Properties

Label 240.2.y.f.187.5
Level $240$
Weight $2$
Character 240.187
Analytic conductor $1.916$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [240,2,Mod(163,240)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("240.163"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(240, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 0, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 240.y (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,-20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.91640964851\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} + 3 x^{18} - 6 x^{17} + 2 x^{16} + 4 x^{14} + 20 x^{13} - 24 x^{12} + 40 x^{11} + \cdots + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 187.5
Root \(1.40751 - 0.137540i\) of defining polynomial
Character \(\chi\) \(=\) 240.187
Dual form 240.2.y.f.163.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.137540 + 1.40751i) q^{2} -1.00000 q^{3} +(-1.96217 - 0.387177i) q^{4} +(-1.76195 - 1.37678i) q^{5} +(0.137540 - 1.40751i) q^{6} +(0.159531 + 0.159531i) q^{7} +(0.814832 - 2.70851i) q^{8} +1.00000 q^{9} +(2.18017 - 2.29061i) q^{10} +(1.60861 - 1.60861i) q^{11} +(1.96217 + 0.387177i) q^{12} -4.36332i q^{13} +(-0.246483 + 0.202600i) q^{14} +(1.76195 + 1.37678i) q^{15} +(3.70019 + 1.51941i) q^{16} +(-4.63479 - 4.63479i) q^{17} +(-0.137540 + 1.40751i) q^{18} +(3.97920 - 3.97920i) q^{19} +(2.92419 + 3.38365i) q^{20} +(-0.159531 - 0.159531i) q^{21} +(2.04289 + 2.48539i) q^{22} +(-5.58779 + 5.58779i) q^{23} +(-0.814832 + 2.70851i) q^{24} +(1.20897 + 4.85164i) q^{25} +(6.14142 + 0.600131i) q^{26} -1.00000 q^{27} +(-0.251259 - 0.374793i) q^{28} +(-6.25463 - 6.25463i) q^{29} +(-2.18017 + 2.29061i) q^{30} +1.69754i q^{31} +(-2.64751 + 4.99907i) q^{32} +(-1.60861 + 1.60861i) q^{33} +(7.16098 - 5.88604i) q^{34} +(-0.0614476 - 0.500725i) q^{35} +(-1.96217 - 0.387177i) q^{36} +0.609145i q^{37} +(5.05346 + 6.14806i) q^{38} +4.36332i q^{39} +(-5.16472 + 3.65044i) q^{40} +0.538520i q^{41} +(0.246483 - 0.202600i) q^{42} +0.592259i q^{43} +(-3.77919 + 2.53355i) q^{44} +(-1.76195 - 1.37678i) q^{45} +(-7.09632 - 8.63341i) q^{46} +(4.85568 - 4.85568i) q^{47} +(-3.70019 - 1.51941i) q^{48} -6.94910i q^{49} +(-6.99501 + 1.03434i) q^{50} +(4.63479 + 4.63479i) q^{51} +(-1.68938 + 8.56156i) q^{52} -4.82837 q^{53} +(0.137540 - 1.40751i) q^{54} +(-5.04901 + 0.619600i) q^{55} +(0.562083 - 0.302101i) q^{56} +(-3.97920 + 3.97920i) q^{57} +(9.66371 - 7.94319i) q^{58} +(5.78762 + 5.78762i) q^{59} +(-2.92419 - 3.38365i) q^{60} +(1.65469 - 1.65469i) q^{61} +(-2.38930 - 0.233479i) q^{62} +(0.159531 + 0.159531i) q^{63} +(-6.67210 - 4.41397i) q^{64} +(-6.00733 + 7.68798i) q^{65} +(-2.04289 - 2.48539i) q^{66} -0.485302i q^{67} +(7.29974 + 10.8887i) q^{68} +(5.58779 - 5.58779i) q^{69} +(0.713227 - 0.0176184i) q^{70} +6.86042 q^{71} +(0.814832 - 2.70851i) q^{72} +(-0.160991 - 0.160991i) q^{73} +(-0.857378 - 0.0837818i) q^{74} +(-1.20897 - 4.85164i) q^{75} +(-9.34851 + 6.26719i) q^{76} +0.513248 q^{77} +(-6.14142 - 0.600131i) q^{78} -7.13706 q^{79} +(-4.42767 - 7.77147i) q^{80} +1.00000 q^{81} +(-0.757972 - 0.0740679i) q^{82} -6.88217 q^{83} +(0.251259 + 0.374793i) q^{84} +(1.78521 + 14.5474i) q^{85} +(-0.833610 - 0.0814592i) q^{86} +(6.25463 + 6.25463i) q^{87} +(-3.04620 - 5.66770i) q^{88} +17.0238 q^{89} +(2.18017 - 2.29061i) q^{90} +(0.696085 - 0.696085i) q^{91} +(13.1276 - 8.80070i) q^{92} -1.69754i q^{93} +(6.16657 + 7.50227i) q^{94} +(-12.4896 + 1.53269i) q^{95} +(2.64751 - 4.99907i) q^{96} +(9.64079 + 9.64079i) q^{97} +(9.78092 + 0.955778i) q^{98} +(1.60861 - 1.60861i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 20 q^{3} + 2 q^{4} - 4 q^{7} + 6 q^{8} + 20 q^{9} + 8 q^{10} + 8 q^{11} - 2 q^{12} + 10 q^{14} + 26 q^{16} + 12 q^{17} + 16 q^{19} - 10 q^{20} + 4 q^{21} - 10 q^{22} - 16 q^{23} - 6 q^{24} + 4 q^{25}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/240\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(181\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.137540 + 1.40751i −0.0972554 + 0.995259i
\(3\) −1.00000 −0.577350
\(4\) −1.96217 0.387177i −0.981083 0.193589i
\(5\) −1.76195 1.37678i −0.787970 0.615714i
\(6\) 0.137540 1.40751i 0.0561504 0.574613i
\(7\) 0.159531 + 0.159531i 0.0602971 + 0.0602971i 0.736612 0.676315i \(-0.236424\pi\)
−0.676315 + 0.736612i \(0.736424\pi\)
\(8\) 0.814832 2.70851i 0.288087 0.957604i
\(9\) 1.00000 0.333333
\(10\) 2.18017 2.29061i 0.689429 0.724353i
\(11\) 1.60861 1.60861i 0.485015 0.485015i −0.421714 0.906729i \(-0.638571\pi\)
0.906729 + 0.421714i \(0.138571\pi\)
\(12\) 1.96217 + 0.387177i 0.566428 + 0.111768i
\(13\) 4.36332i 1.21017i −0.796162 0.605084i \(-0.793139\pi\)
0.796162 0.605084i \(-0.206861\pi\)
\(14\) −0.246483 + 0.202600i −0.0658754 + 0.0541470i
\(15\) 1.76195 + 1.37678i 0.454935 + 0.355483i
\(16\) 3.70019 + 1.51941i 0.925047 + 0.379853i
\(17\) −4.63479 4.63479i −1.12410 1.12410i −0.991118 0.132983i \(-0.957545\pi\)
−0.132983 0.991118i \(-0.542455\pi\)
\(18\) −0.137540 + 1.40751i −0.0324185 + 0.331753i
\(19\) 3.97920 3.97920i 0.912891 0.912891i −0.0836074 0.996499i \(-0.526644\pi\)
0.996499 + 0.0836074i \(0.0266442\pi\)
\(20\) 2.92419 + 3.38365i 0.653868 + 0.756608i
\(21\) −0.159531 0.159531i −0.0348125 0.0348125i
\(22\) 2.04289 + 2.48539i 0.435546 + 0.529886i
\(23\) −5.58779 + 5.58779i −1.16513 + 1.16513i −0.181799 + 0.983336i \(0.558192\pi\)
−0.983336 + 0.181799i \(0.941808\pi\)
\(24\) −0.814832 + 2.70851i −0.166327 + 0.552873i
\(25\) 1.20897 + 4.85164i 0.241793 + 0.970328i
\(26\) 6.14142 + 0.600131i 1.20443 + 0.117695i
\(27\) −1.00000 −0.192450
\(28\) −0.251259 0.374793i −0.0474836 0.0708292i
\(29\) −6.25463 6.25463i −1.16146 1.16146i −0.984157 0.177299i \(-0.943264\pi\)
−0.177299 0.984157i \(-0.556736\pi\)
\(30\) −2.18017 + 2.29061i −0.398042 + 0.418205i
\(31\) 1.69754i 0.304886i 0.988312 + 0.152443i \(0.0487141\pi\)
−0.988312 + 0.152443i \(0.951286\pi\)
\(32\) −2.64751 + 4.99907i −0.468018 + 0.883719i
\(33\) −1.60861 + 1.60861i −0.280024 + 0.280024i
\(34\) 7.16098 5.88604i 1.22810 1.00945i
\(35\) −0.0614476 0.500725i −0.0103865 0.0846380i
\(36\) −1.96217 0.387177i −0.327028 0.0645296i
\(37\) 0.609145i 0.100143i 0.998746 + 0.0500714i \(0.0159449\pi\)
−0.998746 + 0.0500714i \(0.984055\pi\)
\(38\) 5.05346 + 6.14806i 0.819780 + 0.997347i
\(39\) 4.36332i 0.698691i
\(40\) −5.16472 + 3.65044i −0.816614 + 0.577185i
\(41\) 0.538520i 0.0841026i 0.999115 + 0.0420513i \(0.0133893\pi\)
−0.999115 + 0.0420513i \(0.986611\pi\)
\(42\) 0.246483 0.202600i 0.0380332 0.0312618i
\(43\) 0.592259i 0.0903186i 0.998980 + 0.0451593i \(0.0143795\pi\)
−0.998980 + 0.0451593i \(0.985620\pi\)
\(44\) −3.77919 + 2.53355i −0.569734 + 0.381947i
\(45\) −1.76195 1.37678i −0.262657 0.205238i
\(46\) −7.09632 8.63341i −1.04630 1.27293i
\(47\) 4.85568 4.85568i 0.708274 0.708274i −0.257898 0.966172i \(-0.583030\pi\)
0.966172 + 0.257898i \(0.0830298\pi\)
\(48\) −3.70019 1.51941i −0.534076 0.219308i
\(49\) 6.94910i 0.992729i
\(50\) −6.99501 + 1.03434i −0.989244 + 0.146277i
\(51\) 4.63479 + 4.63479i 0.649000 + 0.649000i
\(52\) −1.68938 + 8.56156i −0.234275 + 1.18728i
\(53\) −4.82837 −0.663227 −0.331613 0.943415i \(-0.607593\pi\)
−0.331613 + 0.943415i \(0.607593\pi\)
\(54\) 0.137540 1.40751i 0.0187168 0.191538i
\(55\) −5.04901 + 0.619600i −0.680808 + 0.0835468i
\(56\) 0.562083 0.302101i 0.0751115 0.0403700i
\(57\) −3.97920 + 3.97920i −0.527058 + 0.527058i
\(58\) 9.66371 7.94319i 1.26891 1.04299i
\(59\) 5.78762 + 5.78762i 0.753483 + 0.753483i 0.975128 0.221644i \(-0.0711424\pi\)
−0.221644 + 0.975128i \(0.571142\pi\)
\(60\) −2.92419 3.38365i −0.377511 0.436828i
\(61\) 1.65469 1.65469i 0.211861 0.211861i −0.593197 0.805058i \(-0.702134\pi\)
0.805058 + 0.593197i \(0.202134\pi\)
\(62\) −2.38930 0.233479i −0.303441 0.0296518i
\(63\) 0.159531 + 0.159531i 0.0200990 + 0.0200990i
\(64\) −6.67210 4.41397i −0.834012 0.551746i
\(65\) −6.00733 + 7.68798i −0.745117 + 0.953576i
\(66\) −2.04289 2.48539i −0.251462 0.305930i
\(67\) 0.485302i 0.0592891i −0.999561 0.0296446i \(-0.990562\pi\)
0.999561 0.0296446i \(-0.00943754\pi\)
\(68\) 7.29974 + 10.8887i 0.885223 + 1.32045i
\(69\) 5.58779 5.58779i 0.672691 0.672691i
\(70\) 0.713227 0.0176184i 0.0852469 0.00210580i
\(71\) 6.86042 0.814182 0.407091 0.913388i \(-0.366543\pi\)
0.407091 + 0.913388i \(0.366543\pi\)
\(72\) 0.814832 2.70851i 0.0960288 0.319201i
\(73\) −0.160991 0.160991i −0.0188426 0.0188426i 0.697623 0.716465i \(-0.254241\pi\)
−0.716465 + 0.697623i \(0.754241\pi\)
\(74\) −0.857378 0.0837818i −0.0996681 0.00973943i
\(75\) −1.20897 4.85164i −0.139599 0.560219i
\(76\) −9.34851 + 6.26719i −1.07235 + 0.718897i
\(77\) 0.513248 0.0584900
\(78\) −6.14142 0.600131i −0.695379 0.0679515i
\(79\) −7.13706 −0.802982 −0.401491 0.915863i \(-0.631508\pi\)
−0.401491 + 0.915863i \(0.631508\pi\)
\(80\) −4.42767 7.77147i −0.495028 0.868877i
\(81\) 1.00000 0.111111
\(82\) −0.757972 0.0740679i −0.0837040 0.00817943i
\(83\) −6.88217 −0.755417 −0.377708 0.925925i \(-0.623288\pi\)
−0.377708 + 0.925925i \(0.623288\pi\)
\(84\) 0.251259 + 0.374793i 0.0274147 + 0.0408933i
\(85\) 1.78521 + 14.5474i 0.193633 + 1.57788i
\(86\) −0.833610 0.0814592i −0.0898905 0.00878397i
\(87\) 6.25463 + 6.25463i 0.670567 + 0.670567i
\(88\) −3.04620 5.66770i −0.324726 0.604179i
\(89\) 17.0238 1.80451 0.902257 0.431198i \(-0.141909\pi\)
0.902257 + 0.431198i \(0.141909\pi\)
\(90\) 2.18017 2.29061i 0.229810 0.241451i
\(91\) 0.696085 0.696085i 0.0729696 0.0729696i
\(92\) 13.1276 8.80070i 1.36865 0.917536i
\(93\) 1.69754i 0.176026i
\(94\) 6.16657 + 7.50227i 0.636033 + 0.773800i
\(95\) −12.4896 + 1.53269i −1.28141 + 0.157251i
\(96\) 2.64751 4.99907i 0.270210 0.510215i
\(97\) 9.64079 + 9.64079i 0.978874 + 0.978874i 0.999781 0.0209077i \(-0.00665561\pi\)
−0.0209077 + 0.999781i \(0.506656\pi\)
\(98\) 9.78092 + 0.955778i 0.988022 + 0.0965482i
\(99\) 1.60861 1.60861i 0.161672 0.161672i
\(100\) −0.493746 9.98780i −0.0493746 0.998780i
\(101\) −4.00201 4.00201i −0.398214 0.398214i 0.479388 0.877603i \(-0.340859\pi\)
−0.877603 + 0.479388i \(0.840859\pi\)
\(102\) −7.16098 + 5.88604i −0.709042 + 0.582805i
\(103\) −8.06640 + 8.06640i −0.794806 + 0.794806i −0.982271 0.187465i \(-0.939973\pi\)
0.187465 + 0.982271i \(0.439973\pi\)
\(104\) −11.8181 3.55537i −1.15886 0.348633i
\(105\) 0.0614476 + 0.500725i 0.00599667 + 0.0488658i
\(106\) 0.664093 6.79597i 0.0645024 0.660083i
\(107\) 4.50489 0.435504 0.217752 0.976004i \(-0.430128\pi\)
0.217752 + 0.976004i \(0.430128\pi\)
\(108\) 1.96217 + 0.387177i 0.188809 + 0.0372562i
\(109\) 0.813992 + 0.813992i 0.0779663 + 0.0779663i 0.745015 0.667048i \(-0.232443\pi\)
−0.667048 + 0.745015i \(0.732443\pi\)
\(110\) −0.177653 7.19175i −0.0169385 0.685706i
\(111\) 0.609145i 0.0578175i
\(112\) 0.347901 + 0.832688i 0.0328736 + 0.0786816i
\(113\) 7.69423 7.69423i 0.723813 0.723813i −0.245567 0.969380i \(-0.578974\pi\)
0.969380 + 0.245567i \(0.0789741\pi\)
\(114\) −5.05346 6.14806i −0.473300 0.575819i
\(115\) 17.5386 2.15228i 1.63548 0.200702i
\(116\) 9.85097 + 14.6943i 0.914640 + 1.36433i
\(117\) 4.36332i 0.403389i
\(118\) −8.94215 + 7.35010i −0.823192 + 0.676631i
\(119\) 1.47878i 0.135560i
\(120\) 5.16472 3.65044i 0.471472 0.333238i
\(121\) 5.82472i 0.529520i
\(122\) 2.10140 + 2.55657i 0.190252 + 0.231461i
\(123\) 0.538520i 0.0485567i
\(124\) 0.657247 3.33085i 0.0590226 0.299119i
\(125\) 4.54949 10.2128i 0.406919 0.913464i
\(126\) −0.246483 + 0.202600i −0.0219585 + 0.0180490i
\(127\) 12.0279 12.0279i 1.06731 1.06731i 0.0697405 0.997565i \(-0.477783\pi\)
0.997565 0.0697405i \(-0.0222171\pi\)
\(128\) 7.13038 8.78395i 0.630242 0.776398i
\(129\) 0.592259i 0.0521455i
\(130\) −9.99465 9.51277i −0.876589 0.834325i
\(131\) 13.2235 + 13.2235i 1.15534 + 1.15534i 0.985466 + 0.169874i \(0.0543361\pi\)
0.169874 + 0.985466i \(0.445664\pi\)
\(132\) 3.77919 2.53355i 0.328936 0.220517i
\(133\) 1.26961 0.110089
\(134\) 0.683068 + 0.0667484i 0.0590080 + 0.00576618i
\(135\) 1.76195 + 1.37678i 0.151645 + 0.118494i
\(136\) −16.3300 + 8.77682i −1.40028 + 0.752606i
\(137\) 4.88182 4.88182i 0.417082 0.417082i −0.467115 0.884197i \(-0.654706\pi\)
0.884197 + 0.467115i \(0.154706\pi\)
\(138\) 7.09632 + 8.63341i 0.604079 + 0.734925i
\(139\) −9.86643 9.86643i −0.836860 0.836860i 0.151584 0.988444i \(-0.451562\pi\)
−0.988444 + 0.151584i \(0.951562\pi\)
\(140\) −0.0732991 + 1.00630i −0.00619490 + 0.0850476i
\(141\) −4.85568 + 4.85568i −0.408922 + 0.408922i
\(142\) −0.943581 + 9.65611i −0.0791836 + 0.810322i
\(143\) −7.01890 7.01890i −0.586950 0.586950i
\(144\) 3.70019 + 1.51941i 0.308349 + 0.126618i
\(145\) 2.40914 + 19.6316i 0.200068 + 1.63032i
\(146\) 0.248739 0.204454i 0.0205858 0.0169207i
\(147\) 6.94910i 0.573152i
\(148\) 0.235847 1.19524i 0.0193865 0.0982484i
\(149\) −11.2851 + 11.2851i −0.924515 + 0.924515i −0.997344 0.0728290i \(-0.976797\pi\)
0.0728290 + 0.997344i \(0.476797\pi\)
\(150\) 6.99501 1.03434i 0.571140 0.0844532i
\(151\) 1.52546 0.124140 0.0620701 0.998072i \(-0.480230\pi\)
0.0620701 + 0.998072i \(0.480230\pi\)
\(152\) −7.53534 14.0201i −0.611197 1.13718i
\(153\) −4.63479 4.63479i −0.374700 0.374700i
\(154\) −0.0705920 + 0.722401i −0.00568847 + 0.0582127i
\(155\) 2.33713 2.99098i 0.187723 0.240241i
\(156\) 1.68938 8.56156i 0.135259 0.685474i
\(157\) 11.8705 0.947366 0.473683 0.880695i \(-0.342924\pi\)
0.473683 + 0.880695i \(0.342924\pi\)
\(158\) 0.981630 10.0455i 0.0780943 0.799175i
\(159\) 4.82837 0.382914
\(160\) 11.5474 5.16310i 0.912902 0.408179i
\(161\) −1.78285 −0.140508
\(162\) −0.137540 + 1.40751i −0.0108062 + 0.110584i
\(163\) −6.57461 −0.514963 −0.257481 0.966283i \(-0.582893\pi\)
−0.257481 + 0.966283i \(0.582893\pi\)
\(164\) 0.208503 1.05666i 0.0162813 0.0825117i
\(165\) 5.04901 0.619600i 0.393065 0.0482358i
\(166\) 0.946573 9.68672i 0.0734683 0.751836i
\(167\) −18.2166 18.2166i −1.40964 1.40964i −0.761636 0.648005i \(-0.775604\pi\)
−0.648005 0.761636i \(-0.724396\pi\)
\(168\) −0.562083 + 0.302101i −0.0433656 + 0.0233076i
\(169\) −6.03860 −0.464507
\(170\) −20.7211 + 0.511859i −1.58923 + 0.0392578i
\(171\) 3.97920 3.97920i 0.304297 0.304297i
\(172\) 0.229309 1.16211i 0.0174847 0.0886100i
\(173\) 4.84309i 0.368213i −0.982906 0.184106i \(-0.941061\pi\)
0.982906 0.184106i \(-0.0589391\pi\)
\(174\) −9.66371 + 7.94319i −0.732604 + 0.602172i
\(175\) −0.581119 + 0.966854i −0.0439285 + 0.0730873i
\(176\) 8.39632 3.50803i 0.632896 0.264427i
\(177\) −5.78762 5.78762i −0.435024 0.435024i
\(178\) −2.34144 + 23.9611i −0.175499 + 1.79596i
\(179\) 5.14531 5.14531i 0.384579 0.384579i −0.488170 0.872749i \(-0.662335\pi\)
0.872749 + 0.488170i \(0.162335\pi\)
\(180\) 2.92419 + 3.38365i 0.217956 + 0.252203i
\(181\) −11.6902 11.6902i −0.868925 0.868925i 0.123429 0.992353i \(-0.460611\pi\)
−0.992353 + 0.123429i \(0.960611\pi\)
\(182\) 0.884007 + 1.07549i 0.0655270 + 0.0797204i
\(183\) −1.65469 + 1.65469i −0.122318 + 0.122318i
\(184\) 10.5815 + 19.6877i 0.780078 + 1.45140i
\(185\) 0.838658 1.07329i 0.0616593 0.0789096i
\(186\) 2.38930 + 0.233479i 0.175192 + 0.0171195i
\(187\) −14.9112 −1.09041
\(188\) −11.4077 + 7.64764i −0.831989 + 0.557762i
\(189\) −0.159531 0.159531i −0.0116042 0.0116042i
\(190\) −0.439457 17.7901i −0.0318816 1.29063i
\(191\) 15.8153i 1.14436i 0.820129 + 0.572179i \(0.193902\pi\)
−0.820129 + 0.572179i \(0.806098\pi\)
\(192\) 6.67210 + 4.41397i 0.481517 + 0.318551i
\(193\) −1.54170 + 1.54170i −0.110974 + 0.110974i −0.760413 0.649439i \(-0.775004\pi\)
0.649439 + 0.760413i \(0.275004\pi\)
\(194\) −14.8955 + 12.2435i −1.06943 + 0.879033i
\(195\) 6.00733 7.68798i 0.430194 0.550547i
\(196\) −2.69053 + 13.6353i −0.192181 + 0.973949i
\(197\) 5.98026i 0.426076i 0.977044 + 0.213038i \(0.0683358\pi\)
−0.977044 + 0.213038i \(0.931664\pi\)
\(198\) 2.04289 + 2.48539i 0.145182 + 0.176629i
\(199\) 12.5564i 0.890102i 0.895505 + 0.445051i \(0.146815\pi\)
−0.895505 + 0.445051i \(0.853185\pi\)
\(200\) 14.1258 + 0.678770i 0.998848 + 0.0479963i
\(201\) 0.485302i 0.0342306i
\(202\) 6.18330 5.08243i 0.435055 0.357598i
\(203\) 1.99561i 0.140065i
\(204\) −7.29974 10.8887i −0.511084 0.762362i
\(205\) 0.741422 0.948847i 0.0517832 0.0662704i
\(206\) −10.2441 12.4630i −0.713739 0.868338i
\(207\) −5.58779 + 5.58779i −0.388378 + 0.388378i
\(208\) 6.62969 16.1451i 0.459686 1.11946i
\(209\) 12.8020i 0.885533i
\(210\) −0.713227 + 0.0176184i −0.0492173 + 0.00121578i
\(211\) −18.4049 18.4049i −1.26705 1.26705i −0.947605 0.319443i \(-0.896504\pi\)
−0.319443 0.947605i \(-0.603496\pi\)
\(212\) 9.47405 + 1.86943i 0.650681 + 0.128393i
\(213\) −6.86042 −0.470068
\(214\) −0.619602 + 6.34067i −0.0423551 + 0.433440i
\(215\) 0.815409 1.04353i 0.0556104 0.0711684i
\(216\) −0.814832 + 2.70851i −0.0554423 + 0.184291i
\(217\) −0.270810 + 0.270810i −0.0183838 + 0.0183838i
\(218\) −1.25766 + 1.03374i −0.0851793 + 0.0700140i
\(219\) 0.160991 + 0.160991i 0.0108788 + 0.0108788i
\(220\) 10.1469 + 0.739104i 0.684103 + 0.0498303i
\(221\) −20.2231 + 20.2231i −1.36035 + 1.36035i
\(222\) 0.857378 + 0.0837818i 0.0575434 + 0.00562306i
\(223\) 11.6149 + 11.6149i 0.777792 + 0.777792i 0.979455 0.201663i \(-0.0646345\pi\)
−0.201663 + 0.979455i \(0.564634\pi\)
\(224\) −1.21987 + 0.375147i −0.0815058 + 0.0250655i
\(225\) 1.20897 + 4.85164i 0.0805977 + 0.323443i
\(226\) 9.77144 + 11.8880i 0.649987 + 0.790776i
\(227\) 0.411442i 0.0273084i −0.999907 0.0136542i \(-0.995654\pi\)
0.999907 0.0136542i \(-0.00434640\pi\)
\(228\) 9.34851 6.26719i 0.619120 0.415055i
\(229\) 11.2286 11.2286i 0.742009 0.742009i −0.230955 0.972964i \(-0.574185\pi\)
0.972964 + 0.230955i \(0.0741851\pi\)
\(230\) 0.617107 + 24.9817i 0.0406908 + 1.64725i
\(231\) −0.513248 −0.0337692
\(232\) −22.0372 + 11.8443i −1.44681 + 0.777615i
\(233\) 18.9687 + 18.9687i 1.24268 + 1.24268i 0.958884 + 0.283799i \(0.0915947\pi\)
0.283799 + 0.958884i \(0.408405\pi\)
\(234\) 6.14142 + 0.600131i 0.401477 + 0.0392318i
\(235\) −15.2407 + 1.87029i −0.994193 + 0.122005i
\(236\) −9.11543 13.5971i −0.593364 0.885095i
\(237\) 7.13706 0.463602
\(238\) 2.08140 + 0.203392i 0.134917 + 0.0131839i
\(239\) −11.2094 −0.725076 −0.362538 0.931969i \(-0.618090\pi\)
−0.362538 + 0.931969i \(0.618090\pi\)
\(240\) 4.42767 + 7.77147i 0.285805 + 0.501646i
\(241\) 0.0518990 0.00334311 0.00167156 0.999999i \(-0.499468\pi\)
0.00167156 + 0.999999i \(0.499468\pi\)
\(242\) −8.19835 0.801132i −0.527010 0.0514987i
\(243\) −1.00000 −0.0641500
\(244\) −3.88743 + 2.60611i −0.248867 + 0.166839i
\(245\) −9.56737 + 12.2440i −0.611237 + 0.782240i
\(246\) 0.757972 + 0.0740679i 0.0483265 + 0.00472240i
\(247\) −17.3625 17.3625i −1.10475 1.10475i
\(248\) 4.59780 + 1.38321i 0.291961 + 0.0878337i
\(249\) 6.88217 0.436140
\(250\) 13.7489 + 7.80812i 0.869559 + 0.493829i
\(251\) −2.45358 + 2.45358i −0.154869 + 0.154869i −0.780288 0.625420i \(-0.784928\pi\)
0.625420 + 0.780288i \(0.284928\pi\)
\(252\) −0.251259 0.374793i −0.0158279 0.0236097i
\(253\) 17.9772i 1.13022i
\(254\) 15.2751 + 18.5837i 0.958445 + 1.16605i
\(255\) −1.78521 14.5474i −0.111794 0.910991i
\(256\) 11.3828 + 11.2442i 0.711423 + 0.702764i
\(257\) −4.52073 4.52073i −0.281995 0.281995i 0.551909 0.833904i \(-0.313900\pi\)
−0.833904 + 0.551909i \(0.813900\pi\)
\(258\) 0.833610 + 0.0814592i 0.0518983 + 0.00507143i
\(259\) −0.0971776 + 0.0971776i −0.00603832 + 0.00603832i
\(260\) 14.7640 12.7592i 0.915623 0.791291i
\(261\) −6.25463 6.25463i −0.387152 0.387152i
\(262\) −20.4309 + 16.7934i −1.26223 + 1.03750i
\(263\) 16.0925 16.0925i 0.992304 0.992304i −0.00766695 0.999971i \(-0.502440\pi\)
0.999971 + 0.00766695i \(0.00244049\pi\)
\(264\) 3.04620 + 5.66770i 0.187481 + 0.348823i
\(265\) 8.50736 + 6.64759i 0.522603 + 0.408358i
\(266\) −0.174622 + 1.78699i −0.0107068 + 0.109567i
\(267\) −17.0238 −1.04184
\(268\) −0.187898 + 0.952243i −0.0114777 + 0.0581675i
\(269\) 8.32218 + 8.32218i 0.507412 + 0.507412i 0.913731 0.406319i \(-0.133188\pi\)
−0.406319 + 0.913731i \(0.633188\pi\)
\(270\) −2.18017 + 2.29061i −0.132681 + 0.139402i
\(271\) 2.91266i 0.176932i −0.996079 0.0884658i \(-0.971804\pi\)
0.996079 0.0884658i \(-0.0281964\pi\)
\(272\) −10.1074 24.1917i −0.612853 1.46684i
\(273\) −0.696085 + 0.696085i −0.0421290 + 0.0421290i
\(274\) 6.19977 + 7.54266i 0.374542 + 0.455669i
\(275\) 9.74917 + 5.85966i 0.587897 + 0.353351i
\(276\) −13.1276 + 8.80070i −0.790191 + 0.529740i
\(277\) 0.339665i 0.0204085i −0.999948 0.0102042i \(-0.996752\pi\)
0.999948 0.0102042i \(-0.00324817\pi\)
\(278\) 15.2441 12.5301i 0.914282 0.751504i
\(279\) 1.69754i 0.101629i
\(280\) −1.40629 0.241575i −0.0840419 0.0144369i
\(281\) 20.9850i 1.25186i −0.779878 0.625931i \(-0.784719\pi\)
0.779878 0.625931i \(-0.215281\pi\)
\(282\) −6.16657 7.50227i −0.367214 0.446754i
\(283\) 15.6290i 0.929047i −0.885561 0.464523i \(-0.846226\pi\)
0.885561 0.464523i \(-0.153774\pi\)
\(284\) −13.4613 2.65620i −0.798780 0.157616i
\(285\) 12.4896 1.53269i 0.739823 0.0907890i
\(286\) 10.8446 8.91379i 0.641252 0.527084i
\(287\) −0.0859106 + 0.0859106i −0.00507114 + 0.00507114i
\(288\) −2.64751 + 4.99907i −0.156006 + 0.294573i
\(289\) 25.9625i 1.52721i
\(290\) −27.9630 + 0.690752i −1.64205 + 0.0405624i
\(291\) −9.64079 9.64079i −0.565153 0.565153i
\(292\) 0.253559 + 0.378223i 0.0148384 + 0.0221338i
\(293\) 19.8819 1.16151 0.580756 0.814078i \(-0.302757\pi\)
0.580756 + 0.814078i \(0.302757\pi\)
\(294\) −9.78092 0.955778i −0.570435 0.0557421i
\(295\) −2.22925 18.1658i −0.129792 1.05765i
\(296\) 1.64988 + 0.496351i 0.0958972 + 0.0288498i
\(297\) −1.60861 + 1.60861i −0.0933412 + 0.0933412i
\(298\) −14.3318 17.4361i −0.830219 1.01005i
\(299\) 24.3813 + 24.3813i 1.41001 + 1.41001i
\(300\) 0.493746 + 9.98780i 0.0285064 + 0.576646i
\(301\) −0.0944836 + 0.0944836i −0.00544595 + 0.00544595i
\(302\) −0.209811 + 2.14710i −0.0120733 + 0.123552i
\(303\) 4.00201 + 4.00201i 0.229909 + 0.229909i
\(304\) 20.7698 8.67774i 1.19123 0.497703i
\(305\) −5.19362 + 0.637346i −0.297386 + 0.0364943i
\(306\) 7.16098 5.88604i 0.409366 0.336482i
\(307\) 13.0401i 0.744239i 0.928185 + 0.372119i \(0.121369\pi\)
−0.928185 + 0.372119i \(0.878631\pi\)
\(308\) −1.00708 0.198718i −0.0573835 0.0113230i
\(309\) 8.06640 8.06640i 0.458882 0.458882i
\(310\) 3.88838 + 3.70091i 0.220845 + 0.210198i
\(311\) 23.6036 1.33843 0.669217 0.743067i \(-0.266630\pi\)
0.669217 + 0.743067i \(0.266630\pi\)
\(312\) 11.8181 + 3.55537i 0.669070 + 0.201283i
\(313\) −23.0604 23.0604i −1.30345 1.30345i −0.926051 0.377399i \(-0.876818\pi\)
−0.377399 0.926051i \(-0.623182\pi\)
\(314\) −1.63266 + 16.7078i −0.0921365 + 0.942875i
\(315\) −0.0614476 0.500725i −0.00346218 0.0282127i
\(316\) 14.0041 + 2.76331i 0.787792 + 0.155448i
\(317\) 10.0772 0.565991 0.282996 0.959121i \(-0.408672\pi\)
0.282996 + 0.959121i \(0.408672\pi\)
\(318\) −0.664093 + 6.79597i −0.0372405 + 0.381099i
\(319\) −20.1226 −1.12665
\(320\) 5.67888 + 16.9632i 0.317459 + 0.948272i
\(321\) −4.50489 −0.251438
\(322\) 0.245213 2.50938i 0.0136652 0.139842i
\(323\) −36.8855 −2.05236
\(324\) −1.96217 0.387177i −0.109009 0.0215099i
\(325\) 21.1693 5.27511i 1.17426 0.292610i
\(326\) 0.904271 9.25382i 0.0500829 0.512522i
\(327\) −0.813992 0.813992i −0.0450138 0.0450138i
\(328\) 1.45859 + 0.438803i 0.0805371 + 0.0242288i
\(329\) 1.54926 0.0854137
\(330\) 0.177653 + 7.19175i 0.00977947 + 0.395893i
\(331\) 6.16029 6.16029i 0.338600 0.338600i −0.517240 0.855840i \(-0.673041\pi\)
0.855840 + 0.517240i \(0.173041\pi\)
\(332\) 13.5040 + 2.66462i 0.741126 + 0.146240i
\(333\) 0.609145i 0.0333810i
\(334\) 28.1455 23.1345i 1.54005 1.26586i
\(335\) −0.668153 + 0.855080i −0.0365051 + 0.0467180i
\(336\) −0.347901 0.832688i −0.0189796 0.0454269i
\(337\) −18.1642 18.1642i −0.989467 0.989467i 0.0104777 0.999945i \(-0.496665\pi\)
−0.999945 + 0.0104777i \(0.996665\pi\)
\(338\) 0.830548 8.49938i 0.0451758 0.462305i
\(339\) −7.69423 + 7.69423i −0.417893 + 0.417893i
\(340\) 2.12953 29.2355i 0.115490 1.58552i
\(341\) 2.73068 + 2.73068i 0.147875 + 0.147875i
\(342\) 5.05346 + 6.14806i 0.273260 + 0.332449i
\(343\) 2.22531 2.22531i 0.120156 0.120156i
\(344\) 1.60414 + 0.482591i 0.0864895 + 0.0260196i
\(345\) −17.5386 + 2.15228i −0.944245 + 0.115875i
\(346\) 6.81669 + 0.666117i 0.366467 + 0.0358107i
\(347\) −2.80849 −0.150767 −0.0753837 0.997155i \(-0.524018\pi\)
−0.0753837 + 0.997155i \(0.524018\pi\)
\(348\) −9.85097 14.6943i −0.528067 0.787696i
\(349\) −13.8516 13.8516i −0.741458 0.741458i 0.231401 0.972858i \(-0.425669\pi\)
−0.972858 + 0.231401i \(0.925669\pi\)
\(350\) −1.28093 0.950912i −0.0684686 0.0508284i
\(351\) 4.36332i 0.232897i
\(352\) 3.78275 + 12.3004i 0.201621 + 0.655613i
\(353\) 16.3758 16.3758i 0.871595 0.871595i −0.121051 0.992646i \(-0.538626\pi\)
0.992646 + 0.121051i \(0.0386265\pi\)
\(354\) 8.94215 7.35010i 0.475270 0.390653i
\(355\) −12.0877 9.44528i −0.641551 0.501303i
\(356\) −33.4034 6.59121i −1.77038 0.349334i
\(357\) 1.47878i 0.0782656i
\(358\) 6.53439 + 7.94976i 0.345353 + 0.420158i
\(359\) 17.0587i 0.900325i −0.892947 0.450162i \(-0.851366\pi\)
0.892947 0.450162i \(-0.148634\pi\)
\(360\) −5.16472 + 3.65044i −0.272205 + 0.192395i
\(361\) 12.6681i 0.666741i
\(362\) 18.0619 14.8462i 0.949313 0.780298i
\(363\) 5.82472i 0.305719i
\(364\) −1.63534 + 1.09633i −0.0857153 + 0.0574631i
\(365\) 0.0620100 + 0.505308i 0.00324575 + 0.0264490i
\(366\) −2.10140 2.55657i −0.109842 0.133634i
\(367\) 13.9971 13.9971i 0.730643 0.730643i −0.240104 0.970747i \(-0.577182\pi\)
0.970747 + 0.240104i \(0.0771816\pi\)
\(368\) −29.1660 + 12.1857i −1.52038 + 0.635224i
\(369\) 0.538520i 0.0280342i
\(370\) 1.39531 + 1.32804i 0.0725388 + 0.0690414i
\(371\) −0.770274 0.770274i −0.0399906 0.0399906i
\(372\) −0.657247 + 3.33085i −0.0340767 + 0.172696i
\(373\) 16.4829 0.853450 0.426725 0.904381i \(-0.359667\pi\)
0.426725 + 0.904381i \(0.359667\pi\)
\(374\) 2.05088 20.9876i 0.106048 1.08524i
\(375\) −4.54949 + 10.2128i −0.234935 + 0.527389i
\(376\) −9.19512 17.1083i −0.474202 0.882291i
\(377\) −27.2910 + 27.2910i −1.40556 + 1.40556i
\(378\) 0.246483 0.202600i 0.0126777 0.0104206i
\(379\) 9.73283 + 9.73283i 0.499942 + 0.499942i 0.911420 0.411478i \(-0.134987\pi\)
−0.411478 + 0.911420i \(0.634987\pi\)
\(380\) 25.1002 + 1.82831i 1.28761 + 0.0937902i
\(381\) −12.0279 + 12.0279i −0.616209 + 0.616209i
\(382\) −22.2603 2.17524i −1.13893 0.111295i
\(383\) 5.51456 + 5.51456i 0.281781 + 0.281781i 0.833819 0.552038i \(-0.186150\pi\)
−0.552038 + 0.833819i \(0.686150\pi\)
\(384\) −7.13038 + 8.78395i −0.363871 + 0.448254i
\(385\) −0.904319 0.706628i −0.0460883 0.0360131i
\(386\) −1.95792 2.38201i −0.0996553 0.121241i
\(387\) 0.592259i 0.0301062i
\(388\) −15.1841 22.6495i −0.770857 1.14986i
\(389\) −3.72303 + 3.72303i −0.188765 + 0.188765i −0.795162 0.606397i \(-0.792614\pi\)
0.606397 + 0.795162i \(0.292614\pi\)
\(390\) 9.99465 + 9.51277i 0.506099 + 0.481698i
\(391\) 51.7964 2.61946
\(392\) −18.8217 5.66235i −0.950641 0.285992i
\(393\) −13.2235 13.2235i −0.667036 0.667036i
\(394\) −8.41727 0.822524i −0.424056 0.0414382i
\(395\) 12.5752 + 9.82615i 0.632726 + 0.494407i
\(396\) −3.77919 + 2.53355i −0.189911 + 0.127316i
\(397\) 30.9797 1.55483 0.777413 0.628991i \(-0.216532\pi\)
0.777413 + 0.628991i \(0.216532\pi\)
\(398\) −17.6733 1.72701i −0.885883 0.0865672i
\(399\) −1.26961 −0.0635601
\(400\) −2.89824 + 19.7889i −0.144912 + 0.989445i
\(401\) 0.563079 0.0281188 0.0140594 0.999901i \(-0.495525\pi\)
0.0140594 + 0.999901i \(0.495525\pi\)
\(402\) −0.683068 0.0667484i −0.0340683 0.00332911i
\(403\) 7.40690 0.368964
\(404\) 6.30311 + 9.40208i 0.313592 + 0.467771i
\(405\) −1.76195 1.37678i −0.0875522 0.0684126i
\(406\) 2.80885 + 0.274477i 0.139401 + 0.0136220i
\(407\) 0.979879 + 0.979879i 0.0485708 + 0.0485708i
\(408\) 16.3300 8.77682i 0.808453 0.434517i
\(409\) −33.9503 −1.67874 −0.839368 0.543563i \(-0.817075\pi\)
−0.839368 + 0.543563i \(0.817075\pi\)
\(410\) 1.23354 + 1.17406i 0.0609200 + 0.0579828i
\(411\) −4.88182 + 4.88182i −0.240803 + 0.240803i
\(412\) 18.9508 12.7045i 0.933636 0.625905i
\(413\) 1.84661i 0.0908657i
\(414\) −7.09632 8.63341i −0.348765 0.424309i
\(415\) 12.1261 + 9.47522i 0.595246 + 0.465120i
\(416\) 21.8126 + 11.5519i 1.06945 + 0.566381i
\(417\) 9.86643 + 9.86643i 0.483161 + 0.483161i
\(418\) 18.0189 + 1.76078i 0.881335 + 0.0861228i
\(419\) −12.0118 + 12.0118i −0.586814 + 0.586814i −0.936767 0.349953i \(-0.886197\pi\)
0.349953 + 0.936767i \(0.386197\pi\)
\(420\) 0.0732991 1.00630i 0.00357663 0.0491022i
\(421\) −5.06683 5.06683i −0.246942 0.246942i 0.572772 0.819715i \(-0.305868\pi\)
−0.819715 + 0.572772i \(0.805868\pi\)
\(422\) 28.4365 23.3737i 1.38427 1.13781i
\(423\) 4.85568 4.85568i 0.236091 0.236091i
\(424\) −3.93431 + 13.0777i −0.191067 + 0.635109i
\(425\) 16.8830 28.0896i 0.818947 1.36255i
\(426\) 0.943581 9.65611i 0.0457167 0.467840i
\(427\) 0.527948 0.0255492
\(428\) −8.83934 1.74419i −0.427266 0.0843087i
\(429\) 7.01890 + 7.01890i 0.338876 + 0.338876i
\(430\) 1.35663 + 1.29122i 0.0654226 + 0.0622683i
\(431\) 17.0195i 0.819798i 0.912131 + 0.409899i \(0.134436\pi\)
−0.912131 + 0.409899i \(0.865564\pi\)
\(432\) −3.70019 1.51941i −0.178025 0.0731027i
\(433\) 24.6355 24.6355i 1.18390 1.18390i 0.205180 0.978724i \(-0.434222\pi\)
0.978724 0.205180i \(-0.0657780\pi\)
\(434\) −0.343920 0.418414i −0.0165087 0.0200845i
\(435\) −2.40914 19.6316i −0.115509 0.941264i
\(436\) −1.28203 1.91235i −0.0613980 0.0915847i
\(437\) 44.4699i 2.12728i
\(438\) −0.248739 + 0.204454i −0.0118852 + 0.00976918i
\(439\) 27.5012i 1.31256i 0.754516 + 0.656281i \(0.227871\pi\)
−0.754516 + 0.656281i \(0.772129\pi\)
\(440\) −2.43590 + 14.1802i −0.116127 + 0.676014i
\(441\) 6.94910i 0.330910i
\(442\) −25.6827 31.2457i −1.22160 1.48620i
\(443\) 38.2663i 1.81809i 0.416701 + 0.909044i \(0.363186\pi\)
−0.416701 + 0.909044i \(0.636814\pi\)
\(444\) −0.235847 + 1.19524i −0.0111928 + 0.0567238i
\(445\) −29.9951 23.4379i −1.42190 1.11106i
\(446\) −17.9456 + 14.7506i −0.849750 + 0.698461i
\(447\) 11.2851 11.2851i 0.533769 0.533769i
\(448\) −0.360242 1.76857i −0.0170198 0.0835571i
\(449\) 19.7738i 0.933184i 0.884473 + 0.466592i \(0.154518\pi\)
−0.884473 + 0.466592i \(0.845482\pi\)
\(450\) −6.99501 + 1.03434i −0.329748 + 0.0487591i
\(451\) 0.866270 + 0.866270i 0.0407911 + 0.0407911i
\(452\) −18.0764 + 12.1183i −0.850242 + 0.569998i
\(453\) −1.52546 −0.0716723
\(454\) 0.579109 + 0.0565897i 0.0271789 + 0.00265589i
\(455\) −2.18483 + 0.268116i −0.102426 + 0.0125695i
\(456\) 7.53534 + 14.0201i 0.352875 + 0.656551i
\(457\) 3.78901 3.78901i 0.177242 0.177242i −0.612910 0.790153i \(-0.710001\pi\)
0.790153 + 0.612910i \(0.210001\pi\)
\(458\) 14.2600 + 17.3488i 0.666327 + 0.810656i
\(459\) 4.63479 + 4.63479i 0.216333 + 0.216333i
\(460\) −35.2469 2.56740i −1.64339 0.119706i
\(461\) −3.32447 + 3.32447i −0.154836 + 0.154836i −0.780274 0.625438i \(-0.784920\pi\)
0.625438 + 0.780274i \(0.284920\pi\)
\(462\) 0.0705920 0.722401i 0.00328424 0.0336091i
\(463\) 8.53272 + 8.53272i 0.396549 + 0.396549i 0.877014 0.480465i \(-0.159532\pi\)
−0.480465 + 0.877014i \(0.659532\pi\)
\(464\) −13.6399 32.6467i −0.633218 1.51558i
\(465\) −2.33713 + 2.99098i −0.108382 + 0.138703i
\(466\) −29.3076 + 24.0897i −1.35765 + 1.11593i
\(467\) 12.6255i 0.584240i 0.956382 + 0.292120i \(0.0943606\pi\)
−0.956382 + 0.292120i \(0.905639\pi\)
\(468\) −1.68938 + 8.56156i −0.0780916 + 0.395758i
\(469\) 0.0774208 0.0774208i 0.00357496 0.00357496i
\(470\) −0.536255 21.7087i −0.0247356 1.00135i
\(471\) −11.8705 −0.546962
\(472\) 20.3918 10.9599i 0.938607 0.504471i
\(473\) 0.952716 + 0.952716i 0.0438059 + 0.0438059i
\(474\) −0.981630 + 10.0455i −0.0450878 + 0.461404i
\(475\) 24.1164 + 14.4949i 1.10653 + 0.665073i
\(476\) −0.572552 + 2.90162i −0.0262429 + 0.132996i
\(477\) −4.82837 −0.221076
\(478\) 1.54174 15.7773i 0.0705175 0.721639i
\(479\) 24.0308 1.09800 0.548998 0.835824i \(-0.315009\pi\)
0.548998 + 0.835824i \(0.315009\pi\)
\(480\) −11.5474 + 5.16310i −0.527064 + 0.235662i
\(481\) 2.65790 0.121190
\(482\) −0.00713819 + 0.0730484i −0.000325135 + 0.00332726i
\(483\) 1.78285 0.0811225
\(484\) 2.25520 11.4291i 0.102509 0.519503i
\(485\) −3.71340 30.2599i −0.168617 1.37403i
\(486\) 0.137540 1.40751i 0.00623894 0.0638459i
\(487\) 24.5449 + 24.5449i 1.11223 + 1.11223i 0.992848 + 0.119387i \(0.0380930\pi\)
0.119387 + 0.992848i \(0.461907\pi\)
\(488\) −3.13345 5.83003i −0.141845 0.263913i
\(489\) 6.57461 0.297314
\(490\) −15.9176 15.1502i −0.719086 0.684416i
\(491\) 16.6457 16.6457i 0.751211 0.751211i −0.223494 0.974705i \(-0.571746\pi\)
0.974705 + 0.223494i \(0.0717463\pi\)
\(492\) −0.208503 + 1.05666i −0.00940002 + 0.0476381i
\(493\) 57.9778i 2.61119i
\(494\) 26.8260 22.0499i 1.20696 0.992072i
\(495\) −5.04901 + 0.619600i −0.226936 + 0.0278489i
\(496\) −2.57926 + 6.28120i −0.115812 + 0.282034i
\(497\) 1.09445 + 1.09445i 0.0490928 + 0.0490928i
\(498\) −0.946573 + 9.68672i −0.0424170 + 0.434073i
\(499\) −18.8910 + 18.8910i −0.845677 + 0.845677i −0.989590 0.143914i \(-0.954031\pi\)
0.143914 + 0.989590i \(0.454031\pi\)
\(500\) −12.8810 + 18.2778i −0.576057 + 0.817409i
\(501\) 18.2166 + 18.2166i 0.813857 + 0.813857i
\(502\) −3.11597 3.79090i −0.139073 0.169196i
\(503\) 13.4812 13.4812i 0.601095 0.601095i −0.339508 0.940603i \(-0.610261\pi\)
0.940603 + 0.339508i \(0.110261\pi\)
\(504\) 0.562083 0.302101i 0.0250372 0.0134567i
\(505\) 1.54148 + 12.5612i 0.0685949 + 0.558967i
\(506\) −25.3031 2.47258i −1.12486 0.109920i
\(507\) 6.03860 0.268183
\(508\) −28.2577 + 18.9438i −1.25373 + 0.840497i
\(509\) −24.1930 24.1930i −1.07233 1.07233i −0.997171 0.0751624i \(-0.976052\pi\)
−0.0751624 0.997171i \(-0.523948\pi\)
\(510\) 20.7211 0.511859i 0.917545 0.0226655i
\(511\) 0.0513661i 0.00227230i
\(512\) −17.3919 + 14.4748i −0.768622 + 0.639703i
\(513\) −3.97920 + 3.97920i −0.175686 + 0.175686i
\(514\) 6.98475 5.74119i 0.308084 0.253233i
\(515\) 25.3183 3.10699i 1.11566 0.136910i
\(516\) −0.229309 + 1.16211i −0.0100948 + 0.0511590i
\(517\) 15.6218i 0.687048i
\(518\) −0.123413 0.150144i −0.00542244 0.00659695i
\(519\) 4.84309i 0.212588i
\(520\) 15.9280 + 22.5353i 0.698490 + 0.988240i
\(521\) 0.863518i 0.0378314i 0.999821 + 0.0189157i \(0.00602142\pi\)
−0.999821 + 0.0189157i \(0.993979\pi\)
\(522\) 9.66371 7.94319i 0.422969 0.347664i
\(523\) 23.9267i 1.04624i 0.852259 + 0.523121i \(0.175232\pi\)
−0.852259 + 0.523121i \(0.824768\pi\)
\(524\) −20.8268 31.0665i −0.909823 1.35714i
\(525\) 0.581119 0.966854i 0.0253621 0.0421970i
\(526\) 20.4369 + 24.8636i 0.891093 + 1.08411i
\(527\) 7.86772 7.86772i 0.342723 0.342723i
\(528\) −8.39632 + 3.50803i −0.365403 + 0.152667i
\(529\) 39.4468i 1.71508i
\(530\) −10.5266 + 11.0599i −0.457248 + 0.480410i
\(531\) 5.78762 + 5.78762i 0.251161 + 0.251161i
\(532\) −2.49119 0.491565i −0.108007 0.0213120i
\(533\) 2.34974 0.101778
\(534\) 2.34144 23.9611i 0.101324 1.03690i
\(535\) −7.93741 6.20223i −0.343164 0.268146i
\(536\) −1.31445 0.395440i −0.0567755 0.0170804i
\(537\) −5.14531 + 5.14531i −0.222037 + 0.222037i
\(538\) −12.8582 + 10.5689i −0.554355 + 0.455658i
\(539\) −11.1784 11.1784i −0.481489 0.481489i
\(540\) −2.92419 3.38365i −0.125837 0.145609i
\(541\) −3.73413 + 3.73413i −0.160543 + 0.160543i −0.782807 0.622264i \(-0.786213\pi\)
0.622264 + 0.782807i \(0.286213\pi\)
\(542\) 4.09960 + 0.400607i 0.176093 + 0.0172076i
\(543\) 11.6902 + 11.6902i 0.501674 + 0.501674i
\(544\) 35.4403 10.8990i 1.51949 0.467290i
\(545\) −0.313530 2.55490i −0.0134302 0.109440i
\(546\) −0.884007 1.07549i −0.0378320 0.0460266i
\(547\) 33.9579i 1.45193i 0.687730 + 0.725967i \(0.258607\pi\)
−0.687730 + 0.725967i \(0.741393\pi\)
\(548\) −11.4691 + 7.68881i −0.489935 + 0.328450i
\(549\) 1.65469 1.65469i 0.0706203 0.0706203i
\(550\) −9.58842 + 12.9161i −0.408852 + 0.550745i
\(551\) −49.7769 −2.12057
\(552\) −10.5815 19.6877i −0.450378 0.837965i
\(553\) −1.13858 1.13858i −0.0484174 0.0484174i
\(554\) 0.478082 + 0.0467175i 0.0203118 + 0.00198484i
\(555\) −0.838658 + 1.07329i −0.0355990 + 0.0455585i
\(556\) 15.5395 + 23.1796i 0.659022 + 0.983035i
\(557\) 17.7955 0.754018 0.377009 0.926210i \(-0.376953\pi\)
0.377009 + 0.926210i \(0.376953\pi\)
\(558\) −2.38930 0.233479i −0.101147 0.00988395i
\(559\) 2.58422 0.109301
\(560\) 0.533440 1.94614i 0.0225420 0.0822395i
\(561\) 14.9112 0.629550
\(562\) 29.5366 + 2.88628i 1.24593 + 0.121750i
\(563\) −27.7570 −1.16982 −0.584909 0.811099i \(-0.698870\pi\)
−0.584909 + 0.811099i \(0.698870\pi\)
\(564\) 11.4077 7.64764i 0.480349 0.322024i
\(565\) −24.1501 + 2.96364i −1.01600 + 0.124681i
\(566\) 21.9979 + 2.14961i 0.924643 + 0.0903548i
\(567\) 0.159531 + 0.159531i 0.00669967 + 0.00669967i
\(568\) 5.59009 18.5815i 0.234555 0.779664i
\(569\) −31.4665 −1.31915 −0.659573 0.751641i \(-0.729263\pi\)
−0.659573 + 0.751641i \(0.729263\pi\)
\(570\) 0.439457 + 17.7901i 0.0184068 + 0.745145i
\(571\) −1.60655 + 1.60655i −0.0672319 + 0.0672319i −0.739923 0.672691i \(-0.765138\pi\)
0.672691 + 0.739923i \(0.265138\pi\)
\(572\) 11.0547 + 16.4898i 0.462220 + 0.689474i
\(573\) 15.8153i 0.660696i
\(574\) −0.109104 0.132736i −0.00455391 0.00554030i
\(575\) −33.8654 20.3545i −1.41228 0.848841i
\(576\) −6.67210 4.41397i −0.278004 0.183915i
\(577\) −21.8169 21.8169i −0.908250 0.908250i 0.0878809 0.996131i \(-0.471990\pi\)
−0.996131 + 0.0878809i \(0.971990\pi\)
\(578\) −36.5425 3.57088i −1.51997 0.148529i
\(579\) 1.54170 1.54170i 0.0640710 0.0640710i
\(580\) 2.87379 39.4532i 0.119328 1.63821i
\(581\) −1.09792 1.09792i −0.0455494 0.0455494i
\(582\) 14.8955 12.2435i 0.617438 0.507510i
\(583\) −7.76697 + 7.76697i −0.321675 + 0.321675i
\(584\) −0.567227 + 0.304866i −0.0234720 + 0.0126154i
\(585\) −6.00733 + 7.68798i −0.248372 + 0.317859i
\(586\) −2.73455 + 27.9839i −0.112963 + 1.15600i
\(587\) −9.52161 −0.392999 −0.196499 0.980504i \(-0.562957\pi\)
−0.196499 + 0.980504i \(0.562957\pi\)
\(588\) 2.69053 13.6353i 0.110956 0.562310i
\(589\) 6.75484 + 6.75484i 0.278328 + 0.278328i
\(590\) 25.8751 0.639176i 1.06526 0.0263145i
\(591\) 5.98026i 0.245995i
\(592\) −0.925543 + 2.25395i −0.0380396 + 0.0926368i
\(593\) 14.3970 14.3970i 0.591215 0.591215i −0.346745 0.937959i \(-0.612713\pi\)
0.937959 + 0.346745i \(0.112713\pi\)
\(594\) −2.04289 2.48539i −0.0838208 0.101977i
\(595\) −2.03596 + 2.60555i −0.0834661 + 0.106817i
\(596\) 26.5127 17.7740i 1.08600 0.728050i
\(597\) 12.5564i 0.513901i
\(598\) −37.6704 + 30.9635i −1.54046 + 1.26619i
\(599\) 12.1649i 0.497045i −0.968626 0.248523i \(-0.920055\pi\)
0.968626 0.248523i \(-0.0799451\pi\)
\(600\) −14.1258 0.678770i −0.576685 0.0277107i
\(601\) 0.836112i 0.0341057i 0.999855 + 0.0170528i \(0.00542835\pi\)
−0.999855 + 0.0170528i \(0.994572\pi\)
\(602\) −0.119991 0.145982i −0.00489048 0.00594978i
\(603\) 0.485302i 0.0197630i
\(604\) −2.99320 0.590623i −0.121792 0.0240321i
\(605\) 8.01935 10.2629i 0.326033 0.417246i
\(606\) −6.18330 + 5.08243i −0.251179 + 0.206459i
\(607\) −20.7652 + 20.7652i −0.842835 + 0.842835i −0.989227 0.146392i \(-0.953234\pi\)
0.146392 + 0.989227i \(0.453234\pi\)
\(608\) 9.35733 + 30.4273i 0.379490 + 1.23399i
\(609\) 1.99561i 0.0808664i
\(610\) −0.182741 7.39773i −0.00739898 0.299525i
\(611\) −21.1869 21.1869i −0.857131 0.857131i
\(612\) 7.29974 + 10.8887i 0.295074 + 0.440150i
\(613\) −16.8630 −0.681089 −0.340545 0.940228i \(-0.610611\pi\)
−0.340545 + 0.940228i \(0.610611\pi\)
\(614\) −18.3541 1.79354i −0.740711 0.0723812i
\(615\) −0.741422 + 0.948847i −0.0298970 + 0.0382612i
\(616\) 0.418210 1.39014i 0.0168502 0.0560103i
\(617\) 8.57198 8.57198i 0.345095 0.345095i −0.513184 0.858279i \(-0.671534\pi\)
0.858279 + 0.513184i \(0.171534\pi\)
\(618\) 10.2441 + 12.4630i 0.412078 + 0.501335i
\(619\) −22.4414 22.4414i −0.901996 0.901996i 0.0936130 0.995609i \(-0.470158\pi\)
−0.995609 + 0.0936130i \(0.970158\pi\)
\(620\) −5.74387 + 4.96391i −0.230680 + 0.199356i
\(621\) 5.58779 5.58779i 0.224230 0.224230i
\(622\) −3.24643 + 33.2222i −0.130170 + 1.33209i
\(623\) 2.71582 + 2.71582i 0.108807 + 0.108807i
\(624\) −6.62969 + 16.1451i −0.265400 + 0.646322i
\(625\) −22.0768 + 11.7309i −0.883072 + 0.469237i
\(626\) 35.6294 29.2860i 1.42404 1.17050i
\(627\) 12.8020i 0.511262i
\(628\) −23.2918 4.59598i −0.929445 0.183399i
\(629\) 2.82326 2.82326i 0.112571 0.112571i
\(630\) 0.713227 0.0176184i 0.0284156 0.000701933i
\(631\) 0.149433 0.00594882 0.00297441 0.999996i \(-0.499053\pi\)
0.00297441 + 0.999996i \(0.499053\pi\)
\(632\) −5.81550 + 19.3308i −0.231328 + 0.768939i
\(633\) 18.4049 + 18.4049i 0.731531 + 0.731531i
\(634\) −1.38601 + 14.1837i −0.0550457 + 0.563308i
\(635\) −37.7524 + 4.63287i −1.49816 + 0.183850i
\(636\) −9.47405 1.86943i −0.375671 0.0741279i
\(637\) −30.3212 −1.20137
\(638\) 2.76766 28.3227i 0.109573 1.12131i
\(639\) 6.86042 0.271394
\(640\) −24.6569 + 5.65996i −0.974651 + 0.223730i
\(641\) 20.6789 0.816766 0.408383 0.912811i \(-0.366093\pi\)
0.408383 + 0.912811i \(0.366093\pi\)
\(642\) 0.619602 6.34067i 0.0244537 0.250246i
\(643\) 42.0475 1.65819 0.829097 0.559105i \(-0.188855\pi\)
0.829097 + 0.559105i \(0.188855\pi\)
\(644\) 3.49825 + 0.690279i 0.137850 + 0.0272008i
\(645\) −0.815409 + 1.04353i −0.0321067 + 0.0410891i
\(646\) 5.07323 51.9167i 0.199603 2.04263i
\(647\) 2.09704 + 2.09704i 0.0824431 + 0.0824431i 0.747126 0.664683i \(-0.231433\pi\)
−0.664683 + 0.747126i \(0.731433\pi\)
\(648\) 0.814832 2.70851i 0.0320096 0.106400i
\(649\) 18.6201 0.730902
\(650\) 4.51314 + 30.5215i 0.177020 + 1.19715i
\(651\) 0.270810 0.270810i 0.0106139 0.0106139i
\(652\) 12.9005 + 2.54554i 0.505221 + 0.0996910i
\(653\) 33.4870i 1.31045i 0.755435 + 0.655223i \(0.227425\pi\)
−0.755435 + 0.655223i \(0.772575\pi\)
\(654\) 1.25766 1.03374i 0.0491783 0.0404226i
\(655\) −5.09337 41.5049i −0.199014 1.62173i
\(656\) −0.818233 + 1.99262i −0.0319466 + 0.0777989i
\(657\) −0.160991 0.160991i −0.00628086 0.00628086i
\(658\) −0.213086 + 2.18060i −0.00830694 + 0.0850088i
\(659\) 32.5431 32.5431i 1.26770 1.26770i 0.320427 0.947273i \(-0.396174\pi\)
0.947273 0.320427i \(-0.103826\pi\)
\(660\) −10.1469 0.739104i −0.394967 0.0287696i
\(661\) −8.31994 8.31994i −0.323608 0.323608i 0.526541 0.850149i \(-0.323488\pi\)
−0.850149 + 0.526541i \(0.823488\pi\)
\(662\) 7.82338 + 9.51795i 0.304064 + 0.369925i
\(663\) 20.2231 20.2231i 0.785399 0.785399i
\(664\) −5.60781 + 18.6405i −0.217625 + 0.723390i
\(665\) −2.23700 1.74797i −0.0867471 0.0677835i
\(666\) −0.857378 0.0837818i −0.0332227 0.00324648i
\(667\) 69.8991 2.70650
\(668\) 28.6909 + 42.7970i 1.11008 + 1.65587i
\(669\) −11.6149 11.6149i −0.449059 0.449059i
\(670\) −1.11164 1.05804i −0.0429462 0.0408756i
\(671\) 5.32350i 0.205512i
\(672\) 1.21987 0.375147i 0.0470574 0.0144716i
\(673\) −9.07931 + 9.07931i −0.349982 + 0.349982i −0.860103 0.510121i \(-0.829601\pi\)
0.510121 + 0.860103i \(0.329601\pi\)
\(674\) 28.0646 23.0680i 1.08101 0.888546i
\(675\) −1.20897 4.85164i −0.0465331 0.186740i
\(676\) 11.8487 + 2.33801i 0.455720 + 0.0899234i
\(677\) 10.6497i 0.409301i 0.978835 + 0.204650i \(0.0656058\pi\)
−0.978835 + 0.204650i \(0.934394\pi\)
\(678\) −9.77144 11.8880i −0.375270 0.456555i
\(679\) 3.07601i 0.118046i
\(680\) 40.8564 + 7.01838i 1.56677 + 0.269143i
\(681\) 0.411442i 0.0157665i
\(682\) −4.21903 + 3.46788i −0.161555 + 0.132792i
\(683\) 40.7197i 1.55809i −0.626965 0.779047i \(-0.715703\pi\)
0.626965 0.779047i \(-0.284297\pi\)
\(684\) −9.34851 + 6.26719i −0.357449 + 0.239632i
\(685\) −15.3227 + 1.88036i −0.585452 + 0.0718450i
\(686\) 2.82608 + 3.43822i 0.107900 + 0.131272i
\(687\) −11.2286 + 11.2286i −0.428399 + 0.428399i
\(688\) −0.899885 + 2.19147i −0.0343078 + 0.0835490i
\(689\) 21.0677i 0.802616i
\(690\) −0.617107 24.9817i −0.0234929 0.951038i
\(691\) −23.4396 23.4396i −0.891684 0.891684i 0.102997 0.994682i \(-0.467157\pi\)
−0.994682 + 0.102997i \(0.967157\pi\)
\(692\) −1.87513 + 9.50293i −0.0712819 + 0.361247i
\(693\) 0.513248 0.0194967
\(694\) 0.386279 3.95297i 0.0146629 0.150053i
\(695\) 3.80032 + 30.9681i 0.144154 + 1.17469i
\(696\) 22.0372 11.8443i 0.835319 0.448956i
\(697\) 2.49592 2.49592i 0.0945399 0.0945399i
\(698\) 21.4014 17.5911i 0.810053 0.665832i
\(699\) −18.9687 18.9687i −0.717463 0.717463i
\(700\) 1.51460 1.67213i 0.0572464 0.0632007i
\(701\) −8.98392 + 8.98392i −0.339318 + 0.339318i −0.856111 0.516793i \(-0.827126\pi\)
0.516793 + 0.856111i \(0.327126\pi\)
\(702\) −6.14142 0.600131i −0.231793 0.0226505i
\(703\) 2.42391 + 2.42391i 0.0914195 + 0.0914195i
\(704\) −17.8332 + 3.63246i −0.672114 + 0.136904i
\(705\) 15.2407 1.87029i 0.573998 0.0704394i
\(706\) 20.7968 + 25.3014i 0.782696 + 0.952231i
\(707\) 1.27689i 0.0480223i
\(708\) 9.11543 + 13.5971i 0.342579 + 0.511010i
\(709\) 10.0094 10.0094i 0.375912 0.375912i −0.493713 0.869625i \(-0.664361\pi\)
0.869625 + 0.493713i \(0.164361\pi\)
\(710\) 14.9569 15.7145i 0.561321 0.589755i
\(711\) −7.13706 −0.267661
\(712\) 13.8715 46.1091i 0.519856 1.72801i
\(713\) −9.48547 9.48547i −0.355234 0.355234i
\(714\) −2.08140 0.203392i −0.0778946 0.00761175i
\(715\) 2.70352 + 22.0305i 0.101106 + 0.823892i
\(716\) −12.0881 + 8.10380i −0.451753 + 0.302853i
\(717\) 11.2094 0.418623
\(718\) 24.0103 + 2.34625i 0.896057 + 0.0875614i
\(719\) 11.6941 0.436118 0.218059 0.975936i \(-0.430027\pi\)
0.218059 + 0.975936i \(0.430027\pi\)
\(720\) −4.42767 7.77147i −0.165009 0.289626i
\(721\) −2.57368 −0.0958490
\(722\) 17.8304 + 1.74237i 0.663580 + 0.0648442i
\(723\) −0.0518990 −0.00193015
\(724\) 18.4119 + 27.4643i 0.684273 + 1.02070i
\(725\) 22.7836 37.9068i 0.846161 1.40782i
\(726\) 8.19835 + 0.801132i 0.304269 + 0.0297328i
\(727\) −15.5108 15.5108i −0.575263 0.575263i 0.358331 0.933594i \(-0.383346\pi\)
−0.933594 + 0.358331i \(0.883346\pi\)
\(728\) −1.31816 2.45255i −0.0488544 0.0908975i
\(729\) 1.00000 0.0370370
\(730\) −0.719754 + 0.0177796i −0.0266393 + 0.000658053i
\(731\) 2.74499 2.74499i 0.101527 0.101527i
\(732\) 3.88743 2.60611i 0.143683 0.0963247i
\(733\) 39.4855i 1.45843i −0.684285 0.729214i \(-0.739886\pi\)
0.684285 0.729214i \(-0.260114\pi\)
\(734\) 17.7759 + 21.6262i 0.656120 + 0.798238i
\(735\) 9.56737 12.2440i 0.352898 0.451627i
\(736\) −13.1400 42.7275i −0.484347 1.57496i
\(737\) −0.780664 0.780664i −0.0287561 0.0287561i
\(738\) −0.757972 0.0740679i −0.0279013 0.00272648i
\(739\) 8.55700 8.55700i 0.314774 0.314774i −0.531982 0.846756i \(-0.678552\pi\)
0.846756 + 0.531982i \(0.178552\pi\)
\(740\) −2.06114 + 1.78126i −0.0757689 + 0.0654803i
\(741\) 17.3625 + 17.3625i 0.637829 + 0.637829i
\(742\) 1.19011 0.978224i 0.0436904 0.0359117i
\(743\) −20.9783 + 20.9783i −0.769621 + 0.769621i −0.978040 0.208419i \(-0.933168\pi\)
0.208419 + 0.978040i \(0.433168\pi\)
\(744\) −4.59780 1.38321i −0.168564 0.0507108i
\(745\) 35.4211 4.34677i 1.29773 0.159253i
\(746\) −2.26705 + 23.1998i −0.0830026 + 0.849404i
\(747\) −6.88217 −0.251806
\(748\) 29.2582 + 5.77327i 1.06978 + 0.211091i
\(749\) 0.718670 + 0.718670i 0.0262596 + 0.0262596i
\(750\) −13.7489 7.80812i −0.502040 0.285112i
\(751\) 28.3484i 1.03445i 0.855850 + 0.517224i \(0.173034\pi\)
−0.855850 + 0.517224i \(0.826966\pi\)
\(752\) 25.3447 10.5892i 0.924227 0.386147i
\(753\) 2.45358 2.45358i 0.0894134 0.0894134i
\(754\) −34.6587 42.1659i −1.26220 1.53559i
\(755\) −2.68779 2.10022i −0.0978187 0.0764348i
\(756\) 0.251259 + 0.374793i 0.00913822 + 0.0136311i
\(757\) 18.6273i 0.677022i 0.940962 + 0.338511i \(0.109923\pi\)
−0.940962 + 0.338511i \(0.890077\pi\)
\(758\) −15.0377 + 12.3604i −0.546194 + 0.448950i
\(759\) 17.9772i 0.652531i
\(760\) −6.02564 + 35.0773i −0.218573 + 1.27239i
\(761\) 33.8880i 1.22844i −0.789135 0.614220i \(-0.789471\pi\)
0.789135 0.614220i \(-0.210529\pi\)
\(762\) −15.2751 18.5837i −0.553358 0.673218i
\(763\) 0.259714i 0.00940227i
\(764\) 6.12334 31.0323i 0.221535 1.12271i
\(765\) 1.78521 + 14.5474i 0.0645444 + 0.525961i
\(766\) −8.52027 + 7.00333i −0.307850 + 0.253041i
\(767\) 25.2532 25.2532i 0.911842 0.911842i
\(768\) −11.3828 11.2442i −0.410740 0.405741i
\(769\) 4.73758i 0.170841i 0.996345 + 0.0854207i \(0.0272234\pi\)
−0.996345 + 0.0854207i \(0.972777\pi\)
\(770\) 1.11897 1.17565i 0.0403247 0.0423674i
\(771\) 4.52073 + 4.52073i 0.162810 + 0.162810i
\(772\) 3.62199 2.42817i 0.130358 0.0873916i
\(773\) −1.05525 −0.0379546 −0.0189773 0.999820i \(-0.506041\pi\)
−0.0189773 + 0.999820i \(0.506041\pi\)
\(774\) −0.833610 0.0814592i −0.0299635 0.00292799i
\(775\) −8.23583 + 2.05226i −0.295840 + 0.0737194i
\(776\) 33.9678 18.2566i 1.21937 0.655373i
\(777\) 0.0971776 0.0971776i 0.00348623 0.00348623i
\(778\) −4.72813 5.75226i −0.169512 0.206228i
\(779\) 2.14288 + 2.14288i 0.0767766 + 0.0767766i
\(780\) −14.7640 + 12.7592i −0.528635 + 0.456852i
\(781\) 11.0358 11.0358i 0.394891 0.394891i
\(782\) −7.12407 + 72.9040i −0.254756 + 2.60704i
\(783\) 6.25463 + 6.25463i 0.223522 + 0.223522i
\(784\) 10.5585 25.7130i 0.377091 0.918320i
\(785\) −20.9152 16.3430i −0.746496 0.583307i
\(786\) 20.4309 16.7934i 0.728746 0.599001i
\(787\) 0.792266i 0.0282412i 0.999900 + 0.0141206i \(0.00449488\pi\)
−0.999900 + 0.0141206i \(0.995505\pi\)
\(788\) 2.31542 11.7343i 0.0824835 0.418016i
\(789\) −16.0925 + 16.0925i −0.572907 + 0.572907i
\(790\) −15.5600 + 16.3482i −0.553599 + 0.581642i
\(791\) 2.45494 0.0872875
\(792\) −3.04620 5.66770i −0.108242 0.201393i
\(793\) −7.21994 7.21994i −0.256387 0.256387i
\(794\) −4.26094 + 43.6042i −0.151215 + 1.54745i
\(795\) −8.50736 6.64759i −0.301725 0.235766i
\(796\) 4.86157 24.6378i 0.172314 0.873264i
\(797\) 5.92235 0.209780 0.104890 0.994484i \(-0.466551\pi\)
0.104890 + 0.994484i \(0.466551\pi\)
\(798\) 0.174622 1.78699i 0.00618156 0.0632588i
\(799\) −45.0101 −1.59234
\(800\) −27.4544 6.80106i −0.970661 0.240454i
\(801\) 17.0238 0.601505
\(802\) −0.0774458 + 0.792539i −0.00273471 + 0.0279855i
\(803\) −0.517945 −0.0182779
\(804\) 0.187898 0.952243i 0.00662665 0.0335830i
\(805\) 3.14130 + 2.45459i 0.110716 + 0.0865129i
\(806\) −1.01874 + 10.4253i −0.0358837 + 0.367215i
\(807\) −8.32218 8.32218i −0.292955 0.292955i
\(808\) −14.1005 + 7.57853i −0.496052 + 0.266612i
\(809\) 28.0382 0.985772 0.492886 0.870094i \(-0.335942\pi\)
0.492886 + 0.870094i \(0.335942\pi\)
\(810\) 2.18017 2.29061i 0.0766033 0.0804837i
\(811\) −14.8696 + 14.8696i −0.522141 + 0.522141i −0.918217 0.396077i \(-0.870371\pi\)
0.396077 + 0.918217i \(0.370371\pi\)
\(812\) −0.772657 + 3.91573i −0.0271149 + 0.137415i
\(813\) 2.91266i 0.102152i
\(814\) −1.51396 + 1.24442i −0.0530643 + 0.0436168i
\(815\) 11.5842 + 9.05177i 0.405775 + 0.317070i
\(816\) 10.1074 + 24.1917i 0.353831 + 0.846880i
\(817\) 2.35672 + 2.35672i 0.0824511 + 0.0824511i
\(818\) 4.66953 47.7854i 0.163266 1.67078i
\(819\) 0.696085 0.696085i 0.0243232 0.0243232i
\(820\) −1.82216 + 1.57473i −0.0636328 + 0.0549921i
\(821\) −33.9440 33.9440i −1.18466 1.18466i −0.978524 0.206131i \(-0.933913\pi\)
−0.206131 0.978524i \(-0.566087\pi\)
\(822\) −6.19977 7.54266i −0.216242 0.263080i
\(823\) 26.0121 26.0121i 0.906724 0.906724i −0.0892823 0.996006i \(-0.528457\pi\)
0.996006 + 0.0892823i \(0.0284573\pi\)
\(824\) 15.2752 + 28.4207i 0.532137 + 0.990083i
\(825\) −9.74917 5.85966i −0.339423 0.204007i
\(826\) −2.59912 0.253982i −0.0904349 0.00883717i
\(827\) −14.1684 −0.492682 −0.246341 0.969183i \(-0.579228\pi\)
−0.246341 + 0.969183i \(0.579228\pi\)
\(828\) 13.1276 8.80070i 0.456217 0.305845i
\(829\) 19.7985 + 19.7985i 0.687630 + 0.687630i 0.961708 0.274077i \(-0.0883724\pi\)
−0.274077 + 0.961708i \(0.588372\pi\)
\(830\) −15.0043 + 15.7643i −0.520806 + 0.547188i
\(831\) 0.339665i 0.0117829i
\(832\) −19.2596 + 29.1125i −0.667705 + 1.00930i
\(833\) −32.2076 + 32.2076i −1.11593 + 1.11593i
\(834\) −15.2441 + 12.5301i −0.527861 + 0.433881i
\(835\) 7.01659 + 57.1770i 0.242819 + 1.97869i
\(836\) −4.95664 + 25.1196i −0.171429 + 0.868781i
\(837\) 1.69754i 0.0586754i
\(838\) −15.2546 18.5588i −0.526961 0.641103i
\(839\) 21.1013i 0.728499i −0.931301 0.364250i \(-0.881326\pi\)
0.931301 0.364250i \(-0.118674\pi\)
\(840\) 1.40629 + 0.241575i 0.0485216 + 0.00833513i
\(841\) 49.2408i 1.69796i
\(842\) 7.82850 6.43472i 0.269788 0.221755i
\(843\) 20.9850i 0.722763i
\(844\) 28.9876 + 43.2395i 0.997793 + 1.48837i
\(845\) 10.6397 + 8.31380i 0.366018 + 0.286004i
\(846\) 6.16657 + 7.50227i 0.212011 + 0.257933i
\(847\) −0.929224 + 0.929224i −0.0319285 + 0.0319285i
\(848\) −17.8659 7.33628i −0.613516 0.251929i
\(849\) 15.6290i 0.536385i
\(850\) 37.2143 + 27.6264i 1.27644 + 0.947579i
\(851\) −3.40377 3.40377i −0.116680 0.116680i
\(852\) 13.4613 + 2.65620i 0.461176 + 0.0909999i
\(853\) −0.282088 −0.00965852 −0.00482926 0.999988i \(-0.501537\pi\)
−0.00482926 + 0.999988i \(0.501537\pi\)
\(854\) −0.0726139 + 0.743091i −0.00248480 + 0.0254281i
\(855\) −12.4896 + 1.53269i −0.427137 + 0.0524170i
\(856\) 3.67073 12.2016i 0.125463 0.417041i
\(857\) −31.6316 + 31.6316i −1.08051 + 1.08051i −0.0840520 + 0.996461i \(0.526786\pi\)
−0.996461 + 0.0840520i \(0.973214\pi\)
\(858\) −10.8446 + 8.91379i −0.370227 + 0.304312i
\(859\) −12.4550 12.4550i −0.424958 0.424958i 0.461949 0.886907i \(-0.347150\pi\)
−0.886907 + 0.461949i \(0.847150\pi\)
\(860\) −2.00400 + 1.73188i −0.0683358 + 0.0590565i
\(861\) 0.0859106 0.0859106i 0.00292783 0.00292783i
\(862\) −23.9550 2.34085i −0.815912 0.0797298i
\(863\) −28.8568 28.8568i −0.982298 0.982298i 0.0175484 0.999846i \(-0.494414\pi\)
−0.999846 + 0.0175484i \(0.994414\pi\)
\(864\) 2.64751 4.99907i 0.0900701 0.170072i
\(865\) −6.66785 + 8.53329i −0.226714 + 0.290141i
\(866\) 31.2863 + 38.0630i 1.06315 + 1.29343i
\(867\) 25.9625i 0.881733i
\(868\) 0.636225 0.426522i 0.0215949 0.0144771i
\(869\) −11.4808 + 11.4808i −0.389459 + 0.389459i
\(870\) 27.9630 0.690752i 0.948035 0.0234187i
\(871\) −2.11753 −0.0717498
\(872\) 2.86797 1.54144i 0.0971219 0.0521998i
\(873\) 9.64079 + 9.64079i 0.326291 + 0.326291i
\(874\) −62.5918 6.11638i −2.11720 0.206890i
\(875\) 2.35505 0.903481i 0.0796152 0.0305432i
\(876\) −0.253559 0.378223i −0.00856697 0.0127790i
\(877\) 2.39445 0.0808547 0.0404273 0.999182i \(-0.487128\pi\)
0.0404273 + 0.999182i \(0.487128\pi\)
\(878\) −38.7082 3.78252i −1.30634 0.127654i
\(879\) −19.8819 −0.670599
\(880\) −19.6237 5.37889i −0.661515 0.181322i
\(881\) −16.8589 −0.567991 −0.283996 0.958826i \(-0.591660\pi\)
−0.283996 + 0.958826i \(0.591660\pi\)
\(882\) 9.78092 + 0.955778i 0.329341 + 0.0321827i
\(883\) 32.1936 1.08340 0.541700 0.840572i \(-0.317781\pi\)
0.541700 + 0.840572i \(0.317781\pi\)
\(884\) 47.5109 31.8511i 1.59797 1.07127i
\(885\) 2.22925 + 18.1658i 0.0749355 + 0.610636i
\(886\) −53.8602 5.26314i −1.80947 0.176819i
\(887\) −7.86611 7.86611i −0.264118 0.264118i 0.562607 0.826725i \(-0.309799\pi\)
−0.826725 + 0.562607i \(0.809799\pi\)
\(888\) −1.64988 0.496351i −0.0553663 0.0166564i
\(889\) 3.83765 0.128711
\(890\) 37.1146 38.9947i 1.24408 1.30711i
\(891\) 1.60861 1.60861i 0.0538906 0.0538906i
\(892\) −18.2934 27.2874i −0.612507 0.913651i
\(893\) 38.6435i 1.29315i
\(894\) 14.3318 + 17.4361i 0.479327 + 0.583151i
\(895\) −16.1497 + 1.98185i −0.539827 + 0.0662460i
\(896\) 2.53883 0.263795i 0.0848163 0.00881277i
\(897\) −24.3813 24.3813i −0.814069 0.814069i
\(898\) −27.8318 2.71969i −0.928761 0.0907572i
\(899\) 10.6175 10.6175i 0.354112 0.354112i
\(900\) −0.493746 9.98780i −0.0164582 0.332927i
\(901\) 22.3784 + 22.3784i 0.745534 + 0.745534i
\(902\) −1.33843 + 1.10014i −0.0445649 + 0.0366305i
\(903\) 0.0944836 0.0944836i 0.00314422 0.00314422i
\(904\) −14.5704 27.1094i −0.484605 0.901647i
\(905\) 4.50278 + 36.6924i 0.149678 + 1.21970i
\(906\) 0.209811 2.14710i 0.00697052 0.0713326i
\(907\) −50.7262 −1.68433 −0.842167 0.539217i \(-0.818720\pi\)
−0.842167 + 0.539217i \(0.818720\pi\)
\(908\) −0.159301 + 0.807318i −0.00528659 + 0.0267918i
\(909\) −4.00201 4.00201i −0.132738 0.132738i
\(910\) −0.0768747 3.11204i −0.00254837 0.103163i
\(911\) 1.86790i 0.0618862i 0.999521 + 0.0309431i \(0.00985106\pi\)
−0.999521 + 0.0309431i \(0.990149\pi\)
\(912\) −20.7698 + 8.67774i −0.687758 + 0.287349i
\(913\) −11.0708 + 11.0708i −0.366389 + 0.366389i
\(914\) 4.81192 + 5.85420i 0.159164 + 0.193640i
\(915\) 5.19362 0.637346i 0.171696 0.0210700i
\(916\) −26.3799 + 17.6850i −0.871617 + 0.584328i
\(917\) 4.21911i 0.139327i
\(918\) −7.16098 + 5.88604i −0.236347 + 0.194268i
\(919\) 14.5671i 0.480525i 0.970708 + 0.240263i \(0.0772336\pi\)
−0.970708 + 0.240263i \(0.922766\pi\)
\(920\) 8.46149 49.2572i 0.278967 1.62396i
\(921\) 13.0401i 0.429686i
\(922\) −4.22197 5.13647i −0.139043 0.169161i
\(923\) 29.9342i 0.985297i
\(924\) 1.00708 + 0.198718i 0.0331304 + 0.00653734i
\(925\) −2.95535 + 0.736436i −0.0971714 + 0.0242139i
\(926\) −13.1835 + 10.8363i −0.433236 + 0.356103i
\(927\) −8.06640 + 8.06640i −0.264935 + 0.264935i
\(928\) 47.8265 14.7081i 1.56998 0.482818i
\(929\) 53.6486i 1.76015i 0.474831 + 0.880077i \(0.342509\pi\)
−0.474831 + 0.880077i \(0.657491\pi\)
\(930\) −3.88838 3.70091i −0.127505 0.121358i
\(931\) −27.6519 27.6519i −0.906253 0.906253i
\(932\) −29.8755 44.5640i −0.978605 1.45974i
\(933\) −23.6036 −0.772746
\(934\) −17.7705 1.73651i −0.581470 0.0568204i
\(935\) 26.2728 + 20.5294i 0.859212 + 0.671382i
\(936\) −11.8181 3.55537i −0.386287 0.116211i
\(937\) 28.3937 28.3937i 0.927582 0.927582i −0.0699675 0.997549i \(-0.522290\pi\)
0.997549 + 0.0699675i \(0.0222896\pi\)
\(938\) 0.0983220 + 0.119619i 0.00321033 + 0.00390570i
\(939\) 23.0604 + 23.0604i 0.752547 + 0.752547i
\(940\) 30.6289 + 2.23102i 0.999004 + 0.0727679i
\(941\) 37.0652 37.0652i 1.20829 1.20829i 0.236713 0.971580i \(-0.423930\pi\)
0.971580 0.236713i \(-0.0760701\pi\)
\(942\) 1.63266 16.7078i 0.0531950 0.544369i
\(943\) −3.00913 3.00913i −0.0979909 0.0979909i
\(944\) 12.6215 + 30.2090i 0.410795 + 0.983220i
\(945\) 0.0614476 + 0.500725i 0.00199889 + 0.0162886i
\(946\) −1.47199 + 1.20992i −0.0478586 + 0.0393379i
\(947\) 9.52796i 0.309617i 0.987944 + 0.154809i \(0.0494761\pi\)
−0.987944 + 0.154809i \(0.950524\pi\)
\(948\) −14.0041 2.76331i −0.454832 0.0897481i
\(949\) −0.702456 + 0.702456i −0.0228027 + 0.0228027i
\(950\) −23.7187 + 31.9504i −0.769537 + 1.03661i
\(951\) −10.0772 −0.326775
\(952\) −4.00531 1.20496i −0.129813 0.0390530i
\(953\) 26.6687 + 26.6687i 0.863883 + 0.863883i 0.991787 0.127903i \(-0.0408248\pi\)
−0.127903 + 0.991787i \(0.540825\pi\)
\(954\) 0.664093 6.79597i 0.0215008 0.220028i
\(955\) 21.7742 27.8659i 0.704597 0.901720i
\(956\) 21.9947 + 4.34003i 0.711360 + 0.140366i
\(957\) 20.1226 0.650470
\(958\) −3.30520 + 33.8236i −0.106786 + 1.09279i
\(959\) 1.55760 0.0502977
\(960\) −5.67888 16.9632i −0.183285 0.547485i
\(961\) 28.1184 0.907044
\(962\) −0.365567 + 3.74102i −0.0117864 + 0.120615i
\(963\) 4.50489 0.145168
\(964\) −0.101834 0.0200941i −0.00327987 0.000647188i
\(965\) 4.83900 0.593828i 0.155773 0.0191160i
\(966\) −0.245213 + 2.50938i −0.00788960 + 0.0807380i
\(967\) 6.91802 + 6.91802i 0.222468 + 0.222468i 0.809537 0.587069i \(-0.199718\pi\)
−0.587069 + 0.809537i \(0.699718\pi\)
\(968\) 15.7763 + 4.74617i 0.507071 + 0.152548i
\(969\) 36.8855 1.18493
\(970\) 43.1018 1.06471i 1.38391 0.0341859i
\(971\) −21.6040 + 21.6040i −0.693305 + 0.693305i −0.962958 0.269652i \(-0.913091\pi\)
0.269652 + 0.962958i \(0.413091\pi\)
\(972\) 1.96217 + 0.387177i 0.0629365 + 0.0124187i
\(973\) 3.14800i 0.100920i
\(974\) −37.9231 + 31.1713i −1.21513 + 0.998792i
\(975\) −21.1693 + 5.27511i −0.677959 + 0.168939i
\(976\) 8.63680 3.60850i 0.276457 0.115505i
\(977\) 1.13074 + 1.13074i 0.0361757 + 0.0361757i 0.724963 0.688788i \(-0.241857\pi\)
−0.688788 + 0.724963i \(0.741857\pi\)
\(978\) −0.904271 + 9.25382i −0.0289154 + 0.295905i
\(979\) 27.3846 27.3846i 0.875217 0.875217i
\(980\) 23.5134 20.3205i 0.751107 0.649114i
\(981\) 0.813992 + 0.813992i 0.0259888 + 0.0259888i
\(982\) 21.1396 + 25.7185i 0.674591 + 0.820709i
\(983\) −24.3146 + 24.3146i −0.775517 + 0.775517i −0.979065 0.203548i \(-0.934753\pi\)
0.203548 + 0.979065i \(0.434753\pi\)
\(984\) −1.45859 0.438803i −0.0464981 0.0139885i
\(985\) 8.23349 10.5369i 0.262341 0.335735i
\(986\) −81.6042 7.97425i −2.59881 0.253952i
\(987\) −1.54926 −0.0493136
\(988\) 27.3458 + 40.7906i 0.869986 + 1.29772i
\(989\) −3.30942 3.30942i −0.105233 0.105233i
\(990\) −0.177653 7.19175i −0.00564618 0.228569i
\(991\) 21.3602i 0.678529i 0.940691 + 0.339264i \(0.110178\pi\)
−0.940691 + 0.339264i \(0.889822\pi\)
\(992\) −8.48610 4.49424i −0.269434 0.142692i
\(993\) −6.16029 + 6.16029i −0.195491 + 0.195491i
\(994\) −1.69098 + 1.38992i −0.0536346 + 0.0440855i
\(995\) 17.2874 22.1239i 0.548048 0.701374i
\(996\) −13.5040 2.66462i −0.427889 0.0844318i
\(997\) 32.6767i 1.03488i −0.855719 0.517442i \(-0.826885\pi\)
0.855719 0.517442i \(-0.173115\pi\)
\(998\) −23.9910 29.1875i −0.759421 0.923914i
\(999\) 0.609145i 0.0192725i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 240.2.y.f.187.5 yes 20
3.2 odd 2 720.2.z.h.667.6 20
4.3 odd 2 960.2.y.f.847.3 20
5.3 odd 4 240.2.bc.f.43.10 yes 20
8.3 odd 2 1920.2.y.k.1567.8 20
8.5 even 2 1920.2.y.l.1567.8 20
15.8 even 4 720.2.bd.h.523.1 20
16.3 odd 4 240.2.bc.f.67.10 yes 20
16.5 even 4 1920.2.bc.l.607.9 20
16.11 odd 4 1920.2.bc.k.607.9 20
16.13 even 4 960.2.bc.f.367.2 20
20.3 even 4 960.2.bc.f.463.2 20
40.3 even 4 1920.2.bc.l.1183.9 20
40.13 odd 4 1920.2.bc.k.1183.9 20
48.35 even 4 720.2.bd.h.307.1 20
80.3 even 4 inner 240.2.y.f.163.5 20
80.13 odd 4 960.2.y.f.943.3 20
80.43 even 4 1920.2.y.l.223.8 20
80.53 odd 4 1920.2.y.k.223.8 20
240.83 odd 4 720.2.z.h.163.6 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.2.y.f.163.5 20 80.3 even 4 inner
240.2.y.f.187.5 yes 20 1.1 even 1 trivial
240.2.bc.f.43.10 yes 20 5.3 odd 4
240.2.bc.f.67.10 yes 20 16.3 odd 4
720.2.z.h.163.6 20 240.83 odd 4
720.2.z.h.667.6 20 3.2 odd 2
720.2.bd.h.307.1 20 48.35 even 4
720.2.bd.h.523.1 20 15.8 even 4
960.2.y.f.847.3 20 4.3 odd 2
960.2.y.f.943.3 20 80.13 odd 4
960.2.bc.f.367.2 20 16.13 even 4
960.2.bc.f.463.2 20 20.3 even 4
1920.2.y.k.223.8 20 80.53 odd 4
1920.2.y.k.1567.8 20 8.3 odd 2
1920.2.y.l.223.8 20 80.43 even 4
1920.2.y.l.1567.8 20 8.5 even 2
1920.2.bc.k.607.9 20 16.11 odd 4
1920.2.bc.k.1183.9 20 40.13 odd 4
1920.2.bc.l.607.9 20 16.5 even 4
1920.2.bc.l.1183.9 20 40.3 even 4