Properties

Label 960.2.bc.f.463.1
Level $960$
Weight $2$
Character 960.463
Analytic conductor $7.666$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [960,2,Mod(367,960)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("960.367"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(960, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 960 = 2^{6} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 960.bc (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,0,8,0,4,0,-20,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.66563859404\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} + 3 x^{18} - 6 x^{17} + 2 x^{16} + 4 x^{14} + 20 x^{13} - 24 x^{12} + 40 x^{11} + \cdots + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{17} \)
Twist minimal: no (minimal twist has level 240)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 463.1
Root \(-0.257862 + 1.39051i\) of defining polynomial
Character \(\chi\) \(=\) 960.463
Dual form 960.2.bc.f.367.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +(-2.09611 + 0.778677i) q^{5} +(2.44055 - 2.44055i) q^{7} -1.00000 q^{9} +(0.181897 - 0.181897i) q^{11} -4.59597 q^{13} +(-0.778677 - 2.09611i) q^{15} +(4.20448 - 4.20448i) q^{17} +(4.75798 - 4.75798i) q^{19} +(2.44055 + 2.44055i) q^{21} +(5.75492 + 5.75492i) q^{23} +(3.78732 - 3.26438i) q^{25} -1.00000i q^{27} +(0.851917 + 0.851917i) q^{29} -4.78620i q^{31} +(0.181897 + 0.181897i) q^{33} +(-3.21525 + 7.01605i) q^{35} -3.97976 q^{37} -4.59597i q^{39} +7.99664i q^{41} +4.44648 q^{43} +(2.09611 - 0.778677i) q^{45} +(-2.46569 - 2.46569i) q^{47} -4.91254i q^{49} +(4.20448 + 4.20448i) q^{51} -4.94396i q^{53} +(-0.239637 + 0.522915i) q^{55} +(4.75798 + 4.75798i) q^{57} +(5.89705 + 5.89705i) q^{59} +(7.88576 - 7.88576i) q^{61} +(-2.44055 + 2.44055i) q^{63} +(9.63365 - 3.57878i) q^{65} +7.54264 q^{67} +(-5.75492 + 5.75492i) q^{69} +6.34716 q^{71} +(4.78916 - 4.78916i) q^{73} +(3.26438 + 3.78732i) q^{75} -0.887858i q^{77} -3.83743 q^{79} +1.00000 q^{81} -6.25327i q^{83} +(-5.53910 + 12.0870i) q^{85} +(-0.851917 + 0.851917i) q^{87} +5.02517 q^{89} +(-11.2167 + 11.2167i) q^{91} +4.78620 q^{93} +(-6.26830 + 13.6782i) q^{95} +(-2.96112 + 2.96112i) q^{97} +(-0.181897 + 0.181897i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 8 q^{5} + 4 q^{7} - 20 q^{9} - 8 q^{11} + 8 q^{13} + 12 q^{17} + 16 q^{19} + 4 q^{21} + 16 q^{23} - 4 q^{25} - 8 q^{33} + 12 q^{35} + 24 q^{37} + 8 q^{43} - 8 q^{45} + 12 q^{51} + 4 q^{55} + 16 q^{57}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/960\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(577\) \(641\) \(901\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) −2.09611 + 0.778677i −0.937407 + 0.348235i
\(6\) 0 0
\(7\) 2.44055 2.44055i 0.922440 0.922440i −0.0747612 0.997201i \(-0.523819\pi\)
0.997201 + 0.0747612i \(0.0238195\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 0.181897 0.181897i 0.0548441 0.0548441i −0.679153 0.733997i \(-0.737653\pi\)
0.733997 + 0.679153i \(0.237653\pi\)
\(12\) 0 0
\(13\) −4.59597 −1.27469 −0.637347 0.770577i \(-0.719968\pi\)
−0.637347 + 0.770577i \(0.719968\pi\)
\(14\) 0 0
\(15\) −0.778677 2.09611i −0.201054 0.541212i
\(16\) 0 0
\(17\) 4.20448 4.20448i 1.01974 1.01974i 0.0199338 0.999801i \(-0.493654\pi\)
0.999801 0.0199338i \(-0.00634553\pi\)
\(18\) 0 0
\(19\) 4.75798 4.75798i 1.09155 1.09155i 0.0961919 0.995363i \(-0.469334\pi\)
0.995363 0.0961919i \(-0.0306662\pi\)
\(20\) 0 0
\(21\) 2.44055 + 2.44055i 0.532571 + 0.532571i
\(22\) 0 0
\(23\) 5.75492 + 5.75492i 1.19998 + 1.19998i 0.974171 + 0.225813i \(0.0725040\pi\)
0.225813 + 0.974171i \(0.427496\pi\)
\(24\) 0 0
\(25\) 3.78732 3.26438i 0.757465 0.652876i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 0.851917 + 0.851917i 0.158197 + 0.158197i 0.781767 0.623570i \(-0.214318\pi\)
−0.623570 + 0.781767i \(0.714318\pi\)
\(30\) 0 0
\(31\) 4.78620i 0.859626i −0.902918 0.429813i \(-0.858579\pi\)
0.902918 0.429813i \(-0.141421\pi\)
\(32\) 0 0
\(33\) 0.181897 + 0.181897i 0.0316643 + 0.0316643i
\(34\) 0 0
\(35\) −3.21525 + 7.01605i −0.543476 + 1.18593i
\(36\) 0 0
\(37\) −3.97976 −0.654268 −0.327134 0.944978i \(-0.606083\pi\)
−0.327134 + 0.944978i \(0.606083\pi\)
\(38\) 0 0
\(39\) 4.59597i 0.735945i
\(40\) 0 0
\(41\) 7.99664i 1.24887i 0.781079 + 0.624433i \(0.214670\pi\)
−0.781079 + 0.624433i \(0.785330\pi\)
\(42\) 0 0
\(43\) 4.44648 0.678081 0.339041 0.940772i \(-0.389898\pi\)
0.339041 + 0.940772i \(0.389898\pi\)
\(44\) 0 0
\(45\) 2.09611 0.778677i 0.312469 0.116078i
\(46\) 0 0
\(47\) −2.46569 2.46569i −0.359657 0.359657i 0.504029 0.863687i \(-0.331850\pi\)
−0.863687 + 0.504029i \(0.831850\pi\)
\(48\) 0 0
\(49\) 4.91254i 0.701792i
\(50\) 0 0
\(51\) 4.20448 + 4.20448i 0.588744 + 0.588744i
\(52\) 0 0
\(53\) 4.94396i 0.679106i −0.940587 0.339553i \(-0.889724\pi\)
0.940587 0.339553i \(-0.110276\pi\)
\(54\) 0 0
\(55\) −0.239637 + 0.522915i −0.0323126 + 0.0705099i
\(56\) 0 0
\(57\) 4.75798 + 4.75798i 0.630209 + 0.630209i
\(58\) 0 0
\(59\) 5.89705 + 5.89705i 0.767731 + 0.767731i 0.977707 0.209976i \(-0.0673385\pi\)
−0.209976 + 0.977707i \(0.567338\pi\)
\(60\) 0 0
\(61\) 7.88576 7.88576i 1.00967 1.00967i 0.00971590 0.999953i \(-0.496907\pi\)
0.999953 0.00971590i \(-0.00309271\pi\)
\(62\) 0 0
\(63\) −2.44055 + 2.44055i −0.307480 + 0.307480i
\(64\) 0 0
\(65\) 9.63365 3.57878i 1.19491 0.443893i
\(66\) 0 0
\(67\) 7.54264 0.921480 0.460740 0.887535i \(-0.347584\pi\)
0.460740 + 0.887535i \(0.347584\pi\)
\(68\) 0 0
\(69\) −5.75492 + 5.75492i −0.692811 + 0.692811i
\(70\) 0 0
\(71\) 6.34716 0.753269 0.376635 0.926362i \(-0.377081\pi\)
0.376635 + 0.926362i \(0.377081\pi\)
\(72\) 0 0
\(73\) 4.78916 4.78916i 0.560529 0.560529i −0.368929 0.929458i \(-0.620275\pi\)
0.929458 + 0.368929i \(0.120275\pi\)
\(74\) 0 0
\(75\) 3.26438 + 3.78732i 0.376938 + 0.437322i
\(76\) 0 0
\(77\) 0.887858i 0.101181i
\(78\) 0 0
\(79\) −3.83743 −0.431745 −0.215872 0.976422i \(-0.569260\pi\)
−0.215872 + 0.976422i \(0.569260\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 6.25327i 0.686385i −0.939265 0.343193i \(-0.888492\pi\)
0.939265 0.343193i \(-0.111508\pi\)
\(84\) 0 0
\(85\) −5.53910 + 12.0870i −0.600800 + 1.31101i
\(86\) 0 0
\(87\) −0.851917 + 0.851917i −0.0913351 + 0.0913351i
\(88\) 0 0
\(89\) 5.02517 0.532667 0.266333 0.963881i \(-0.414188\pi\)
0.266333 + 0.963881i \(0.414188\pi\)
\(90\) 0 0
\(91\) −11.2167 + 11.2167i −1.17583 + 1.17583i
\(92\) 0 0
\(93\) 4.78620 0.496306
\(94\) 0 0
\(95\) −6.26830 + 13.6782i −0.643114 + 1.40335i
\(96\) 0 0
\(97\) −2.96112 + 2.96112i −0.300656 + 0.300656i −0.841270 0.540615i \(-0.818192\pi\)
0.540615 + 0.841270i \(0.318192\pi\)
\(98\) 0 0
\(99\) −0.181897 + 0.181897i −0.0182814 + 0.0182814i
\(100\) 0 0
\(101\) 0.596631 + 0.596631i 0.0593670 + 0.0593670i 0.736167 0.676800i \(-0.236634\pi\)
−0.676800 + 0.736167i \(0.736634\pi\)
\(102\) 0 0
\(103\) −9.06195 9.06195i −0.892901 0.892901i 0.101894 0.994795i \(-0.467510\pi\)
−0.994795 + 0.101894i \(0.967510\pi\)
\(104\) 0 0
\(105\) −7.01605 3.21525i −0.684696 0.313776i
\(106\) 0 0
\(107\) 5.89771i 0.570153i −0.958505 0.285076i \(-0.907981\pi\)
0.958505 0.285076i \(-0.0920190\pi\)
\(108\) 0 0
\(109\) 3.65602 + 3.65602i 0.350183 + 0.350183i 0.860178 0.509995i \(-0.170353\pi\)
−0.509995 + 0.860178i \(0.670353\pi\)
\(110\) 0 0
\(111\) 3.97976i 0.377742i
\(112\) 0 0
\(113\) −6.39894 6.39894i −0.601962 0.601962i 0.338871 0.940833i \(-0.389955\pi\)
−0.940833 + 0.338871i \(0.889955\pi\)
\(114\) 0 0
\(115\) −16.5442 7.58170i −1.54275 0.706997i
\(116\) 0 0
\(117\) 4.59597 0.424898
\(118\) 0 0
\(119\) 20.5224i 1.88129i
\(120\) 0 0
\(121\) 10.9338i 0.993984i
\(122\) 0 0
\(123\) −7.99664 −0.721033
\(124\) 0 0
\(125\) −5.39673 + 9.79159i −0.482699 + 0.875787i
\(126\) 0 0
\(127\) −6.86114 6.86114i −0.608827 0.608827i 0.333812 0.942640i \(-0.391665\pi\)
−0.942640 + 0.333812i \(0.891665\pi\)
\(128\) 0 0
\(129\) 4.44648i 0.391491i
\(130\) 0 0
\(131\) −1.09665 1.09665i −0.0958148 0.0958148i 0.657575 0.753389i \(-0.271582\pi\)
−0.753389 + 0.657575i \(0.771582\pi\)
\(132\) 0 0
\(133\) 23.2241i 2.01379i
\(134\) 0 0
\(135\) 0.778677 + 2.09611i 0.0670179 + 0.180404i
\(136\) 0 0
\(137\) −12.2428 12.2428i −1.04598 1.04598i −0.998891 0.0470863i \(-0.985006\pi\)
−0.0470863 0.998891i \(-0.514994\pi\)
\(138\) 0 0
\(139\) 3.39535 + 3.39535i 0.287990 + 0.287990i 0.836285 0.548295i \(-0.184723\pi\)
−0.548295 + 0.836285i \(0.684723\pi\)
\(140\) 0 0
\(141\) 2.46569 2.46569i 0.207648 0.207648i
\(142\) 0 0
\(143\) −0.835995 + 0.835995i −0.0699094 + 0.0699094i
\(144\) 0 0
\(145\) −2.44908 1.12234i −0.203385 0.0932053i
\(146\) 0 0
\(147\) 4.91254 0.405180
\(148\) 0 0
\(149\) −7.84547 + 7.84547i −0.642726 + 0.642726i −0.951225 0.308499i \(-0.900173\pi\)
0.308499 + 0.951225i \(0.400173\pi\)
\(150\) 0 0
\(151\) 3.19389 0.259915 0.129957 0.991520i \(-0.458516\pi\)
0.129957 + 0.991520i \(0.458516\pi\)
\(152\) 0 0
\(153\) −4.20448 + 4.20448i −0.339912 + 0.339912i
\(154\) 0 0
\(155\) 3.72690 + 10.0324i 0.299352 + 0.805820i
\(156\) 0 0
\(157\) 17.6595i 1.40938i 0.709514 + 0.704691i \(0.248915\pi\)
−0.709514 + 0.704691i \(0.751085\pi\)
\(158\) 0 0
\(159\) 4.94396 0.392082
\(160\) 0 0
\(161\) 28.0903 2.21383
\(162\) 0 0
\(163\) 8.01355i 0.627669i −0.949478 0.313835i \(-0.898386\pi\)
0.949478 0.313835i \(-0.101614\pi\)
\(164\) 0 0
\(165\) −0.522915 0.239637i −0.0407089 0.0186557i
\(166\) 0 0
\(167\) −8.45631 + 8.45631i −0.654369 + 0.654369i −0.954042 0.299673i \(-0.903122\pi\)
0.299673 + 0.954042i \(0.403122\pi\)
\(168\) 0 0
\(169\) 8.12298 0.624845
\(170\) 0 0
\(171\) −4.75798 + 4.75798i −0.363852 + 0.363852i
\(172\) 0 0
\(173\) −5.11465 −0.388860 −0.194430 0.980916i \(-0.562286\pi\)
−0.194430 + 0.980916i \(0.562286\pi\)
\(174\) 0 0
\(175\) 1.27627 17.2100i 0.0964767 1.30096i
\(176\) 0 0
\(177\) −5.89705 + 5.89705i −0.443250 + 0.443250i
\(178\) 0 0
\(179\) −4.67625 + 4.67625i −0.349519 + 0.349519i −0.859930 0.510411i \(-0.829493\pi\)
0.510411 + 0.859930i \(0.329493\pi\)
\(180\) 0 0
\(181\) −5.45166 5.45166i −0.405219 0.405219i 0.474849 0.880067i \(-0.342503\pi\)
−0.880067 + 0.474849i \(0.842503\pi\)
\(182\) 0 0
\(183\) 7.88576 + 7.88576i 0.582932 + 0.582932i
\(184\) 0 0
\(185\) 8.34199 3.09895i 0.613316 0.227839i
\(186\) 0 0
\(187\) 1.52957i 0.111853i
\(188\) 0 0
\(189\) −2.44055 2.44055i −0.177524 0.177524i
\(190\) 0 0
\(191\) 14.1293i 1.02236i 0.859474 + 0.511179i \(0.170791\pi\)
−0.859474 + 0.511179i \(0.829209\pi\)
\(192\) 0 0
\(193\) −6.89094 6.89094i −0.496021 0.496021i 0.414176 0.910197i \(-0.364070\pi\)
−0.910197 + 0.414176i \(0.864070\pi\)
\(194\) 0 0
\(195\) 3.57878 + 9.63365i 0.256282 + 0.689880i
\(196\) 0 0
\(197\) −21.6079 −1.53950 −0.769750 0.638345i \(-0.779619\pi\)
−0.769750 + 0.638345i \(0.779619\pi\)
\(198\) 0 0
\(199\) 8.16771i 0.578994i −0.957179 0.289497i \(-0.906512\pi\)
0.957179 0.289497i \(-0.0934880\pi\)
\(200\) 0 0
\(201\) 7.54264i 0.532017i
\(202\) 0 0
\(203\) 4.15829 0.291855
\(204\) 0 0
\(205\) −6.22680 16.7618i −0.434899 1.17070i
\(206\) 0 0
\(207\) −5.75492 5.75492i −0.399995 0.399995i
\(208\) 0 0
\(209\) 1.73093i 0.119731i
\(210\) 0 0
\(211\) 9.64189 + 9.64189i 0.663775 + 0.663775i 0.956268 0.292493i \(-0.0944847\pi\)
−0.292493 + 0.956268i \(0.594485\pi\)
\(212\) 0 0
\(213\) 6.34716i 0.434900i
\(214\) 0 0
\(215\) −9.32029 + 3.46237i −0.635638 + 0.236132i
\(216\) 0 0
\(217\) −11.6809 11.6809i −0.792954 0.792954i
\(218\) 0 0
\(219\) 4.78916 + 4.78916i 0.323621 + 0.323621i
\(220\) 0 0
\(221\) −19.3237 + 19.3237i −1.29985 + 1.29985i
\(222\) 0 0
\(223\) 13.5811 13.5811i 0.909456 0.909456i −0.0867726 0.996228i \(-0.527655\pi\)
0.996228 + 0.0867726i \(0.0276553\pi\)
\(224\) 0 0
\(225\) −3.78732 + 3.26438i −0.252488 + 0.217625i
\(226\) 0 0
\(227\) −13.3355 −0.885109 −0.442554 0.896742i \(-0.645928\pi\)
−0.442554 + 0.896742i \(0.645928\pi\)
\(228\) 0 0
\(229\) 17.5166 17.5166i 1.15753 1.15753i 0.172525 0.985005i \(-0.444807\pi\)
0.985005 0.172525i \(-0.0551926\pi\)
\(230\) 0 0
\(231\) 0.887858 0.0584168
\(232\) 0 0
\(233\) 5.53768 5.53768i 0.362786 0.362786i −0.502052 0.864837i \(-0.667421\pi\)
0.864837 + 0.502052i \(0.167421\pi\)
\(234\) 0 0
\(235\) 7.08831 + 3.24837i 0.462390 + 0.211900i
\(236\) 0 0
\(237\) 3.83743i 0.249268i
\(238\) 0 0
\(239\) 7.70031 0.498092 0.249046 0.968492i \(-0.419883\pi\)
0.249046 + 0.968492i \(0.419883\pi\)
\(240\) 0 0
\(241\) −27.9273 −1.79896 −0.899478 0.436967i \(-0.856053\pi\)
−0.899478 + 0.436967i \(0.856053\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 3.82529 + 10.2972i 0.244389 + 0.657865i
\(246\) 0 0
\(247\) −21.8675 + 21.8675i −1.39140 + 1.39140i
\(248\) 0 0
\(249\) 6.25327 0.396285
\(250\) 0 0
\(251\) 10.5948 10.5948i 0.668740 0.668740i −0.288684 0.957424i \(-0.593218\pi\)
0.957424 + 0.288684i \(0.0932178\pi\)
\(252\) 0 0
\(253\) 2.09361 0.131624
\(254\) 0 0
\(255\) −12.0870 5.53910i −0.756915 0.346872i
\(256\) 0 0
\(257\) −9.86474 + 9.86474i −0.615345 + 0.615345i −0.944334 0.328989i \(-0.893292\pi\)
0.328989 + 0.944334i \(0.393292\pi\)
\(258\) 0 0
\(259\) −9.71279 + 9.71279i −0.603523 + 0.603523i
\(260\) 0 0
\(261\) −0.851917 0.851917i −0.0527323 0.0527323i
\(262\) 0 0
\(263\) 5.45464 + 5.45464i 0.336348 + 0.336348i 0.854991 0.518643i \(-0.173563\pi\)
−0.518643 + 0.854991i \(0.673563\pi\)
\(264\) 0 0
\(265\) 3.84975 + 10.3631i 0.236488 + 0.636599i
\(266\) 0 0
\(267\) 5.02517i 0.307535i
\(268\) 0 0
\(269\) 1.61579 + 1.61579i 0.0985164 + 0.0985164i 0.754647 0.656131i \(-0.227808\pi\)
−0.656131 + 0.754647i \(0.727808\pi\)
\(270\) 0 0
\(271\) 6.09685i 0.370357i 0.982705 + 0.185179i \(0.0592864\pi\)
−0.982705 + 0.185179i \(0.940714\pi\)
\(272\) 0 0
\(273\) −11.2167 11.2167i −0.678865 0.678865i
\(274\) 0 0
\(275\) 0.0951219 1.28269i 0.00573607 0.0773489i
\(276\) 0 0
\(277\) 15.5674 0.935355 0.467678 0.883899i \(-0.345091\pi\)
0.467678 + 0.883899i \(0.345091\pi\)
\(278\) 0 0
\(279\) 4.78620i 0.286542i
\(280\) 0 0
\(281\) 18.8277i 1.12317i 0.827420 + 0.561583i \(0.189808\pi\)
−0.827420 + 0.561583i \(0.810192\pi\)
\(282\) 0 0
\(283\) −16.7014 −0.992798 −0.496399 0.868095i \(-0.665345\pi\)
−0.496399 + 0.868095i \(0.665345\pi\)
\(284\) 0 0
\(285\) −13.6782 6.26830i −0.810224 0.371302i
\(286\) 0 0
\(287\) 19.5162 + 19.5162i 1.15200 + 1.15200i
\(288\) 0 0
\(289\) 18.3552i 1.07972i
\(290\) 0 0
\(291\) −2.96112 2.96112i −0.173584 0.173584i
\(292\) 0 0
\(293\) 18.1368i 1.05956i −0.848135 0.529780i \(-0.822274\pi\)
0.848135 0.529780i \(-0.177726\pi\)
\(294\) 0 0
\(295\) −16.9528 7.76895i −0.987027 0.452326i
\(296\) 0 0
\(297\) −0.181897 0.181897i −0.0105548 0.0105548i
\(298\) 0 0
\(299\) −26.4495 26.4495i −1.52961 1.52961i
\(300\) 0 0
\(301\) 10.8518 10.8518i 0.625490 0.625490i
\(302\) 0 0
\(303\) −0.596631 + 0.596631i −0.0342756 + 0.0342756i
\(304\) 0 0
\(305\) −10.3889 + 22.6699i −0.594869 + 1.29807i
\(306\) 0 0
\(307\) 24.4651 1.39630 0.698148 0.715953i \(-0.254008\pi\)
0.698148 + 0.715953i \(0.254008\pi\)
\(308\) 0 0
\(309\) 9.06195 9.06195i 0.515517 0.515517i
\(310\) 0 0
\(311\) 8.97669 0.509022 0.254511 0.967070i \(-0.418086\pi\)
0.254511 + 0.967070i \(0.418086\pi\)
\(312\) 0 0
\(313\) −20.1248 + 20.1248i −1.13752 + 1.13752i −0.148625 + 0.988894i \(0.547485\pi\)
−0.988894 + 0.148625i \(0.952515\pi\)
\(314\) 0 0
\(315\) 3.21525 7.01605i 0.181159 0.395309i
\(316\) 0 0
\(317\) 4.43451i 0.249067i 0.992215 + 0.124534i \(0.0397434\pi\)
−0.992215 + 0.124534i \(0.960257\pi\)
\(318\) 0 0
\(319\) 0.309923 0.0173523
\(320\) 0 0
\(321\) 5.89771 0.329178
\(322\) 0 0
\(323\) 40.0096i 2.22619i
\(324\) 0 0
\(325\) −17.4064 + 15.0030i −0.965536 + 0.832217i
\(326\) 0 0
\(327\) −3.65602 + 3.65602i −0.202178 + 0.202178i
\(328\) 0 0
\(329\) −12.0352 −0.663524
\(330\) 0 0
\(331\) −0.546436 + 0.546436i −0.0300348 + 0.0300348i −0.721965 0.691930i \(-0.756761\pi\)
0.691930 + 0.721965i \(0.256761\pi\)
\(332\) 0 0
\(333\) 3.97976 0.218089
\(334\) 0 0
\(335\) −15.8102 + 5.87328i −0.863802 + 0.320892i
\(336\) 0 0
\(337\) −17.8293 + 17.8293i −0.971226 + 0.971226i −0.999597 0.0283716i \(-0.990968\pi\)
0.0283716 + 0.999597i \(0.490968\pi\)
\(338\) 0 0
\(339\) 6.39894 6.39894i 0.347543 0.347543i
\(340\) 0 0
\(341\) −0.870596 0.870596i −0.0471454 0.0471454i
\(342\) 0 0
\(343\) 5.09454 + 5.09454i 0.275079 + 0.275079i
\(344\) 0 0
\(345\) 7.58170 16.5442i 0.408185 0.890707i
\(346\) 0 0
\(347\) 15.6158i 0.838301i −0.907917 0.419151i \(-0.862328\pi\)
0.907917 0.419151i \(-0.137672\pi\)
\(348\) 0 0
\(349\) 4.71294 + 4.71294i 0.252278 + 0.252278i 0.821904 0.569626i \(-0.192912\pi\)
−0.569626 + 0.821904i \(0.692912\pi\)
\(350\) 0 0
\(351\) 4.59597i 0.245315i
\(352\) 0 0
\(353\) 19.3304 + 19.3304i 1.02885 + 1.02885i 0.999571 + 0.0292825i \(0.00932226\pi\)
0.0292825 + 0.999571i \(0.490678\pi\)
\(354\) 0 0
\(355\) −13.3043 + 4.94239i −0.706120 + 0.262315i
\(356\) 0 0
\(357\) 20.5224 1.08616
\(358\) 0 0
\(359\) 17.4634i 0.921685i 0.887482 + 0.460842i \(0.152453\pi\)
−0.887482 + 0.460842i \(0.847547\pi\)
\(360\) 0 0
\(361\) 26.2767i 1.38298i
\(362\) 0 0
\(363\) −10.9338 −0.573877
\(364\) 0 0
\(365\) −6.30938 + 13.7678i −0.330248 + 0.720639i
\(366\) 0 0
\(367\) 18.8168 + 18.8168i 0.982231 + 0.982231i 0.999845 0.0176142i \(-0.00560705\pi\)
−0.0176142 + 0.999845i \(0.505607\pi\)
\(368\) 0 0
\(369\) 7.99664i 0.416289i
\(370\) 0 0
\(371\) −12.0660 12.0660i −0.626435 0.626435i
\(372\) 0 0
\(373\) 31.8481i 1.64903i 0.565840 + 0.824515i \(0.308552\pi\)
−0.565840 + 0.824515i \(0.691448\pi\)
\(374\) 0 0
\(375\) −9.79159 5.39673i −0.505636 0.278686i
\(376\) 0 0
\(377\) −3.91539 3.91539i −0.201653 0.201653i
\(378\) 0 0
\(379\) 11.5085 + 11.5085i 0.591153 + 0.591153i 0.937943 0.346790i \(-0.112728\pi\)
−0.346790 + 0.937943i \(0.612728\pi\)
\(380\) 0 0
\(381\) 6.86114 6.86114i 0.351507 0.351507i
\(382\) 0 0
\(383\) 19.7097 19.7097i 1.00712 1.00712i 0.00714591 0.999974i \(-0.497725\pi\)
0.999974 0.00714591i \(-0.00227463\pi\)
\(384\) 0 0
\(385\) 0.691355 + 1.86104i 0.0352347 + 0.0948476i
\(386\) 0 0
\(387\) −4.44648 −0.226027
\(388\) 0 0
\(389\) −7.83824 + 7.83824i −0.397414 + 0.397414i −0.877320 0.479906i \(-0.840671\pi\)
0.479906 + 0.877320i \(0.340671\pi\)
\(390\) 0 0
\(391\) 48.3928 2.44733
\(392\) 0 0
\(393\) 1.09665 1.09665i 0.0553187 0.0553187i
\(394\) 0 0
\(395\) 8.04366 2.98812i 0.404721 0.150349i
\(396\) 0 0
\(397\) 24.4147i 1.22534i −0.790339 0.612670i \(-0.790095\pi\)
0.790339 0.612670i \(-0.209905\pi\)
\(398\) 0 0
\(399\) 23.2241 1.16266
\(400\) 0 0
\(401\) 14.7988 0.739016 0.369508 0.929228i \(-0.379526\pi\)
0.369508 + 0.929228i \(0.379526\pi\)
\(402\) 0 0
\(403\) 21.9972i 1.09576i
\(404\) 0 0
\(405\) −2.09611 + 0.778677i −0.104156 + 0.0386928i
\(406\) 0 0
\(407\) −0.723907 + 0.723907i −0.0358827 + 0.0358827i
\(408\) 0 0
\(409\) 19.2953 0.954092 0.477046 0.878878i \(-0.341708\pi\)
0.477046 + 0.878878i \(0.341708\pi\)
\(410\) 0 0
\(411\) 12.2428 12.2428i 0.603895 0.603895i
\(412\) 0 0
\(413\) 28.7841 1.41637
\(414\) 0 0
\(415\) 4.86928 + 13.1075i 0.239023 + 0.643423i
\(416\) 0 0
\(417\) −3.39535 + 3.39535i −0.166271 + 0.166271i
\(418\) 0 0
\(419\) −1.76149 + 1.76149i −0.0860546 + 0.0860546i −0.748824 0.662769i \(-0.769381\pi\)
0.662769 + 0.748824i \(0.269381\pi\)
\(420\) 0 0
\(421\) 15.1301 + 15.1301i 0.737397 + 0.737397i 0.972074 0.234677i \(-0.0754031\pi\)
−0.234677 + 0.972074i \(0.575403\pi\)
\(422\) 0 0
\(423\) 2.46569 + 2.46569i 0.119886 + 0.119886i
\(424\) 0 0
\(425\) 2.19870 29.6487i 0.106653 1.43817i
\(426\) 0 0
\(427\) 38.4912i 1.86272i
\(428\) 0 0
\(429\) −0.835995 0.835995i −0.0403622 0.0403622i
\(430\) 0 0
\(431\) 35.7121i 1.72019i 0.510133 + 0.860095i \(0.329596\pi\)
−0.510133 + 0.860095i \(0.670404\pi\)
\(432\) 0 0
\(433\) 24.8355 + 24.8355i 1.19352 + 1.19352i 0.976072 + 0.217448i \(0.0697734\pi\)
0.217448 + 0.976072i \(0.430227\pi\)
\(434\) 0 0
\(435\) 1.12234 2.44908i 0.0538121 0.117424i
\(436\) 0 0
\(437\) 54.7636 2.61970
\(438\) 0 0
\(439\) 4.09956i 0.195661i −0.995203 0.0978307i \(-0.968810\pi\)
0.995203 0.0978307i \(-0.0311904\pi\)
\(440\) 0 0
\(441\) 4.91254i 0.233931i
\(442\) 0 0
\(443\) 1.17693 0.0559176 0.0279588 0.999609i \(-0.491099\pi\)
0.0279588 + 0.999609i \(0.491099\pi\)
\(444\) 0 0
\(445\) −10.5333 + 3.91298i −0.499326 + 0.185493i
\(446\) 0 0
\(447\) −7.84547 7.84547i −0.371078 0.371078i
\(448\) 0 0
\(449\) 18.3494i 0.865962i −0.901403 0.432981i \(-0.857462\pi\)
0.901403 0.432981i \(-0.142538\pi\)
\(450\) 0 0
\(451\) 1.45457 + 1.45457i 0.0684929 + 0.0684929i
\(452\) 0 0
\(453\) 3.19389i 0.150062i
\(454\) 0 0
\(455\) 14.7772 32.2456i 0.692766 1.51170i
\(456\) 0 0
\(457\) −18.0522 18.0522i −0.844446 0.844446i 0.144987 0.989434i \(-0.453686\pi\)
−0.989434 + 0.144987i \(0.953686\pi\)
\(458\) 0 0
\(459\) −4.20448 4.20448i −0.196248 0.196248i
\(460\) 0 0
\(461\) 23.5968 23.5968i 1.09901 1.09901i 0.104487 0.994526i \(-0.466680\pi\)
0.994526 0.104487i \(-0.0333199\pi\)
\(462\) 0 0
\(463\) −20.2744 + 20.2744i −0.942231 + 0.942231i −0.998420 0.0561894i \(-0.982105\pi\)
0.0561894 + 0.998420i \(0.482105\pi\)
\(464\) 0 0
\(465\) −10.0324 + 3.72690i −0.465240 + 0.172831i
\(466\) 0 0
\(467\) −14.3565 −0.664340 −0.332170 0.943220i \(-0.607781\pi\)
−0.332170 + 0.943220i \(0.607781\pi\)
\(468\) 0 0
\(469\) 18.4082 18.4082i 0.850010 0.850010i
\(470\) 0 0
\(471\) −17.6595 −0.813707
\(472\) 0 0
\(473\) 0.808802 0.808802i 0.0371888 0.0371888i
\(474\) 0 0
\(475\) 2.48815 33.5518i 0.114164 1.53946i
\(476\) 0 0
\(477\) 4.94396i 0.226369i
\(478\) 0 0
\(479\) −4.43555 −0.202665 −0.101333 0.994853i \(-0.532311\pi\)
−0.101333 + 0.994853i \(0.532311\pi\)
\(480\) 0 0
\(481\) 18.2909 0.833991
\(482\) 0 0
\(483\) 28.0903i 1.27815i
\(484\) 0 0
\(485\) 3.90106 8.51257i 0.177138 0.386536i
\(486\) 0 0
\(487\) −22.1931 + 22.1931i −1.00566 + 1.00566i −0.00568049 + 0.999984i \(0.501808\pi\)
−0.999984 + 0.00568049i \(0.998192\pi\)
\(488\) 0 0
\(489\) 8.01355 0.362385
\(490\) 0 0
\(491\) −20.7625 + 20.7625i −0.936997 + 0.936997i −0.998130 0.0611325i \(-0.980529\pi\)
0.0611325 + 0.998130i \(0.480529\pi\)
\(492\) 0 0
\(493\) 7.16373 0.322638
\(494\) 0 0
\(495\) 0.239637 0.522915i 0.0107709 0.0235033i
\(496\) 0 0
\(497\) 15.4905 15.4905i 0.694846 0.694846i
\(498\) 0 0
\(499\) 8.27712 8.27712i 0.370535 0.370535i −0.497137 0.867672i \(-0.665615\pi\)
0.867672 + 0.497137i \(0.165615\pi\)
\(500\) 0 0
\(501\) −8.45631 8.45631i −0.377800 0.377800i
\(502\) 0 0
\(503\) −10.2485 10.2485i −0.456958 0.456958i 0.440698 0.897656i \(-0.354731\pi\)
−0.897656 + 0.440698i \(0.854731\pi\)
\(504\) 0 0
\(505\) −1.71519 0.786019i −0.0763247 0.0349774i
\(506\) 0 0
\(507\) 8.12298i 0.360754i
\(508\) 0 0
\(509\) −26.3354 26.3354i −1.16730 1.16730i −0.982841 0.184455i \(-0.940948\pi\)
−0.184455 0.982841i \(-0.559052\pi\)
\(510\) 0 0
\(511\) 23.3763i 1.03411i
\(512\) 0 0
\(513\) −4.75798 4.75798i −0.210070 0.210070i
\(514\) 0 0
\(515\) 26.0512 + 11.9385i 1.14795 + 0.526072i
\(516\) 0 0
\(517\) −0.897003 −0.0394501
\(518\) 0 0
\(519\) 5.11465i 0.224508i
\(520\) 0 0
\(521\) 21.8449i 0.957042i 0.878076 + 0.478521i \(0.158827\pi\)
−0.878076 + 0.478521i \(0.841173\pi\)
\(522\) 0 0
\(523\) −10.0725 −0.440439 −0.220220 0.975450i \(-0.570677\pi\)
−0.220220 + 0.975450i \(0.570677\pi\)
\(524\) 0 0
\(525\) 17.2100 + 1.27627i 0.751107 + 0.0557008i
\(526\) 0 0
\(527\) −20.1234 20.1234i −0.876591 0.876591i
\(528\) 0 0
\(529\) 43.2382i 1.87992i
\(530\) 0 0
\(531\) −5.89705 5.89705i −0.255910 0.255910i
\(532\) 0 0
\(533\) 36.7524i 1.59192i
\(534\) 0 0
\(535\) 4.59241 + 12.3622i 0.198547 + 0.534465i
\(536\) 0 0
\(537\) −4.67625 4.67625i −0.201795 0.201795i
\(538\) 0 0
\(539\) −0.893579 0.893579i −0.0384892 0.0384892i
\(540\) 0 0
\(541\) −4.27091 + 4.27091i −0.183621 + 0.183621i −0.792932 0.609311i \(-0.791446\pi\)
0.609311 + 0.792932i \(0.291446\pi\)
\(542\) 0 0
\(543\) 5.45166 5.45166i 0.233953 0.233953i
\(544\) 0 0
\(545\) −10.5103 4.81654i −0.450210 0.206318i
\(546\) 0 0
\(547\) 3.62983 0.155200 0.0776001 0.996985i \(-0.475274\pi\)
0.0776001 + 0.996985i \(0.475274\pi\)
\(548\) 0 0
\(549\) −7.88576 + 7.88576i −0.336556 + 0.336556i
\(550\) 0 0
\(551\) 8.10680 0.345361
\(552\) 0 0
\(553\) −9.36543 + 9.36543i −0.398259 + 0.398259i
\(554\) 0 0
\(555\) 3.09895 + 8.34199i 0.131543 + 0.354098i
\(556\) 0 0
\(557\) 23.6824i 1.00345i 0.865026 + 0.501727i \(0.167302\pi\)
−0.865026 + 0.501727i \(0.832698\pi\)
\(558\) 0 0
\(559\) −20.4359 −0.864346
\(560\) 0 0
\(561\) 1.52957 0.0645783
\(562\) 0 0
\(563\) 10.0778i 0.424727i 0.977191 + 0.212364i \(0.0681161\pi\)
−0.977191 + 0.212364i \(0.931884\pi\)
\(564\) 0 0
\(565\) 18.3956 + 8.43015i 0.773907 + 0.354659i
\(566\) 0 0
\(567\) 2.44055 2.44055i 0.102493 0.102493i
\(568\) 0 0
\(569\) −17.6744 −0.740950 −0.370475 0.928842i \(-0.620805\pi\)
−0.370475 + 0.928842i \(0.620805\pi\)
\(570\) 0 0
\(571\) −11.6390 + 11.6390i −0.487078 + 0.487078i −0.907383 0.420305i \(-0.861923\pi\)
0.420305 + 0.907383i \(0.361923\pi\)
\(572\) 0 0
\(573\) −14.1293 −0.590258
\(574\) 0 0
\(575\) 40.5820 + 3.00949i 1.69239 + 0.125505i
\(576\) 0 0
\(577\) 20.4055 20.4055i 0.849494 0.849494i −0.140576 0.990070i \(-0.544895\pi\)
0.990070 + 0.140576i \(0.0448954\pi\)
\(578\) 0 0
\(579\) 6.89094 6.89094i 0.286378 0.286378i
\(580\) 0 0
\(581\) −15.2614 15.2614i −0.633150 0.633150i
\(582\) 0 0
\(583\) −0.899294 0.899294i −0.0372449 0.0372449i
\(584\) 0 0
\(585\) −9.63365 + 3.57878i −0.398302 + 0.147964i
\(586\) 0 0
\(587\) 45.2307i 1.86687i −0.358745 0.933436i \(-0.616795\pi\)
0.358745 0.933436i \(-0.383205\pi\)
\(588\) 0 0
\(589\) −22.7726 22.7726i −0.938329 0.938329i
\(590\) 0 0
\(591\) 21.6079i 0.888831i
\(592\) 0 0
\(593\) −11.0242 11.0242i −0.452710 0.452710i 0.443543 0.896253i \(-0.353721\pi\)
−0.896253 + 0.443543i \(0.853721\pi\)
\(594\) 0 0
\(595\) 15.9804 + 43.0172i 0.655131 + 1.76353i
\(596\) 0 0
\(597\) 8.16771 0.334282
\(598\) 0 0
\(599\) 0.523855i 0.0214041i 0.999943 + 0.0107021i \(0.00340664\pi\)
−0.999943 + 0.0107021i \(0.996593\pi\)
\(600\) 0 0
\(601\) 19.7299i 0.804801i 0.915464 + 0.402401i \(0.131824\pi\)
−0.915464 + 0.402401i \(0.868176\pi\)
\(602\) 0 0
\(603\) −7.54264 −0.307160
\(604\) 0 0
\(605\) −8.51392 22.9185i −0.346140 0.931768i
\(606\) 0 0
\(607\) 11.4651 + 11.4651i 0.465352 + 0.465352i 0.900405 0.435053i \(-0.143270\pi\)
−0.435053 + 0.900405i \(0.643270\pi\)
\(608\) 0 0
\(609\) 4.15829i 0.168502i
\(610\) 0 0
\(611\) 11.3322 + 11.3322i 0.458453 + 0.458453i
\(612\) 0 0
\(613\) 5.53021i 0.223363i −0.993744 0.111682i \(-0.964376\pi\)
0.993744 0.111682i \(-0.0356237\pi\)
\(614\) 0 0
\(615\) 16.7618 6.22680i 0.675901 0.251089i
\(616\) 0 0
\(617\) −28.8633 28.8633i −1.16199 1.16199i −0.984039 0.177952i \(-0.943053\pi\)
−0.177952 0.984039i \(-0.556947\pi\)
\(618\) 0 0
\(619\) 24.3467 + 24.3467i 0.978577 + 0.978577i 0.999775 0.0211987i \(-0.00674825\pi\)
−0.0211987 + 0.999775i \(0.506748\pi\)
\(620\) 0 0
\(621\) 5.75492 5.75492i 0.230937 0.230937i
\(622\) 0 0
\(623\) 12.2642 12.2642i 0.491353 0.491353i
\(624\) 0 0
\(625\) 3.68764 24.7265i 0.147506 0.989061i
\(626\) 0 0
\(627\) 1.73093 0.0691265
\(628\) 0 0
\(629\) −16.7328 + 16.7328i −0.667180 + 0.667180i
\(630\) 0 0
\(631\) 20.5195 0.816870 0.408435 0.912787i \(-0.366075\pi\)
0.408435 + 0.912787i \(0.366075\pi\)
\(632\) 0 0
\(633\) −9.64189 + 9.64189i −0.383231 + 0.383231i
\(634\) 0 0
\(635\) 19.7243 + 9.03906i 0.782734 + 0.358704i
\(636\) 0 0
\(637\) 22.5779i 0.894570i
\(638\) 0 0
\(639\) −6.34716 −0.251090
\(640\) 0 0
\(641\) −12.4196 −0.490546 −0.245273 0.969454i \(-0.578878\pi\)
−0.245273 + 0.969454i \(0.578878\pi\)
\(642\) 0 0
\(643\) 45.7180i 1.80294i −0.432838 0.901472i \(-0.642488\pi\)
0.432838 0.901472i \(-0.357512\pi\)
\(644\) 0 0
\(645\) −3.46237 9.32029i −0.136331 0.366986i
\(646\) 0 0
\(647\) −24.2897 + 24.2897i −0.954925 + 0.954925i −0.999027 0.0441018i \(-0.985957\pi\)
0.0441018 + 0.999027i \(0.485957\pi\)
\(648\) 0 0
\(649\) 2.14532 0.0842110
\(650\) 0 0
\(651\) 11.6809 11.6809i 0.457812 0.457812i
\(652\) 0 0
\(653\) 33.3219 1.30399 0.651993 0.758225i \(-0.273933\pi\)
0.651993 + 0.758225i \(0.273933\pi\)
\(654\) 0 0
\(655\) 3.15263 + 1.44476i 0.123184 + 0.0564514i
\(656\) 0 0
\(657\) −4.78916 + 4.78916i −0.186843 + 0.186843i
\(658\) 0 0
\(659\) −13.3564 + 13.3564i −0.520292 + 0.520292i −0.917660 0.397367i \(-0.869924\pi\)
0.397367 + 0.917660i \(0.369924\pi\)
\(660\) 0 0
\(661\) 22.8218 + 22.8218i 0.887664 + 0.887664i 0.994298 0.106635i \(-0.0340076\pi\)
−0.106635 + 0.994298i \(0.534008\pi\)
\(662\) 0 0
\(663\) −19.3237 19.3237i −0.750469 0.750469i
\(664\) 0 0
\(665\) 18.0841 + 48.6803i 0.701272 + 1.88774i
\(666\) 0 0
\(667\) 9.80543i 0.379668i
\(668\) 0 0
\(669\) 13.5811 + 13.5811i 0.525074 + 0.525074i
\(670\) 0 0
\(671\) 2.86880i 0.110749i
\(672\) 0 0
\(673\) 19.9234 + 19.9234i 0.767989 + 0.767989i 0.977752 0.209763i \(-0.0672693\pi\)
−0.209763 + 0.977752i \(0.567269\pi\)
\(674\) 0 0
\(675\) −3.26438 3.78732i −0.125646 0.145774i
\(676\) 0 0
\(677\) 3.27932 0.126035 0.0630173 0.998012i \(-0.479928\pi\)
0.0630173 + 0.998012i \(0.479928\pi\)
\(678\) 0 0
\(679\) 14.4535i 0.554674i
\(680\) 0 0
\(681\) 13.3355i 0.511018i
\(682\) 0 0
\(683\) 0.304845 0.0116646 0.00583228 0.999983i \(-0.498144\pi\)
0.00583228 + 0.999983i \(0.498144\pi\)
\(684\) 0 0
\(685\) 35.1955 + 16.1291i 1.34475 + 0.616261i
\(686\) 0 0
\(687\) 17.5166 + 17.5166i 0.668300 + 0.668300i
\(688\) 0 0
\(689\) 22.7223i 0.865652i
\(690\) 0 0
\(691\) 4.70048 + 4.70048i 0.178815 + 0.178815i 0.790839 0.612024i \(-0.209645\pi\)
−0.612024 + 0.790839i \(0.709645\pi\)
\(692\) 0 0
\(693\) 0.887858i 0.0337269i
\(694\) 0 0
\(695\) −9.76090 4.47314i −0.370252 0.169676i
\(696\) 0 0
\(697\) 33.6217 + 33.6217i 1.27351 + 1.27351i
\(698\) 0 0
\(699\) 5.53768 + 5.53768i 0.209454 + 0.209454i
\(700\) 0 0
\(701\) −32.6716 + 32.6716i −1.23399 + 1.23399i −0.271572 + 0.962418i \(0.587543\pi\)
−0.962418 + 0.271572i \(0.912457\pi\)
\(702\) 0 0
\(703\) −18.9356 + 18.9356i −0.714169 + 0.714169i
\(704\) 0 0
\(705\) −3.24837 + 7.08831i −0.122341 + 0.266961i
\(706\) 0 0
\(707\) 2.91221 0.109525
\(708\) 0 0
\(709\) −9.52932 + 9.52932i −0.357881 + 0.357881i −0.863031 0.505150i \(-0.831437\pi\)
0.505150 + 0.863031i \(0.331437\pi\)
\(710\) 0 0
\(711\) 3.83743 0.143915
\(712\) 0 0
\(713\) 27.5442 27.5442i 1.03154 1.03154i
\(714\) 0 0
\(715\) 1.10136 2.40331i 0.0411887 0.0898785i
\(716\) 0 0
\(717\) 7.70031i 0.287573i
\(718\) 0 0
\(719\) 0.471667 0.0175902 0.00879511 0.999961i \(-0.497200\pi\)
0.00879511 + 0.999961i \(0.497200\pi\)
\(720\) 0 0
\(721\) −44.2323 −1.64730
\(722\) 0 0
\(723\) 27.9273i 1.03863i
\(724\) 0 0
\(725\) 6.00747 + 0.445504i 0.223112 + 0.0165456i
\(726\) 0 0
\(727\) 37.3759 37.3759i 1.38620 1.38620i 0.553045 0.833152i \(-0.313466\pi\)
0.833152 0.553045i \(-0.186534\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 18.6951 18.6951i 0.691463 0.691463i
\(732\) 0 0
\(733\) −24.0502 −0.888314 −0.444157 0.895949i \(-0.646497\pi\)
−0.444157 + 0.895949i \(0.646497\pi\)
\(734\) 0 0
\(735\) −10.2972 + 3.82529i −0.379818 + 0.141098i
\(736\) 0 0
\(737\) 1.37199 1.37199i 0.0505377 0.0505377i
\(738\) 0 0
\(739\) −19.0456 + 19.0456i −0.700604 + 0.700604i −0.964540 0.263936i \(-0.914979\pi\)
0.263936 + 0.964540i \(0.414979\pi\)
\(740\) 0 0
\(741\) −21.8675 21.8675i −0.803324 0.803324i
\(742\) 0 0
\(743\) 17.1881 + 17.1881i 0.630569 + 0.630569i 0.948211 0.317642i \(-0.102891\pi\)
−0.317642 + 0.948211i \(0.602891\pi\)
\(744\) 0 0
\(745\) 10.3358 22.5540i 0.378676 0.826315i
\(746\) 0 0
\(747\) 6.25327i 0.228795i
\(748\) 0 0
\(749\) −14.3936 14.3936i −0.525932 0.525932i
\(750\) 0 0
\(751\) 36.8021i 1.34293i −0.741037 0.671464i \(-0.765666\pi\)
0.741037 0.671464i \(-0.234334\pi\)
\(752\) 0 0
\(753\) 10.5948 + 10.5948i 0.386097 + 0.386097i
\(754\) 0 0
\(755\) −6.69473 + 2.48701i −0.243646 + 0.0905114i
\(756\) 0 0
\(757\) −2.17732 −0.0791360 −0.0395680 0.999217i \(-0.512598\pi\)
−0.0395680 + 0.999217i \(0.512598\pi\)
\(758\) 0 0
\(759\) 2.09361i 0.0759932i
\(760\) 0 0
\(761\) 10.5601i 0.382803i −0.981512 0.191402i \(-0.938697\pi\)
0.981512 0.191402i \(-0.0613033\pi\)
\(762\) 0 0
\(763\) 17.8454 0.646046
\(764\) 0 0
\(765\) 5.53910 12.0870i 0.200267 0.437005i
\(766\) 0 0
\(767\) −27.1027 27.1027i −0.978622 0.978622i
\(768\) 0 0
\(769\) 13.8582i 0.499739i 0.968279 + 0.249870i \(0.0803878\pi\)
−0.968279 + 0.249870i \(0.919612\pi\)
\(770\) 0 0
\(771\) −9.86474 9.86474i −0.355270 0.355270i
\(772\) 0 0
\(773\) 18.6483i 0.670732i 0.942088 + 0.335366i \(0.108860\pi\)
−0.942088 + 0.335366i \(0.891140\pi\)
\(774\) 0 0
\(775\) −15.6240 18.1269i −0.561230 0.651137i
\(776\) 0 0
\(777\) −9.71279 9.71279i −0.348444 0.348444i
\(778\) 0 0
\(779\) 38.0478 + 38.0478i 1.36321 + 1.36321i
\(780\) 0 0
\(781\) 1.15453 1.15453i 0.0413124 0.0413124i
\(782\) 0 0
\(783\) 0.851917 0.851917i 0.0304450 0.0304450i
\(784\) 0 0
\(785\) −13.7511 37.0162i −0.490796 1.32117i
\(786\) 0 0
\(787\) −29.1438 −1.03886 −0.519432 0.854512i \(-0.673857\pi\)
−0.519432 + 0.854512i \(0.673857\pi\)
\(788\) 0 0
\(789\) −5.45464 + 5.45464i −0.194190 + 0.194190i
\(790\) 0 0
\(791\) −31.2338 −1.11055
\(792\) 0 0
\(793\) −36.2428 + 36.2428i −1.28702 + 1.28702i
\(794\) 0 0
\(795\) −10.3631 + 3.84975i −0.367540 + 0.136537i
\(796\) 0 0
\(797\) 11.1042i 0.393331i 0.980471 + 0.196665i \(0.0630113\pi\)
−0.980471 + 0.196665i \(0.936989\pi\)
\(798\) 0 0
\(799\) −20.7338 −0.733510
\(800\) 0 0
\(801\) −5.02517 −0.177556
\(802\) 0 0
\(803\) 1.74227i 0.0614834i
\(804\) 0 0
\(805\) −58.8803 + 21.8733i −2.07526 + 0.770932i
\(806\) 0 0
\(807\) −1.61579 + 1.61579i −0.0568784 + 0.0568784i
\(808\) 0 0
\(809\) 27.7185 0.974531 0.487265 0.873254i \(-0.337994\pi\)
0.487265 + 0.873254i \(0.337994\pi\)
\(810\) 0 0
\(811\) −27.6491 + 27.6491i −0.970891 + 0.970891i −0.999588 0.0286974i \(-0.990864\pi\)
0.0286974 + 0.999588i \(0.490864\pi\)
\(812\) 0 0
\(813\) −6.09685 −0.213826
\(814\) 0 0
\(815\) 6.23997 + 16.7972i 0.218576 + 0.588382i
\(816\) 0 0
\(817\) 21.1562 21.1562i 0.740163 0.740163i
\(818\) 0 0
\(819\) 11.2167 11.2167i 0.391943 0.391943i
\(820\) 0 0
\(821\) −10.7053 10.7053i −0.373616 0.373616i 0.495176 0.868793i \(-0.335104\pi\)
−0.868793 + 0.495176i \(0.835104\pi\)
\(822\) 0 0
\(823\) 31.2787 + 31.2787i 1.09031 + 1.09031i 0.995495 + 0.0948116i \(0.0302249\pi\)
0.0948116 + 0.995495i \(0.469775\pi\)
\(824\) 0 0
\(825\) 1.28269 + 0.0951219i 0.0446574 + 0.00331172i
\(826\) 0 0
\(827\) 53.4550i 1.85881i 0.369060 + 0.929406i \(0.379680\pi\)
−0.369060 + 0.929406i \(0.620320\pi\)
\(828\) 0 0
\(829\) 4.10901 + 4.10901i 0.142712 + 0.142712i 0.774853 0.632141i \(-0.217824\pi\)
−0.632141 + 0.774853i \(0.717824\pi\)
\(830\) 0 0
\(831\) 15.5674i 0.540028i
\(832\) 0 0
\(833\) −20.6547 20.6547i −0.715642 0.715642i
\(834\) 0 0
\(835\) 11.1406 24.3101i 0.385536 0.841284i
\(836\) 0 0
\(837\) −4.78620 −0.165435
\(838\) 0 0
\(839\) 4.01939i 0.138765i −0.997590 0.0693824i \(-0.977897\pi\)
0.997590 0.0693824i \(-0.0221029\pi\)
\(840\) 0 0
\(841\) 27.5485i 0.949947i
\(842\) 0 0
\(843\) −18.8277 −0.648461
\(844\) 0 0
\(845\) −17.0266 + 6.32518i −0.585734 + 0.217593i
\(846\) 0 0
\(847\) 26.6845 + 26.6845i 0.916891 + 0.916891i
\(848\) 0 0
\(849\) 16.7014i 0.573192i
\(850\) 0 0
\(851\) −22.9032 22.9032i −0.785111 0.785111i
\(852\) 0 0
\(853\) 19.7470i 0.676126i −0.941123 0.338063i \(-0.890228\pi\)
0.941123 0.338063i \(-0.109772\pi\)
\(854\) 0 0
\(855\) 6.26830 13.6782i 0.214371 0.467783i
\(856\) 0 0
\(857\) −7.67020 7.67020i −0.262009 0.262009i 0.563861 0.825870i \(-0.309315\pi\)
−0.825870 + 0.563861i \(0.809315\pi\)
\(858\) 0 0
\(859\) −32.7389 32.7389i −1.11704 1.11704i −0.992174 0.124862i \(-0.960151\pi\)
−0.124862 0.992174i \(-0.539849\pi\)
\(860\) 0 0
\(861\) −19.5162 + 19.5162i −0.665110 + 0.665110i
\(862\) 0 0
\(863\) −6.87701 + 6.87701i −0.234096 + 0.234096i −0.814400 0.580304i \(-0.802934\pi\)
0.580304 + 0.814400i \(0.302934\pi\)
\(864\) 0 0
\(865\) 10.7209 3.98266i 0.364520 0.135415i
\(866\) 0 0
\(867\) 18.3552 0.623376
\(868\) 0 0
\(869\) −0.698018 + 0.698018i −0.0236787 + 0.0236787i
\(870\) 0 0
\(871\) −34.6658 −1.17460
\(872\) 0 0
\(873\) 2.96112 2.96112i 0.100219 0.100219i
\(874\) 0 0
\(875\) 10.7259 + 37.0678i 0.362600 + 1.25312i
\(876\) 0 0
\(877\) 10.5732i 0.357030i 0.983937 + 0.178515i \(0.0571294\pi\)
−0.983937 + 0.178515i \(0.942871\pi\)
\(878\) 0 0
\(879\) 18.1368 0.611738
\(880\) 0 0
\(881\) −53.2314 −1.79341 −0.896705 0.442628i \(-0.854046\pi\)
−0.896705 + 0.442628i \(0.854046\pi\)
\(882\) 0 0
\(883\) 12.9838i 0.436939i 0.975844 + 0.218470i \(0.0701065\pi\)
−0.975844 + 0.218470i \(0.929894\pi\)
\(884\) 0 0
\(885\) 7.76895 16.9528i 0.261150 0.569860i
\(886\) 0 0
\(887\) 13.3689 13.3689i 0.448884 0.448884i −0.446100 0.894983i \(-0.647187\pi\)
0.894983 + 0.446100i \(0.147187\pi\)
\(888\) 0 0
\(889\) −33.4899 −1.12321
\(890\) 0 0
\(891\) 0.181897 0.181897i 0.00609379 0.00609379i
\(892\) 0 0
\(893\) −23.4633 −0.785171
\(894\) 0 0
\(895\) 6.16062 13.4432i 0.205927 0.449357i
\(896\) 0 0
\(897\) 26.4495 26.4495i 0.883122 0.883122i
\(898\) 0 0
\(899\) 4.07744 4.07744i 0.135990 0.135990i
\(900\) 0 0
\(901\) −20.7868 20.7868i −0.692508 0.692508i
\(902\) 0 0
\(903\) 10.8518 + 10.8518i 0.361127 + 0.361127i
\(904\) 0 0
\(905\) 15.6723 + 7.18217i 0.520966 + 0.238744i
\(906\) 0 0
\(907\) 12.5840i 0.417846i 0.977932 + 0.208923i \(0.0669957\pi\)
−0.977932 + 0.208923i \(0.933004\pi\)
\(908\) 0 0
\(909\) −0.596631 0.596631i −0.0197890 0.0197890i
\(910\) 0 0
\(911\) 39.5012i 1.30873i −0.756177 0.654367i \(-0.772935\pi\)
0.756177 0.654367i \(-0.227065\pi\)
\(912\) 0 0
\(913\) −1.13745 1.13745i −0.0376442 0.0376442i
\(914\) 0 0
\(915\) −22.6699 10.3889i −0.749443 0.343448i
\(916\) 0 0
\(917\) −5.35286 −0.176767
\(918\) 0 0
\(919\) 8.49556i 0.280243i 0.990134 + 0.140121i \(0.0447492\pi\)
−0.990134 + 0.140121i \(0.955251\pi\)
\(920\) 0 0
\(921\) 24.4651i 0.806152i
\(922\) 0 0
\(923\) −29.1714 −0.960188
\(924\) 0 0
\(925\) −15.0726 + 12.9914i −0.495585 + 0.427156i
\(926\) 0 0
\(927\) 9.06195 + 9.06195i 0.297634 + 0.297634i
\(928\) 0 0
\(929\) 36.4760i 1.19674i −0.801220 0.598369i \(-0.795816\pi\)
0.801220 0.598369i \(-0.204184\pi\)
\(930\) 0 0
\(931\) −23.3738 23.3738i −0.766044 0.766044i
\(932\) 0 0
\(933\) 8.97669i 0.293884i
\(934\) 0 0
\(935\) 1.19104 + 3.20613i 0.0389511 + 0.104852i
\(936\) 0 0
\(937\) 12.8804 + 12.8804i 0.420785 + 0.420785i 0.885474 0.464689i \(-0.153834\pi\)
−0.464689 + 0.885474i \(0.653834\pi\)
\(938\) 0 0
\(939\) −20.1248 20.1248i −0.656747 0.656747i
\(940\) 0 0
\(941\) 38.8236 38.8236i 1.26561 1.26561i 0.317284 0.948331i \(-0.397229\pi\)
0.948331 0.317284i \(-0.102771\pi\)
\(942\) 0 0
\(943\) −46.0200 + 46.0200i −1.49862 + 1.49862i
\(944\) 0 0
\(945\) 7.01605 + 3.21525i 0.228232 + 0.104592i
\(946\) 0 0
\(947\) 28.4262 0.923727 0.461864 0.886951i \(-0.347181\pi\)
0.461864 + 0.886951i \(0.347181\pi\)
\(948\) 0 0
\(949\) −22.0109 + 22.0109i −0.714503 + 0.714503i
\(950\) 0 0
\(951\) −4.43451 −0.143799
\(952\) 0 0
\(953\) 8.00013 8.00013i 0.259150 0.259150i −0.565559 0.824708i \(-0.691339\pi\)
0.824708 + 0.565559i \(0.191339\pi\)
\(954\) 0 0
\(955\) −11.0021 29.6164i −0.356021 0.958365i
\(956\) 0 0
\(957\) 0.309923i 0.0100184i
\(958\) 0 0
\(959\) −59.7585 −1.92970
\(960\) 0 0
\(961\) 8.09232 0.261042
\(962\) 0 0
\(963\) 5.89771i 0.190051i
\(964\) 0 0
\(965\) 19.8100 + 9.07833i 0.637705 + 0.292242i
\(966\) 0 0
\(967\) −7.65095 + 7.65095i −0.246038 + 0.246038i −0.819342 0.573304i \(-0.805661\pi\)
0.573304 + 0.819342i \(0.305661\pi\)
\(968\) 0 0
\(969\) 40.0096 1.28529
\(970\) 0 0
\(971\) −24.7008 + 24.7008i −0.792686 + 0.792686i −0.981930 0.189244i \(-0.939396\pi\)
0.189244 + 0.981930i \(0.439396\pi\)
\(972\) 0 0
\(973\) 16.5730 0.531307
\(974\) 0 0
\(975\) −15.0030 17.4064i −0.480481 0.557452i
\(976\) 0 0
\(977\) −32.8119 + 32.8119i −1.04975 + 1.04975i −0.0510499 + 0.998696i \(0.516257\pi\)
−0.998696 + 0.0510499i \(0.983743\pi\)
\(978\) 0 0
\(979\) 0.914065 0.914065i 0.0292136 0.0292136i
\(980\) 0 0
\(981\) −3.65602 3.65602i −0.116728 0.116728i
\(982\) 0 0
\(983\) −6.75408 6.75408i −0.215422 0.215422i 0.591144 0.806566i \(-0.298676\pi\)
−0.806566 + 0.591144i \(0.798676\pi\)
\(984\) 0 0
\(985\) 45.2925 16.8256i 1.44314 0.536108i
\(986\) 0 0
\(987\) 12.0352i 0.383086i
\(988\) 0 0
\(989\) 25.5891 + 25.5891i 0.813687 + 0.813687i
\(990\) 0 0
\(991\) 16.3088i 0.518067i −0.965868 0.259033i \(-0.916596\pi\)
0.965868 0.259033i \(-0.0834039\pi\)
\(992\) 0 0
\(993\) −0.546436 0.546436i −0.0173406 0.0173406i
\(994\) 0 0
\(995\) 6.36001 + 17.1204i 0.201626 + 0.542753i
\(996\) 0 0
\(997\) −18.2727 −0.578702 −0.289351 0.957223i \(-0.593439\pi\)
−0.289351 + 0.957223i \(0.593439\pi\)
\(998\) 0 0
\(999\) 3.97976i 0.125914i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 960.2.bc.f.463.1 20
4.3 odd 2 240.2.bc.f.43.4 yes 20
5.2 odd 4 960.2.y.f.847.7 20
8.3 odd 2 1920.2.bc.k.1183.10 20
8.5 even 2 1920.2.bc.l.1183.10 20
12.11 even 2 720.2.bd.h.523.7 20
16.3 odd 4 960.2.y.f.943.7 20
16.5 even 4 1920.2.y.l.223.4 20
16.11 odd 4 1920.2.y.k.223.4 20
16.13 even 4 240.2.y.f.163.9 20
20.7 even 4 240.2.y.f.187.9 yes 20
40.27 even 4 1920.2.y.l.1567.4 20
40.37 odd 4 1920.2.y.k.1567.4 20
48.29 odd 4 720.2.z.h.163.2 20
60.47 odd 4 720.2.z.h.667.2 20
80.27 even 4 1920.2.bc.l.607.10 20
80.37 odd 4 1920.2.bc.k.607.10 20
80.67 even 4 inner 960.2.bc.f.367.1 20
80.77 odd 4 240.2.bc.f.67.4 yes 20
240.77 even 4 720.2.bd.h.307.7 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.2.y.f.163.9 20 16.13 even 4
240.2.y.f.187.9 yes 20 20.7 even 4
240.2.bc.f.43.4 yes 20 4.3 odd 2
240.2.bc.f.67.4 yes 20 80.77 odd 4
720.2.z.h.163.2 20 48.29 odd 4
720.2.z.h.667.2 20 60.47 odd 4
720.2.bd.h.307.7 20 240.77 even 4
720.2.bd.h.523.7 20 12.11 even 2
960.2.y.f.847.7 20 5.2 odd 4
960.2.y.f.943.7 20 16.3 odd 4
960.2.bc.f.367.1 20 80.67 even 4 inner
960.2.bc.f.463.1 20 1.1 even 1 trivial
1920.2.y.k.223.4 20 16.11 odd 4
1920.2.y.k.1567.4 20 40.37 odd 4
1920.2.y.l.223.4 20 16.5 even 4
1920.2.y.l.1567.4 20 40.27 even 4
1920.2.bc.k.607.10 20 80.37 odd 4
1920.2.bc.k.1183.10 20 8.3 odd 2
1920.2.bc.l.607.10 20 80.27 even 4
1920.2.bc.l.1183.10 20 8.5 even 2