Properties

Label 960.2.y.f.847.3
Level $960$
Weight $2$
Character 960.847
Analytic conductor $7.666$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [960,2,Mod(847,960)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("960.847"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(960, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 960 = 2^{6} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 960.y (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,20,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.66563859404\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} + 3 x^{18} - 6 x^{17} + 2 x^{16} + 4 x^{14} + 20 x^{13} - 24 x^{12} + 40 x^{11} + \cdots + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{17} \)
Twist minimal: no (minimal twist has level 240)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 847.3
Root \(1.40751 + 0.137540i\) of defining polynomial
Character \(\chi\) \(=\) 960.847
Dual form 960.2.y.f.943.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +(-1.76195 - 1.37678i) q^{5} +(-0.159531 - 0.159531i) q^{7} +1.00000 q^{9} +(-1.60861 + 1.60861i) q^{11} -4.36332i q^{13} +(-1.76195 - 1.37678i) q^{15} +(-4.63479 - 4.63479i) q^{17} +(-3.97920 + 3.97920i) q^{19} +(-0.159531 - 0.159531i) q^{21} +(5.58779 - 5.58779i) q^{23} +(1.20897 + 4.85164i) q^{25} +1.00000 q^{27} +(-6.25463 - 6.25463i) q^{29} -1.69754i q^{31} +(-1.60861 + 1.60861i) q^{33} +(0.0614476 + 0.500725i) q^{35} +0.609145i q^{37} -4.36332i q^{39} +0.538520i q^{41} -0.592259i q^{43} +(-1.76195 - 1.37678i) q^{45} +(-4.85568 + 4.85568i) q^{47} -6.94910i q^{49} +(-4.63479 - 4.63479i) q^{51} -4.82837 q^{53} +(5.04901 - 0.619600i) q^{55} +(-3.97920 + 3.97920i) q^{57} +(-5.78762 - 5.78762i) q^{59} +(1.65469 - 1.65469i) q^{61} +(-0.159531 - 0.159531i) q^{63} +(-6.00733 + 7.68798i) q^{65} +0.485302i q^{67} +(5.58779 - 5.58779i) q^{69} -6.86042 q^{71} +(-0.160991 - 0.160991i) q^{73} +(1.20897 + 4.85164i) q^{75} +0.513248 q^{77} +7.13706 q^{79} +1.00000 q^{81} +6.88217 q^{83} +(1.78521 + 14.5474i) q^{85} +(-6.25463 - 6.25463i) q^{87} +17.0238 q^{89} +(-0.696085 + 0.696085i) q^{91} -1.69754i q^{93} +(12.4896 - 1.53269i) q^{95} +(9.64079 + 9.64079i) q^{97} +(-1.60861 + 1.60861i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 20 q^{3} + 4 q^{7} + 20 q^{9} - 8 q^{11} + 12 q^{17} - 16 q^{19} + 4 q^{21} + 16 q^{23} + 4 q^{25} + 20 q^{27} - 8 q^{33} + 28 q^{35} + 12 q^{51} + 8 q^{53} + 4 q^{55} - 16 q^{57} + 16 q^{59} - 12 q^{61}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/960\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(577\) \(641\) \(901\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) −1.76195 1.37678i −0.787970 0.615714i
\(6\) 0 0
\(7\) −0.159531 0.159531i −0.0602971 0.0602971i 0.676315 0.736612i \(-0.263576\pi\)
−0.736612 + 0.676315i \(0.763576\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −1.60861 + 1.60861i −0.485015 + 0.485015i −0.906729 0.421714i \(-0.861429\pi\)
0.421714 + 0.906729i \(0.361429\pi\)
\(12\) 0 0
\(13\) 4.36332i 1.21017i −0.796162 0.605084i \(-0.793139\pi\)
0.796162 0.605084i \(-0.206861\pi\)
\(14\) 0 0
\(15\) −1.76195 1.37678i −0.454935 0.355483i
\(16\) 0 0
\(17\) −4.63479 4.63479i −1.12410 1.12410i −0.991118 0.132983i \(-0.957545\pi\)
−0.132983 0.991118i \(-0.542455\pi\)
\(18\) 0 0
\(19\) −3.97920 + 3.97920i −0.912891 + 0.912891i −0.996499 0.0836074i \(-0.973356\pi\)
0.0836074 + 0.996499i \(0.473356\pi\)
\(20\) 0 0
\(21\) −0.159531 0.159531i −0.0348125 0.0348125i
\(22\) 0 0
\(23\) 5.58779 5.58779i 1.16513 1.16513i 0.181799 0.983336i \(-0.441808\pi\)
0.983336 0.181799i \(-0.0581919\pi\)
\(24\) 0 0
\(25\) 1.20897 + 4.85164i 0.241793 + 0.970328i
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −6.25463 6.25463i −1.16146 1.16146i −0.984157 0.177299i \(-0.943264\pi\)
−0.177299 0.984157i \(-0.556736\pi\)
\(30\) 0 0
\(31\) 1.69754i 0.304886i −0.988312 0.152443i \(-0.951286\pi\)
0.988312 0.152443i \(-0.0487141\pi\)
\(32\) 0 0
\(33\) −1.60861 + 1.60861i −0.280024 + 0.280024i
\(34\) 0 0
\(35\) 0.0614476 + 0.500725i 0.0103865 + 0.0846380i
\(36\) 0 0
\(37\) 0.609145i 0.100143i 0.998746 + 0.0500714i \(0.0159449\pi\)
−0.998746 + 0.0500714i \(0.984055\pi\)
\(38\) 0 0
\(39\) 4.36332i 0.698691i
\(40\) 0 0
\(41\) 0.538520i 0.0841026i 0.999115 + 0.0420513i \(0.0133893\pi\)
−0.999115 + 0.0420513i \(0.986611\pi\)
\(42\) 0 0
\(43\) 0.592259i 0.0903186i −0.998980 0.0451593i \(-0.985620\pi\)
0.998980 0.0451593i \(-0.0143795\pi\)
\(44\) 0 0
\(45\) −1.76195 1.37678i −0.262657 0.205238i
\(46\) 0 0
\(47\) −4.85568 + 4.85568i −0.708274 + 0.708274i −0.966172 0.257898i \(-0.916970\pi\)
0.257898 + 0.966172i \(0.416970\pi\)
\(48\) 0 0
\(49\) 6.94910i 0.992729i
\(50\) 0 0
\(51\) −4.63479 4.63479i −0.649000 0.649000i
\(52\) 0 0
\(53\) −4.82837 −0.663227 −0.331613 0.943415i \(-0.607593\pi\)
−0.331613 + 0.943415i \(0.607593\pi\)
\(54\) 0 0
\(55\) 5.04901 0.619600i 0.680808 0.0835468i
\(56\) 0 0
\(57\) −3.97920 + 3.97920i −0.527058 + 0.527058i
\(58\) 0 0
\(59\) −5.78762 5.78762i −0.753483 0.753483i 0.221644 0.975128i \(-0.428858\pi\)
−0.975128 + 0.221644i \(0.928858\pi\)
\(60\) 0 0
\(61\) 1.65469 1.65469i 0.211861 0.211861i −0.593197 0.805058i \(-0.702134\pi\)
0.805058 + 0.593197i \(0.202134\pi\)
\(62\) 0 0
\(63\) −0.159531 0.159531i −0.0200990 0.0200990i
\(64\) 0 0
\(65\) −6.00733 + 7.68798i −0.745117 + 0.953576i
\(66\) 0 0
\(67\) 0.485302i 0.0592891i 0.999561 + 0.0296446i \(0.00943754\pi\)
−0.999561 + 0.0296446i \(0.990562\pi\)
\(68\) 0 0
\(69\) 5.58779 5.58779i 0.672691 0.672691i
\(70\) 0 0
\(71\) −6.86042 −0.814182 −0.407091 0.913388i \(-0.633457\pi\)
−0.407091 + 0.913388i \(0.633457\pi\)
\(72\) 0 0
\(73\) −0.160991 0.160991i −0.0188426 0.0188426i 0.697623 0.716465i \(-0.254241\pi\)
−0.716465 + 0.697623i \(0.754241\pi\)
\(74\) 0 0
\(75\) 1.20897 + 4.85164i 0.139599 + 0.560219i
\(76\) 0 0
\(77\) 0.513248 0.0584900
\(78\) 0 0
\(79\) 7.13706 0.802982 0.401491 0.915863i \(-0.368492\pi\)
0.401491 + 0.915863i \(0.368492\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 6.88217 0.755417 0.377708 0.925925i \(-0.376712\pi\)
0.377708 + 0.925925i \(0.376712\pi\)
\(84\) 0 0
\(85\) 1.78521 + 14.5474i 0.193633 + 1.57788i
\(86\) 0 0
\(87\) −6.25463 6.25463i −0.670567 0.670567i
\(88\) 0 0
\(89\) 17.0238 1.80451 0.902257 0.431198i \(-0.141909\pi\)
0.902257 + 0.431198i \(0.141909\pi\)
\(90\) 0 0
\(91\) −0.696085 + 0.696085i −0.0729696 + 0.0729696i
\(92\) 0 0
\(93\) 1.69754i 0.176026i
\(94\) 0 0
\(95\) 12.4896 1.53269i 1.28141 0.157251i
\(96\) 0 0
\(97\) 9.64079 + 9.64079i 0.978874 + 0.978874i 0.999781 0.0209077i \(-0.00665561\pi\)
−0.0209077 + 0.999781i \(0.506656\pi\)
\(98\) 0 0
\(99\) −1.60861 + 1.60861i −0.161672 + 0.161672i
\(100\) 0 0
\(101\) −4.00201 4.00201i −0.398214 0.398214i 0.479388 0.877603i \(-0.340859\pi\)
−0.877603 + 0.479388i \(0.840859\pi\)
\(102\) 0 0
\(103\) 8.06640 8.06640i 0.794806 0.794806i −0.187465 0.982271i \(-0.560027\pi\)
0.982271 + 0.187465i \(0.0600271\pi\)
\(104\) 0 0
\(105\) 0.0614476 + 0.500725i 0.00599667 + 0.0488658i
\(106\) 0 0
\(107\) −4.50489 −0.435504 −0.217752 0.976004i \(-0.569872\pi\)
−0.217752 + 0.976004i \(0.569872\pi\)
\(108\) 0 0
\(109\) 0.813992 + 0.813992i 0.0779663 + 0.0779663i 0.745015 0.667048i \(-0.232443\pi\)
−0.667048 + 0.745015i \(0.732443\pi\)
\(110\) 0 0
\(111\) 0.609145i 0.0578175i
\(112\) 0 0
\(113\) 7.69423 7.69423i 0.723813 0.723813i −0.245567 0.969380i \(-0.578974\pi\)
0.969380 + 0.245567i \(0.0789741\pi\)
\(114\) 0 0
\(115\) −17.5386 + 2.15228i −1.63548 + 0.200702i
\(116\) 0 0
\(117\) 4.36332i 0.403389i
\(118\) 0 0
\(119\) 1.47878i 0.135560i
\(120\) 0 0
\(121\) 5.82472i 0.529520i
\(122\) 0 0
\(123\) 0.538520i 0.0485567i
\(124\) 0 0
\(125\) 4.54949 10.2128i 0.406919 0.913464i
\(126\) 0 0
\(127\) −12.0279 + 12.0279i −1.06731 + 1.06731i −0.0697405 + 0.997565i \(0.522217\pi\)
−0.997565 + 0.0697405i \(0.977783\pi\)
\(128\) 0 0
\(129\) 0.592259i 0.0521455i
\(130\) 0 0
\(131\) −13.2235 13.2235i −1.15534 1.15534i −0.985466 0.169874i \(-0.945664\pi\)
−0.169874 0.985466i \(-0.554336\pi\)
\(132\) 0 0
\(133\) 1.26961 0.110089
\(134\) 0 0
\(135\) −1.76195 1.37678i −0.151645 0.118494i
\(136\) 0 0
\(137\) 4.88182 4.88182i 0.417082 0.417082i −0.467115 0.884197i \(-0.654706\pi\)
0.884197 + 0.467115i \(0.154706\pi\)
\(138\) 0 0
\(139\) 9.86643 + 9.86643i 0.836860 + 0.836860i 0.988444 0.151584i \(-0.0484375\pi\)
−0.151584 + 0.988444i \(0.548438\pi\)
\(140\) 0 0
\(141\) −4.85568 + 4.85568i −0.408922 + 0.408922i
\(142\) 0 0
\(143\) 7.01890 + 7.01890i 0.586950 + 0.586950i
\(144\) 0 0
\(145\) 2.40914 + 19.6316i 0.200068 + 1.63032i
\(146\) 0 0
\(147\) 6.94910i 0.573152i
\(148\) 0 0
\(149\) −11.2851 + 11.2851i −0.924515 + 0.924515i −0.997344 0.0728290i \(-0.976797\pi\)
0.0728290 + 0.997344i \(0.476797\pi\)
\(150\) 0 0
\(151\) −1.52546 −0.124140 −0.0620701 0.998072i \(-0.519770\pi\)
−0.0620701 + 0.998072i \(0.519770\pi\)
\(152\) 0 0
\(153\) −4.63479 4.63479i −0.374700 0.374700i
\(154\) 0 0
\(155\) −2.33713 + 2.99098i −0.187723 + 0.240241i
\(156\) 0 0
\(157\) 11.8705 0.947366 0.473683 0.880695i \(-0.342924\pi\)
0.473683 + 0.880695i \(0.342924\pi\)
\(158\) 0 0
\(159\) −4.82837 −0.382914
\(160\) 0 0
\(161\) −1.78285 −0.140508
\(162\) 0 0
\(163\) 6.57461 0.514963 0.257481 0.966283i \(-0.417107\pi\)
0.257481 + 0.966283i \(0.417107\pi\)
\(164\) 0 0
\(165\) 5.04901 0.619600i 0.393065 0.0482358i
\(166\) 0 0
\(167\) 18.2166 + 18.2166i 1.40964 + 1.40964i 0.761636 + 0.648005i \(0.224396\pi\)
0.648005 + 0.761636i \(0.275604\pi\)
\(168\) 0 0
\(169\) −6.03860 −0.464507
\(170\) 0 0
\(171\) −3.97920 + 3.97920i −0.304297 + 0.304297i
\(172\) 0 0
\(173\) 4.84309i 0.368213i −0.982906 0.184106i \(-0.941061\pi\)
0.982906 0.184106i \(-0.0589391\pi\)
\(174\) 0 0
\(175\) 0.581119 0.966854i 0.0439285 0.0730873i
\(176\) 0 0
\(177\) −5.78762 5.78762i −0.435024 0.435024i
\(178\) 0 0
\(179\) −5.14531 + 5.14531i −0.384579 + 0.384579i −0.872749 0.488170i \(-0.837665\pi\)
0.488170 + 0.872749i \(0.337665\pi\)
\(180\) 0 0
\(181\) −11.6902 11.6902i −0.868925 0.868925i 0.123429 0.992353i \(-0.460611\pi\)
−0.992353 + 0.123429i \(0.960611\pi\)
\(182\) 0 0
\(183\) 1.65469 1.65469i 0.122318 0.122318i
\(184\) 0 0
\(185\) 0.838658 1.07329i 0.0616593 0.0789096i
\(186\) 0 0
\(187\) 14.9112 1.09041
\(188\) 0 0
\(189\) −0.159531 0.159531i −0.0116042 0.0116042i
\(190\) 0 0
\(191\) 15.8153i 1.14436i −0.820129 0.572179i \(-0.806098\pi\)
0.820129 0.572179i \(-0.193902\pi\)
\(192\) 0 0
\(193\) −1.54170 + 1.54170i −0.110974 + 0.110974i −0.760413 0.649439i \(-0.775004\pi\)
0.649439 + 0.760413i \(0.275004\pi\)
\(194\) 0 0
\(195\) −6.00733 + 7.68798i −0.430194 + 0.550547i
\(196\) 0 0
\(197\) 5.98026i 0.426076i 0.977044 + 0.213038i \(0.0683358\pi\)
−0.977044 + 0.213038i \(0.931664\pi\)
\(198\) 0 0
\(199\) 12.5564i 0.890102i −0.895505 0.445051i \(-0.853185\pi\)
0.895505 0.445051i \(-0.146815\pi\)
\(200\) 0 0
\(201\) 0.485302i 0.0342306i
\(202\) 0 0
\(203\) 1.99561i 0.140065i
\(204\) 0 0
\(205\) 0.741422 0.948847i 0.0517832 0.0662704i
\(206\) 0 0
\(207\) 5.58779 5.58779i 0.388378 0.388378i
\(208\) 0 0
\(209\) 12.8020i 0.885533i
\(210\) 0 0
\(211\) 18.4049 + 18.4049i 1.26705 + 1.26705i 0.947605 + 0.319443i \(0.103496\pi\)
0.319443 + 0.947605i \(0.396504\pi\)
\(212\) 0 0
\(213\) −6.86042 −0.470068
\(214\) 0 0
\(215\) −0.815409 + 1.04353i −0.0556104 + 0.0711684i
\(216\) 0 0
\(217\) −0.270810 + 0.270810i −0.0183838 + 0.0183838i
\(218\) 0 0
\(219\) −0.160991 0.160991i −0.0108788 0.0108788i
\(220\) 0 0
\(221\) −20.2231 + 20.2231i −1.36035 + 1.36035i
\(222\) 0 0
\(223\) −11.6149 11.6149i −0.777792 0.777792i 0.201663 0.979455i \(-0.435366\pi\)
−0.979455 + 0.201663i \(0.935366\pi\)
\(224\) 0 0
\(225\) 1.20897 + 4.85164i 0.0805977 + 0.323443i
\(226\) 0 0
\(227\) 0.411442i 0.0273084i 0.999907 + 0.0136542i \(0.00434640\pi\)
−0.999907 + 0.0136542i \(0.995654\pi\)
\(228\) 0 0
\(229\) 11.2286 11.2286i 0.742009 0.742009i −0.230955 0.972964i \(-0.574185\pi\)
0.972964 + 0.230955i \(0.0741851\pi\)
\(230\) 0 0
\(231\) 0.513248 0.0337692
\(232\) 0 0
\(233\) 18.9687 + 18.9687i 1.24268 + 1.24268i 0.958884 + 0.283799i \(0.0915947\pi\)
0.283799 + 0.958884i \(0.408405\pi\)
\(234\) 0 0
\(235\) 15.2407 1.87029i 0.994193 0.122005i
\(236\) 0 0
\(237\) 7.13706 0.463602
\(238\) 0 0
\(239\) 11.2094 0.725076 0.362538 0.931969i \(-0.381910\pi\)
0.362538 + 0.931969i \(0.381910\pi\)
\(240\) 0 0
\(241\) 0.0518990 0.00334311 0.00167156 0.999999i \(-0.499468\pi\)
0.00167156 + 0.999999i \(0.499468\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) −9.56737 + 12.2440i −0.611237 + 0.782240i
\(246\) 0 0
\(247\) 17.3625 + 17.3625i 1.10475 + 1.10475i
\(248\) 0 0
\(249\) 6.88217 0.436140
\(250\) 0 0
\(251\) 2.45358 2.45358i 0.154869 0.154869i −0.625420 0.780288i \(-0.715072\pi\)
0.780288 + 0.625420i \(0.215072\pi\)
\(252\) 0 0
\(253\) 17.9772i 1.13022i
\(254\) 0 0
\(255\) 1.78521 + 14.5474i 0.111794 + 0.910991i
\(256\) 0 0
\(257\) −4.52073 4.52073i −0.281995 0.281995i 0.551909 0.833904i \(-0.313900\pi\)
−0.833904 + 0.551909i \(0.813900\pi\)
\(258\) 0 0
\(259\) 0.0971776 0.0971776i 0.00603832 0.00603832i
\(260\) 0 0
\(261\) −6.25463 6.25463i −0.387152 0.387152i
\(262\) 0 0
\(263\) −16.0925 + 16.0925i −0.992304 + 0.992304i −0.999971 0.00766695i \(-0.997560\pi\)
0.00766695 + 0.999971i \(0.497560\pi\)
\(264\) 0 0
\(265\) 8.50736 + 6.64759i 0.522603 + 0.408358i
\(266\) 0 0
\(267\) 17.0238 1.04184
\(268\) 0 0
\(269\) 8.32218 + 8.32218i 0.507412 + 0.507412i 0.913731 0.406319i \(-0.133188\pi\)
−0.406319 + 0.913731i \(0.633188\pi\)
\(270\) 0 0
\(271\) 2.91266i 0.176932i 0.996079 + 0.0884658i \(0.0281964\pi\)
−0.996079 + 0.0884658i \(0.971804\pi\)
\(272\) 0 0
\(273\) −0.696085 + 0.696085i −0.0421290 + 0.0421290i
\(274\) 0 0
\(275\) −9.74917 5.85966i −0.587897 0.353351i
\(276\) 0 0
\(277\) 0.339665i 0.0204085i −0.999948 0.0102042i \(-0.996752\pi\)
0.999948 0.0102042i \(-0.00324817\pi\)
\(278\) 0 0
\(279\) 1.69754i 0.101629i
\(280\) 0 0
\(281\) 20.9850i 1.25186i −0.779878 0.625931i \(-0.784719\pi\)
0.779878 0.625931i \(-0.215281\pi\)
\(282\) 0 0
\(283\) 15.6290i 0.929047i 0.885561 + 0.464523i \(0.153774\pi\)
−0.885561 + 0.464523i \(0.846226\pi\)
\(284\) 0 0
\(285\) 12.4896 1.53269i 0.739823 0.0907890i
\(286\) 0 0
\(287\) 0.0859106 0.0859106i 0.00507114 0.00507114i
\(288\) 0 0
\(289\) 25.9625i 1.52721i
\(290\) 0 0
\(291\) 9.64079 + 9.64079i 0.565153 + 0.565153i
\(292\) 0 0
\(293\) 19.8819 1.16151 0.580756 0.814078i \(-0.302757\pi\)
0.580756 + 0.814078i \(0.302757\pi\)
\(294\) 0 0
\(295\) 2.22925 + 18.1658i 0.129792 + 1.05765i
\(296\) 0 0
\(297\) −1.60861 + 1.60861i −0.0933412 + 0.0933412i
\(298\) 0 0
\(299\) −24.3813 24.3813i −1.41001 1.41001i
\(300\) 0 0
\(301\) −0.0944836 + 0.0944836i −0.00544595 + 0.00544595i
\(302\) 0 0
\(303\) −4.00201 4.00201i −0.229909 0.229909i
\(304\) 0 0
\(305\) −5.19362 + 0.637346i −0.297386 + 0.0364943i
\(306\) 0 0
\(307\) 13.0401i 0.744239i −0.928185 0.372119i \(-0.878631\pi\)
0.928185 0.372119i \(-0.121369\pi\)
\(308\) 0 0
\(309\) 8.06640 8.06640i 0.458882 0.458882i
\(310\) 0 0
\(311\) −23.6036 −1.33843 −0.669217 0.743067i \(-0.733370\pi\)
−0.669217 + 0.743067i \(0.733370\pi\)
\(312\) 0 0
\(313\) −23.0604 23.0604i −1.30345 1.30345i −0.926051 0.377399i \(-0.876818\pi\)
−0.377399 0.926051i \(-0.623182\pi\)
\(314\) 0 0
\(315\) 0.0614476 + 0.500725i 0.00346218 + 0.0282127i
\(316\) 0 0
\(317\) 10.0772 0.565991 0.282996 0.959121i \(-0.408672\pi\)
0.282996 + 0.959121i \(0.408672\pi\)
\(318\) 0 0
\(319\) 20.1226 1.12665
\(320\) 0 0
\(321\) −4.50489 −0.251438
\(322\) 0 0
\(323\) 36.8855 2.05236
\(324\) 0 0
\(325\) 21.1693 5.27511i 1.17426 0.292610i
\(326\) 0 0
\(327\) 0.813992 + 0.813992i 0.0450138 + 0.0450138i
\(328\) 0 0
\(329\) 1.54926 0.0854137
\(330\) 0 0
\(331\) −6.16029 + 6.16029i −0.338600 + 0.338600i −0.855840 0.517240i \(-0.826959\pi\)
0.517240 + 0.855840i \(0.326959\pi\)
\(332\) 0 0
\(333\) 0.609145i 0.0333810i
\(334\) 0 0
\(335\) 0.668153 0.855080i 0.0365051 0.0467180i
\(336\) 0 0
\(337\) −18.1642 18.1642i −0.989467 0.989467i 0.0104777 0.999945i \(-0.496665\pi\)
−0.999945 + 0.0104777i \(0.996665\pi\)
\(338\) 0 0
\(339\) 7.69423 7.69423i 0.417893 0.417893i
\(340\) 0 0
\(341\) 2.73068 + 2.73068i 0.147875 + 0.147875i
\(342\) 0 0
\(343\) −2.22531 + 2.22531i −0.120156 + 0.120156i
\(344\) 0 0
\(345\) −17.5386 + 2.15228i −0.944245 + 0.115875i
\(346\) 0 0
\(347\) 2.80849 0.150767 0.0753837 0.997155i \(-0.475982\pi\)
0.0753837 + 0.997155i \(0.475982\pi\)
\(348\) 0 0
\(349\) −13.8516 13.8516i −0.741458 0.741458i 0.231401 0.972858i \(-0.425669\pi\)
−0.972858 + 0.231401i \(0.925669\pi\)
\(350\) 0 0
\(351\) 4.36332i 0.232897i
\(352\) 0 0
\(353\) 16.3758 16.3758i 0.871595 0.871595i −0.121051 0.992646i \(-0.538626\pi\)
0.992646 + 0.121051i \(0.0386265\pi\)
\(354\) 0 0
\(355\) 12.0877 + 9.44528i 0.641551 + 0.501303i
\(356\) 0 0
\(357\) 1.47878i 0.0782656i
\(358\) 0 0
\(359\) 17.0587i 0.900325i 0.892947 + 0.450162i \(0.148634\pi\)
−0.892947 + 0.450162i \(0.851366\pi\)
\(360\) 0 0
\(361\) 12.6681i 0.666741i
\(362\) 0 0
\(363\) 5.82472i 0.305719i
\(364\) 0 0
\(365\) 0.0620100 + 0.505308i 0.00324575 + 0.0264490i
\(366\) 0 0
\(367\) −13.9971 + 13.9971i −0.730643 + 0.730643i −0.970747 0.240104i \(-0.922818\pi\)
0.240104 + 0.970747i \(0.422818\pi\)
\(368\) 0 0
\(369\) 0.538520i 0.0280342i
\(370\) 0 0
\(371\) 0.770274 + 0.770274i 0.0399906 + 0.0399906i
\(372\) 0 0
\(373\) 16.4829 0.853450 0.426725 0.904381i \(-0.359667\pi\)
0.426725 + 0.904381i \(0.359667\pi\)
\(374\) 0 0
\(375\) 4.54949 10.2128i 0.234935 0.527389i
\(376\) 0 0
\(377\) −27.2910 + 27.2910i −1.40556 + 1.40556i
\(378\) 0 0
\(379\) −9.73283 9.73283i −0.499942 0.499942i 0.411478 0.911420i \(-0.365013\pi\)
−0.911420 + 0.411478i \(0.865013\pi\)
\(380\) 0 0
\(381\) −12.0279 + 12.0279i −0.616209 + 0.616209i
\(382\) 0 0
\(383\) −5.51456 5.51456i −0.281781 0.281781i 0.552038 0.833819i \(-0.313850\pi\)
−0.833819 + 0.552038i \(0.813850\pi\)
\(384\) 0 0
\(385\) −0.904319 0.706628i −0.0460883 0.0360131i
\(386\) 0 0
\(387\) 0.592259i 0.0301062i
\(388\) 0 0
\(389\) −3.72303 + 3.72303i −0.188765 + 0.188765i −0.795162 0.606397i \(-0.792614\pi\)
0.606397 + 0.795162i \(0.292614\pi\)
\(390\) 0 0
\(391\) −51.7964 −2.61946
\(392\) 0 0
\(393\) −13.2235 13.2235i −0.667036 0.667036i
\(394\) 0 0
\(395\) −12.5752 9.82615i −0.632726 0.494407i
\(396\) 0 0
\(397\) 30.9797 1.55483 0.777413 0.628991i \(-0.216532\pi\)
0.777413 + 0.628991i \(0.216532\pi\)
\(398\) 0 0
\(399\) 1.26961 0.0635601
\(400\) 0 0
\(401\) 0.563079 0.0281188 0.0140594 0.999901i \(-0.495525\pi\)
0.0140594 + 0.999901i \(0.495525\pi\)
\(402\) 0 0
\(403\) −7.40690 −0.368964
\(404\) 0 0
\(405\) −1.76195 1.37678i −0.0875522 0.0684126i
\(406\) 0 0
\(407\) −0.979879 0.979879i −0.0485708 0.0485708i
\(408\) 0 0
\(409\) −33.9503 −1.67874 −0.839368 0.543563i \(-0.817075\pi\)
−0.839368 + 0.543563i \(0.817075\pi\)
\(410\) 0 0
\(411\) 4.88182 4.88182i 0.240803 0.240803i
\(412\) 0 0
\(413\) 1.84661i 0.0908657i
\(414\) 0 0
\(415\) −12.1261 9.47522i −0.595246 0.465120i
\(416\) 0 0
\(417\) 9.86643 + 9.86643i 0.483161 + 0.483161i
\(418\) 0 0
\(419\) 12.0118 12.0118i 0.586814 0.586814i −0.349953 0.936767i \(-0.613803\pi\)
0.936767 + 0.349953i \(0.113803\pi\)
\(420\) 0 0
\(421\) −5.06683 5.06683i −0.246942 0.246942i 0.572772 0.819715i \(-0.305868\pi\)
−0.819715 + 0.572772i \(0.805868\pi\)
\(422\) 0 0
\(423\) −4.85568 + 4.85568i −0.236091 + 0.236091i
\(424\) 0 0
\(425\) 16.8830 28.0896i 0.818947 1.36255i
\(426\) 0 0
\(427\) −0.527948 −0.0255492
\(428\) 0 0
\(429\) 7.01890 + 7.01890i 0.338876 + 0.338876i
\(430\) 0 0
\(431\) 17.0195i 0.819798i −0.912131 0.409899i \(-0.865564\pi\)
0.912131 0.409899i \(-0.134436\pi\)
\(432\) 0 0
\(433\) 24.6355 24.6355i 1.18390 1.18390i 0.205180 0.978724i \(-0.434222\pi\)
0.978724 0.205180i \(-0.0657780\pi\)
\(434\) 0 0
\(435\) 2.40914 + 19.6316i 0.115509 + 0.941264i
\(436\) 0 0
\(437\) 44.4699i 2.12728i
\(438\) 0 0
\(439\) 27.5012i 1.31256i −0.754516 0.656281i \(-0.772129\pi\)
0.754516 0.656281i \(-0.227871\pi\)
\(440\) 0 0
\(441\) 6.94910i 0.330910i
\(442\) 0 0
\(443\) 38.2663i 1.81809i −0.416701 0.909044i \(-0.636814\pi\)
0.416701 0.909044i \(-0.363186\pi\)
\(444\) 0 0
\(445\) −29.9951 23.4379i −1.42190 1.11106i
\(446\) 0 0
\(447\) −11.2851 + 11.2851i −0.533769 + 0.533769i
\(448\) 0 0
\(449\) 19.7738i 0.933184i 0.884473 + 0.466592i \(0.154518\pi\)
−0.884473 + 0.466592i \(0.845482\pi\)
\(450\) 0 0
\(451\) −0.866270 0.866270i −0.0407911 0.0407911i
\(452\) 0 0
\(453\) −1.52546 −0.0716723
\(454\) 0 0
\(455\) 2.18483 0.268116i 0.102426 0.0125695i
\(456\) 0 0
\(457\) 3.78901 3.78901i 0.177242 0.177242i −0.612910 0.790153i \(-0.710001\pi\)
0.790153 + 0.612910i \(0.210001\pi\)
\(458\) 0 0
\(459\) −4.63479 4.63479i −0.216333 0.216333i
\(460\) 0 0
\(461\) −3.32447 + 3.32447i −0.154836 + 0.154836i −0.780274 0.625438i \(-0.784920\pi\)
0.625438 + 0.780274i \(0.284920\pi\)
\(462\) 0 0
\(463\) −8.53272 8.53272i −0.396549 0.396549i 0.480465 0.877014i \(-0.340468\pi\)
−0.877014 + 0.480465i \(0.840468\pi\)
\(464\) 0 0
\(465\) −2.33713 + 2.99098i −0.108382 + 0.138703i
\(466\) 0 0
\(467\) 12.6255i 0.584240i −0.956382 0.292120i \(-0.905639\pi\)
0.956382 0.292120i \(-0.0943606\pi\)
\(468\) 0 0
\(469\) 0.0774208 0.0774208i 0.00357496 0.00357496i
\(470\) 0 0
\(471\) 11.8705 0.546962
\(472\) 0 0
\(473\) 0.952716 + 0.952716i 0.0438059 + 0.0438059i
\(474\) 0 0
\(475\) −24.1164 14.4949i −1.10653 0.665073i
\(476\) 0 0
\(477\) −4.82837 −0.221076
\(478\) 0 0
\(479\) −24.0308 −1.09800 −0.548998 0.835824i \(-0.684991\pi\)
−0.548998 + 0.835824i \(0.684991\pi\)
\(480\) 0 0
\(481\) 2.65790 0.121190
\(482\) 0 0
\(483\) −1.78285 −0.0811225
\(484\) 0 0
\(485\) −3.71340 30.2599i −0.168617 1.37403i
\(486\) 0 0
\(487\) −24.5449 24.5449i −1.11223 1.11223i −0.992848 0.119387i \(-0.961907\pi\)
−0.119387 0.992848i \(-0.538093\pi\)
\(488\) 0 0
\(489\) 6.57461 0.297314
\(490\) 0 0
\(491\) −16.6457 + 16.6457i −0.751211 + 0.751211i −0.974705 0.223494i \(-0.928254\pi\)
0.223494 + 0.974705i \(0.428254\pi\)
\(492\) 0 0
\(493\) 57.9778i 2.61119i
\(494\) 0 0
\(495\) 5.04901 0.619600i 0.226936 0.0278489i
\(496\) 0 0
\(497\) 1.09445 + 1.09445i 0.0490928 + 0.0490928i
\(498\) 0 0
\(499\) 18.8910 18.8910i 0.845677 0.845677i −0.143914 0.989590i \(-0.545969\pi\)
0.989590 + 0.143914i \(0.0459687\pi\)
\(500\) 0 0
\(501\) 18.2166 + 18.2166i 0.813857 + 0.813857i
\(502\) 0 0
\(503\) −13.4812 + 13.4812i −0.601095 + 0.601095i −0.940603 0.339508i \(-0.889739\pi\)
0.339508 + 0.940603i \(0.389739\pi\)
\(504\) 0 0
\(505\) 1.54148 + 12.5612i 0.0685949 + 0.558967i
\(506\) 0 0
\(507\) −6.03860 −0.268183
\(508\) 0 0
\(509\) −24.1930 24.1930i −1.07233 1.07233i −0.997171 0.0751624i \(-0.976052\pi\)
−0.0751624 0.997171i \(-0.523948\pi\)
\(510\) 0 0
\(511\) 0.0513661i 0.00227230i
\(512\) 0 0
\(513\) −3.97920 + 3.97920i −0.175686 + 0.175686i
\(514\) 0 0
\(515\) −25.3183 + 3.10699i −1.11566 + 0.136910i
\(516\) 0 0
\(517\) 15.6218i 0.687048i
\(518\) 0 0
\(519\) 4.84309i 0.212588i
\(520\) 0 0
\(521\) 0.863518i 0.0378314i 0.999821 + 0.0189157i \(0.00602142\pi\)
−0.999821 + 0.0189157i \(0.993979\pi\)
\(522\) 0 0
\(523\) 23.9267i 1.04624i −0.852259 0.523121i \(-0.824768\pi\)
0.852259 0.523121i \(-0.175232\pi\)
\(524\) 0 0
\(525\) 0.581119 0.966854i 0.0253621 0.0421970i
\(526\) 0 0
\(527\) −7.86772 + 7.86772i −0.342723 + 0.342723i
\(528\) 0 0
\(529\) 39.4468i 1.71508i
\(530\) 0 0
\(531\) −5.78762 5.78762i −0.251161 0.251161i
\(532\) 0 0
\(533\) 2.34974 0.101778
\(534\) 0 0
\(535\) 7.93741 + 6.20223i 0.343164 + 0.268146i
\(536\) 0 0
\(537\) −5.14531 + 5.14531i −0.222037 + 0.222037i
\(538\) 0 0
\(539\) 11.1784 + 11.1784i 0.481489 + 0.481489i
\(540\) 0 0
\(541\) −3.73413 + 3.73413i −0.160543 + 0.160543i −0.782807 0.622264i \(-0.786213\pi\)
0.622264 + 0.782807i \(0.286213\pi\)
\(542\) 0 0
\(543\) −11.6902 11.6902i −0.501674 0.501674i
\(544\) 0 0
\(545\) −0.313530 2.55490i −0.0134302 0.109440i
\(546\) 0 0
\(547\) 33.9579i 1.45193i −0.687730 0.725967i \(-0.741393\pi\)
0.687730 0.725967i \(-0.258607\pi\)
\(548\) 0 0
\(549\) 1.65469 1.65469i 0.0706203 0.0706203i
\(550\) 0 0
\(551\) 49.7769 2.12057
\(552\) 0 0
\(553\) −1.13858 1.13858i −0.0484174 0.0484174i
\(554\) 0 0
\(555\) 0.838658 1.07329i 0.0355990 0.0455585i
\(556\) 0 0
\(557\) 17.7955 0.754018 0.377009 0.926210i \(-0.376953\pi\)
0.377009 + 0.926210i \(0.376953\pi\)
\(558\) 0 0
\(559\) −2.58422 −0.109301
\(560\) 0 0
\(561\) 14.9112 0.629550
\(562\) 0 0
\(563\) 27.7570 1.16982 0.584909 0.811099i \(-0.301130\pi\)
0.584909 + 0.811099i \(0.301130\pi\)
\(564\) 0 0
\(565\) −24.1501 + 2.96364i −1.01600 + 0.124681i
\(566\) 0 0
\(567\) −0.159531 0.159531i −0.00669967 0.00669967i
\(568\) 0 0
\(569\) −31.4665 −1.31915 −0.659573 0.751641i \(-0.729263\pi\)
−0.659573 + 0.751641i \(0.729263\pi\)
\(570\) 0 0
\(571\) 1.60655 1.60655i 0.0672319 0.0672319i −0.672691 0.739923i \(-0.734862\pi\)
0.739923 + 0.672691i \(0.234862\pi\)
\(572\) 0 0
\(573\) 15.8153i 0.660696i
\(574\) 0 0
\(575\) 33.8654 + 20.3545i 1.41228 + 0.848841i
\(576\) 0 0
\(577\) −21.8169 21.8169i −0.908250 0.908250i 0.0878809 0.996131i \(-0.471990\pi\)
−0.996131 + 0.0878809i \(0.971990\pi\)
\(578\) 0 0
\(579\) −1.54170 + 1.54170i −0.0640710 + 0.0640710i
\(580\) 0 0
\(581\) −1.09792 1.09792i −0.0455494 0.0455494i
\(582\) 0 0
\(583\) 7.76697 7.76697i 0.321675 0.321675i
\(584\) 0 0
\(585\) −6.00733 + 7.68798i −0.248372 + 0.317859i
\(586\) 0 0
\(587\) 9.52161 0.392999 0.196499 0.980504i \(-0.437043\pi\)
0.196499 + 0.980504i \(0.437043\pi\)
\(588\) 0 0
\(589\) 6.75484 + 6.75484i 0.278328 + 0.278328i
\(590\) 0 0
\(591\) 5.98026i 0.245995i
\(592\) 0 0
\(593\) 14.3970 14.3970i 0.591215 0.591215i −0.346745 0.937959i \(-0.612713\pi\)
0.937959 + 0.346745i \(0.112713\pi\)
\(594\) 0 0
\(595\) 2.03596 2.60555i 0.0834661 0.106817i
\(596\) 0 0
\(597\) 12.5564i 0.513901i
\(598\) 0 0
\(599\) 12.1649i 0.497045i 0.968626 + 0.248523i \(0.0799451\pi\)
−0.968626 + 0.248523i \(0.920055\pi\)
\(600\) 0 0
\(601\) 0.836112i 0.0341057i 0.999855 + 0.0170528i \(0.00542835\pi\)
−0.999855 + 0.0170528i \(0.994572\pi\)
\(602\) 0 0
\(603\) 0.485302i 0.0197630i
\(604\) 0 0
\(605\) 8.01935 10.2629i 0.326033 0.417246i
\(606\) 0 0
\(607\) 20.7652 20.7652i 0.842835 0.842835i −0.146392 0.989227i \(-0.546766\pi\)
0.989227 + 0.146392i \(0.0467660\pi\)
\(608\) 0 0
\(609\) 1.99561i 0.0808664i
\(610\) 0 0
\(611\) 21.1869 + 21.1869i 0.857131 + 0.857131i
\(612\) 0 0
\(613\) −16.8630 −0.681089 −0.340545 0.940228i \(-0.610611\pi\)
−0.340545 + 0.940228i \(0.610611\pi\)
\(614\) 0 0
\(615\) 0.741422 0.948847i 0.0298970 0.0382612i
\(616\) 0 0
\(617\) 8.57198 8.57198i 0.345095 0.345095i −0.513184 0.858279i \(-0.671534\pi\)
0.858279 + 0.513184i \(0.171534\pi\)
\(618\) 0 0
\(619\) 22.4414 + 22.4414i 0.901996 + 0.901996i 0.995609 0.0936130i \(-0.0298416\pi\)
−0.0936130 + 0.995609i \(0.529842\pi\)
\(620\) 0 0
\(621\) 5.58779 5.58779i 0.224230 0.224230i
\(622\) 0 0
\(623\) −2.71582 2.71582i −0.108807 0.108807i
\(624\) 0 0
\(625\) −22.0768 + 11.7309i −0.883072 + 0.469237i
\(626\) 0 0
\(627\) 12.8020i 0.511262i
\(628\) 0 0
\(629\) 2.82326 2.82326i 0.112571 0.112571i
\(630\) 0 0
\(631\) −0.149433 −0.00594882 −0.00297441 0.999996i \(-0.500947\pi\)
−0.00297441 + 0.999996i \(0.500947\pi\)
\(632\) 0 0
\(633\) 18.4049 + 18.4049i 0.731531 + 0.731531i
\(634\) 0 0
\(635\) 37.7524 4.63287i 1.49816 0.183850i
\(636\) 0 0
\(637\) −30.3212 −1.20137
\(638\) 0 0
\(639\) −6.86042 −0.271394
\(640\) 0 0
\(641\) 20.6789 0.816766 0.408383 0.912811i \(-0.366093\pi\)
0.408383 + 0.912811i \(0.366093\pi\)
\(642\) 0 0
\(643\) −42.0475 −1.65819 −0.829097 0.559105i \(-0.811145\pi\)
−0.829097 + 0.559105i \(0.811145\pi\)
\(644\) 0 0
\(645\) −0.815409 + 1.04353i −0.0321067 + 0.0410891i
\(646\) 0 0
\(647\) −2.09704 2.09704i −0.0824431 0.0824431i 0.664683 0.747126i \(-0.268567\pi\)
−0.747126 + 0.664683i \(0.768567\pi\)
\(648\) 0 0
\(649\) 18.6201 0.730902
\(650\) 0 0
\(651\) −0.270810 + 0.270810i −0.0106139 + 0.0106139i
\(652\) 0 0
\(653\) 33.4870i 1.31045i 0.755435 + 0.655223i \(0.227425\pi\)
−0.755435 + 0.655223i \(0.772575\pi\)
\(654\) 0 0
\(655\) 5.09337 + 41.5049i 0.199014 + 1.62173i
\(656\) 0 0
\(657\) −0.160991 0.160991i −0.00628086 0.00628086i
\(658\) 0 0
\(659\) −32.5431 + 32.5431i −1.26770 + 1.26770i −0.320427 + 0.947273i \(0.603826\pi\)
−0.947273 + 0.320427i \(0.896174\pi\)
\(660\) 0 0
\(661\) −8.31994 8.31994i −0.323608 0.323608i 0.526541 0.850149i \(-0.323488\pi\)
−0.850149 + 0.526541i \(0.823488\pi\)
\(662\) 0 0
\(663\) −20.2231 + 20.2231i −0.785399 + 0.785399i
\(664\) 0 0
\(665\) −2.23700 1.74797i −0.0867471 0.0677835i
\(666\) 0 0
\(667\) −69.8991 −2.70650
\(668\) 0 0
\(669\) −11.6149 11.6149i −0.449059 0.449059i
\(670\) 0 0
\(671\) 5.32350i 0.205512i
\(672\) 0 0
\(673\) −9.07931 + 9.07931i −0.349982 + 0.349982i −0.860103 0.510121i \(-0.829601\pi\)
0.510121 + 0.860103i \(0.329601\pi\)
\(674\) 0 0
\(675\) 1.20897 + 4.85164i 0.0465331 + 0.186740i
\(676\) 0 0
\(677\) 10.6497i 0.409301i 0.978835 + 0.204650i \(0.0656058\pi\)
−0.978835 + 0.204650i \(0.934394\pi\)
\(678\) 0 0
\(679\) 3.07601i 0.118046i
\(680\) 0 0
\(681\) 0.411442i 0.0157665i
\(682\) 0 0
\(683\) 40.7197i 1.55809i 0.626965 + 0.779047i \(0.284297\pi\)
−0.626965 + 0.779047i \(0.715703\pi\)
\(684\) 0 0
\(685\) −15.3227 + 1.88036i −0.585452 + 0.0718450i
\(686\) 0 0
\(687\) 11.2286 11.2286i 0.428399 0.428399i
\(688\) 0 0
\(689\) 21.0677i 0.802616i
\(690\) 0 0
\(691\) 23.4396 + 23.4396i 0.891684 + 0.891684i 0.994682 0.102997i \(-0.0328433\pi\)
−0.102997 + 0.994682i \(0.532843\pi\)
\(692\) 0 0
\(693\) 0.513248 0.0194967
\(694\) 0 0
\(695\) −3.80032 30.9681i −0.144154 1.17469i
\(696\) 0 0
\(697\) 2.49592 2.49592i 0.0945399 0.0945399i
\(698\) 0 0
\(699\) 18.9687 + 18.9687i 0.717463 + 0.717463i
\(700\) 0 0
\(701\) −8.98392 + 8.98392i −0.339318 + 0.339318i −0.856111 0.516793i \(-0.827126\pi\)
0.516793 + 0.856111i \(0.327126\pi\)
\(702\) 0 0
\(703\) −2.42391 2.42391i −0.0914195 0.0914195i
\(704\) 0 0
\(705\) 15.2407 1.87029i 0.573998 0.0704394i
\(706\) 0 0
\(707\) 1.27689i 0.0480223i
\(708\) 0 0
\(709\) 10.0094 10.0094i 0.375912 0.375912i −0.493713 0.869625i \(-0.664361\pi\)
0.869625 + 0.493713i \(0.164361\pi\)
\(710\) 0 0
\(711\) 7.13706 0.267661
\(712\) 0 0
\(713\) −9.48547 9.48547i −0.355234 0.355234i
\(714\) 0 0
\(715\) −2.70352 22.0305i −0.101106 0.823892i
\(716\) 0 0
\(717\) 11.2094 0.418623
\(718\) 0 0
\(719\) −11.6941 −0.436118 −0.218059 0.975936i \(-0.569973\pi\)
−0.218059 + 0.975936i \(0.569973\pi\)
\(720\) 0 0
\(721\) −2.57368 −0.0958490
\(722\) 0 0
\(723\) 0.0518990 0.00193015
\(724\) 0 0
\(725\) 22.7836 37.9068i 0.846161 1.40782i
\(726\) 0 0
\(727\) 15.5108 + 15.5108i 0.575263 + 0.575263i 0.933594 0.358331i \(-0.116654\pi\)
−0.358331 + 0.933594i \(0.616654\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −2.74499 + 2.74499i −0.101527 + 0.101527i
\(732\) 0 0
\(733\) 39.4855i 1.45843i −0.684285 0.729214i \(-0.739886\pi\)
0.684285 0.729214i \(-0.260114\pi\)
\(734\) 0 0
\(735\) −9.56737 + 12.2440i −0.352898 + 0.451627i
\(736\) 0 0
\(737\) −0.780664 0.780664i −0.0287561 0.0287561i
\(738\) 0 0
\(739\) −8.55700 + 8.55700i −0.314774 + 0.314774i −0.846756 0.531982i \(-0.821448\pi\)
0.531982 + 0.846756i \(0.321448\pi\)
\(740\) 0 0
\(741\) 17.3625 + 17.3625i 0.637829 + 0.637829i
\(742\) 0 0
\(743\) 20.9783 20.9783i 0.769621 0.769621i −0.208419 0.978040i \(-0.566832\pi\)
0.978040 + 0.208419i \(0.0668317\pi\)
\(744\) 0 0
\(745\) 35.4211 4.34677i 1.29773 0.159253i
\(746\) 0 0
\(747\) 6.88217 0.251806
\(748\) 0 0
\(749\) 0.718670 + 0.718670i 0.0262596 + 0.0262596i
\(750\) 0 0
\(751\) 28.3484i 1.03445i −0.855850 0.517224i \(-0.826966\pi\)
0.855850 0.517224i \(-0.173034\pi\)
\(752\) 0 0
\(753\) 2.45358 2.45358i 0.0894134 0.0894134i
\(754\) 0 0
\(755\) 2.68779 + 2.10022i 0.0978187 + 0.0764348i
\(756\) 0 0
\(757\) 18.6273i 0.677022i 0.940962 + 0.338511i \(0.109923\pi\)
−0.940962 + 0.338511i \(0.890077\pi\)
\(758\) 0 0
\(759\) 17.9772i 0.652531i
\(760\) 0 0
\(761\) 33.8880i 1.22844i −0.789135 0.614220i \(-0.789471\pi\)
0.789135 0.614220i \(-0.210529\pi\)
\(762\) 0 0
\(763\) 0.259714i 0.00940227i
\(764\) 0 0
\(765\) 1.78521 + 14.5474i 0.0645444 + 0.525961i
\(766\) 0 0
\(767\) −25.2532 + 25.2532i −0.911842 + 0.911842i
\(768\) 0 0
\(769\) 4.73758i 0.170841i 0.996345 + 0.0854207i \(0.0272234\pi\)
−0.996345 + 0.0854207i \(0.972777\pi\)
\(770\) 0 0
\(771\) −4.52073 4.52073i −0.162810 0.162810i
\(772\) 0 0
\(773\) −1.05525 −0.0379546 −0.0189773 0.999820i \(-0.506041\pi\)
−0.0189773 + 0.999820i \(0.506041\pi\)
\(774\) 0 0
\(775\) 8.23583 2.05226i 0.295840 0.0737194i
\(776\) 0 0
\(777\) 0.0971776 0.0971776i 0.00348623 0.00348623i
\(778\) 0 0
\(779\) −2.14288 2.14288i −0.0767766 0.0767766i
\(780\) 0 0
\(781\) 11.0358 11.0358i 0.394891 0.394891i
\(782\) 0 0
\(783\) −6.25463 6.25463i −0.223522 0.223522i
\(784\) 0 0
\(785\) −20.9152 16.3430i −0.746496 0.583307i
\(786\) 0 0
\(787\) 0.792266i 0.0282412i −0.999900 0.0141206i \(-0.995505\pi\)
0.999900 0.0141206i \(-0.00449488\pi\)
\(788\) 0 0
\(789\) −16.0925 + 16.0925i −0.572907 + 0.572907i
\(790\) 0 0
\(791\) −2.45494 −0.0872875
\(792\) 0 0
\(793\) −7.21994 7.21994i −0.256387 0.256387i
\(794\) 0 0
\(795\) 8.50736 + 6.64759i 0.301725 + 0.235766i
\(796\) 0 0
\(797\) 5.92235 0.209780 0.104890 0.994484i \(-0.466551\pi\)
0.104890 + 0.994484i \(0.466551\pi\)
\(798\) 0 0
\(799\) 45.0101 1.59234
\(800\) 0 0
\(801\) 17.0238 0.601505
\(802\) 0 0
\(803\) 0.517945 0.0182779
\(804\) 0 0
\(805\) 3.14130 + 2.45459i 0.110716 + 0.0865129i
\(806\) 0 0
\(807\) 8.32218 + 8.32218i 0.292955 + 0.292955i
\(808\) 0 0
\(809\) 28.0382 0.985772 0.492886 0.870094i \(-0.335942\pi\)
0.492886 + 0.870094i \(0.335942\pi\)
\(810\) 0 0
\(811\) 14.8696 14.8696i 0.522141 0.522141i −0.396077 0.918217i \(-0.629629\pi\)
0.918217 + 0.396077i \(0.129629\pi\)
\(812\) 0 0
\(813\) 2.91266i 0.102152i
\(814\) 0 0
\(815\) −11.5842 9.05177i −0.405775 0.317070i
\(816\) 0 0
\(817\) 2.35672 + 2.35672i 0.0824511 + 0.0824511i
\(818\) 0 0
\(819\) −0.696085 + 0.696085i −0.0243232 + 0.0243232i
\(820\) 0 0
\(821\) −33.9440 33.9440i −1.18466 1.18466i −0.978524 0.206131i \(-0.933913\pi\)
−0.206131 0.978524i \(-0.566087\pi\)
\(822\) 0 0
\(823\) −26.0121 + 26.0121i −0.906724 + 0.906724i −0.996006 0.0892823i \(-0.971543\pi\)
0.0892823 + 0.996006i \(0.471543\pi\)
\(824\) 0 0
\(825\) −9.74917 5.85966i −0.339423 0.204007i
\(826\) 0 0
\(827\) 14.1684 0.492682 0.246341 0.969183i \(-0.420772\pi\)
0.246341 + 0.969183i \(0.420772\pi\)
\(828\) 0 0
\(829\) 19.7985 + 19.7985i 0.687630 + 0.687630i 0.961708 0.274077i \(-0.0883724\pi\)
−0.274077 + 0.961708i \(0.588372\pi\)
\(830\) 0 0
\(831\) 0.339665i 0.0117829i
\(832\) 0 0
\(833\) −32.2076 + 32.2076i −1.11593 + 1.11593i
\(834\) 0 0
\(835\) −7.01659 57.1770i −0.242819 1.97869i
\(836\) 0 0
\(837\) 1.69754i 0.0586754i
\(838\) 0 0
\(839\) 21.1013i 0.728499i 0.931301 + 0.364250i \(0.118674\pi\)
−0.931301 + 0.364250i \(0.881326\pi\)
\(840\) 0 0
\(841\) 49.2408i 1.69796i
\(842\) 0 0
\(843\) 20.9850i 0.722763i
\(844\) 0 0
\(845\) 10.6397 + 8.31380i 0.366018 + 0.286004i
\(846\) 0 0
\(847\) 0.929224 0.929224i 0.0319285 0.0319285i
\(848\) 0 0
\(849\) 15.6290i 0.536385i
\(850\) 0 0
\(851\) 3.40377 + 3.40377i 0.116680 + 0.116680i
\(852\) 0 0
\(853\) −0.282088 −0.00965852 −0.00482926 0.999988i \(-0.501537\pi\)
−0.00482926 + 0.999988i \(0.501537\pi\)
\(854\) 0 0
\(855\) 12.4896 1.53269i 0.427137 0.0524170i
\(856\) 0 0
\(857\) −31.6316 + 31.6316i −1.08051 + 1.08051i −0.0840520 + 0.996461i \(0.526786\pi\)
−0.996461 + 0.0840520i \(0.973214\pi\)
\(858\) 0 0
\(859\) 12.4550 + 12.4550i 0.424958 + 0.424958i 0.886907 0.461949i \(-0.152850\pi\)
−0.461949 + 0.886907i \(0.652850\pi\)
\(860\) 0 0
\(861\) 0.0859106 0.0859106i 0.00292783 0.00292783i
\(862\) 0 0
\(863\) 28.8568 + 28.8568i 0.982298 + 0.982298i 0.999846 0.0175484i \(-0.00558612\pi\)
−0.0175484 + 0.999846i \(0.505586\pi\)
\(864\) 0 0
\(865\) −6.66785 + 8.53329i −0.226714 + 0.290141i
\(866\) 0 0
\(867\) 25.9625i 0.881733i
\(868\) 0 0
\(869\) −11.4808 + 11.4808i −0.389459 + 0.389459i
\(870\) 0 0
\(871\) 2.11753 0.0717498
\(872\) 0 0
\(873\) 9.64079 + 9.64079i 0.326291 + 0.326291i
\(874\) 0 0
\(875\) −2.35505 + 0.903481i −0.0796152 + 0.0305432i
\(876\) 0 0
\(877\) 2.39445 0.0808547 0.0404273 0.999182i \(-0.487128\pi\)
0.0404273 + 0.999182i \(0.487128\pi\)
\(878\) 0 0
\(879\) 19.8819 0.670599
\(880\) 0 0
\(881\) −16.8589 −0.567991 −0.283996 0.958826i \(-0.591660\pi\)
−0.283996 + 0.958826i \(0.591660\pi\)
\(882\) 0 0
\(883\) −32.1936 −1.08340 −0.541700 0.840572i \(-0.682219\pi\)
−0.541700 + 0.840572i \(0.682219\pi\)
\(884\) 0 0
\(885\) 2.22925 + 18.1658i 0.0749355 + 0.610636i
\(886\) 0 0
\(887\) 7.86611 + 7.86611i 0.264118 + 0.264118i 0.826725 0.562607i \(-0.190201\pi\)
−0.562607 + 0.826725i \(0.690201\pi\)
\(888\) 0 0
\(889\) 3.83765 0.128711
\(890\) 0 0
\(891\) −1.60861 + 1.60861i −0.0538906 + 0.0538906i
\(892\) 0 0
\(893\) 38.6435i 1.29315i
\(894\) 0 0
\(895\) 16.1497 1.98185i 0.539827 0.0662460i
\(896\) 0 0
\(897\) −24.3813 24.3813i −0.814069 0.814069i
\(898\) 0 0
\(899\) −10.6175 + 10.6175i −0.354112 + 0.354112i
\(900\) 0 0
\(901\) 22.3784 + 22.3784i 0.745534 + 0.745534i
\(902\) 0 0
\(903\) −0.0944836 + 0.0944836i −0.00314422 + 0.00314422i
\(904\) 0 0
\(905\) 4.50278 + 36.6924i 0.149678 + 1.21970i
\(906\) 0 0
\(907\) 50.7262 1.68433 0.842167 0.539217i \(-0.181280\pi\)
0.842167 + 0.539217i \(0.181280\pi\)
\(908\) 0 0
\(909\) −4.00201 4.00201i −0.132738 0.132738i
\(910\) 0 0
\(911\) 1.86790i 0.0618862i −0.999521 0.0309431i \(-0.990149\pi\)
0.999521 0.0309431i \(-0.00985106\pi\)
\(912\) 0 0
\(913\) −11.0708 + 11.0708i −0.366389 + 0.366389i
\(914\) 0 0
\(915\) −5.19362 + 0.637346i −0.171696 + 0.0210700i
\(916\) 0 0
\(917\) 4.21911i 0.139327i
\(918\) 0 0
\(919\) 14.5671i 0.480525i −0.970708 0.240263i \(-0.922766\pi\)
0.970708 0.240263i \(-0.0772336\pi\)
\(920\) 0 0
\(921\) 13.0401i 0.429686i
\(922\) 0 0
\(923\) 29.9342i 0.985297i
\(924\) 0 0
\(925\) −2.95535 + 0.736436i −0.0971714 + 0.0242139i
\(926\) 0 0
\(927\) 8.06640 8.06640i 0.264935 0.264935i
\(928\) 0 0
\(929\) 53.6486i 1.76015i 0.474831 + 0.880077i \(0.342509\pi\)
−0.474831 + 0.880077i \(0.657491\pi\)
\(930\) 0 0
\(931\) 27.6519 + 27.6519i 0.906253 + 0.906253i
\(932\) 0 0
\(933\) −23.6036 −0.772746
\(934\) 0 0
\(935\) −26.2728 20.5294i −0.859212 0.671382i
\(936\) 0 0
\(937\) 28.3937 28.3937i 0.927582 0.927582i −0.0699675 0.997549i \(-0.522290\pi\)
0.997549 + 0.0699675i \(0.0222896\pi\)
\(938\) 0 0
\(939\) −23.0604 23.0604i −0.752547 0.752547i
\(940\) 0 0
\(941\) 37.0652 37.0652i 1.20829 1.20829i 0.236713 0.971580i \(-0.423930\pi\)
0.971580 0.236713i \(-0.0760701\pi\)
\(942\) 0 0
\(943\) 3.00913 + 3.00913i 0.0979909 + 0.0979909i
\(944\) 0 0
\(945\) 0.0614476 + 0.500725i 0.00199889 + 0.0162886i
\(946\) 0 0
\(947\) 9.52796i 0.309617i −0.987944 0.154809i \(-0.950524\pi\)
0.987944 0.154809i \(-0.0494761\pi\)
\(948\) 0 0
\(949\) −0.702456 + 0.702456i −0.0228027 + 0.0228027i
\(950\) 0 0
\(951\) 10.0772 0.326775
\(952\) 0 0
\(953\) 26.6687 + 26.6687i 0.863883 + 0.863883i 0.991787 0.127903i \(-0.0408248\pi\)
−0.127903 + 0.991787i \(0.540825\pi\)
\(954\) 0 0
\(955\) −21.7742 + 27.8659i −0.704597 + 0.901720i
\(956\) 0 0
\(957\) 20.1226 0.650470
\(958\) 0 0
\(959\) −1.55760 −0.0502977
\(960\) 0 0
\(961\) 28.1184 0.907044
\(962\) 0 0
\(963\) −4.50489 −0.145168
\(964\) 0 0
\(965\) 4.83900 0.593828i 0.155773 0.0191160i
\(966\) 0 0
\(967\) −6.91802 6.91802i −0.222468 0.222468i 0.587069 0.809537i \(-0.300282\pi\)
−0.809537 + 0.587069i \(0.800282\pi\)
\(968\) 0 0
\(969\) 36.8855 1.18493
\(970\) 0 0
\(971\) 21.6040 21.6040i 0.693305 0.693305i −0.269652 0.962958i \(-0.586909\pi\)
0.962958 + 0.269652i \(0.0869088\pi\)
\(972\) 0 0
\(973\) 3.14800i 0.100920i
\(974\) 0 0
\(975\) 21.1693 5.27511i 0.677959 0.168939i
\(976\) 0 0
\(977\) 1.13074 + 1.13074i 0.0361757 + 0.0361757i 0.724963 0.688788i \(-0.241857\pi\)
−0.688788 + 0.724963i \(0.741857\pi\)
\(978\) 0 0
\(979\) −27.3846 + 27.3846i −0.875217 + 0.875217i
\(980\) 0 0
\(981\) 0.813992 + 0.813992i 0.0259888 + 0.0259888i
\(982\) 0 0
\(983\) 24.3146 24.3146i 0.775517 0.775517i −0.203548 0.979065i \(-0.565247\pi\)
0.979065 + 0.203548i \(0.0652473\pi\)
\(984\) 0 0
\(985\) 8.23349 10.5369i 0.262341 0.335735i
\(986\) 0 0
\(987\) 1.54926 0.0493136
\(988\) 0 0
\(989\) −3.30942 3.30942i −0.105233 0.105233i
\(990\) 0 0
\(991\) 21.3602i 0.678529i −0.940691 0.339264i \(-0.889822\pi\)
0.940691 0.339264i \(-0.110178\pi\)
\(992\) 0 0
\(993\) −6.16029 + 6.16029i −0.195491 + 0.195491i
\(994\) 0 0
\(995\) −17.2874 + 22.1239i −0.548048 + 0.701374i
\(996\) 0 0
\(997\) 32.6767i 1.03488i −0.855719 0.517442i \(-0.826885\pi\)
0.855719 0.517442i \(-0.173115\pi\)
\(998\) 0 0
\(999\) 0.609145i 0.0192725i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 960.2.y.f.847.3 20
4.3 odd 2 240.2.y.f.187.5 yes 20
5.3 odd 4 960.2.bc.f.463.2 20
8.3 odd 2 1920.2.y.l.1567.8 20
8.5 even 2 1920.2.y.k.1567.8 20
12.11 even 2 720.2.z.h.667.6 20
16.3 odd 4 960.2.bc.f.367.2 20
16.5 even 4 1920.2.bc.k.607.9 20
16.11 odd 4 1920.2.bc.l.607.9 20
16.13 even 4 240.2.bc.f.67.10 yes 20
20.3 even 4 240.2.bc.f.43.10 yes 20
40.3 even 4 1920.2.bc.k.1183.9 20
40.13 odd 4 1920.2.bc.l.1183.9 20
48.29 odd 4 720.2.bd.h.307.1 20
60.23 odd 4 720.2.bd.h.523.1 20
80.3 even 4 inner 960.2.y.f.943.3 20
80.13 odd 4 240.2.y.f.163.5 20
80.43 even 4 1920.2.y.k.223.8 20
80.53 odd 4 1920.2.y.l.223.8 20
240.173 even 4 720.2.z.h.163.6 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.2.y.f.163.5 20 80.13 odd 4
240.2.y.f.187.5 yes 20 4.3 odd 2
240.2.bc.f.43.10 yes 20 20.3 even 4
240.2.bc.f.67.10 yes 20 16.13 even 4
720.2.z.h.163.6 20 240.173 even 4
720.2.z.h.667.6 20 12.11 even 2
720.2.bd.h.307.1 20 48.29 odd 4
720.2.bd.h.523.1 20 60.23 odd 4
960.2.y.f.847.3 20 1.1 even 1 trivial
960.2.y.f.943.3 20 80.3 even 4 inner
960.2.bc.f.367.2 20 16.3 odd 4
960.2.bc.f.463.2 20 5.3 odd 4
1920.2.y.k.223.8 20 80.43 even 4
1920.2.y.k.1567.8 20 8.5 even 2
1920.2.y.l.223.8 20 80.53 odd 4
1920.2.y.l.1567.8 20 8.3 odd 2
1920.2.bc.k.607.9 20 16.5 even 4
1920.2.bc.k.1183.9 20 40.3 even 4
1920.2.bc.l.607.9 20 16.11 odd 4
1920.2.bc.l.1183.9 20 40.13 odd 4