Properties

Label 960.3.bg.e.577.2
Level $960$
Weight $3$
Character 960.577
Analytic conductor $26.158$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [960,3,Mod(193,960)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("960.193"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(960, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 0, 3])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 960 = 2^{6} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 960.bg (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.1581053786\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 577.2
Root \(-1.22474 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 960.577
Dual form 960.3.bg.e.193.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.22474 - 1.22474i) q^{3} +(-4.89898 + 1.00000i) q^{5} +(-8.89898 - 8.89898i) q^{7} -3.00000i q^{9} -5.79796 q^{11} +(6.79796 - 6.79796i) q^{13} +(-4.77526 + 7.22474i) q^{15} +(6.10102 + 6.10102i) q^{17} -6.20204i q^{19} -21.7980 q^{21} +(-18.6969 + 18.6969i) q^{23} +(23.0000 - 9.79796i) q^{25} +(-3.67423 - 3.67423i) q^{27} +6.20204i q^{29} -0.404082 q^{31} +(-7.10102 + 7.10102i) q^{33} +(52.4949 + 34.6969i) q^{35} +(27.0000 + 27.0000i) q^{37} -16.6515i q^{39} -1.79796 q^{41} +(-36.4949 + 36.4949i) q^{43} +(3.00000 + 14.6969i) q^{45} +(38.6969 + 38.6969i) q^{47} +109.384i q^{49} +14.9444 q^{51} +(-69.0908 + 69.0908i) q^{53} +(28.4041 - 5.79796i) q^{55} +(-7.59592 - 7.59592i) q^{57} -20.0000i q^{59} +63.1918 q^{61} +(-26.6969 + 26.6969i) q^{63} +(-26.5051 + 40.1010i) q^{65} +(-40.0908 - 40.0908i) q^{67} +45.7980i q^{69} +25.7980 q^{71} +(-56.7980 + 56.7980i) q^{73} +(16.1691 - 40.1691i) q^{75} +(51.5959 + 51.5959i) q^{77} -139.373i q^{79} -9.00000 q^{81} +(-13.7071 + 13.7071i) q^{83} +(-35.9898 - 23.7878i) q^{85} +(7.59592 + 7.59592i) q^{87} +58.6061i q^{89} -120.990 q^{91} +(-0.494897 + 0.494897i) q^{93} +(6.20204 + 30.3837i) q^{95} +(-15.9898 - 15.9898i) q^{97} +17.3939i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{7} + 16 q^{11} - 12 q^{13} - 24 q^{15} + 44 q^{17} - 48 q^{21} - 16 q^{23} + 92 q^{25} - 80 q^{31} - 48 q^{33} + 112 q^{35} + 108 q^{37} + 32 q^{41} - 48 q^{43} + 12 q^{45} + 96 q^{47} - 48 q^{51}+ \cdots + 132 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/960\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(577\) \(641\) \(901\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.22474 1.22474i 0.408248 0.408248i
\(4\) 0 0
\(5\) −4.89898 + 1.00000i −0.979796 + 0.200000i
\(6\) 0 0
\(7\) −8.89898 8.89898i −1.27128 1.27128i −0.945416 0.325867i \(-0.894344\pi\)
−0.325867 0.945416i \(-0.605656\pi\)
\(8\) 0 0
\(9\) 3.00000i 0.333333i
\(10\) 0 0
\(11\) −5.79796 −0.527087 −0.263544 0.964647i \(-0.584891\pi\)
−0.263544 + 0.964647i \(0.584891\pi\)
\(12\) 0 0
\(13\) 6.79796 6.79796i 0.522920 0.522920i −0.395532 0.918452i \(-0.629440\pi\)
0.918452 + 0.395532i \(0.129440\pi\)
\(14\) 0 0
\(15\) −4.77526 + 7.22474i −0.318350 + 0.481650i
\(16\) 0 0
\(17\) 6.10102 + 6.10102i 0.358884 + 0.358884i 0.863401 0.504518i \(-0.168330\pi\)
−0.504518 + 0.863401i \(0.668330\pi\)
\(18\) 0 0
\(19\) 6.20204i 0.326423i −0.986591 0.163212i \(-0.947815\pi\)
0.986591 0.163212i \(-0.0521853\pi\)
\(20\) 0 0
\(21\) −21.7980 −1.03800
\(22\) 0 0
\(23\) −18.6969 + 18.6969i −0.812910 + 0.812910i −0.985069 0.172159i \(-0.944926\pi\)
0.172159 + 0.985069i \(0.444926\pi\)
\(24\) 0 0
\(25\) 23.0000 9.79796i 0.920000 0.391918i
\(26\) 0 0
\(27\) −3.67423 3.67423i −0.136083 0.136083i
\(28\) 0 0
\(29\) 6.20204i 0.213863i 0.994266 + 0.106932i \(0.0341026\pi\)
−0.994266 + 0.106932i \(0.965897\pi\)
\(30\) 0 0
\(31\) −0.404082 −0.0130349 −0.00651745 0.999979i \(-0.502075\pi\)
−0.00651745 + 0.999979i \(0.502075\pi\)
\(32\) 0 0
\(33\) −7.10102 + 7.10102i −0.215182 + 0.215182i
\(34\) 0 0
\(35\) 52.4949 + 34.6969i 1.49985 + 0.991341i
\(36\) 0 0
\(37\) 27.0000 + 27.0000i 0.729730 + 0.729730i 0.970566 0.240836i \(-0.0774216\pi\)
−0.240836 + 0.970566i \(0.577422\pi\)
\(38\) 0 0
\(39\) 16.6515i 0.426962i
\(40\) 0 0
\(41\) −1.79796 −0.0438527 −0.0219263 0.999760i \(-0.506980\pi\)
−0.0219263 + 0.999760i \(0.506980\pi\)
\(42\) 0 0
\(43\) −36.4949 + 36.4949i −0.848719 + 0.848719i −0.989973 0.141255i \(-0.954886\pi\)
0.141255 + 0.989973i \(0.454886\pi\)
\(44\) 0 0
\(45\) 3.00000 + 14.6969i 0.0666667 + 0.326599i
\(46\) 0 0
\(47\) 38.6969 + 38.6969i 0.823339 + 0.823339i 0.986585 0.163246i \(-0.0521965\pi\)
−0.163246 + 0.986585i \(0.552197\pi\)
\(48\) 0 0
\(49\) 109.384i 2.23232i
\(50\) 0 0
\(51\) 14.9444 0.293027
\(52\) 0 0
\(53\) −69.0908 + 69.0908i −1.30360 + 1.30360i −0.377653 + 0.925947i \(0.623269\pi\)
−0.925947 + 0.377653i \(0.876731\pi\)
\(54\) 0 0
\(55\) 28.4041 5.79796i 0.516438 0.105417i
\(56\) 0 0
\(57\) −7.59592 7.59592i −0.133262 0.133262i
\(58\) 0 0
\(59\) 20.0000i 0.338983i −0.985532 0.169492i \(-0.945787\pi\)
0.985532 0.169492i \(-0.0542125\pi\)
\(60\) 0 0
\(61\) 63.1918 1.03593 0.517966 0.855401i \(-0.326689\pi\)
0.517966 + 0.855401i \(0.326689\pi\)
\(62\) 0 0
\(63\) −26.6969 + 26.6969i −0.423761 + 0.423761i
\(64\) 0 0
\(65\) −26.5051 + 40.1010i −0.407771 + 0.616939i
\(66\) 0 0
\(67\) −40.0908 40.0908i −0.598370 0.598370i 0.341508 0.939879i \(-0.389062\pi\)
−0.939879 + 0.341508i \(0.889062\pi\)
\(68\) 0 0
\(69\) 45.7980i 0.663739i
\(70\) 0 0
\(71\) 25.7980 0.363352 0.181676 0.983358i \(-0.441848\pi\)
0.181676 + 0.983358i \(0.441848\pi\)
\(72\) 0 0
\(73\) −56.7980 + 56.7980i −0.778054 + 0.778054i −0.979500 0.201445i \(-0.935436\pi\)
0.201445 + 0.979500i \(0.435436\pi\)
\(74\) 0 0
\(75\) 16.1691 40.1691i 0.215588 0.535588i
\(76\) 0 0
\(77\) 51.5959 + 51.5959i 0.670077 + 0.670077i
\(78\) 0 0
\(79\) 139.373i 1.76422i −0.471042 0.882111i \(-0.656122\pi\)
0.471042 0.882111i \(-0.343878\pi\)
\(80\) 0 0
\(81\) −9.00000 −0.111111
\(82\) 0 0
\(83\) −13.7071 + 13.7071i −0.165146 + 0.165146i −0.784842 0.619696i \(-0.787256\pi\)
0.619696 + 0.784842i \(0.287256\pi\)
\(84\) 0 0
\(85\) −35.9898 23.7878i −0.423409 0.279856i
\(86\) 0 0
\(87\) 7.59592 + 7.59592i 0.0873094 + 0.0873094i
\(88\) 0 0
\(89\) 58.6061i 0.658496i 0.944244 + 0.329248i \(0.106795\pi\)
−0.944244 + 0.329248i \(0.893205\pi\)
\(90\) 0 0
\(91\) −120.990 −1.32956
\(92\) 0 0
\(93\) −0.494897 + 0.494897i −0.00532148 + 0.00532148i
\(94\) 0 0
\(95\) 6.20204 + 30.3837i 0.0652846 + 0.319828i
\(96\) 0 0
\(97\) −15.9898 15.9898i −0.164843 0.164843i 0.619865 0.784708i \(-0.287187\pi\)
−0.784708 + 0.619865i \(0.787187\pi\)
\(98\) 0 0
\(99\) 17.3939i 0.175696i
\(100\) 0 0
\(101\) 128.384 1.27113 0.635563 0.772049i \(-0.280768\pi\)
0.635563 + 0.772049i \(0.280768\pi\)
\(102\) 0 0
\(103\) −32.4949 + 32.4949i −0.315484 + 0.315484i −0.847030 0.531545i \(-0.821612\pi\)
0.531545 + 0.847030i \(0.321612\pi\)
\(104\) 0 0
\(105\) 106.788 21.7980i 1.01703 0.207600i
\(106\) 0 0
\(107\) −24.8990 24.8990i −0.232701 0.232701i 0.581118 0.813819i \(-0.302615\pi\)
−0.813819 + 0.581118i \(0.802615\pi\)
\(108\) 0 0
\(109\) 130.000i 1.19266i 0.802739 + 0.596330i \(0.203375\pi\)
−0.802739 + 0.596330i \(0.796625\pi\)
\(110\) 0 0
\(111\) 66.1362 0.595822
\(112\) 0 0
\(113\) 8.70714 8.70714i 0.0770544 0.0770544i −0.667529 0.744584i \(-0.732648\pi\)
0.744584 + 0.667529i \(0.232648\pi\)
\(114\) 0 0
\(115\) 72.8990 110.293i 0.633904 0.959068i
\(116\) 0 0
\(117\) −20.3939 20.3939i −0.174307 0.174307i
\(118\) 0 0
\(119\) 108.586i 0.912485i
\(120\) 0 0
\(121\) −87.3837 −0.722179
\(122\) 0 0
\(123\) −2.20204 + 2.20204i −0.0179028 + 0.0179028i
\(124\) 0 0
\(125\) −102.879 + 71.0000i −0.823029 + 0.568000i
\(126\) 0 0
\(127\) −50.2929 50.2929i −0.396007 0.396007i 0.480815 0.876822i \(-0.340341\pi\)
−0.876822 + 0.480815i \(0.840341\pi\)
\(128\) 0 0
\(129\) 89.3939i 0.692976i
\(130\) 0 0
\(131\) 114.202 0.871771 0.435886 0.900002i \(-0.356435\pi\)
0.435886 + 0.900002i \(0.356435\pi\)
\(132\) 0 0
\(133\) −55.1918 + 55.1918i −0.414976 + 0.414976i
\(134\) 0 0
\(135\) 21.6742 + 14.3258i 0.160550 + 0.106117i
\(136\) 0 0
\(137\) 16.1010 + 16.1010i 0.117526 + 0.117526i 0.763424 0.645898i \(-0.223517\pi\)
−0.645898 + 0.763424i \(0.723517\pi\)
\(138\) 0 0
\(139\) 73.7980i 0.530921i 0.964122 + 0.265460i \(0.0855239\pi\)
−0.964122 + 0.265460i \(0.914476\pi\)
\(140\) 0 0
\(141\) 94.7878 0.672254
\(142\) 0 0
\(143\) −39.4143 + 39.4143i −0.275624 + 0.275624i
\(144\) 0 0
\(145\) −6.20204 30.3837i −0.0427727 0.209543i
\(146\) 0 0
\(147\) 133.967 + 133.967i 0.911341 + 0.911341i
\(148\) 0 0
\(149\) 270.767i 1.81723i −0.417634 0.908615i \(-0.637141\pi\)
0.417634 0.908615i \(-0.362859\pi\)
\(150\) 0 0
\(151\) 21.6163 0.143154 0.0715772 0.997435i \(-0.477197\pi\)
0.0715772 + 0.997435i \(0.477197\pi\)
\(152\) 0 0
\(153\) 18.3031 18.3031i 0.119628 0.119628i
\(154\) 0 0
\(155\) 1.97959 0.404082i 0.0127715 0.00260698i
\(156\) 0 0
\(157\) −123.000 123.000i −0.783439 0.783439i 0.196970 0.980410i \(-0.436890\pi\)
−0.980410 + 0.196970i \(0.936890\pi\)
\(158\) 0 0
\(159\) 169.237i 1.06439i
\(160\) 0 0
\(161\) 332.767 2.06688
\(162\) 0 0
\(163\) 112.495 112.495i 0.690153 0.690153i −0.272113 0.962265i \(-0.587722\pi\)
0.962265 + 0.272113i \(0.0877223\pi\)
\(164\) 0 0
\(165\) 27.6867 41.8888i 0.167798 0.253871i
\(166\) 0 0
\(167\) 176.677 + 176.677i 1.05794 + 1.05794i 0.998215 + 0.0597286i \(0.0190235\pi\)
0.0597286 + 0.998215i \(0.480976\pi\)
\(168\) 0 0
\(169\) 76.5755i 0.453110i
\(170\) 0 0
\(171\) −18.6061 −0.108808
\(172\) 0 0
\(173\) −142.889 + 142.889i −0.825947 + 0.825947i −0.986953 0.161007i \(-0.948526\pi\)
0.161007 + 0.986953i \(0.448526\pi\)
\(174\) 0 0
\(175\) −291.868 117.485i −1.66782 0.671341i
\(176\) 0 0
\(177\) −24.4949 24.4949i −0.138389 0.138389i
\(178\) 0 0
\(179\) 133.171i 0.743974i 0.928238 + 0.371987i \(0.121323\pi\)
−0.928238 + 0.371987i \(0.878677\pi\)
\(180\) 0 0
\(181\) −137.192 −0.757966 −0.378983 0.925404i \(-0.623726\pi\)
−0.378983 + 0.925404i \(0.623726\pi\)
\(182\) 0 0
\(183\) 77.3939 77.3939i 0.422917 0.422917i
\(184\) 0 0
\(185\) −159.272 105.272i −0.860932 0.569040i
\(186\) 0 0
\(187\) −35.3735 35.3735i −0.189163 0.189163i
\(188\) 0 0
\(189\) 65.3939i 0.345999i
\(190\) 0 0
\(191\) −266.606 −1.39584 −0.697922 0.716174i \(-0.745892\pi\)
−0.697922 + 0.716174i \(0.745892\pi\)
\(192\) 0 0
\(193\) 117.384 117.384i 0.608206 0.608206i −0.334271 0.942477i \(-0.608490\pi\)
0.942477 + 0.334271i \(0.108490\pi\)
\(194\) 0 0
\(195\) 16.6515 + 81.5755i 0.0853925 + 0.418336i
\(196\) 0 0
\(197\) 246.687 + 246.687i 1.25222 + 1.25222i 0.954724 + 0.297493i \(0.0961505\pi\)
0.297493 + 0.954724i \(0.403850\pi\)
\(198\) 0 0
\(199\) 154.565i 0.776710i 0.921510 + 0.388355i \(0.126957\pi\)
−0.921510 + 0.388355i \(0.873043\pi\)
\(200\) 0 0
\(201\) −98.2020 −0.488567
\(202\) 0 0
\(203\) 55.1918 55.1918i 0.271881 0.271881i
\(204\) 0 0
\(205\) 8.80816 1.79796i 0.0429667 0.00877053i
\(206\) 0 0
\(207\) 56.0908 + 56.0908i 0.270970 + 0.270970i
\(208\) 0 0
\(209\) 35.9592i 0.172053i
\(210\) 0 0
\(211\) −190.747 −0.904014 −0.452007 0.892014i \(-0.649292\pi\)
−0.452007 + 0.892014i \(0.649292\pi\)
\(212\) 0 0
\(213\) 31.5959 31.5959i 0.148338 0.148338i
\(214\) 0 0
\(215\) 142.293 215.283i 0.661827 1.00131i
\(216\) 0 0
\(217\) 3.59592 + 3.59592i 0.0165711 + 0.0165711i
\(218\) 0 0
\(219\) 139.126i 0.635279i
\(220\) 0 0
\(221\) 82.9490 0.375335
\(222\) 0 0
\(223\) −16.6765 + 16.6765i −0.0747826 + 0.0747826i −0.743509 0.668726i \(-0.766840\pi\)
0.668726 + 0.743509i \(0.266840\pi\)
\(224\) 0 0
\(225\) −29.3939 69.0000i −0.130639 0.306667i
\(226\) 0 0
\(227\) 42.0704 + 42.0704i 0.185332 + 0.185332i 0.793675 0.608342i \(-0.208165\pi\)
−0.608342 + 0.793675i \(0.708165\pi\)
\(228\) 0 0
\(229\) 173.939i 0.759558i 0.925077 + 0.379779i \(0.124000\pi\)
−0.925077 + 0.379779i \(0.876000\pi\)
\(230\) 0 0
\(231\) 126.384 0.547115
\(232\) 0 0
\(233\) −298.262 + 298.262i −1.28010 + 1.28010i −0.339483 + 0.940612i \(0.610252\pi\)
−0.940612 + 0.339483i \(0.889748\pi\)
\(234\) 0 0
\(235\) −228.272 150.879i −0.971372 0.642036i
\(236\) 0 0
\(237\) −170.697 170.697i −0.720240 0.720240i
\(238\) 0 0
\(239\) 37.2122i 0.155700i −0.996965 0.0778499i \(-0.975195\pi\)
0.996965 0.0778499i \(-0.0248055\pi\)
\(240\) 0 0
\(241\) 165.939 0.688543 0.344271 0.938870i \(-0.388126\pi\)
0.344271 + 0.938870i \(0.388126\pi\)
\(242\) 0 0
\(243\) −11.0227 + 11.0227i −0.0453609 + 0.0453609i
\(244\) 0 0
\(245\) −109.384 535.868i −0.446464 2.18722i
\(246\) 0 0
\(247\) −42.1612 42.1612i −0.170693 0.170693i
\(248\) 0 0
\(249\) 33.5755i 0.134841i
\(250\) 0 0
\(251\) −255.414 −1.01759 −0.508793 0.860889i \(-0.669908\pi\)
−0.508793 + 0.860889i \(0.669908\pi\)
\(252\) 0 0
\(253\) 108.404 108.404i 0.428475 0.428475i
\(254\) 0 0
\(255\) −73.2122 + 14.9444i −0.287107 + 0.0586054i
\(256\) 0 0
\(257\) −270.485 270.485i −1.05247 1.05247i −0.998545 0.0539246i \(-0.982827\pi\)
−0.0539246 0.998545i \(-0.517173\pi\)
\(258\) 0 0
\(259\) 480.545i 1.85539i
\(260\) 0 0
\(261\) 18.6061 0.0712878
\(262\) 0 0
\(263\) 1.30306 1.30306i 0.00495461 0.00495461i −0.704625 0.709580i \(-0.748885\pi\)
0.709580 + 0.704625i \(0.248885\pi\)
\(264\) 0 0
\(265\) 269.384 407.565i 1.01654 1.53798i
\(266\) 0 0
\(267\) 71.7775 + 71.7775i 0.268830 + 0.268830i
\(268\) 0 0
\(269\) 41.1510i 0.152978i 0.997070 + 0.0764889i \(0.0243710\pi\)
−0.997070 + 0.0764889i \(0.975629\pi\)
\(270\) 0 0
\(271\) −484.727 −1.78866 −0.894329 0.447409i \(-0.852347\pi\)
−0.894329 + 0.447409i \(0.852347\pi\)
\(272\) 0 0
\(273\) −148.182 + 148.182i −0.542790 + 0.542790i
\(274\) 0 0
\(275\) −133.353 + 56.8082i −0.484920 + 0.206575i
\(276\) 0 0
\(277\) −51.9898 51.9898i −0.187689 0.187689i 0.607007 0.794696i \(-0.292370\pi\)
−0.794696 + 0.607007i \(0.792370\pi\)
\(278\) 0 0
\(279\) 1.21225i 0.00434497i
\(280\) 0 0
\(281\) 242.524 0.863076 0.431538 0.902095i \(-0.357971\pi\)
0.431538 + 0.902095i \(0.357971\pi\)
\(282\) 0 0
\(283\) −104.717 + 104.717i −0.370026 + 0.370026i −0.867487 0.497461i \(-0.834266\pi\)
0.497461 + 0.867487i \(0.334266\pi\)
\(284\) 0 0
\(285\) 44.8082 + 29.6163i 0.157222 + 0.103917i
\(286\) 0 0
\(287\) 16.0000 + 16.0000i 0.0557491 + 0.0557491i
\(288\) 0 0
\(289\) 214.555i 0.742405i
\(290\) 0 0
\(291\) −39.1668 −0.134594
\(292\) 0 0
\(293\) 60.9092 60.9092i 0.207881 0.207881i −0.595485 0.803366i \(-0.703040\pi\)
0.803366 + 0.595485i \(0.203040\pi\)
\(294\) 0 0
\(295\) 20.0000 + 97.9796i 0.0677966 + 0.332134i
\(296\) 0 0
\(297\) 21.3031 + 21.3031i 0.0717275 + 0.0717275i
\(298\) 0 0
\(299\) 254.202i 0.850174i
\(300\) 0 0
\(301\) 649.535 2.15792
\(302\) 0 0
\(303\) 157.237 157.237i 0.518935 0.518935i
\(304\) 0 0
\(305\) −309.576 + 63.1918i −1.01500 + 0.207186i
\(306\) 0 0
\(307\) 201.303 + 201.303i 0.655710 + 0.655710i 0.954362 0.298652i \(-0.0965369\pi\)
−0.298652 + 0.954362i \(0.596537\pi\)
\(308\) 0 0
\(309\) 79.5959i 0.257592i
\(310\) 0 0
\(311\) 559.737 1.79980 0.899898 0.436100i \(-0.143641\pi\)
0.899898 + 0.436100i \(0.143641\pi\)
\(312\) 0 0
\(313\) −93.7673 + 93.7673i −0.299576 + 0.299576i −0.840848 0.541272i \(-0.817943\pi\)
0.541272 + 0.840848i \(0.317943\pi\)
\(314\) 0 0
\(315\) 104.091 157.485i 0.330447 0.499951i
\(316\) 0 0
\(317\) −362.828 362.828i −1.14457 1.14457i −0.987605 0.156962i \(-0.949830\pi\)
−0.156962 0.987605i \(-0.550170\pi\)
\(318\) 0 0
\(319\) 35.9592i 0.112725i
\(320\) 0 0
\(321\) −60.9898 −0.189999
\(322\) 0 0
\(323\) 37.8388 37.8388i 0.117148 0.117148i
\(324\) 0 0
\(325\) 89.7469 222.959i 0.276144 0.686028i
\(326\) 0 0
\(327\) 159.217 + 159.217i 0.486902 + 0.486902i
\(328\) 0 0
\(329\) 688.727i 2.09339i
\(330\) 0 0
\(331\) −14.0204 −0.0423577 −0.0211789 0.999776i \(-0.506742\pi\)
−0.0211789 + 0.999776i \(0.506742\pi\)
\(332\) 0 0
\(333\) 81.0000 81.0000i 0.243243 0.243243i
\(334\) 0 0
\(335\) 236.495 + 156.313i 0.705955 + 0.466607i
\(336\) 0 0
\(337\) −166.373 166.373i −0.493690 0.493690i 0.415777 0.909467i \(-0.363510\pi\)
−0.909467 + 0.415777i \(0.863510\pi\)
\(338\) 0 0
\(339\) 21.3281i 0.0629146i
\(340\) 0 0
\(341\) 2.34285 0.00687053
\(342\) 0 0
\(343\) 537.353 537.353i 1.56663 1.56663i
\(344\) 0 0
\(345\) −45.7980 224.363i −0.132748 0.650328i
\(346\) 0 0
\(347\) −163.505 163.505i −0.471196 0.471196i 0.431105 0.902302i \(-0.358124\pi\)
−0.902302 + 0.431105i \(0.858124\pi\)
\(348\) 0 0
\(349\) 280.000i 0.802292i −0.916014 0.401146i \(-0.868612\pi\)
0.916014 0.401146i \(-0.131388\pi\)
\(350\) 0 0
\(351\) −49.9546 −0.142321
\(352\) 0 0
\(353\) 261.495 261.495i 0.740779 0.740779i −0.231949 0.972728i \(-0.574510\pi\)
0.972728 + 0.231949i \(0.0745103\pi\)
\(354\) 0 0
\(355\) −126.384 + 25.7980i −0.356010 + 0.0726703i
\(356\) 0 0
\(357\) −132.990 132.990i −0.372520 0.372520i
\(358\) 0 0
\(359\) 425.090i 1.18409i 0.805903 + 0.592047i \(0.201680\pi\)
−0.805903 + 0.592047i \(0.798320\pi\)
\(360\) 0 0
\(361\) 322.535 0.893448
\(362\) 0 0
\(363\) −107.023 + 107.023i −0.294828 + 0.294828i
\(364\) 0 0
\(365\) 221.454 335.050i 0.606723 0.917945i
\(366\) 0 0
\(367\) −316.495 316.495i −0.862384 0.862384i 0.129231 0.991615i \(-0.458749\pi\)
−0.991615 + 0.129231i \(0.958749\pi\)
\(368\) 0 0
\(369\) 5.39388i 0.0146176i
\(370\) 0 0
\(371\) 1229.68 3.31449
\(372\) 0 0
\(373\) −210.939 + 210.939i −0.565519 + 0.565519i −0.930870 0.365351i \(-0.880949\pi\)
0.365351 + 0.930870i \(0.380949\pi\)
\(374\) 0 0
\(375\) −39.0431 + 212.957i −0.104115 + 0.567885i
\(376\) 0 0
\(377\) 42.1612 + 42.1612i 0.111833 + 0.111833i
\(378\) 0 0
\(379\) 344.182i 0.908131i −0.890968 0.454065i \(-0.849973\pi\)
0.890968 0.454065i \(-0.150027\pi\)
\(380\) 0 0
\(381\) −123.192 −0.323338
\(382\) 0 0
\(383\) −409.707 + 409.707i −1.06973 + 1.06973i −0.0723523 + 0.997379i \(0.523051\pi\)
−0.997379 + 0.0723523i \(0.976949\pi\)
\(384\) 0 0
\(385\) −304.363 201.171i −0.790554 0.522523i
\(386\) 0 0
\(387\) 109.485 + 109.485i 0.282906 + 0.282906i
\(388\) 0 0
\(389\) 301.151i 0.774167i 0.922045 + 0.387084i \(0.126518\pi\)
−0.922045 + 0.387084i \(0.873482\pi\)
\(390\) 0 0
\(391\) −228.141 −0.583480
\(392\) 0 0
\(393\) 139.868 139.868i 0.355899 0.355899i
\(394\) 0 0
\(395\) 139.373 + 682.788i 0.352844 + 1.72858i
\(396\) 0 0
\(397\) −479.343 479.343i −1.20741 1.20741i −0.971862 0.235551i \(-0.924311\pi\)
−0.235551 0.971862i \(-0.575689\pi\)
\(398\) 0 0
\(399\) 135.192i 0.338827i
\(400\) 0 0
\(401\) 101.233 0.252451 0.126225 0.992002i \(-0.459714\pi\)
0.126225 + 0.992002i \(0.459714\pi\)
\(402\) 0 0
\(403\) −2.74693 + 2.74693i −0.00681621 + 0.00681621i
\(404\) 0 0
\(405\) 44.0908 9.00000i 0.108866 0.0222222i
\(406\) 0 0
\(407\) −156.545 156.545i −0.384631 0.384631i
\(408\) 0 0
\(409\) 257.110i 0.628631i 0.949319 + 0.314316i \(0.101775\pi\)
−0.949319 + 0.314316i \(0.898225\pi\)
\(410\) 0 0
\(411\) 39.4393 0.0959593
\(412\) 0 0
\(413\) −177.980 + 177.980i −0.430943 + 0.430943i
\(414\) 0 0
\(415\) 53.4439 80.8582i 0.128780 0.194839i
\(416\) 0 0
\(417\) 90.3837 + 90.3837i 0.216747 + 0.216747i
\(418\) 0 0
\(419\) 375.959i 0.897277i −0.893713 0.448639i \(-0.851909\pi\)
0.893713 0.448639i \(-0.148091\pi\)
\(420\) 0 0
\(421\) −158.829 −0.377265 −0.188633 0.982048i \(-0.560405\pi\)
−0.188633 + 0.982048i \(0.560405\pi\)
\(422\) 0 0
\(423\) 116.091 116.091i 0.274446 0.274446i
\(424\) 0 0
\(425\) 200.101 + 80.5459i 0.470826 + 0.189520i
\(426\) 0 0
\(427\) −562.343 562.343i −1.31696 1.31696i
\(428\) 0 0
\(429\) 96.5449i 0.225046i
\(430\) 0 0
\(431\) −152.182 −0.353090 −0.176545 0.984293i \(-0.556492\pi\)
−0.176545 + 0.984293i \(0.556492\pi\)
\(432\) 0 0
\(433\) −254.918 + 254.918i −0.588726 + 0.588726i −0.937286 0.348560i \(-0.886671\pi\)
0.348560 + 0.937286i \(0.386671\pi\)
\(434\) 0 0
\(435\) −44.8082 29.6163i −0.103007 0.0680835i
\(436\) 0 0
\(437\) 115.959 + 115.959i 0.265353 + 0.265353i
\(438\) 0 0
\(439\) 299.373i 0.681944i −0.940073 0.340972i \(-0.889244\pi\)
0.940073 0.340972i \(-0.110756\pi\)
\(440\) 0 0
\(441\) 328.151 0.744107
\(442\) 0 0
\(443\) −144.717 + 144.717i −0.326676 + 0.326676i −0.851321 0.524645i \(-0.824198\pi\)
0.524645 + 0.851321i \(0.324198\pi\)
\(444\) 0 0
\(445\) −58.6061 287.110i −0.131699 0.645191i
\(446\) 0 0
\(447\) −331.621 331.621i −0.741881 0.741881i
\(448\) 0 0
\(449\) 846.727i 1.88581i 0.333069 + 0.942903i \(0.391916\pi\)
−0.333069 + 0.942903i \(0.608084\pi\)
\(450\) 0 0
\(451\) 10.4245 0.0231142
\(452\) 0 0
\(453\) 26.4745 26.4745i 0.0584426 0.0584426i
\(454\) 0 0
\(455\) 592.727 120.990i 1.30270 0.265912i
\(456\) 0 0
\(457\) −38.3939 38.3939i −0.0840129 0.0840129i 0.663852 0.747864i \(-0.268921\pi\)
−0.747864 + 0.663852i \(0.768921\pi\)
\(458\) 0 0
\(459\) 44.8332i 0.0976757i
\(460\) 0 0
\(461\) −78.7265 −0.170773 −0.0853867 0.996348i \(-0.527213\pi\)
−0.0853867 + 0.996348i \(0.527213\pi\)
\(462\) 0 0
\(463\) −461.485 + 461.485i −0.996727 + 0.996727i −0.999995 0.00326746i \(-0.998960\pi\)
0.00326746 + 0.999995i \(0.498960\pi\)
\(464\) 0 0
\(465\) 1.92959 2.91939i 0.00414967 0.00627826i
\(466\) 0 0
\(467\) −17.3031 17.3031i −0.0370515 0.0370515i 0.688338 0.725390i \(-0.258340\pi\)
−0.725390 + 0.688338i \(0.758340\pi\)
\(468\) 0 0
\(469\) 713.535i 1.52140i
\(470\) 0 0
\(471\) −301.287 −0.639676
\(472\) 0 0
\(473\) 211.596 211.596i 0.447349 0.447349i
\(474\) 0 0
\(475\) −60.7673 142.647i −0.127931 0.300309i
\(476\) 0 0
\(477\) 207.272 + 207.272i 0.434533 + 0.434533i
\(478\) 0 0
\(479\) 776.727i 1.62156i −0.585352 0.810779i \(-0.699044\pi\)
0.585352 0.810779i \(-0.300956\pi\)
\(480\) 0 0
\(481\) 367.090 0.763180
\(482\) 0 0
\(483\) 407.555 407.555i 0.843799 0.843799i
\(484\) 0 0
\(485\) 94.3235 + 62.3439i 0.194481 + 0.128544i
\(486\) 0 0
\(487\) −439.423 439.423i −0.902307 0.902307i 0.0933285 0.995635i \(-0.470249\pi\)
−0.995635 + 0.0933285i \(0.970249\pi\)
\(488\) 0 0
\(489\) 275.555i 0.563507i
\(490\) 0 0
\(491\) −246.080 −0.501180 −0.250590 0.968093i \(-0.580625\pi\)
−0.250590 + 0.968093i \(0.580625\pi\)
\(492\) 0 0
\(493\) −37.8388 + 37.8388i −0.0767521 + 0.0767521i
\(494\) 0 0
\(495\) −17.3939 85.2122i −0.0351391 0.172146i
\(496\) 0 0
\(497\) −229.576 229.576i −0.461923 0.461923i
\(498\) 0 0
\(499\) 597.839i 1.19807i 0.800721 + 0.599037i \(0.204450\pi\)
−0.800721 + 0.599037i \(0.795550\pi\)
\(500\) 0 0
\(501\) 432.767 0.863807
\(502\) 0 0
\(503\) −516.817 + 516.817i −1.02747 + 1.02747i −0.0278580 + 0.999612i \(0.508869\pi\)
−0.999612 + 0.0278580i \(0.991131\pi\)
\(504\) 0 0
\(505\) −628.949 + 128.384i −1.24544 + 0.254225i
\(506\) 0 0
\(507\) 93.7855 + 93.7855i 0.184981 + 0.184981i
\(508\) 0 0
\(509\) 452.059i 0.888132i 0.895994 + 0.444066i \(0.146464\pi\)
−0.895994 + 0.444066i \(0.853536\pi\)
\(510\) 0 0
\(511\) 1010.89 1.97825
\(512\) 0 0
\(513\) −22.7878 + 22.7878i −0.0444206 + 0.0444206i
\(514\) 0 0
\(515\) 126.697 191.687i 0.246013 0.372207i
\(516\) 0 0
\(517\) −224.363 224.363i −0.433971 0.433971i
\(518\) 0 0
\(519\) 350.005i 0.674383i
\(520\) 0 0
\(521\) 779.494 1.49615 0.748075 0.663614i \(-0.230978\pi\)
0.748075 + 0.663614i \(0.230978\pi\)
\(522\) 0 0
\(523\) −179.283 + 179.283i −0.342797 + 0.342797i −0.857418 0.514621i \(-0.827933\pi\)
0.514621 + 0.857418i \(0.327933\pi\)
\(524\) 0 0
\(525\) −501.353 + 213.576i −0.954958 + 0.406810i
\(526\) 0 0
\(527\) −2.46531 2.46531i −0.00467801 0.00467801i
\(528\) 0 0
\(529\) 170.151i 0.321647i
\(530\) 0 0
\(531\) −60.0000 −0.112994
\(532\) 0 0
\(533\) −12.2225 + 12.2225i −0.0229314 + 0.0229314i
\(534\) 0 0
\(535\) 146.879 + 97.0806i 0.274539 + 0.181459i
\(536\) 0 0
\(537\) 163.101 + 163.101i 0.303726 + 0.303726i
\(538\) 0 0
\(539\) 634.202i 1.17663i
\(540\) 0 0
\(541\) 385.110 0.711849 0.355924 0.934515i \(-0.384166\pi\)
0.355924 + 0.934515i \(0.384166\pi\)
\(542\) 0 0
\(543\) −168.025 + 168.025i −0.309438 + 0.309438i
\(544\) 0 0
\(545\) −130.000 636.867i −0.238532 1.16856i
\(546\) 0 0
\(547\) 504.372 + 504.372i 0.922070 + 0.922070i 0.997176 0.0751053i \(-0.0239293\pi\)
−0.0751053 + 0.997176i \(0.523929\pi\)
\(548\) 0 0
\(549\) 189.576i 0.345311i
\(550\) 0 0
\(551\) 38.4653 0.0698100
\(552\) 0 0
\(553\) −1240.28 + 1240.28i −2.24282 + 2.24282i
\(554\) 0 0
\(555\) −324.000 + 66.1362i −0.583784 + 0.119164i
\(556\) 0 0
\(557\) 130.101 + 130.101i 0.233575 + 0.233575i 0.814183 0.580608i \(-0.197185\pi\)
−0.580608 + 0.814183i \(0.697185\pi\)
\(558\) 0 0
\(559\) 496.182i 0.887624i
\(560\) 0 0
\(561\) −86.6469 −0.154451
\(562\) 0 0
\(563\) −666.879 + 666.879i −1.18451 + 1.18451i −0.205946 + 0.978563i \(0.566027\pi\)
−0.978563 + 0.205946i \(0.933973\pi\)
\(564\) 0 0
\(565\) −33.9490 + 51.3633i −0.0600867 + 0.0909084i
\(566\) 0 0
\(567\) 80.0908 + 80.0908i 0.141254 + 0.141254i
\(568\) 0 0
\(569\) 987.494i 1.73549i 0.497010 + 0.867745i \(0.334431\pi\)
−0.497010 + 0.867745i \(0.665569\pi\)
\(570\) 0 0
\(571\) −452.767 −0.792938 −0.396469 0.918048i \(-0.629764\pi\)
−0.396469 + 0.918048i \(0.629764\pi\)
\(572\) 0 0
\(573\) −326.524 + 326.524i −0.569851 + 0.569851i
\(574\) 0 0
\(575\) −246.838 + 613.221i −0.429283 + 1.06647i
\(576\) 0 0
\(577\) 463.000 + 463.000i 0.802426 + 0.802426i 0.983474 0.181048i \(-0.0579489\pi\)
−0.181048 + 0.983474i \(0.557949\pi\)
\(578\) 0 0
\(579\) 287.530i 0.496598i
\(580\) 0 0
\(581\) 243.959 0.419895
\(582\) 0 0
\(583\) 400.586 400.586i 0.687111 0.687111i
\(584\) 0 0
\(585\) 120.303 + 79.5153i 0.205646 + 0.135924i
\(586\) 0 0
\(587\) −375.909 375.909i −0.640390 0.640390i 0.310261 0.950651i \(-0.399584\pi\)
−0.950651 + 0.310261i \(0.899584\pi\)
\(588\) 0 0
\(589\) 2.50613i 0.00425490i
\(590\) 0 0
\(591\) 604.257 1.02243
\(592\) 0 0
\(593\) −398.646 + 398.646i −0.672253 + 0.672253i −0.958235 0.285982i \(-0.907680\pi\)
0.285982 + 0.958235i \(0.407680\pi\)
\(594\) 0 0
\(595\) 108.586 + 531.959i 0.182497 + 0.894049i
\(596\) 0 0
\(597\) 189.303 + 189.303i 0.317091 + 0.317091i
\(598\) 0 0
\(599\) 509.131i 0.849968i 0.905201 + 0.424984i \(0.139720\pi\)
−0.905201 + 0.424984i \(0.860280\pi\)
\(600\) 0 0
\(601\) −390.302 −0.649421 −0.324711 0.945813i \(-0.605267\pi\)
−0.324711 + 0.945813i \(0.605267\pi\)
\(602\) 0 0
\(603\) −120.272 + 120.272i −0.199457 + 0.199457i
\(604\) 0 0
\(605\) 428.091 87.3837i 0.707588 0.144436i
\(606\) 0 0
\(607\) 494.030 + 494.030i 0.813887 + 0.813887i 0.985214 0.171327i \(-0.0548054\pi\)
−0.171327 + 0.985214i \(0.554805\pi\)
\(608\) 0 0
\(609\) 135.192i 0.221990i
\(610\) 0 0
\(611\) 526.120 0.861081
\(612\) 0 0
\(613\) −74.1102 + 74.1102i −0.120898 + 0.120898i −0.764967 0.644069i \(-0.777245\pi\)
0.644069 + 0.764967i \(0.277245\pi\)
\(614\) 0 0
\(615\) 8.58571 12.9898i 0.0139605 0.0211216i
\(616\) 0 0
\(617\) −398.221 398.221i −0.645416 0.645416i 0.306466 0.951882i \(-0.400853\pi\)
−0.951882 + 0.306466i \(0.900853\pi\)
\(618\) 0 0
\(619\) 838.120i 1.35399i 0.735987 + 0.676995i \(0.236718\pi\)
−0.735987 + 0.676995i \(0.763282\pi\)
\(620\) 0 0
\(621\) 137.394 0.221246
\(622\) 0 0
\(623\) 521.535 521.535i 0.837134 0.837134i
\(624\) 0 0
\(625\) 433.000 450.706i 0.692800 0.721130i
\(626\) 0 0
\(627\) 44.0408 + 44.0408i 0.0702405 + 0.0702405i
\(628\) 0 0
\(629\) 329.455i 0.523776i
\(630\) 0 0
\(631\) 149.980 0.237686 0.118843 0.992913i \(-0.462082\pi\)
0.118843 + 0.992913i \(0.462082\pi\)
\(632\) 0 0
\(633\) −233.616 + 233.616i −0.369062 + 0.369062i
\(634\) 0 0
\(635\) 296.677 + 196.091i 0.467207 + 0.308804i
\(636\) 0 0
\(637\) 743.586 + 743.586i 1.16732 + 1.16732i
\(638\) 0 0
\(639\) 77.3939i 0.121117i
\(640\) 0 0
\(641\) −378.243 −0.590082 −0.295041 0.955485i \(-0.595333\pi\)
−0.295041 + 0.955485i \(0.595333\pi\)
\(642\) 0 0
\(643\) 285.526 285.526i 0.444052 0.444052i −0.449319 0.893371i \(-0.648333\pi\)
0.893371 + 0.449319i \(0.148333\pi\)
\(644\) 0 0
\(645\) −89.3939 437.939i −0.138595 0.678975i
\(646\) 0 0
\(647\) −360.677 360.677i −0.557460 0.557460i 0.371124 0.928583i \(-0.378973\pi\)
−0.928583 + 0.371124i \(0.878973\pi\)
\(648\) 0 0
\(649\) 115.959i 0.178674i
\(650\) 0 0
\(651\) 8.80816 0.0135302
\(652\) 0 0
\(653\) −547.838 + 547.838i −0.838955 + 0.838955i −0.988721 0.149766i \(-0.952148\pi\)
0.149766 + 0.988721i \(0.452148\pi\)
\(654\) 0 0
\(655\) −559.473 + 114.202i −0.854158 + 0.174354i
\(656\) 0 0
\(657\) 170.394 + 170.394i 0.259351 + 0.259351i
\(658\) 0 0
\(659\) 25.5755i 0.0388096i −0.999812 0.0194048i \(-0.993823\pi\)
0.999812 0.0194048i \(-0.00617712\pi\)
\(660\) 0 0
\(661\) 824.727 1.24770 0.623848 0.781546i \(-0.285569\pi\)
0.623848 + 0.781546i \(0.285569\pi\)
\(662\) 0 0
\(663\) 101.591 101.591i 0.153230 0.153230i
\(664\) 0 0
\(665\) 215.192 325.576i 0.323597 0.489587i
\(666\) 0 0
\(667\) −115.959 115.959i −0.173852 0.173852i
\(668\) 0 0
\(669\) 40.8490i 0.0610598i
\(670\) 0 0
\(671\) −366.384 −0.546026
\(672\) 0 0
\(673\) 902.857 902.857i 1.34154 1.34154i 0.447014 0.894527i \(-0.352487\pi\)
0.894527 0.447014i \(-0.147513\pi\)
\(674\) 0 0
\(675\) −120.507 48.5074i −0.178529 0.0718628i
\(676\) 0 0
\(677\) −688.160 688.160i −1.01648 1.01648i −0.999862 0.0166229i \(-0.994709\pi\)
−0.0166229 0.999862i \(-0.505291\pi\)
\(678\) 0 0
\(679\) 284.586i 0.419125i
\(680\) 0 0
\(681\) 103.051 0.151323
\(682\) 0 0
\(683\) −1.92959 + 1.92959i −0.00282518 + 0.00282518i −0.708518 0.705693i \(-0.750636\pi\)
0.705693 + 0.708518i \(0.250636\pi\)
\(684\) 0 0
\(685\) −94.9796 62.7775i −0.138656 0.0916461i
\(686\) 0 0
\(687\) 213.031 + 213.031i 0.310088 + 0.310088i
\(688\) 0 0
\(689\) 939.353i 1.36336i
\(690\) 0 0
\(691\) 162.706 0.235465 0.117732 0.993045i \(-0.462438\pi\)
0.117732 + 0.993045i \(0.462438\pi\)
\(692\) 0 0
\(693\) 154.788 154.788i 0.223359 0.223359i
\(694\) 0 0
\(695\) −73.7980 361.535i −0.106184 0.520194i
\(696\) 0 0
\(697\) −10.9694 10.9694i −0.0157380 0.0157380i
\(698\) 0 0
\(699\) 730.590i 1.04519i
\(700\) 0 0
\(701\) −260.222 −0.371216 −0.185608 0.982624i \(-0.559425\pi\)
−0.185608 + 0.982624i \(0.559425\pi\)
\(702\) 0 0
\(703\) 167.455 167.455i 0.238201 0.238201i
\(704\) 0 0
\(705\) −464.363 + 94.7878i −0.658671 + 0.134451i
\(706\) 0 0
\(707\) −1142.48 1142.48i −1.61596 1.61596i
\(708\) 0 0
\(709\) 151.637i 0.213874i −0.994266 0.106937i \(-0.965896\pi\)
0.994266 0.106937i \(-0.0341043\pi\)
\(710\) 0 0
\(711\) −418.120 −0.588074
\(712\) 0 0
\(713\) 7.55510 7.55510i 0.0105962 0.0105962i
\(714\) 0 0
\(715\) 153.675 232.504i 0.214931 0.325181i
\(716\) 0 0
\(717\) −45.5755 45.5755i −0.0635642 0.0635642i
\(718\) 0 0
\(719\) 1281.82i 1.78278i −0.453241 0.891388i \(-0.649732\pi\)
0.453241 0.891388i \(-0.350268\pi\)
\(720\) 0 0
\(721\) 578.343 0.802140
\(722\) 0 0
\(723\) 203.233 203.233i 0.281096 0.281096i
\(724\) 0 0
\(725\) 60.7673 + 142.647i 0.0838170 + 0.196754i
\(726\) 0 0
\(727\) 638.352 + 638.352i 0.878063 + 0.878063i 0.993334 0.115271i \(-0.0367736\pi\)
−0.115271 + 0.993334i \(0.536774\pi\)
\(728\) 0 0
\(729\) 27.0000i 0.0370370i
\(730\) 0 0
\(731\) −445.312 −0.609182
\(732\) 0 0
\(733\) −400.414 + 400.414i −0.546268 + 0.546268i −0.925359 0.379091i \(-0.876237\pi\)
0.379091 + 0.925359i \(0.376237\pi\)
\(734\) 0 0
\(735\) −790.269 522.335i −1.07520 0.710660i
\(736\) 0 0
\(737\) 232.445 + 232.445i 0.315393 + 0.315393i
\(738\) 0 0
\(739\) 382.647i 0.517790i −0.965905 0.258895i \(-0.916642\pi\)
0.965905 0.258895i \(-0.0833584\pi\)
\(740\) 0 0
\(741\) −103.273 −0.139370
\(742\) 0 0
\(743\) 135.383 135.383i 0.182211 0.182211i −0.610108 0.792319i \(-0.708874\pi\)
0.792319 + 0.610108i \(0.208874\pi\)
\(744\) 0 0
\(745\) 270.767 + 1326.48i 0.363446 + 1.78051i
\(746\) 0 0
\(747\) 41.1214 + 41.1214i 0.0550488 + 0.0550488i
\(748\) 0 0
\(749\) 443.151i 0.591657i
\(750\) 0 0
\(751\) −571.273 −0.760684 −0.380342 0.924846i \(-0.624194\pi\)
−0.380342 + 0.924846i \(0.624194\pi\)
\(752\) 0 0
\(753\) −312.817 + 312.817i −0.415428 + 0.415428i
\(754\) 0 0
\(755\) −105.898 + 21.6163i −0.140262 + 0.0286309i
\(756\) 0 0
\(757\) 917.908 + 917.908i 1.21256 + 1.21256i 0.970182 + 0.242379i \(0.0779276\pi\)
0.242379 + 0.970182i \(0.422072\pi\)
\(758\) 0 0
\(759\) 265.535i 0.349848i
\(760\) 0 0
\(761\) −616.261 −0.809804 −0.404902 0.914360i \(-0.632694\pi\)
−0.404902 + 0.914360i \(0.632694\pi\)
\(762\) 0 0
\(763\) 1156.87 1156.87i 1.51621 1.51621i
\(764\) 0 0
\(765\) −71.3633 + 107.969i −0.0932853 + 0.141136i
\(766\) 0 0
\(767\) −135.959 135.959i −0.177261 0.177261i
\(768\) 0 0
\(769\) 154.424i 0.200812i 0.994947 + 0.100406i \(0.0320142\pi\)
−0.994947 + 0.100406i \(0.967986\pi\)
\(770\) 0 0
\(771\) −662.549 −0.859338
\(772\) 0 0
\(773\) 184.323 184.323i 0.238452 0.238452i −0.577757 0.816209i \(-0.696072\pi\)
0.816209 + 0.577757i \(0.196072\pi\)
\(774\) 0 0
\(775\) −9.29389 + 3.95918i −0.0119921 + 0.00510862i
\(776\) 0 0
\(777\) −588.545 588.545i −0.757458 0.757458i
\(778\) 0 0
\(779\) 11.1510i 0.0143145i
\(780\) 0 0
\(781\) −149.576 −0.191518
\(782\) 0 0
\(783\) 22.7878 22.7878i 0.0291031 0.0291031i
\(784\) 0 0
\(785\) 725.574 + 479.574i 0.924299 + 0.610923i
\(786\) 0 0
\(787\) 784.858 + 784.858i 0.997278 + 0.997278i 0.999996 0.00271783i \(-0.000865114\pi\)
−0.00271783 + 0.999996i \(0.500865\pi\)
\(788\) 0 0
\(789\) 3.19184i 0.00404542i
\(790\) 0 0
\(791\) −154.969 −0.195916
\(792\) 0 0
\(793\) 429.576 429.576i 0.541709 0.541709i
\(794\) 0 0
\(795\) −169.237 829.090i −0.212877 1.04288i
\(796\) 0 0
\(797\) 485.191 + 485.191i 0.608771 + 0.608771i 0.942625 0.333854i \(-0.108349\pi\)
−0.333854 + 0.942625i \(0.608349\pi\)
\(798\) 0 0
\(799\) 472.182i 0.590966i
\(800\) 0 0
\(801\) 175.818 0.219499
\(802\) 0 0
\(803\) 329.312 329.312i 0.410102 0.410102i
\(804\) 0 0
\(805\) −1630.22 + 332.767i −2.02512 + 0.413376i
\(806\) 0 0
\(807\) 50.3995 + 50.3995i 0.0624529 + 0.0624529i
\(808\) 0 0
\(809\) 397.839i 0.491766i −0.969300 0.245883i \(-0.920922\pi\)
0.969300 0.245883i \(-0.0790779\pi\)
\(810\) 0 0
\(811\) 1005.49 1.23982 0.619910 0.784673i \(-0.287169\pi\)
0.619910 + 0.784673i \(0.287169\pi\)
\(812\) 0 0
\(813\) −593.666 + 593.666i −0.730217 + 0.730217i
\(814\) 0 0
\(815\) −438.615 + 663.605i −0.538178 + 0.814239i
\(816\) 0 0
\(817\) 226.343 + 226.343i 0.277041 + 0.277041i
\(818\) 0 0
\(819\) 362.969i 0.443186i
\(820\) 0 0
\(821\) 101.312 0.123401 0.0617005 0.998095i \(-0.480348\pi\)
0.0617005 + 0.998095i \(0.480348\pi\)
\(822\) 0 0
\(823\) 68.2724 68.2724i 0.0829556 0.0829556i −0.664411 0.747367i \(-0.731318\pi\)
0.747367 + 0.664411i \(0.231318\pi\)
\(824\) 0 0
\(825\) −93.7480 + 232.899i −0.113634 + 0.282302i
\(826\) 0 0
\(827\) 363.464 + 363.464i 0.439497 + 0.439497i 0.891843 0.452345i \(-0.149413\pi\)
−0.452345 + 0.891843i \(0.649413\pi\)
\(828\) 0 0
\(829\) 891.535i 1.07543i −0.843125 0.537717i \(-0.819287\pi\)
0.843125 0.537717i \(-0.180713\pi\)
\(830\) 0 0
\(831\) −127.348 −0.153247
\(832\) 0 0
\(833\) −667.352 + 667.352i −0.801143 + 0.801143i
\(834\) 0 0
\(835\) −1042.21 688.858i −1.24816 0.824980i
\(836\) 0 0
\(837\) 1.48469 + 1.48469i 0.00177383 + 0.00177383i
\(838\) 0 0
\(839\) 705.090i 0.840393i −0.907433 0.420197i \(-0.861961\pi\)
0.907433 0.420197i \(-0.138039\pi\)
\(840\) 0 0
\(841\) 802.535 0.954262
\(842\) 0 0
\(843\) 297.031 297.031i 0.352349 0.352349i
\(844\) 0 0
\(845\) −76.5755 375.142i −0.0906219 0.443955i
\(846\) 0 0
\(847\) 777.626 + 777.626i 0.918094 + 0.918094i
\(848\) 0 0
\(849\) 256.504i 0.302125i
\(850\) 0 0
\(851\) −1009.63 −1.18641
\(852\) 0 0
\(853\) −450.555 + 450.555i −0.528201 + 0.528201i −0.920036 0.391835i \(-0.871840\pi\)
0.391835 + 0.920036i \(0.371840\pi\)
\(854\) 0 0
\(855\) 91.1510 18.6061i 0.106609 0.0217615i
\(856\) 0 0
\(857\) 63.5561 + 63.5561i 0.0741612 + 0.0741612i 0.743214 0.669053i \(-0.233300\pi\)
−0.669053 + 0.743214i \(0.733300\pi\)
\(858\) 0 0
\(859\) 1467.53i 1.70842i 0.519928 + 0.854210i \(0.325959\pi\)
−0.519928 + 0.854210i \(0.674041\pi\)
\(860\) 0 0
\(861\) 39.1918 0.0455190
\(862\) 0 0
\(863\) −294.797 + 294.797i −0.341596 + 0.341596i −0.856967 0.515371i \(-0.827654\pi\)
0.515371 + 0.856967i \(0.327654\pi\)
\(864\) 0 0
\(865\) 557.120 842.898i 0.644070 0.974448i
\(866\) 0 0
\(867\) −262.775 262.775i −0.303086 0.303086i
\(868\) 0 0
\(869\) 808.082i 0.929898i
\(870\) 0 0
\(871\) −545.071 −0.625800
\(872\) 0 0
\(873\) −47.9694 + 47.9694i −0.0549477 + 0.0549477i
\(874\) 0 0
\(875\) 1547.34 + 283.687i 1.76839 + 0.324213i
\(876\) 0 0
\(877\) −113.102 113.102i −0.128965 0.128965i 0.639678 0.768643i \(-0.279068\pi\)
−0.768643 + 0.639678i \(0.779068\pi\)
\(878\) 0 0
\(879\) 149.196i 0.169734i
\(880\) 0 0
\(881\) −1370.44 −1.55555 −0.777777 0.628540i \(-0.783653\pi\)
−0.777777 + 0.628540i \(0.783653\pi\)
\(882\) 0 0
\(883\) −175.587 + 175.587i −0.198852 + 0.198852i −0.799508 0.600655i \(-0.794906\pi\)
0.600655 + 0.799508i \(0.294906\pi\)
\(884\) 0 0
\(885\) 144.495 + 95.5051i 0.163271 + 0.107915i
\(886\) 0 0
\(887\) −512.313 512.313i −0.577580 0.577580i 0.356656 0.934236i \(-0.383917\pi\)
−0.934236 + 0.356656i \(0.883917\pi\)
\(888\) 0 0
\(889\) 895.110i 1.00687i
\(890\) 0 0
\(891\) 52.1816 0.0585652
\(892\) 0 0
\(893\) 240.000 240.000i 0.268757 0.268757i
\(894\) 0 0
\(895\) −133.171 652.404i −0.148795 0.728943i
\(896\) 0 0
\(897\) 311.333 + 311.333i 0.347082 + 0.347082i
\(898\) 0 0
\(899\) 2.50613i 0.00278769i
\(900\) 0 0
\(901\) −843.049 −0.935681
\(902\) 0 0
\(903\) 795.514 795.514i 0.880968 0.880968i
\(904\) 0 0
\(905\) 672.100 137.192i 0.742652 0.151593i
\(906\) 0 0
\(907\) 922.697 + 922.697i 1.01731 + 1.01731i 0.999848 + 0.0174589i \(0.00555761\pi\)
0.0174589 + 0.999848i \(0.494442\pi\)
\(908\) 0 0
\(909\) 385.151i 0.423708i
\(910\) 0 0
\(911\) 1338.97 1.46978 0.734890 0.678186i \(-0.237234\pi\)
0.734890 + 0.678186i \(0.237234\pi\)
\(912\) 0 0
\(913\) 79.4735 79.4735i 0.0870465 0.0870465i
\(914\) 0 0
\(915\) −301.757 + 456.545i −0.329789 + 0.498956i
\(916\) 0 0
\(917\) −1016.28 1016.28i −1.10827 1.10827i
\(918\) 0 0
\(919\) 1371.57i 1.49246i 0.665687 + 0.746231i \(0.268139\pi\)
−0.665687 + 0.746231i \(0.731861\pi\)
\(920\) 0 0
\(921\) 493.090 0.535385
\(922\) 0 0
\(923\) 175.373 175.373i 0.190004 0.190004i
\(924\) 0 0
\(925\) 885.545 + 356.455i 0.957346 + 0.385357i
\(926\) 0 0
\(927\) 97.4847 + 97.4847i 0.105161 + 0.105161i
\(928\) 0 0
\(929\) 218.645i 0.235355i 0.993052 + 0.117678i \(0.0375449\pi\)
−0.993052 + 0.117678i \(0.962455\pi\)
\(930\) 0 0
\(931\) 678.402 0.728681
\(932\) 0 0
\(933\) 685.535 685.535i 0.734764 0.734764i
\(934\) 0 0
\(935\) 208.667 + 137.920i 0.223174 + 0.147508i
\(936\) 0 0
\(937\) −1127.38 1127.38i −1.20318 1.20318i −0.973193 0.229992i \(-0.926130\pi\)
−0.229992 0.973193i \(-0.573870\pi\)
\(938\) 0 0
\(939\) 229.682i 0.244603i
\(940\) 0 0
\(941\) 588.384 0.625275 0.312637 0.949873i \(-0.398788\pi\)
0.312637 + 0.949873i \(0.398788\pi\)
\(942\) 0 0
\(943\) 33.6163 33.6163i 0.0356483 0.0356483i
\(944\) 0 0
\(945\) −65.3939 320.363i −0.0691999 0.339009i
\(946\) 0 0
\(947\) 926.879 + 926.879i 0.978752 + 0.978752i 0.999779 0.0210265i \(-0.00669343\pi\)
−0.0210265 + 0.999779i \(0.506693\pi\)
\(948\) 0 0
\(949\) 772.220i 0.813720i
\(950\) 0 0
\(951\) −888.742 −0.934535
\(952\) 0 0
\(953\) 1271.29 1271.29i 1.33399 1.33399i 0.432220 0.901768i \(-0.357730\pi\)
0.901768 0.432220i \(-0.142270\pi\)
\(954\) 0 0
\(955\) 1306.10 266.606i 1.36764 0.279169i
\(956\) 0 0
\(957\) −44.0408 44.0408i −0.0460197 0.0460197i
\(958\) 0 0
\(959\) 286.565i 0.298817i
\(960\) 0 0
\(961\) −960.837 −0.999830
\(962\) 0 0
\(963\) −74.6969 + 74.6969i −0.0775669 + 0.0775669i
\(964\) 0 0
\(965\) −457.677 + 692.444i −0.474276 + 0.717558i
\(966\) 0 0
\(967\) 753.121 + 753.121i 0.778823 + 0.778823i 0.979631 0.200808i \(-0.0643567\pi\)
−0.200808 + 0.979631i \(0.564357\pi\)
\(968\) 0 0
\(969\) 92.6857i 0.0956509i
\(970\) 0 0
\(971\) −1803.86 −1.85773 −0.928865 0.370419i \(-0.879214\pi\)
−0.928865 + 0.370419i \(0.879214\pi\)
\(972\) 0 0
\(973\) 656.727 656.727i 0.674950 0.674950i
\(974\) 0 0
\(975\) −163.151 382.985i −0.167334 0.392805i
\(976\) 0 0
\(977\) 223.838 + 223.838i 0.229107 + 0.229107i 0.812320 0.583212i \(-0.198204\pi\)
−0.583212 + 0.812320i \(0.698204\pi\)
\(978\) 0 0
\(979\) 339.796i 0.347085i
\(980\) 0 0
\(981\) 390.000 0.397554
\(982\) 0 0
\(983\) −976.536 + 976.536i −0.993424 + 0.993424i −0.999979 0.00655459i \(-0.997914\pi\)
0.00655459 + 0.999979i \(0.497914\pi\)
\(984\) 0 0
\(985\) −1455.20 961.827i −1.47736 0.976474i
\(986\) 0 0
\(987\) −843.514 843.514i −0.854624 0.854624i
\(988\) 0 0
\(989\) 1364.69i 1.37986i
\(990\) 0 0
\(991\) 1331.03 1.34312 0.671558 0.740952i \(-0.265625\pi\)
0.671558 + 0.740952i \(0.265625\pi\)
\(992\) 0 0
\(993\) −17.1714 + 17.1714i −0.0172925 + 0.0172925i
\(994\) 0 0
\(995\) −154.565 757.212i −0.155342 0.761017i
\(996\) 0 0
\(997\) −852.616 852.616i −0.855182 0.855182i 0.135584 0.990766i \(-0.456709\pi\)
−0.990766 + 0.135584i \(0.956709\pi\)
\(998\) 0 0
\(999\) 198.409i 0.198607i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 960.3.bg.e.577.2 4
4.3 odd 2 960.3.bg.g.577.1 4
5.3 odd 4 inner 960.3.bg.e.193.2 4
8.3 odd 2 240.3.bg.b.97.2 4
8.5 even 2 30.3.f.a.7.1 4
20.3 even 4 960.3.bg.g.193.1 4
24.5 odd 2 90.3.g.d.37.1 4
24.11 even 2 720.3.bh.i.577.1 4
40.3 even 4 240.3.bg.b.193.2 4
40.13 odd 4 30.3.f.a.13.1 yes 4
40.19 odd 2 1200.3.bg.d.1057.1 4
40.27 even 4 1200.3.bg.d.193.1 4
40.29 even 2 150.3.f.b.7.2 4
40.37 odd 4 150.3.f.b.43.2 4
120.29 odd 2 450.3.g.j.307.2 4
120.53 even 4 90.3.g.d.73.1 4
120.77 even 4 450.3.g.j.343.2 4
120.83 odd 4 720.3.bh.i.433.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.3.f.a.7.1 4 8.5 even 2
30.3.f.a.13.1 yes 4 40.13 odd 4
90.3.g.d.37.1 4 24.5 odd 2
90.3.g.d.73.1 4 120.53 even 4
150.3.f.b.7.2 4 40.29 even 2
150.3.f.b.43.2 4 40.37 odd 4
240.3.bg.b.97.2 4 8.3 odd 2
240.3.bg.b.193.2 4 40.3 even 4
450.3.g.j.307.2 4 120.29 odd 2
450.3.g.j.343.2 4 120.77 even 4
720.3.bh.i.433.1 4 120.83 odd 4
720.3.bh.i.577.1 4 24.11 even 2
960.3.bg.e.193.2 4 5.3 odd 4 inner
960.3.bg.e.577.2 4 1.1 even 1 trivial
960.3.bg.g.193.1 4 20.3 even 4
960.3.bg.g.577.1 4 4.3 odd 2
1200.3.bg.d.193.1 4 40.27 even 4
1200.3.bg.d.1057.1 4 40.19 odd 2