Properties

Label 1920.2.y.l.223.4
Level $1920$
Weight $2$
Character 1920.223
Analytic conductor $15.331$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1920,2,Mod(223,1920)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1920.223"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1920, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 0, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1920 = 2^{7} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1920.y (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,20,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.3312771881\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} + 3 x^{18} - 6 x^{17} + 2 x^{16} + 4 x^{14} + 20 x^{13} - 24 x^{12} + 40 x^{11} + \cdots + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{17} \)
Twist minimal: no (minimal twist has level 240)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 223.4
Root \(-0.257862 - 1.39051i\) of defining polynomial
Character \(\chi\) \(=\) 1920.223
Dual form 1920.2.y.l.1567.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +(-0.778677 - 2.09611i) q^{5} +(-2.44055 + 2.44055i) q^{7} +1.00000 q^{9} +(0.181897 + 0.181897i) q^{11} +4.59597i q^{13} +(-0.778677 - 2.09611i) q^{15} +(4.20448 - 4.20448i) q^{17} +(-4.75798 - 4.75798i) q^{19} +(-2.44055 + 2.44055i) q^{21} +(-5.75492 - 5.75492i) q^{23} +(-3.78732 + 3.26438i) q^{25} +1.00000 q^{27} +(0.851917 - 0.851917i) q^{29} -4.78620i q^{31} +(0.181897 + 0.181897i) q^{33} +(7.01605 + 3.21525i) q^{35} -3.97976i q^{37} +4.59597i q^{39} -7.99664i q^{41} +4.44648i q^{43} +(-0.778677 - 2.09611i) q^{45} +(-2.46569 - 2.46569i) q^{47} -4.91254i q^{49} +(4.20448 - 4.20448i) q^{51} +4.94396 q^{53} +(0.239637 - 0.522915i) q^{55} +(-4.75798 - 4.75798i) q^{57} +(-5.89705 + 5.89705i) q^{59} +(-7.88576 - 7.88576i) q^{61} +(-2.44055 + 2.44055i) q^{63} +(9.63365 - 3.57878i) q^{65} -7.54264i q^{67} +(-5.75492 - 5.75492i) q^{69} -6.34716 q^{71} +(-4.78916 + 4.78916i) q^{73} +(-3.78732 + 3.26438i) q^{75} -0.887858 q^{77} -3.83743 q^{79} +1.00000 q^{81} -6.25327 q^{83} +(-12.0870 - 5.53910i) q^{85} +(0.851917 - 0.851917i) q^{87} -5.02517 q^{89} +(-11.2167 - 11.2167i) q^{91} -4.78620i q^{93} +(-6.26830 + 13.6782i) q^{95} +(-2.96112 + 2.96112i) q^{97} +(0.181897 + 0.181897i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 20 q^{3} - 4 q^{7} + 20 q^{9} - 8 q^{11} + 12 q^{17} - 16 q^{19} - 4 q^{21} - 16 q^{23} + 4 q^{25} + 20 q^{27} - 8 q^{33} + 28 q^{35} + 12 q^{51} - 8 q^{53} - 4 q^{55} - 16 q^{57} + 16 q^{59} + 12 q^{61}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(641\) \(901\) \(1537\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) −0.778677 2.09611i −0.348235 0.937407i
\(6\) 0 0
\(7\) −2.44055 + 2.44055i −0.922440 + 0.922440i −0.997201 0.0747612i \(-0.976181\pi\)
0.0747612 + 0.997201i \(0.476181\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 0.181897 + 0.181897i 0.0548441 + 0.0548441i 0.733997 0.679153i \(-0.237653\pi\)
−0.679153 + 0.733997i \(0.737653\pi\)
\(12\) 0 0
\(13\) 4.59597i 1.27469i 0.770577 + 0.637347i \(0.219968\pi\)
−0.770577 + 0.637347i \(0.780032\pi\)
\(14\) 0 0
\(15\) −0.778677 2.09611i −0.201054 0.541212i
\(16\) 0 0
\(17\) 4.20448 4.20448i 1.01974 1.01974i 0.0199338 0.999801i \(-0.493654\pi\)
0.999801 0.0199338i \(-0.00634553\pi\)
\(18\) 0 0
\(19\) −4.75798 4.75798i −1.09155 1.09155i −0.995363 0.0961919i \(-0.969334\pi\)
−0.0961919 0.995363i \(-0.530666\pi\)
\(20\) 0 0
\(21\) −2.44055 + 2.44055i −0.532571 + 0.532571i
\(22\) 0 0
\(23\) −5.75492 5.75492i −1.19998 1.19998i −0.974171 0.225813i \(-0.927496\pi\)
−0.225813 0.974171i \(-0.572504\pi\)
\(24\) 0 0
\(25\) −3.78732 + 3.26438i −0.757465 + 0.652876i
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 0.851917 0.851917i 0.158197 0.158197i −0.623570 0.781767i \(-0.714318\pi\)
0.781767 + 0.623570i \(0.214318\pi\)
\(30\) 0 0
\(31\) 4.78620i 0.859626i −0.902918 0.429813i \(-0.858579\pi\)
0.902918 0.429813i \(-0.141421\pi\)
\(32\) 0 0
\(33\) 0.181897 + 0.181897i 0.0316643 + 0.0316643i
\(34\) 0 0
\(35\) 7.01605 + 3.21525i 1.18593 + 0.543476i
\(36\) 0 0
\(37\) 3.97976i 0.654268i −0.944978 0.327134i \(-0.893917\pi\)
0.944978 0.327134i \(-0.106083\pi\)
\(38\) 0 0
\(39\) 4.59597i 0.735945i
\(40\) 0 0
\(41\) 7.99664i 1.24887i −0.781079 0.624433i \(-0.785330\pi\)
0.781079 0.624433i \(-0.214670\pi\)
\(42\) 0 0
\(43\) 4.44648i 0.678081i 0.940772 + 0.339041i \(0.110102\pi\)
−0.940772 + 0.339041i \(0.889898\pi\)
\(44\) 0 0
\(45\) −0.778677 2.09611i −0.116078 0.312469i
\(46\) 0 0
\(47\) −2.46569 2.46569i −0.359657 0.359657i 0.504029 0.863687i \(-0.331850\pi\)
−0.863687 + 0.504029i \(0.831850\pi\)
\(48\) 0 0
\(49\) 4.91254i 0.701792i
\(50\) 0 0
\(51\) 4.20448 4.20448i 0.588744 0.588744i
\(52\) 0 0
\(53\) 4.94396 0.679106 0.339553 0.940587i \(-0.389724\pi\)
0.339553 + 0.940587i \(0.389724\pi\)
\(54\) 0 0
\(55\) 0.239637 0.522915i 0.0323126 0.0705099i
\(56\) 0 0
\(57\) −4.75798 4.75798i −0.630209 0.630209i
\(58\) 0 0
\(59\) −5.89705 + 5.89705i −0.767731 + 0.767731i −0.977707 0.209976i \(-0.932662\pi\)
0.209976 + 0.977707i \(0.432662\pi\)
\(60\) 0 0
\(61\) −7.88576 7.88576i −1.00967 1.00967i −0.999953 0.00971590i \(-0.996907\pi\)
−0.00971590 0.999953i \(-0.503093\pi\)
\(62\) 0 0
\(63\) −2.44055 + 2.44055i −0.307480 + 0.307480i
\(64\) 0 0
\(65\) 9.63365 3.57878i 1.19491 0.443893i
\(66\) 0 0
\(67\) 7.54264i 0.921480i −0.887535 0.460740i \(-0.847584\pi\)
0.887535 0.460740i \(-0.152416\pi\)
\(68\) 0 0
\(69\) −5.75492 5.75492i −0.692811 0.692811i
\(70\) 0 0
\(71\) −6.34716 −0.753269 −0.376635 0.926362i \(-0.622919\pi\)
−0.376635 + 0.926362i \(0.622919\pi\)
\(72\) 0 0
\(73\) −4.78916 + 4.78916i −0.560529 + 0.560529i −0.929458 0.368929i \(-0.879725\pi\)
0.368929 + 0.929458i \(0.379725\pi\)
\(74\) 0 0
\(75\) −3.78732 + 3.26438i −0.437322 + 0.376938i
\(76\) 0 0
\(77\) −0.887858 −0.101181
\(78\) 0 0
\(79\) −3.83743 −0.431745 −0.215872 0.976422i \(-0.569260\pi\)
−0.215872 + 0.976422i \(0.569260\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −6.25327 −0.686385 −0.343193 0.939265i \(-0.611508\pi\)
−0.343193 + 0.939265i \(0.611508\pi\)
\(84\) 0 0
\(85\) −12.0870 5.53910i −1.31101 0.600800i
\(86\) 0 0
\(87\) 0.851917 0.851917i 0.0913351 0.0913351i
\(88\) 0 0
\(89\) −5.02517 −0.532667 −0.266333 0.963881i \(-0.585812\pi\)
−0.266333 + 0.963881i \(0.585812\pi\)
\(90\) 0 0
\(91\) −11.2167 11.2167i −1.17583 1.17583i
\(92\) 0 0
\(93\) 4.78620i 0.496306i
\(94\) 0 0
\(95\) −6.26830 + 13.6782i −0.643114 + 1.40335i
\(96\) 0 0
\(97\) −2.96112 + 2.96112i −0.300656 + 0.300656i −0.841270 0.540615i \(-0.818192\pi\)
0.540615 + 0.841270i \(0.318192\pi\)
\(98\) 0 0
\(99\) 0.181897 + 0.181897i 0.0182814 + 0.0182814i
\(100\) 0 0
\(101\) −0.596631 + 0.596631i −0.0593670 + 0.0593670i −0.736167 0.676800i \(-0.763366\pi\)
0.676800 + 0.736167i \(0.263366\pi\)
\(102\) 0 0
\(103\) 9.06195 + 9.06195i 0.892901 + 0.892901i 0.994795 0.101894i \(-0.0324904\pi\)
−0.101894 + 0.994795i \(0.532490\pi\)
\(104\) 0 0
\(105\) 7.01605 + 3.21525i 0.684696 + 0.313776i
\(106\) 0 0
\(107\) 5.89771 0.570153 0.285076 0.958505i \(-0.407981\pi\)
0.285076 + 0.958505i \(0.407981\pi\)
\(108\) 0 0
\(109\) 3.65602 3.65602i 0.350183 0.350183i −0.509995 0.860178i \(-0.670353\pi\)
0.860178 + 0.509995i \(0.170353\pi\)
\(110\) 0 0
\(111\) 3.97976i 0.377742i
\(112\) 0 0
\(113\) −6.39894 6.39894i −0.601962 0.601962i 0.338871 0.940833i \(-0.389955\pi\)
−0.940833 + 0.338871i \(0.889955\pi\)
\(114\) 0 0
\(115\) −7.58170 + 16.5442i −0.706997 + 1.54275i
\(116\) 0 0
\(117\) 4.59597i 0.424898i
\(118\) 0 0
\(119\) 20.5224i 1.88129i
\(120\) 0 0
\(121\) 10.9338i 0.993984i
\(122\) 0 0
\(123\) 7.99664i 0.721033i
\(124\) 0 0
\(125\) 9.79159 + 5.39673i 0.875787 + 0.482699i
\(126\) 0 0
\(127\) −6.86114 6.86114i −0.608827 0.608827i 0.333812 0.942640i \(-0.391665\pi\)
−0.942640 + 0.333812i \(0.891665\pi\)
\(128\) 0 0
\(129\) 4.44648i 0.391491i
\(130\) 0 0
\(131\) −1.09665 + 1.09665i −0.0958148 + 0.0958148i −0.753389 0.657575i \(-0.771582\pi\)
0.657575 + 0.753389i \(0.271582\pi\)
\(132\) 0 0
\(133\) 23.2241 2.01379
\(134\) 0 0
\(135\) −0.778677 2.09611i −0.0670179 0.180404i
\(136\) 0 0
\(137\) 12.2428 + 12.2428i 1.04598 + 1.04598i 0.998891 + 0.0470863i \(0.0149936\pi\)
0.0470863 + 0.998891i \(0.485006\pi\)
\(138\) 0 0
\(139\) −3.39535 + 3.39535i −0.287990 + 0.287990i −0.836285 0.548295i \(-0.815277\pi\)
0.548295 + 0.836285i \(0.315277\pi\)
\(140\) 0 0
\(141\) −2.46569 2.46569i −0.207648 0.207648i
\(142\) 0 0
\(143\) −0.835995 + 0.835995i −0.0699094 + 0.0699094i
\(144\) 0 0
\(145\) −2.44908 1.12234i −0.203385 0.0932053i
\(146\) 0 0
\(147\) 4.91254i 0.405180i
\(148\) 0 0
\(149\) −7.84547 7.84547i −0.642726 0.642726i 0.308499 0.951225i \(-0.400173\pi\)
−0.951225 + 0.308499i \(0.900173\pi\)
\(150\) 0 0
\(151\) −3.19389 −0.259915 −0.129957 0.991520i \(-0.541484\pi\)
−0.129957 + 0.991520i \(0.541484\pi\)
\(152\) 0 0
\(153\) 4.20448 4.20448i 0.339912 0.339912i
\(154\) 0 0
\(155\) −10.0324 + 3.72690i −0.805820 + 0.299352i
\(156\) 0 0
\(157\) 17.6595 1.40938 0.704691 0.709514i \(-0.251085\pi\)
0.704691 + 0.709514i \(0.251085\pi\)
\(158\) 0 0
\(159\) 4.94396 0.392082
\(160\) 0 0
\(161\) 28.0903 2.21383
\(162\) 0 0
\(163\) −8.01355 −0.627669 −0.313835 0.949478i \(-0.601614\pi\)
−0.313835 + 0.949478i \(0.601614\pi\)
\(164\) 0 0
\(165\) 0.239637 0.522915i 0.0186557 0.0407089i
\(166\) 0 0
\(167\) 8.45631 8.45631i 0.654369 0.654369i −0.299673 0.954042i \(-0.596878\pi\)
0.954042 + 0.299673i \(0.0968776\pi\)
\(168\) 0 0
\(169\) −8.12298 −0.624845
\(170\) 0 0
\(171\) −4.75798 4.75798i −0.363852 0.363852i
\(172\) 0 0
\(173\) 5.11465i 0.388860i 0.980916 + 0.194430i \(0.0622857\pi\)
−0.980916 + 0.194430i \(0.937714\pi\)
\(174\) 0 0
\(175\) 1.27627 17.2100i 0.0964767 1.30096i
\(176\) 0 0
\(177\) −5.89705 + 5.89705i −0.443250 + 0.443250i
\(178\) 0 0
\(179\) 4.67625 + 4.67625i 0.349519 + 0.349519i 0.859930 0.510411i \(-0.170507\pi\)
−0.510411 + 0.859930i \(0.670507\pi\)
\(180\) 0 0
\(181\) 5.45166 5.45166i 0.405219 0.405219i −0.474849 0.880067i \(-0.657497\pi\)
0.880067 + 0.474849i \(0.157497\pi\)
\(182\) 0 0
\(183\) −7.88576 7.88576i −0.582932 0.582932i
\(184\) 0 0
\(185\) −8.34199 + 3.09895i −0.613316 + 0.227839i
\(186\) 0 0
\(187\) 1.52957 0.111853
\(188\) 0 0
\(189\) −2.44055 + 2.44055i −0.177524 + 0.177524i
\(190\) 0 0
\(191\) 14.1293i 1.02236i 0.859474 + 0.511179i \(0.170791\pi\)
−0.859474 + 0.511179i \(0.829209\pi\)
\(192\) 0 0
\(193\) −6.89094 6.89094i −0.496021 0.496021i 0.414176 0.910197i \(-0.364070\pi\)
−0.910197 + 0.414176i \(0.864070\pi\)
\(194\) 0 0
\(195\) 9.63365 3.57878i 0.689880 0.256282i
\(196\) 0 0
\(197\) 21.6079i 1.53950i −0.638345 0.769750i \(-0.720381\pi\)
0.638345 0.769750i \(-0.279619\pi\)
\(198\) 0 0
\(199\) 8.16771i 0.578994i 0.957179 + 0.289497i \(0.0934880\pi\)
−0.957179 + 0.289497i \(0.906512\pi\)
\(200\) 0 0
\(201\) 7.54264i 0.532017i
\(202\) 0 0
\(203\) 4.15829i 0.291855i
\(204\) 0 0
\(205\) −16.7618 + 6.22680i −1.17070 + 0.434899i
\(206\) 0 0
\(207\) −5.75492 5.75492i −0.399995 0.399995i
\(208\) 0 0
\(209\) 1.73093i 0.119731i
\(210\) 0 0
\(211\) 9.64189 9.64189i 0.663775 0.663775i −0.292493 0.956268i \(-0.594485\pi\)
0.956268 + 0.292493i \(0.0944847\pi\)
\(212\) 0 0
\(213\) −6.34716 −0.434900
\(214\) 0 0
\(215\) 9.32029 3.46237i 0.635638 0.236132i
\(216\) 0 0
\(217\) 11.6809 + 11.6809i 0.792954 + 0.792954i
\(218\) 0 0
\(219\) −4.78916 + 4.78916i −0.323621 + 0.323621i
\(220\) 0 0
\(221\) 19.3237 + 19.3237i 1.29985 + 1.29985i
\(222\) 0 0
\(223\) 13.5811 13.5811i 0.909456 0.909456i −0.0867726 0.996228i \(-0.527655\pi\)
0.996228 + 0.0867726i \(0.0276553\pi\)
\(224\) 0 0
\(225\) −3.78732 + 3.26438i −0.252488 + 0.217625i
\(226\) 0 0
\(227\) 13.3355i 0.885109i 0.896742 + 0.442554i \(0.145928\pi\)
−0.896742 + 0.442554i \(0.854072\pi\)
\(228\) 0 0
\(229\) 17.5166 + 17.5166i 1.15753 + 1.15753i 0.985005 + 0.172525i \(0.0551926\pi\)
0.172525 + 0.985005i \(0.444807\pi\)
\(230\) 0 0
\(231\) −0.887858 −0.0584168
\(232\) 0 0
\(233\) −5.53768 + 5.53768i −0.362786 + 0.362786i −0.864837 0.502052i \(-0.832579\pi\)
0.502052 + 0.864837i \(0.332579\pi\)
\(234\) 0 0
\(235\) −3.24837 + 7.08831i −0.211900 + 0.462390i
\(236\) 0 0
\(237\) −3.83743 −0.249268
\(238\) 0 0
\(239\) 7.70031 0.498092 0.249046 0.968492i \(-0.419883\pi\)
0.249046 + 0.968492i \(0.419883\pi\)
\(240\) 0 0
\(241\) −27.9273 −1.79896 −0.899478 0.436967i \(-0.856053\pi\)
−0.899478 + 0.436967i \(0.856053\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) −10.2972 + 3.82529i −0.657865 + 0.244389i
\(246\) 0 0
\(247\) 21.8675 21.8675i 1.39140 1.39140i
\(248\) 0 0
\(249\) −6.25327 −0.396285
\(250\) 0 0
\(251\) 10.5948 + 10.5948i 0.668740 + 0.668740i 0.957424 0.288684i \(-0.0932178\pi\)
−0.288684 + 0.957424i \(0.593218\pi\)
\(252\) 0 0
\(253\) 2.09361i 0.131624i
\(254\) 0 0
\(255\) −12.0870 5.53910i −0.756915 0.346872i
\(256\) 0 0
\(257\) −9.86474 + 9.86474i −0.615345 + 0.615345i −0.944334 0.328989i \(-0.893292\pi\)
0.328989 + 0.944334i \(0.393292\pi\)
\(258\) 0 0
\(259\) 9.71279 + 9.71279i 0.603523 + 0.603523i
\(260\) 0 0
\(261\) 0.851917 0.851917i 0.0527323 0.0527323i
\(262\) 0 0
\(263\) −5.45464 5.45464i −0.336348 0.336348i 0.518643 0.854991i \(-0.326437\pi\)
−0.854991 + 0.518643i \(0.826437\pi\)
\(264\) 0 0
\(265\) −3.84975 10.3631i −0.236488 0.636599i
\(266\) 0 0
\(267\) −5.02517 −0.307535
\(268\) 0 0
\(269\) 1.61579 1.61579i 0.0985164 0.0985164i −0.656131 0.754647i \(-0.727808\pi\)
0.754647 + 0.656131i \(0.227808\pi\)
\(270\) 0 0
\(271\) 6.09685i 0.370357i 0.982705 + 0.185179i \(0.0592864\pi\)
−0.982705 + 0.185179i \(0.940714\pi\)
\(272\) 0 0
\(273\) −11.2167 11.2167i −0.678865 0.678865i
\(274\) 0 0
\(275\) −1.28269 0.0951219i −0.0773489 0.00573607i
\(276\) 0 0
\(277\) 15.5674i 0.935355i 0.883899 + 0.467678i \(0.154909\pi\)
−0.883899 + 0.467678i \(0.845091\pi\)
\(278\) 0 0
\(279\) 4.78620i 0.286542i
\(280\) 0 0
\(281\) 18.8277i 1.12317i −0.827420 0.561583i \(-0.810192\pi\)
0.827420 0.561583i \(-0.189808\pi\)
\(282\) 0 0
\(283\) 16.7014i 0.992798i −0.868095 0.496399i \(-0.834655\pi\)
0.868095 0.496399i \(-0.165345\pi\)
\(284\) 0 0
\(285\) −6.26830 + 13.6782i −0.371302 + 0.810224i
\(286\) 0 0
\(287\) 19.5162 + 19.5162i 1.15200 + 1.15200i
\(288\) 0 0
\(289\) 18.3552i 1.07972i
\(290\) 0 0
\(291\) −2.96112 + 2.96112i −0.173584 + 0.173584i
\(292\) 0 0
\(293\) 18.1368 1.05956 0.529780 0.848135i \(-0.322274\pi\)
0.529780 + 0.848135i \(0.322274\pi\)
\(294\) 0 0
\(295\) 16.9528 + 7.76895i 0.987027 + 0.452326i
\(296\) 0 0
\(297\) 0.181897 + 0.181897i 0.0105548 + 0.0105548i
\(298\) 0 0
\(299\) 26.4495 26.4495i 1.52961 1.52961i
\(300\) 0 0
\(301\) −10.8518 10.8518i −0.625490 0.625490i
\(302\) 0 0
\(303\) −0.596631 + 0.596631i −0.0342756 + 0.0342756i
\(304\) 0 0
\(305\) −10.3889 + 22.6699i −0.594869 + 1.29807i
\(306\) 0 0
\(307\) 24.4651i 1.39630i −0.715953 0.698148i \(-0.754008\pi\)
0.715953 0.698148i \(-0.245992\pi\)
\(308\) 0 0
\(309\) 9.06195 + 9.06195i 0.515517 + 0.515517i
\(310\) 0 0
\(311\) −8.97669 −0.509022 −0.254511 0.967070i \(-0.581914\pi\)
−0.254511 + 0.967070i \(0.581914\pi\)
\(312\) 0 0
\(313\) 20.1248 20.1248i 1.13752 1.13752i 0.148625 0.988894i \(-0.452515\pi\)
0.988894 0.148625i \(-0.0474849\pi\)
\(314\) 0 0
\(315\) 7.01605 + 3.21525i 0.395309 + 0.181159i
\(316\) 0 0
\(317\) 4.43451 0.249067 0.124534 0.992215i \(-0.460257\pi\)
0.124534 + 0.992215i \(0.460257\pi\)
\(318\) 0 0
\(319\) 0.309923 0.0173523
\(320\) 0 0
\(321\) 5.89771 0.329178
\(322\) 0 0
\(323\) −40.0096 −2.22619
\(324\) 0 0
\(325\) −15.0030 17.4064i −0.832217 0.965536i
\(326\) 0 0
\(327\) 3.65602 3.65602i 0.202178 0.202178i
\(328\) 0 0
\(329\) 12.0352 0.663524
\(330\) 0 0
\(331\) −0.546436 0.546436i −0.0300348 0.0300348i 0.691930 0.721965i \(-0.256761\pi\)
−0.721965 + 0.691930i \(0.756761\pi\)
\(332\) 0 0
\(333\) 3.97976i 0.218089i
\(334\) 0 0
\(335\) −15.8102 + 5.87328i −0.863802 + 0.320892i
\(336\) 0 0
\(337\) −17.8293 + 17.8293i −0.971226 + 0.971226i −0.999597 0.0283716i \(-0.990968\pi\)
0.0283716 + 0.999597i \(0.490968\pi\)
\(338\) 0 0
\(339\) −6.39894 6.39894i −0.347543 0.347543i
\(340\) 0 0
\(341\) 0.870596 0.870596i 0.0471454 0.0471454i
\(342\) 0 0
\(343\) −5.09454 5.09454i −0.275079 0.275079i
\(344\) 0 0
\(345\) −7.58170 + 16.5442i −0.408185 + 0.890707i
\(346\) 0 0
\(347\) 15.6158 0.838301 0.419151 0.907917i \(-0.362328\pi\)
0.419151 + 0.907917i \(0.362328\pi\)
\(348\) 0 0
\(349\) 4.71294 4.71294i 0.252278 0.252278i −0.569626 0.821904i \(-0.692912\pi\)
0.821904 + 0.569626i \(0.192912\pi\)
\(350\) 0 0
\(351\) 4.59597i 0.245315i
\(352\) 0 0
\(353\) 19.3304 + 19.3304i 1.02885 + 1.02885i 0.999571 + 0.0292825i \(0.00932226\pi\)
0.0292825 + 0.999571i \(0.490678\pi\)
\(354\) 0 0
\(355\) 4.94239 + 13.3043i 0.262315 + 0.706120i
\(356\) 0 0
\(357\) 20.5224i 1.08616i
\(358\) 0 0
\(359\) 17.4634i 0.921685i −0.887482 0.460842i \(-0.847547\pi\)
0.887482 0.460842i \(-0.152453\pi\)
\(360\) 0 0
\(361\) 26.2767i 1.38298i
\(362\) 0 0
\(363\) 10.9338i 0.573877i
\(364\) 0 0
\(365\) 13.7678 + 6.30938i 0.720639 + 0.330248i
\(366\) 0 0
\(367\) 18.8168 + 18.8168i 0.982231 + 0.982231i 0.999845 0.0176142i \(-0.00560705\pi\)
−0.0176142 + 0.999845i \(0.505607\pi\)
\(368\) 0 0
\(369\) 7.99664i 0.416289i
\(370\) 0 0
\(371\) −12.0660 + 12.0660i −0.626435 + 0.626435i
\(372\) 0 0
\(373\) −31.8481 −1.64903 −0.824515 0.565840i \(-0.808552\pi\)
−0.824515 + 0.565840i \(0.808552\pi\)
\(374\) 0 0
\(375\) 9.79159 + 5.39673i 0.505636 + 0.278686i
\(376\) 0 0
\(377\) 3.91539 + 3.91539i 0.201653 + 0.201653i
\(378\) 0 0
\(379\) −11.5085 + 11.5085i −0.591153 + 0.591153i −0.937943 0.346790i \(-0.887272\pi\)
0.346790 + 0.937943i \(0.387272\pi\)
\(380\) 0 0
\(381\) −6.86114 6.86114i −0.351507 0.351507i
\(382\) 0 0
\(383\) 19.7097 19.7097i 1.00712 1.00712i 0.00714591 0.999974i \(-0.497725\pi\)
0.999974 0.00714591i \(-0.00227463\pi\)
\(384\) 0 0
\(385\) 0.691355 + 1.86104i 0.0352347 + 0.0948476i
\(386\) 0 0
\(387\) 4.44648i 0.226027i
\(388\) 0 0
\(389\) −7.83824 7.83824i −0.397414 0.397414i 0.479906 0.877320i \(-0.340671\pi\)
−0.877320 + 0.479906i \(0.840671\pi\)
\(390\) 0 0
\(391\) −48.3928 −2.44733
\(392\) 0 0
\(393\) −1.09665 + 1.09665i −0.0553187 + 0.0553187i
\(394\) 0 0
\(395\) 2.98812 + 8.04366i 0.150349 + 0.404721i
\(396\) 0 0
\(397\) −24.4147 −1.22534 −0.612670 0.790339i \(-0.709905\pi\)
−0.612670 + 0.790339i \(0.709905\pi\)
\(398\) 0 0
\(399\) 23.2241 1.16266
\(400\) 0 0
\(401\) 14.7988 0.739016 0.369508 0.929228i \(-0.379526\pi\)
0.369508 + 0.929228i \(0.379526\pi\)
\(402\) 0 0
\(403\) 21.9972 1.09576
\(404\) 0 0
\(405\) −0.778677 2.09611i −0.0386928 0.104156i
\(406\) 0 0
\(407\) 0.723907 0.723907i 0.0358827 0.0358827i
\(408\) 0 0
\(409\) −19.2953 −0.954092 −0.477046 0.878878i \(-0.658292\pi\)
−0.477046 + 0.878878i \(0.658292\pi\)
\(410\) 0 0
\(411\) 12.2428 + 12.2428i 0.603895 + 0.603895i
\(412\) 0 0
\(413\) 28.7841i 1.41637i
\(414\) 0 0
\(415\) 4.86928 + 13.1075i 0.239023 + 0.643423i
\(416\) 0 0
\(417\) −3.39535 + 3.39535i −0.166271 + 0.166271i
\(418\) 0 0
\(419\) 1.76149 + 1.76149i 0.0860546 + 0.0860546i 0.748824 0.662769i \(-0.230619\pi\)
−0.662769 + 0.748824i \(0.730619\pi\)
\(420\) 0 0
\(421\) −15.1301 + 15.1301i −0.737397 + 0.737397i −0.972074 0.234677i \(-0.924597\pi\)
0.234677 + 0.972074i \(0.424597\pi\)
\(422\) 0 0
\(423\) −2.46569 2.46569i −0.119886 0.119886i
\(424\) 0 0
\(425\) −2.19870 + 29.6487i −0.106653 + 1.43817i
\(426\) 0 0
\(427\) 38.4912 1.86272
\(428\) 0 0
\(429\) −0.835995 + 0.835995i −0.0403622 + 0.0403622i
\(430\) 0 0
\(431\) 35.7121i 1.72019i 0.510133 + 0.860095i \(0.329596\pi\)
−0.510133 + 0.860095i \(0.670404\pi\)
\(432\) 0 0
\(433\) 24.8355 + 24.8355i 1.19352 + 1.19352i 0.976072 + 0.217448i \(0.0697734\pi\)
0.217448 + 0.976072i \(0.430227\pi\)
\(434\) 0 0
\(435\) −2.44908 1.12234i −0.117424 0.0538121i
\(436\) 0 0
\(437\) 54.7636i 2.61970i
\(438\) 0 0
\(439\) 4.09956i 0.195661i 0.995203 + 0.0978307i \(0.0311904\pi\)
−0.995203 + 0.0978307i \(0.968810\pi\)
\(440\) 0 0
\(441\) 4.91254i 0.233931i
\(442\) 0 0
\(443\) 1.17693i 0.0559176i 0.999609 + 0.0279588i \(0.00890072\pi\)
−0.999609 + 0.0279588i \(0.991099\pi\)
\(444\) 0 0
\(445\) 3.91298 + 10.5333i 0.185493 + 0.499326i
\(446\) 0 0
\(447\) −7.84547 7.84547i −0.371078 0.371078i
\(448\) 0 0
\(449\) 18.3494i 0.865962i −0.901403 0.432981i \(-0.857462\pi\)
0.901403 0.432981i \(-0.142538\pi\)
\(450\) 0 0
\(451\) 1.45457 1.45457i 0.0684929 0.0684929i
\(452\) 0 0
\(453\) −3.19389 −0.150062
\(454\) 0 0
\(455\) −14.7772 + 32.2456i −0.692766 + 1.51170i
\(456\) 0 0
\(457\) 18.0522 + 18.0522i 0.844446 + 0.844446i 0.989434 0.144987i \(-0.0463141\pi\)
−0.144987 + 0.989434i \(0.546314\pi\)
\(458\) 0 0
\(459\) 4.20448 4.20448i 0.196248 0.196248i
\(460\) 0 0
\(461\) −23.5968 23.5968i −1.09901 1.09901i −0.994526 0.104487i \(-0.966680\pi\)
−0.104487 0.994526i \(-0.533320\pi\)
\(462\) 0 0
\(463\) −20.2744 + 20.2744i −0.942231 + 0.942231i −0.998420 0.0561894i \(-0.982105\pi\)
0.0561894 + 0.998420i \(0.482105\pi\)
\(464\) 0 0
\(465\) −10.0324 + 3.72690i −0.465240 + 0.172831i
\(466\) 0 0
\(467\) 14.3565i 0.664340i 0.943220 + 0.332170i \(0.107781\pi\)
−0.943220 + 0.332170i \(0.892219\pi\)
\(468\) 0 0
\(469\) 18.4082 + 18.4082i 0.850010 + 0.850010i
\(470\) 0 0
\(471\) 17.6595 0.813707
\(472\) 0 0
\(473\) −0.808802 + 0.808802i −0.0371888 + 0.0371888i
\(474\) 0 0
\(475\) 33.5518 + 2.48815i 1.53946 + 0.114164i
\(476\) 0 0
\(477\) 4.94396 0.226369
\(478\) 0 0
\(479\) −4.43555 −0.202665 −0.101333 0.994853i \(-0.532311\pi\)
−0.101333 + 0.994853i \(0.532311\pi\)
\(480\) 0 0
\(481\) 18.2909 0.833991
\(482\) 0 0
\(483\) 28.0903 1.27815
\(484\) 0 0
\(485\) 8.51257 + 3.90106i 0.386536 + 0.177138i
\(486\) 0 0
\(487\) 22.1931 22.1931i 1.00566 1.00566i 0.00568049 0.999984i \(-0.498192\pi\)
0.999984 0.00568049i \(-0.00180817\pi\)
\(488\) 0 0
\(489\) −8.01355 −0.362385
\(490\) 0 0
\(491\) −20.7625 20.7625i −0.936997 0.936997i 0.0611325 0.998130i \(-0.480529\pi\)
−0.998130 + 0.0611325i \(0.980529\pi\)
\(492\) 0 0
\(493\) 7.16373i 0.322638i
\(494\) 0 0
\(495\) 0.239637 0.522915i 0.0107709 0.0235033i
\(496\) 0 0
\(497\) 15.4905 15.4905i 0.694846 0.694846i
\(498\) 0 0
\(499\) −8.27712 8.27712i −0.370535 0.370535i 0.497137 0.867672i \(-0.334385\pi\)
−0.867672 + 0.497137i \(0.834385\pi\)
\(500\) 0 0
\(501\) 8.45631 8.45631i 0.377800 0.377800i
\(502\) 0 0
\(503\) 10.2485 + 10.2485i 0.456958 + 0.456958i 0.897656 0.440698i \(-0.145269\pi\)
−0.440698 + 0.897656i \(0.645269\pi\)
\(504\) 0 0
\(505\) 1.71519 + 0.786019i 0.0763247 + 0.0349774i
\(506\) 0 0
\(507\) −8.12298 −0.360754
\(508\) 0 0
\(509\) −26.3354 + 26.3354i −1.16730 + 1.16730i −0.184455 + 0.982841i \(0.559052\pi\)
−0.982841 + 0.184455i \(0.940948\pi\)
\(510\) 0 0
\(511\) 23.3763i 1.03411i
\(512\) 0 0
\(513\) −4.75798 4.75798i −0.210070 0.210070i
\(514\) 0 0
\(515\) 11.9385 26.0512i 0.526072 1.14795i
\(516\) 0 0
\(517\) 0.897003i 0.0394501i
\(518\) 0 0
\(519\) 5.11465i 0.224508i
\(520\) 0 0
\(521\) 21.8449i 0.957042i −0.878076 0.478521i \(-0.841173\pi\)
0.878076 0.478521i \(-0.158827\pi\)
\(522\) 0 0
\(523\) 10.0725i 0.440439i −0.975450 0.220220i \(-0.929323\pi\)
0.975450 0.220220i \(-0.0706774\pi\)
\(524\) 0 0
\(525\) 1.27627 17.2100i 0.0557008 0.751107i
\(526\) 0 0
\(527\) −20.1234 20.1234i −0.876591 0.876591i
\(528\) 0 0
\(529\) 43.2382i 1.87992i
\(530\) 0 0
\(531\) −5.89705 + 5.89705i −0.255910 + 0.255910i
\(532\) 0 0
\(533\) 36.7524 1.59192
\(534\) 0 0
\(535\) −4.59241 12.3622i −0.198547 0.534465i
\(536\) 0 0
\(537\) 4.67625 + 4.67625i 0.201795 + 0.201795i
\(538\) 0 0
\(539\) 0.893579 0.893579i 0.0384892 0.0384892i
\(540\) 0 0
\(541\) 4.27091 + 4.27091i 0.183621 + 0.183621i 0.792932 0.609311i \(-0.208554\pi\)
−0.609311 + 0.792932i \(0.708554\pi\)
\(542\) 0 0
\(543\) 5.45166 5.45166i 0.233953 0.233953i
\(544\) 0 0
\(545\) −10.5103 4.81654i −0.450210 0.206318i
\(546\) 0 0
\(547\) 3.62983i 0.155200i −0.996985 0.0776001i \(-0.975274\pi\)
0.996985 0.0776001i \(-0.0247257\pi\)
\(548\) 0 0
\(549\) −7.88576 7.88576i −0.336556 0.336556i
\(550\) 0 0
\(551\) −8.10680 −0.345361
\(552\) 0 0
\(553\) 9.36543 9.36543i 0.398259 0.398259i
\(554\) 0 0
\(555\) −8.34199 + 3.09895i −0.354098 + 0.131543i
\(556\) 0 0
\(557\) 23.6824 1.00345 0.501727 0.865026i \(-0.332698\pi\)
0.501727 + 0.865026i \(0.332698\pi\)
\(558\) 0 0
\(559\) −20.4359 −0.864346
\(560\) 0 0
\(561\) 1.52957 0.0645783
\(562\) 0 0
\(563\) 10.0778 0.424727 0.212364 0.977191i \(-0.431884\pi\)
0.212364 + 0.977191i \(0.431884\pi\)
\(564\) 0 0
\(565\) −8.43015 + 18.3956i −0.354659 + 0.773907i
\(566\) 0 0
\(567\) −2.44055 + 2.44055i −0.102493 + 0.102493i
\(568\) 0 0
\(569\) 17.6744 0.740950 0.370475 0.928842i \(-0.379195\pi\)
0.370475 + 0.928842i \(0.379195\pi\)
\(570\) 0 0
\(571\) −11.6390 11.6390i −0.487078 0.487078i 0.420305 0.907383i \(-0.361923\pi\)
−0.907383 + 0.420305i \(0.861923\pi\)
\(572\) 0 0
\(573\) 14.1293i 0.590258i
\(574\) 0 0
\(575\) 40.5820 + 3.00949i 1.69239 + 0.125505i
\(576\) 0 0
\(577\) 20.4055 20.4055i 0.849494 0.849494i −0.140576 0.990070i \(-0.544895\pi\)
0.990070 + 0.140576i \(0.0448954\pi\)
\(578\) 0 0
\(579\) −6.89094 6.89094i −0.286378 0.286378i
\(580\) 0 0
\(581\) 15.2614 15.2614i 0.633150 0.633150i
\(582\) 0 0
\(583\) 0.899294 + 0.899294i 0.0372449 + 0.0372449i
\(584\) 0 0
\(585\) 9.63365 3.57878i 0.398302 0.147964i
\(586\) 0 0
\(587\) 45.2307 1.86687 0.933436 0.358745i \(-0.116795\pi\)
0.933436 + 0.358745i \(0.116795\pi\)
\(588\) 0 0
\(589\) −22.7726 + 22.7726i −0.938329 + 0.938329i
\(590\) 0 0
\(591\) 21.6079i 0.888831i
\(592\) 0 0
\(593\) −11.0242 11.0242i −0.452710 0.452710i 0.443543 0.896253i \(-0.353721\pi\)
−0.896253 + 0.443543i \(0.853721\pi\)
\(594\) 0 0
\(595\) 43.0172 15.9804i 1.76353 0.655131i
\(596\) 0 0
\(597\) 8.16771i 0.334282i
\(598\) 0 0
\(599\) 0.523855i 0.0214041i −0.999943 0.0107021i \(-0.996593\pi\)
0.999943 0.0107021i \(-0.00340664\pi\)
\(600\) 0 0
\(601\) 19.7299i 0.804801i −0.915464 0.402401i \(-0.868176\pi\)
0.915464 0.402401i \(-0.131824\pi\)
\(602\) 0 0
\(603\) 7.54264i 0.307160i
\(604\) 0 0
\(605\) −22.9185 + 8.51392i −0.931768 + 0.346140i
\(606\) 0 0
\(607\) 11.4651 + 11.4651i 0.465352 + 0.465352i 0.900405 0.435053i \(-0.143270\pi\)
−0.435053 + 0.900405i \(0.643270\pi\)
\(608\) 0 0
\(609\) 4.15829i 0.168502i
\(610\) 0 0
\(611\) 11.3322 11.3322i 0.458453 0.458453i
\(612\) 0 0
\(613\) 5.53021 0.223363 0.111682 0.993744i \(-0.464376\pi\)
0.111682 + 0.993744i \(0.464376\pi\)
\(614\) 0 0
\(615\) −16.7618 + 6.22680i −0.675901 + 0.251089i
\(616\) 0 0
\(617\) 28.8633 + 28.8633i 1.16199 + 1.16199i 0.984039 + 0.177952i \(0.0569472\pi\)
0.177952 + 0.984039i \(0.443053\pi\)
\(618\) 0 0
\(619\) −24.3467 + 24.3467i −0.978577 + 0.978577i −0.999775 0.0211987i \(-0.993252\pi\)
0.0211987 + 0.999775i \(0.493252\pi\)
\(620\) 0 0
\(621\) −5.75492 5.75492i −0.230937 0.230937i
\(622\) 0 0
\(623\) 12.2642 12.2642i 0.491353 0.491353i
\(624\) 0 0
\(625\) 3.68764 24.7265i 0.147506 0.989061i
\(626\) 0 0
\(627\) 1.73093i 0.0691265i
\(628\) 0 0
\(629\) −16.7328 16.7328i −0.667180 0.667180i
\(630\) 0 0
\(631\) −20.5195 −0.816870 −0.408435 0.912787i \(-0.633925\pi\)
−0.408435 + 0.912787i \(0.633925\pi\)
\(632\) 0 0
\(633\) 9.64189 9.64189i 0.383231 0.383231i
\(634\) 0 0
\(635\) −9.03906 + 19.7243i −0.358704 + 0.782734i
\(636\) 0 0
\(637\) 22.5779 0.894570
\(638\) 0 0
\(639\) −6.34716 −0.251090
\(640\) 0 0
\(641\) −12.4196 −0.490546 −0.245273 0.969454i \(-0.578878\pi\)
−0.245273 + 0.969454i \(0.578878\pi\)
\(642\) 0 0
\(643\) −45.7180 −1.80294 −0.901472 0.432838i \(-0.857512\pi\)
−0.901472 + 0.432838i \(0.857512\pi\)
\(644\) 0 0
\(645\) 9.32029 3.46237i 0.366986 0.136331i
\(646\) 0 0
\(647\) 24.2897 24.2897i 0.954925 0.954925i −0.0441018 0.999027i \(-0.514043\pi\)
0.999027 + 0.0441018i \(0.0140426\pi\)
\(648\) 0 0
\(649\) −2.14532 −0.0842110
\(650\) 0 0
\(651\) 11.6809 + 11.6809i 0.457812 + 0.457812i
\(652\) 0 0
\(653\) 33.3219i 1.30399i −0.758225 0.651993i \(-0.773933\pi\)
0.758225 0.651993i \(-0.226067\pi\)
\(654\) 0 0
\(655\) 3.15263 + 1.44476i 0.123184 + 0.0564514i
\(656\) 0 0
\(657\) −4.78916 + 4.78916i −0.186843 + 0.186843i
\(658\) 0 0
\(659\) 13.3564 + 13.3564i 0.520292 + 0.520292i 0.917660 0.397367i \(-0.130076\pi\)
−0.397367 + 0.917660i \(0.630076\pi\)
\(660\) 0 0
\(661\) −22.8218 + 22.8218i −0.887664 + 0.887664i −0.994298 0.106635i \(-0.965992\pi\)
0.106635 + 0.994298i \(0.465992\pi\)
\(662\) 0 0
\(663\) 19.3237 + 19.3237i 0.750469 + 0.750469i
\(664\) 0 0
\(665\) −18.0841 48.6803i −0.701272 1.88774i
\(666\) 0 0
\(667\) −9.80543 −0.379668
\(668\) 0 0
\(669\) 13.5811 13.5811i 0.525074 0.525074i
\(670\) 0 0
\(671\) 2.86880i 0.110749i
\(672\) 0 0
\(673\) 19.9234 + 19.9234i 0.767989 + 0.767989i 0.977752 0.209763i \(-0.0672693\pi\)
−0.209763 + 0.977752i \(0.567269\pi\)
\(674\) 0 0
\(675\) −3.78732 + 3.26438i −0.145774 + 0.125646i
\(676\) 0 0
\(677\) 3.27932i 0.126035i 0.998012 + 0.0630173i \(0.0200723\pi\)
−0.998012 + 0.0630173i \(0.979928\pi\)
\(678\) 0 0
\(679\) 14.4535i 0.554674i
\(680\) 0 0
\(681\) 13.3355i 0.511018i
\(682\) 0 0
\(683\) 0.304845i 0.0116646i 0.999983 + 0.00583228i \(0.00185648\pi\)
−0.999983 + 0.00583228i \(0.998144\pi\)
\(684\) 0 0
\(685\) 16.1291 35.1955i 0.616261 1.34475i
\(686\) 0 0
\(687\) 17.5166 + 17.5166i 0.668300 + 0.668300i
\(688\) 0 0
\(689\) 22.7223i 0.865652i
\(690\) 0 0
\(691\) 4.70048 4.70048i 0.178815 0.178815i −0.612024 0.790839i \(-0.709645\pi\)
0.790839 + 0.612024i \(0.209645\pi\)
\(692\) 0 0
\(693\) −0.887858 −0.0337269
\(694\) 0 0
\(695\) 9.76090 + 4.47314i 0.370252 + 0.169676i
\(696\) 0 0
\(697\) −33.6217 33.6217i −1.27351 1.27351i
\(698\) 0 0
\(699\) −5.53768 + 5.53768i −0.209454 + 0.209454i
\(700\) 0 0
\(701\) 32.6716 + 32.6716i 1.23399 + 1.23399i 0.962418 + 0.271572i \(0.0875434\pi\)
0.271572 + 0.962418i \(0.412457\pi\)
\(702\) 0 0
\(703\) −18.9356 + 18.9356i −0.714169 + 0.714169i
\(704\) 0 0
\(705\) −3.24837 + 7.08831i −0.122341 + 0.266961i
\(706\) 0 0
\(707\) 2.91221i 0.109525i
\(708\) 0 0
\(709\) −9.52932 9.52932i −0.357881 0.357881i 0.505150 0.863031i \(-0.331437\pi\)
−0.863031 + 0.505150i \(0.831437\pi\)
\(710\) 0 0
\(711\) −3.83743 −0.143915
\(712\) 0 0
\(713\) −27.5442 + 27.5442i −1.03154 + 1.03154i
\(714\) 0 0
\(715\) 2.40331 + 1.10136i 0.0898785 + 0.0411887i
\(716\) 0 0
\(717\) 7.70031 0.287573
\(718\) 0 0
\(719\) 0.471667 0.0175902 0.00879511 0.999961i \(-0.497200\pi\)
0.00879511 + 0.999961i \(0.497200\pi\)
\(720\) 0 0
\(721\) −44.2323 −1.64730
\(722\) 0 0
\(723\) −27.9273 −1.03863
\(724\) 0 0
\(725\) −0.445504 + 6.00747i −0.0165456 + 0.223112i
\(726\) 0 0
\(727\) −37.3759 + 37.3759i −1.38620 + 1.38620i −0.553045 + 0.833152i \(0.686534\pi\)
−0.833152 + 0.553045i \(0.813466\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 18.6951 + 18.6951i 0.691463 + 0.691463i
\(732\) 0 0
\(733\) 24.0502i 0.888314i 0.895949 + 0.444157i \(0.146497\pi\)
−0.895949 + 0.444157i \(0.853503\pi\)
\(734\) 0 0
\(735\) −10.2972 + 3.82529i −0.379818 + 0.141098i
\(736\) 0 0
\(737\) 1.37199 1.37199i 0.0505377 0.0505377i
\(738\) 0 0
\(739\) 19.0456 + 19.0456i 0.700604 + 0.700604i 0.964540 0.263936i \(-0.0850208\pi\)
−0.263936 + 0.964540i \(0.585021\pi\)
\(740\) 0 0
\(741\) 21.8675 21.8675i 0.803324 0.803324i
\(742\) 0 0
\(743\) −17.1881 17.1881i −0.630569 0.630569i 0.317642 0.948211i \(-0.397109\pi\)
−0.948211 + 0.317642i \(0.897109\pi\)
\(744\) 0 0
\(745\) −10.3358 + 22.5540i −0.378676 + 0.826315i
\(746\) 0 0
\(747\) −6.25327 −0.228795
\(748\) 0 0
\(749\) −14.3936 + 14.3936i −0.525932 + 0.525932i
\(750\) 0 0
\(751\) 36.8021i 1.34293i −0.741037 0.671464i \(-0.765666\pi\)
0.741037 0.671464i \(-0.234334\pi\)
\(752\) 0 0
\(753\) 10.5948 + 10.5948i 0.386097 + 0.386097i
\(754\) 0 0
\(755\) 2.48701 + 6.69473i 0.0905114 + 0.243646i
\(756\) 0 0
\(757\) 2.17732i 0.0791360i −0.999217 0.0395680i \(-0.987402\pi\)
0.999217 0.0395680i \(-0.0125982\pi\)
\(758\) 0 0
\(759\) 2.09361i 0.0759932i
\(760\) 0 0
\(761\) 10.5601i 0.382803i 0.981512 + 0.191402i \(0.0613033\pi\)
−0.981512 + 0.191402i \(0.938697\pi\)
\(762\) 0 0
\(763\) 17.8454i 0.646046i
\(764\) 0 0
\(765\) −12.0870 5.53910i −0.437005 0.200267i
\(766\) 0 0
\(767\) −27.1027 27.1027i −0.978622 0.978622i
\(768\) 0 0
\(769\) 13.8582i 0.499739i 0.968279 + 0.249870i \(0.0803878\pi\)
−0.968279 + 0.249870i \(0.919612\pi\)
\(770\) 0 0
\(771\) −9.86474 + 9.86474i −0.355270 + 0.355270i
\(772\) 0 0
\(773\) −18.6483 −0.670732 −0.335366 0.942088i \(-0.608860\pi\)
−0.335366 + 0.942088i \(0.608860\pi\)
\(774\) 0 0
\(775\) 15.6240 + 18.1269i 0.561230 + 0.651137i
\(776\) 0 0
\(777\) 9.71279 + 9.71279i 0.348444 + 0.348444i
\(778\) 0 0
\(779\) −38.0478 + 38.0478i −1.36321 + 1.36321i
\(780\) 0 0
\(781\) −1.15453 1.15453i −0.0413124 0.0413124i
\(782\) 0 0
\(783\) 0.851917 0.851917i 0.0304450 0.0304450i
\(784\) 0 0
\(785\) −13.7511 37.0162i −0.490796 1.32117i
\(786\) 0 0
\(787\) 29.1438i 1.03886i 0.854512 + 0.519432i \(0.173857\pi\)
−0.854512 + 0.519432i \(0.826143\pi\)
\(788\) 0 0
\(789\) −5.45464 5.45464i −0.194190 0.194190i
\(790\) 0 0
\(791\) 31.2338 1.11055
\(792\) 0 0
\(793\) 36.2428 36.2428i 1.28702 1.28702i
\(794\) 0 0
\(795\) −3.84975 10.3631i −0.136537 0.367540i
\(796\) 0 0
\(797\) 11.1042 0.393331 0.196665 0.980471i \(-0.436989\pi\)
0.196665 + 0.980471i \(0.436989\pi\)
\(798\) 0 0
\(799\) −20.7338 −0.733510
\(800\) 0 0
\(801\) −5.02517 −0.177556
\(802\) 0 0
\(803\) −1.74227 −0.0614834
\(804\) 0 0
\(805\) −21.8733 58.8803i −0.770932 2.07526i
\(806\) 0 0
\(807\) 1.61579 1.61579i 0.0568784 0.0568784i
\(808\) 0 0
\(809\) −27.7185 −0.974531 −0.487265 0.873254i \(-0.662006\pi\)
−0.487265 + 0.873254i \(0.662006\pi\)
\(810\) 0 0
\(811\) −27.6491 27.6491i −0.970891 0.970891i 0.0286974 0.999588i \(-0.490864\pi\)
−0.999588 + 0.0286974i \(0.990864\pi\)
\(812\) 0 0
\(813\) 6.09685i 0.213826i
\(814\) 0 0
\(815\) 6.23997 + 16.7972i 0.218576 + 0.588382i
\(816\) 0 0
\(817\) 21.1562 21.1562i 0.740163 0.740163i
\(818\) 0 0
\(819\) −11.2167 11.2167i −0.391943 0.391943i
\(820\) 0 0
\(821\) 10.7053 10.7053i 0.373616 0.373616i −0.495176 0.868793i \(-0.664896\pi\)
0.868793 + 0.495176i \(0.164896\pi\)
\(822\) 0 0
\(823\) −31.2787 31.2787i −1.09031 1.09031i −0.995495 0.0948116i \(-0.969775\pi\)
−0.0948116 0.995495i \(-0.530225\pi\)
\(824\) 0 0
\(825\) −1.28269 0.0951219i −0.0446574 0.00331172i
\(826\) 0 0
\(827\) −53.4550 −1.85881 −0.929406 0.369060i \(-0.879680\pi\)
−0.929406 + 0.369060i \(0.879680\pi\)
\(828\) 0 0
\(829\) 4.10901 4.10901i 0.142712 0.142712i −0.632141 0.774853i \(-0.717824\pi\)
0.774853 + 0.632141i \(0.217824\pi\)
\(830\) 0 0
\(831\) 15.5674i 0.540028i
\(832\) 0 0
\(833\) −20.6547 20.6547i −0.715642 0.715642i
\(834\) 0 0
\(835\) −24.3101 11.1406i −0.841284 0.385536i
\(836\) 0 0
\(837\) 4.78620i 0.165435i
\(838\) 0 0
\(839\) 4.01939i 0.138765i 0.997590 + 0.0693824i \(0.0221029\pi\)
−0.997590 + 0.0693824i \(0.977897\pi\)
\(840\) 0 0
\(841\) 27.5485i 0.949947i
\(842\) 0 0
\(843\) 18.8277i 0.648461i
\(844\) 0 0
\(845\) 6.32518 + 17.0266i 0.217593 + 0.585734i
\(846\) 0 0
\(847\) 26.6845 + 26.6845i 0.916891 + 0.916891i
\(848\) 0 0
\(849\) 16.7014i 0.573192i
\(850\) 0 0
\(851\) −22.9032 + 22.9032i −0.785111 + 0.785111i
\(852\) 0 0
\(853\) 19.7470 0.676126 0.338063 0.941123i \(-0.390228\pi\)
0.338063 + 0.941123i \(0.390228\pi\)
\(854\) 0 0
\(855\) −6.26830 + 13.6782i −0.214371 + 0.467783i
\(856\) 0 0
\(857\) 7.67020 + 7.67020i 0.262009 + 0.262009i 0.825870 0.563861i \(-0.190685\pi\)
−0.563861 + 0.825870i \(0.690685\pi\)
\(858\) 0 0
\(859\) 32.7389 32.7389i 1.11704 1.11704i 0.124862 0.992174i \(-0.460151\pi\)
0.992174 0.124862i \(-0.0398487\pi\)
\(860\) 0 0
\(861\) 19.5162 + 19.5162i 0.665110 + 0.665110i
\(862\) 0 0
\(863\) −6.87701 + 6.87701i −0.234096 + 0.234096i −0.814400 0.580304i \(-0.802934\pi\)
0.580304 + 0.814400i \(0.302934\pi\)
\(864\) 0 0
\(865\) 10.7209 3.98266i 0.364520 0.135415i
\(866\) 0 0
\(867\) 18.3552i 0.623376i
\(868\) 0 0
\(869\) −0.698018 0.698018i −0.0236787 0.0236787i
\(870\) 0 0
\(871\) 34.6658 1.17460
\(872\) 0 0
\(873\) −2.96112 + 2.96112i −0.100219 + 0.100219i
\(874\) 0 0
\(875\) −37.0678 + 10.7259i −1.25312 + 0.362600i
\(876\) 0 0
\(877\) 10.5732 0.357030 0.178515 0.983937i \(-0.442871\pi\)
0.178515 + 0.983937i \(0.442871\pi\)
\(878\) 0 0
\(879\) 18.1368 0.611738
\(880\) 0 0
\(881\) −53.2314 −1.79341 −0.896705 0.442628i \(-0.854046\pi\)
−0.896705 + 0.442628i \(0.854046\pi\)
\(882\) 0 0
\(883\) 12.9838 0.436939 0.218470 0.975844i \(-0.429894\pi\)
0.218470 + 0.975844i \(0.429894\pi\)
\(884\) 0 0
\(885\) 16.9528 + 7.76895i 0.569860 + 0.261150i
\(886\) 0 0
\(887\) −13.3689 + 13.3689i −0.448884 + 0.448884i −0.894983 0.446100i \(-0.852813\pi\)
0.446100 + 0.894983i \(0.352813\pi\)
\(888\) 0 0
\(889\) 33.4899 1.12321
\(890\) 0 0
\(891\) 0.181897 + 0.181897i 0.00609379 + 0.00609379i
\(892\) 0 0
\(893\) 23.4633i 0.785171i
\(894\) 0 0
\(895\) 6.16062 13.4432i 0.205927 0.449357i
\(896\) 0 0
\(897\) 26.4495 26.4495i 0.883122 0.883122i
\(898\) 0 0
\(899\) −4.07744 4.07744i −0.135990 0.135990i
\(900\) 0 0
\(901\) 20.7868 20.7868i 0.692508 0.692508i
\(902\) 0 0
\(903\) −10.8518 10.8518i −0.361127 0.361127i
\(904\) 0 0
\(905\) −15.6723 7.18217i −0.520966 0.238744i
\(906\) 0 0
\(907\) −12.5840 −0.417846 −0.208923 0.977932i \(-0.566996\pi\)
−0.208923 + 0.977932i \(0.566996\pi\)
\(908\) 0 0
\(909\) −0.596631 + 0.596631i −0.0197890 + 0.0197890i
\(910\) 0 0
\(911\) 39.5012i 1.30873i −0.756177 0.654367i \(-0.772935\pi\)
0.756177 0.654367i \(-0.227065\pi\)
\(912\) 0 0
\(913\) −1.13745 1.13745i −0.0376442 0.0376442i
\(914\) 0 0
\(915\) −10.3889 + 22.6699i −0.343448 + 0.749443i
\(916\) 0 0
\(917\) 5.35286i 0.176767i
\(918\) 0 0
\(919\) 8.49556i 0.280243i −0.990134 0.140121i \(-0.955251\pi\)
0.990134 0.140121i \(-0.0447492\pi\)
\(920\) 0 0
\(921\) 24.4651i 0.806152i
\(922\) 0 0
\(923\) 29.1714i 0.960188i
\(924\) 0 0
\(925\) 12.9914 + 15.0726i 0.427156 + 0.495585i
\(926\) 0 0
\(927\) 9.06195 + 9.06195i 0.297634 + 0.297634i
\(928\) 0 0
\(929\) 36.4760i 1.19674i −0.801220 0.598369i \(-0.795816\pi\)
0.801220 0.598369i \(-0.204184\pi\)
\(930\) 0 0
\(931\) −23.3738 + 23.3738i −0.766044 + 0.766044i
\(932\) 0 0
\(933\) −8.97669 −0.293884
\(934\) 0 0
\(935\) −1.19104 3.20613i −0.0389511 0.104852i
\(936\) 0 0
\(937\) −12.8804 12.8804i −0.420785 0.420785i 0.464689 0.885474i \(-0.346166\pi\)
−0.885474 + 0.464689i \(0.846166\pi\)
\(938\) 0 0
\(939\) 20.1248 20.1248i 0.656747 0.656747i
\(940\) 0 0
\(941\) −38.8236 38.8236i −1.26561 1.26561i −0.948331 0.317284i \(-0.897229\pi\)
−0.317284 0.948331i \(-0.602771\pi\)
\(942\) 0 0
\(943\) −46.0200 + 46.0200i −1.49862 + 1.49862i
\(944\) 0 0
\(945\) 7.01605 + 3.21525i 0.228232 + 0.104592i
\(946\) 0 0
\(947\) 28.4262i 0.923727i −0.886951 0.461864i \(-0.847181\pi\)
0.886951 0.461864i \(-0.152819\pi\)
\(948\) 0 0
\(949\) −22.0109 22.0109i −0.714503 0.714503i
\(950\) 0 0
\(951\) 4.43451 0.143799
\(952\) 0 0
\(953\) −8.00013 + 8.00013i −0.259150 + 0.259150i −0.824708 0.565559i \(-0.808661\pi\)
0.565559 + 0.824708i \(0.308661\pi\)
\(954\) 0 0
\(955\) 29.6164 11.0021i 0.958365 0.356021i
\(956\) 0 0
\(957\) 0.309923 0.0100184
\(958\) 0 0
\(959\) −59.7585 −1.92970
\(960\) 0 0
\(961\) 8.09232 0.261042
\(962\) 0 0
\(963\) 5.89771 0.190051
\(964\) 0 0
\(965\) −9.07833 + 19.8100i −0.292242 + 0.637705i
\(966\) 0 0
\(967\) 7.65095 7.65095i 0.246038 0.246038i −0.573304 0.819342i \(-0.694339\pi\)
0.819342 + 0.573304i \(0.194339\pi\)
\(968\) 0 0
\(969\) −40.0096 −1.28529
\(970\) 0 0
\(971\) −24.7008 24.7008i −0.792686 0.792686i 0.189244 0.981930i \(-0.439396\pi\)
−0.981930 + 0.189244i \(0.939396\pi\)
\(972\) 0 0
\(973\) 16.5730i 0.531307i
\(974\) 0 0
\(975\) −15.0030 17.4064i −0.480481 0.557452i
\(976\) 0 0
\(977\) −32.8119 + 32.8119i −1.04975 + 1.04975i −0.0510499 + 0.998696i \(0.516257\pi\)
−0.998696 + 0.0510499i \(0.983743\pi\)
\(978\) 0 0
\(979\) −0.914065 0.914065i −0.0292136 0.0292136i
\(980\) 0 0
\(981\) 3.65602 3.65602i 0.116728 0.116728i
\(982\) 0 0
\(983\) 6.75408 + 6.75408i 0.215422 + 0.215422i 0.806566 0.591144i \(-0.201324\pi\)
−0.591144 + 0.806566i \(0.701324\pi\)
\(984\) 0 0
\(985\) −45.2925 + 16.8256i −1.44314 + 0.536108i
\(986\) 0 0
\(987\) 12.0352 0.383086
\(988\) 0 0
\(989\) 25.5891 25.5891i 0.813687 0.813687i
\(990\) 0 0
\(991\) 16.3088i 0.518067i −0.965868 0.259033i \(-0.916596\pi\)
0.965868 0.259033i \(-0.0834039\pi\)
\(992\) 0 0
\(993\) −0.546436 0.546436i −0.0173406 0.0173406i
\(994\) 0 0
\(995\) 17.1204 6.36001i 0.542753 0.201626i
\(996\) 0 0
\(997\) 18.2727i 0.578702i −0.957223 0.289351i \(-0.906561\pi\)
0.957223 0.289351i \(-0.0934394\pi\)
\(998\) 0 0
\(999\) 3.97976i 0.125914i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1920.2.y.l.223.4 20
4.3 odd 2 1920.2.y.k.223.4 20
5.2 odd 4 1920.2.bc.k.607.10 20
8.3 odd 2 960.2.y.f.943.7 20
8.5 even 2 240.2.y.f.163.9 20
16.3 odd 4 240.2.bc.f.43.4 yes 20
16.5 even 4 1920.2.bc.l.1183.10 20
16.11 odd 4 1920.2.bc.k.1183.10 20
16.13 even 4 960.2.bc.f.463.1 20
20.7 even 4 1920.2.bc.l.607.10 20
24.5 odd 2 720.2.z.h.163.2 20
40.27 even 4 960.2.bc.f.367.1 20
40.37 odd 4 240.2.bc.f.67.4 yes 20
48.35 even 4 720.2.bd.h.523.7 20
80.27 even 4 inner 1920.2.y.l.1567.4 20
80.37 odd 4 1920.2.y.k.1567.4 20
80.67 even 4 240.2.y.f.187.9 yes 20
80.77 odd 4 960.2.y.f.847.7 20
120.77 even 4 720.2.bd.h.307.7 20
240.227 odd 4 720.2.z.h.667.2 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.2.y.f.163.9 20 8.5 even 2
240.2.y.f.187.9 yes 20 80.67 even 4
240.2.bc.f.43.4 yes 20 16.3 odd 4
240.2.bc.f.67.4 yes 20 40.37 odd 4
720.2.z.h.163.2 20 24.5 odd 2
720.2.z.h.667.2 20 240.227 odd 4
720.2.bd.h.307.7 20 120.77 even 4
720.2.bd.h.523.7 20 48.35 even 4
960.2.y.f.847.7 20 80.77 odd 4
960.2.y.f.943.7 20 8.3 odd 2
960.2.bc.f.367.1 20 40.27 even 4
960.2.bc.f.463.1 20 16.13 even 4
1920.2.y.k.223.4 20 4.3 odd 2
1920.2.y.k.1567.4 20 80.37 odd 4
1920.2.y.l.223.4 20 1.1 even 1 trivial
1920.2.y.l.1567.4 20 80.27 even 4 inner
1920.2.bc.k.607.10 20 5.2 odd 4
1920.2.bc.k.1183.10 20 16.11 odd 4
1920.2.bc.l.607.10 20 20.7 even 4
1920.2.bc.l.1183.10 20 16.5 even 4