) −7.59333 −0.289283
\(690\) −26.7138 −1.01698
\(691\) −35.4158 −1.34728 −0.673641 0.739059i \(-0.735271\pi\)
−0.673641 + 0.739059i \(0.735271\pi\)
\(692\) −0.319540 −0.0121471
\(693\) 6.49281 0.246641
\(694\) 23.1076 0.877153
\(695\) 50.2006 1.90422
\(696\) −67.7254 −2.56712
\(697\) 2.40246 0.0909996
\(698\) −13.2930 −0.503148
\(699\) 55.6152 2.10356
\(700\) −0.728266 −0.0275259
\(701\) 9.83851 0.371595 0.185798 0.982588i \(-0.440513\pi\)
0.185798 + 0.982588i \(0.440513\pi\)
\(702\) 0.459959 0.0173600
\(703\) 8.69942 0.328105
\(704\) −19.8331 −0.747487
\(705\) −100.173 −3.77275
\(706\) 35.5849 1.33925
\(707\) 5.07074 0.190705
\(708\) 1.97833 0.0743503
\(709\) −32.3251 −1.21399 −0.606997 0.794704i \(-0.707626\pi\)
−0.606997 + 0.794704i \(0.707626\pi\)
\(710\) 8.74732 0.328281
\(711\) −48.0222 −1.80098
\(712\) 10.6021 0.397332
\(713\) 0 0
\(714\) 0.971286 0.0363495
\(715\) 18.9789 0.709769
\(716\) −2.46619 −0.0921658
\(717\) −0.913018 −0.0340973
\(718\) −7.01622 −0.261843
\(719\) −18.0309 −0.672438 −0.336219 0.941784i \(-0.609148\pi\)
−0.336219 + 0.941784i \(0.609148\pi\)
\(720\) 47.4074 1.76677
\(721\) −8.73714 −0.325388
\(722\) 16.9913 0.632351
\(723\) −53.8465 −2.00257
\(724\) 1.06857 0.0397131
\(725\) 85.5622 3.17770
\(726\) −14.5395 −0.539611
\(727\) 18.1609 0.673552 0.336776 0.941585i \(-0.390663\pi\)
0.336776 + 0.941585i \(0.390663\pi\)
\(728\) −4.32946 −0.160460
\(729\) −28.1698 −1.04333
\(730\) 6.23942 0.230931
\(731\) −1.22145 −0.0451771
\(732\) −2.52268 −0.0932408
\(733\) 15.5734 0.575217 0.287609 0.957748i \(-0.407140\pi\)
0.287609 + 0.957748i \(0.407140\pi\)
\(734\) −9.15594 −0.337952
\(735\) −57.6007 −2.12463
\(736\) 1.21454 0.0447685
\(737\) −19.3547 −0.712940
\(738\) 31.6363 1.16455
\(739\) 48.4264 1.78139 0.890697 0.454598i \(-0.150217\pi\)
0.890697 + 0.454598i \(0.150217\pi\)
\(740\) −1.25551 −0.0461534
\(741\) −13.0219 −0.478371
\(742\) −4.52676 −0.166183
\(743\) −2.38112 −0.0873550 −0.0436775 0.999046i \(-0.513907\pi\)
−0.0436775 + 0.999046i \(0.513907\pi\)
\(744\) 0 0
\(745\) −37.8202 −1.38562
\(746\) 33.0905 1.21153
\(747\) 3.76141 0.137623
\(748\) 0.0941586 0.00344278
\(749\) −5.85119 −0.213798
\(750\) −46.7429 −1.70681
\(751\) −21.3110 −0.777651 −0.388826 0.921311i \(-0.627119\pi\)
−0.388826 + 0.921311i \(0.627119\pi\)
\(752\) 46.4089 1.69236
\(753\) 39.8098 1.45075
\(754\) −28.4269 −1.03525
\(755\) 9.92260 0.361121
\(756\) 0.0137836 0.000501304 0
\(757\) −37.2388 −1.35347 −0.676734 0.736228i \(-0.736605\pi\)
−0.676734 + 0.736228i \(0.736605\pi\)
\(758\) 6.76161 0.245593
\(759\) 13.1654 0.477875
\(760\) −27.3236 −0.991132
\(761\) 52.2356 1.89354 0.946769 0.321914i \(-0.104326\pi\)
0.946769 + 0.321914i \(0.104326\pi\)
\(762\) 37.8601 1.37153
\(763\) −8.09941 −0.293219
\(764\) −1.96493 −0.0710888
\(765\) 3.81296 0.137858
\(766\) 44.4331 1.60543
\(767\) −14.8585 −0.536508
\(768\) −6.23983 −0.225160
\(769\) −8.38478 −0.302363 −0.151182 0.988506i \(-0.548308\pi\)
−0.151182 + 0.988506i \(0.548308\pi\)
\(770\) 11.3142 0.407737
\(771\) −38.4817 −1.38589
\(772\) 2.29620 0.0826421
\(773\) −43.9279 −1.57998 −0.789988 0.613122i \(-0.789913\pi\)
−0.789988 + 0.613122i \(0.789913\pi\)
\(774\) −16.0845 −0.578145
\(775\) 0 0
\(776\) 16.8969 0.606562
\(777\) 6.38272 0.228979
\(778\) 37.6702 1.35054
\(779\) −19.2016 −0.687969
\(780\) 1.87933 0.0672908
\(781\) −4.31097 −0.154259
\(782\) 0.995405 0.0355956
\(783\) −1.61940 −0.0578727
\(784\) 26.6856 0.953055
\(785\) 74.4294 2.65650
\(786\) −20.2301 −0.721585
\(787\) −27.3815 −0.976043 −0.488022 0.872832i \(-0.662281\pi\)
−0.488022 + 0.872832i \(0.662281\pi\)
\(788\) −0.115220 −0.00410456
\(789\) 44.3415 1.57860
\(790\) −83.6826 −2.97729
\(791\) 5.42479 0.192883
\(792\) −22.1864 −0.788358
\(793\) 18.9468 0.672820
\(794\) 1.69768 0.0602484
\(795\) −35.1603 −1.24701
\(796\) −2.02708 −0.0718479
\(797\) −32.9641 −1.16765 −0.583823 0.811881i \(-0.698444\pi\)
−0.583823 + 0.811881i \(0.698444\pi\)
\(798\) −7.76299 −0.274807
\(799\) 3.73265 0.132052
\(800\) 5.11614 0.180883
\(801\) 11.8250 0.417814
\(802\) −20.4549 −0.722289
\(803\) −3.07499 −0.108514
\(804\) −1.91655 −0.0675914
\(805\) 6.01248 0.211912
\(806\) 0 0
\(807\) −68.7611 −2.42051
\(808\) −17.3271 −0.609564
\(809\) 23.6402 0.831146 0.415573 0.909560i \(-0.363581\pi\)
0.415573 + 0.909560i \(0.363581\pi\)
\(810\) −47.0040 −1.65155
\(811\) −26.3421 −0.924995 −0.462498 0.886620i \(-0.653047\pi\)
−0.462498 + 0.886620i \(0.653047\pi\)
\(812\) −0.851870 −0.0298948
\(813\) 57.0879 2.00216
\(814\) 12.3092 0.431438
\(815\) −61.1510 −2.14203
\(816\) −3.49511 −0.122353
\(817\) 9.76246 0.341545
\(818\) 14.8544 0.519371
\(819\) −4.82880 −0.168732
\(820\) 2.77119 0.0967742
\(821\) 29.7368 1.03782 0.518911 0.854828i \(-0.326337\pi\)
0.518911 + 0.854828i \(0.326337\pi\)
\(822\) 70.2757 2.45115
\(823\) −30.2207 −1.05343 −0.526714 0.850043i \(-0.676576\pi\)
−0.526714 + 0.850043i \(0.676576\pi\)
\(824\) 29.8554 1.04006
\(825\) 55.4582 1.93081
\(826\) −8.85786 −0.308204
\(827\) 33.9383 1.18015 0.590075 0.807348i \(-0.299098\pi\)
0.590075 + 0.807348i \(0.299098\pi\)
\(828\) 0.658898 0.0228983
\(829\) 21.1978 0.736231 0.368115 0.929780i \(-0.380003\pi\)
0.368115 + 0.929780i \(0.380003\pi\)
\(830\) 6.55456 0.227512
\(831\) −29.6316 −1.02791
\(832\) 14.7502 0.511370
\(833\) 2.14631 0.0743652
\(834\) −48.7363 −1.68760
\(835\) −32.2853 −1.11728
\(836\) −0.752562 −0.0260279
\(837\) 0 0
\(838\) 23.6591 0.817290
\(839\) −2.36633 −0.0816947 −0.0408473 0.999165i \(-0.513006\pi\)
−0.0408473 + 0.999165i \(0.513006\pi\)
\(840\) −20.0472 −0.691694
\(841\) 71.0842 2.45118
\(842\) 1.65184 0.0569262
\(843\) 10.1868 0.350852
\(844\) −0.115143 −0.00396340
\(845\) 33.7432 1.16080
\(846\) 49.1527 1.68990
\(847\) 3.27241 0.112441
\(848\) 16.2893 0.559376
\(849\) 66.4512 2.28060
\(850\) 4.19306 0.143821
\(851\) 6.54122 0.224230
\(852\) −0.426882 −0.0146247
\(853\) −33.3658 −1.14242 −0.571211 0.820803i \(-0.693526\pi\)
−0.571211 + 0.820803i \(0.693526\pi\)
\(854\) 11.2951 0.386511
\(855\) −30.4750 −1.04222
\(856\) 19.9939 0.683378
\(857\) 18.0395 0.616219 0.308109 0.951351i \(-0.400304\pi\)
0.308109 + 0.951351i \(0.400304\pi\)
\(858\) −18.4253 −0.629029
\(859\) 34.6322 1.18164 0.590818 0.806805i \(-0.298805\pi\)
0.590818 + 0.806805i \(0.298805\pi\)
\(860\) −1.40893 −0.0480440
\(861\) −14.0881 −0.480122
\(862\) −25.6597 −0.873974
\(863\) −9.27126 −0.315597 −0.157799 0.987471i \(-0.550440\pi\)
−0.157799 + 0.987471i \(0.550440\pi\)
\(864\) −0.0968311 −0.00329426
\(865\) 11.1127 0.377843
\(866\) 37.6165 1.27826
\(867\) 41.5877 1.41239
\(868\) 0 0
\(869\) 41.2415 1.39902
\(870\) −131.629 −4.46263
\(871\) 14.3944 0.487736
\(872\) 27.6763 0.937236
\(873\) 18.8457 0.637830
\(874\) −7.95576 −0.269108
\(875\) 10.5204 0.355656
\(876\) −0.304493 −0.0102878
\(877\) 24.7877 0.837021 0.418511 0.908212i \(-0.362552\pi\)
0.418511 + 0.908212i \(0.362552\pi\)
\(878\) −25.7098 −0.867665
\(879\) 22.7377 0.766924
\(880\) −40.7135 −1.37245
\(881\) 31.1875 1.05073 0.525367 0.850876i \(-0.323928\pi\)
0.525367 + 0.850876i \(0.323928\pi\)
\(882\) 28.2632 0.951673
\(883\) −13.8748 −0.466925 −0.233463 0.972366i \(-0.575006\pi\)
−0.233463 + 0.972366i \(0.575006\pi\)
\(884\) −0.0700273 −0.00235527
\(885\) −68.8008 −2.31272
\(886\) −6.10522 −0.205109
\(887\) 22.0130 0.739124 0.369562 0.929206i \(-0.379508\pi\)
0.369562 + 0.929206i \(0.379508\pi\)
\(888\) −21.8102 −0.731902
\(889\) −8.52118 −0.285791
\(890\) 20.6059 0.690713
\(891\) 23.1651 0.776061
\(892\) −0.806369 −0.0269992
\(893\) −29.8331 −0.998328
\(894\) 36.7170 1.22800
\(895\) 85.7671 2.86688
\(896\) 9.75569 0.325915
\(897\) −9.79134 −0.326923
\(898\) −1.36433 −0.0455284
\(899\) 0 0
\(900\) 2.77555 0.0925184
\(901\) 1.31014 0.0436470
\(902\) −27.1693 −0.904638
\(903\) 7.16267 0.238359
\(904\) −18.5369 −0.616528
\(905\) −37.1618 −1.23530
\(906\) −9.63318 −0.320041
\(907\) 11.4865 0.381403 0.190701 0.981648i \(-0.438924\pi\)
0.190701 + 0.981648i \(0.438924\pi\)
\(908\) 1.00639 0.0333984
\(909\) −19.3255 −0.640987
\(910\) −8.41458 −0.278941
\(911\) −42.5542 −1.40988 −0.704942 0.709265i \(-0.749027\pi\)
−0.704942 + 0.709265i \(0.749027\pi\)
\(912\) 27.9346 0.925007
\(913\) −3.23030 −0.106907
\(914\) 14.1610 0.468403
\(915\) 87.7316 2.90032
\(916\) 0.385873 0.0127496
\(917\) 4.55320 0.150360
\(918\) −0.0793604 −0.00261928
\(919\) 16.0130 0.528220 0.264110 0.964493i \(-0.414922\pi\)
0.264110 + 0.964493i \(0.414922\pi\)
\(920\) −20.5450 −0.677350
\(921\) −32.5561 −1.07276
\(922\) 12.9914 0.427849
\(923\) 3.20614 0.105531
\(924\) −0.552151 −0.0181644
\(925\) 27.5543 0.905981
\(926\) 44.6862 1.46848
\(927\) 33.2988 1.09368
\(928\) 5.98448 0.196450
\(929\) 17.4278 0.571788 0.285894 0.958261i \(-0.407709\pi\)
0.285894 + 0.958261i \(0.407709\pi\)
\(930\) 0 0
\(931\) −17.1543 −0.562211
\(932\) −2.39039 −0.0782999
\(933\) 27.8153 0.910633
\(934\) 34.7153 1.13592
\(935\) −3.27457 −0.107090
\(936\) 16.5004 0.539331
\(937\) −14.7986 −0.483448 −0.241724 0.970345i \(-0.577713\pi\)
−0.241724 + 0.970345i \(0.577713\pi\)
\(938\) 8.58122 0.280187
\(939\) −2.05757 −0.0671464
\(940\) 4.30554 0.140431
\(941\) −6.09091 −0.198558 −0.0992790 0.995060i \(-0.531654\pi\)
−0.0992790 + 0.995060i \(0.531654\pi\)
\(942\) −72.2584 −2.35431
\(943\) −14.4380 −0.470165
\(944\) 31.8744 1.03742
\(945\) −0.479355 −0.0155934
\(946\) 13.8134 0.449111
\(947\) −50.1684 −1.63025 −0.815126 0.579283i \(-0.803333\pi\)
−0.815126 + 0.579283i \(0.803333\pi\)
\(948\) 4.08383 0.132637
\(949\) 2.28692 0.0742366
\(950\) −33.5130 −1.08730
\(951\) −47.1777 −1.52984
\(952\) 0.746996 0.0242103
\(953\) −0.599640 −0.0194242 −0.00971212 0.999953i \(-0.503092\pi\)
−0.00971212 + 0.999953i \(0.503092\pi\)
\(954\) 17.2523 0.558564
\(955\) 68.3349 2.21127
\(956\) 0.0392423 0.00126919
\(957\) 64.8709 2.09698
\(958\) 31.0182 1.00215
\(959\) −15.8170 −0.510756
\(960\) 68.2995 2.20436
\(961\) 0 0
\(962\) −9.15456 −0.295155
\(963\) 22.2999 0.718605
\(964\) 2.31437 0.0745409
\(965\) −79.8555 −2.57064
\(966\) −5.83710 −0.187806
\(967\) 51.1635 1.64531 0.822654 0.568543i \(-0.192493\pi\)
0.822654 + 0.568543i \(0.192493\pi\)
\(968\) −11.1820 −0.359404
\(969\) 2.24677 0.0721766
\(970\) 32.8401 1.05443
\(971\) −8.58287 −0.275437 −0.137719 0.990471i \(-0.543977\pi\)
−0.137719 + 0.990471i \(0.543977\pi\)
\(972\) 2.34527 0.0752245
\(973\) 10.9691 0.351653
\(974\) 21.0421 0.674231
\(975\) −41.2452 −1.32090
\(976\) −40.6448 −1.30101
\(977\) 37.3558 1.19512 0.597559 0.801825i \(-0.296137\pi\)
0.597559 + 0.801825i \(0.296137\pi\)
\(978\) 59.3673 1.89836
\(979\) −10.1553 −0.324564
\(980\) 2.47573 0.0790843
\(981\) 30.8683 0.985550
\(982\) −11.7470 −0.374861
\(983\) −2.52379 −0.0804965 −0.0402483 0.999190i \(-0.512815\pi\)
−0.0402483 + 0.999190i \(0.512815\pi\)
\(984\) 48.1401 1.53465
\(985\) 4.00704 0.127675
\(986\) 4.90473 0.156198
\(987\) −21.8884 −0.696716
\(988\) 0.559692 0.0178062
\(989\) 7.34053 0.233415
\(990\) −43.1206 −1.37046
\(991\) 30.5038 0.968984 0.484492 0.874796i \(-0.339005\pi\)
0.484492 + 0.874796i \(0.339005\pi\)
\(992\) 0 0
\(993\) 29.3274 0.930675
\(994\) 1.91134 0.0606239
\(995\) 70.4962 2.23488
\(996\) −0.319872 −0.0101355
\(997\) −37.9043 −1.20044 −0.600221 0.799834i \(-0.704921\pi\)
−0.600221 + 0.799834i \(0.704921\pi\)
\(998\) 19.3790 0.613432
\(999\) −0.521510 −0.0164998
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.a.l.1.5 16
3.2 odd 2 8649.2.a.bs.1.12 16
31.2 even 5 961.2.d.s.531.5 64
31.3 odd 30 961.2.g.w.846.5 128
31.4 even 5 961.2.d.s.388.12 64
31.5 even 3 961.2.c.l.521.6 32
31.6 odd 6 961.2.c.l.439.5 32
31.7 even 15 961.2.g.w.235.11 128
31.8 even 5 961.2.d.s.374.12 64
31.9 even 15 961.2.g.w.732.11 128
31.10 even 15 961.2.g.w.844.6 128
31.11 odd 30 961.2.g.w.338.11 128
31.12 odd 30 961.2.g.w.547.6 128
31.13 odd 30 961.2.g.w.448.6 128
31.14 even 15 961.2.g.w.816.12 128
31.15 odd 10 961.2.d.s.628.6 64
31.16 even 5 961.2.d.s.628.5 64
31.17 odd 30 961.2.g.w.816.11 128
31.18 even 15 961.2.g.w.448.5 128
31.19 even 15 961.2.g.w.547.5 128
31.20 even 15 961.2.g.w.338.12 128
31.21 odd 30 961.2.g.w.844.5 128
31.22 odd 30 961.2.g.w.732.12 128
31.23 odd 10 961.2.d.s.374.11 64
31.24 odd 30 961.2.g.w.235.12 128
31.25 even 3 961.2.c.l.439.6 32
31.26 odd 6 961.2.c.l.521.5 32
31.27 odd 10 961.2.d.s.388.11 64
31.28 even 15 961.2.g.w.846.6 128
31.29 odd 10 961.2.d.s.531.6 64
31.30 odd 2 inner 961.2.a.l.1.6 yes 16
93.92 even 2 8649.2.a.bs.1.11 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
961.2.a.l.1.5 16 1.1 even 1 trivial
961.2.a.l.1.6 yes 16 31.30 odd 2 inner
961.2.c.l.439.5 32 31.6 odd 6
961.2.c.l.439.6 32 31.25 even 3
961.2.c.l.521.5 32 31.26 odd 6
961.2.c.l.521.6 32 31.5 even 3
961.2.d.s.374.11 64 31.23 odd 10
961.2.d.s.374.12 64 31.8 even 5
961.2.d.s.388.11 64 31.27 odd 10
961.2.d.s.388.12 64 31.4 even 5
961.2.d.s.531.5 64 31.2 even 5
961.2.d.s.531.6 64 31.29 odd 10
961.2.d.s.628.5 64 31.16 even 5
961.2.d.s.628.6 64 31.15 odd 10
961.2.g.w.235.11 128 31.7 even 15
961.2.g.w.235.12 128 31.24 odd 30
961.2.g.w.338.11 128 31.11 odd 30
961.2.g.w.338.12 128 31.20 even 15
961.2.g.w.448.5 128 31.18 even 15
961.2.g.w.448.6 128 31.13 odd 30
961.2.g.w.547.5 128 31.19 even 15
961.2.g.w.547.6 128 31.12 odd 30
961.2.g.w.732.11 128 31.9 even 15
961.2.g.w.732.12 128 31.22 odd 30
961.2.g.w.816.11 128 31.17 odd 30
961.2.g.w.816.12 128 31.14 even 15
961.2.g.w.844.5 128 31.21 odd 30
961.2.g.w.844.6 128 31.10 even 15
961.2.g.w.846.5 128 31.3 odd 30
961.2.g.w.846.6 128 31.28 even 15
8649.2.a.bs.1.11 16 93.92 even 2
8649.2.a.bs.1.12 16 3.2 odd 2