Properties

Label 9520.2.a.u.1.3
Level $9520$
Weight $2$
Character 9520.1
Self dual yes
Analytic conductor $76.018$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9520,2,Mod(1,9520)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9520, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9520.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9520 = 2^{4} \cdot 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9520.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,0,-3,0,-3,0,3,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(76.0175827243\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.837.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 6x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1190)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.36147\) of defining polynomial
Character \(\chi\) \(=\) 9520.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.36147 q^{3} -1.00000 q^{5} -1.00000 q^{7} +2.57653 q^{9} +3.36147 q^{11} +6.93800 q^{13} -2.36147 q^{15} -1.00000 q^{17} +6.29947 q^{19} -2.36147 q^{21} +5.29947 q^{23} +1.00000 q^{25} -1.00000 q^{27} -2.79160 q^{29} +3.14640 q^{31} +7.93800 q^{33} +1.00000 q^{35} +8.72294 q^{37} +16.3839 q^{39} -3.36147 q^{41} -3.42347 q^{43} -2.57653 q^{45} +3.51454 q^{47} +1.00000 q^{49} -2.36147 q^{51} +5.94467 q^{53} -3.36147 q^{55} +14.8760 q^{57} -10.2375 q^{59} -10.3839 q^{61} -2.57653 q^{63} -6.93800 q^{65} -12.0844 q^{67} +12.5145 q^{69} -14.8140 q^{71} -15.2441 q^{73} +2.36147 q^{75} -3.36147 q^{77} -5.56987 q^{79} -10.0911 q^{81} +13.7520 q^{83} +1.00000 q^{85} -6.59228 q^{87} +10.9380 q^{89} -6.93800 q^{91} +7.43013 q^{93} -6.29947 q^{95} +14.3839 q^{97} +8.66094 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{5} - 3 q^{7} + 3 q^{9} + 3 q^{11} + 9 q^{13} - 3 q^{17} - 3 q^{23} + 3 q^{25} - 3 q^{27} - 6 q^{29} + 12 q^{33} + 3 q^{35} + 12 q^{37} + 9 q^{39} - 3 q^{41} - 15 q^{43} - 3 q^{45} - 6 q^{47}+ \cdots + 3 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.36147 1.36339 0.681697 0.731634i \(-0.261242\pi\)
0.681697 + 0.731634i \(0.261242\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 2.57653 0.858845
\(10\) 0 0
\(11\) 3.36147 1.01352 0.506760 0.862087i \(-0.330843\pi\)
0.506760 + 0.862087i \(0.330843\pi\)
\(12\) 0 0
\(13\) 6.93800 1.92426 0.962128 0.272598i \(-0.0878830\pi\)
0.962128 + 0.272598i \(0.0878830\pi\)
\(14\) 0 0
\(15\) −2.36147 −0.609729
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) 6.29947 1.44520 0.722599 0.691267i \(-0.242947\pi\)
0.722599 + 0.691267i \(0.242947\pi\)
\(20\) 0 0
\(21\) −2.36147 −0.515315
\(22\) 0 0
\(23\) 5.29947 1.10502 0.552508 0.833507i \(-0.313671\pi\)
0.552508 + 0.833507i \(0.313671\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −2.79160 −0.518387 −0.259194 0.965825i \(-0.583457\pi\)
−0.259194 + 0.965825i \(0.583457\pi\)
\(30\) 0 0
\(31\) 3.14640 0.565111 0.282555 0.959251i \(-0.408818\pi\)
0.282555 + 0.959251i \(0.408818\pi\)
\(32\) 0 0
\(33\) 7.93800 1.38183
\(34\) 0 0
\(35\) 1.00000 0.169031
\(36\) 0 0
\(37\) 8.72294 1.43404 0.717021 0.697052i \(-0.245505\pi\)
0.717021 + 0.697052i \(0.245505\pi\)
\(38\) 0 0
\(39\) 16.3839 2.62352
\(40\) 0 0
\(41\) −3.36147 −0.524973 −0.262487 0.964936i \(-0.584543\pi\)
−0.262487 + 0.964936i \(0.584543\pi\)
\(42\) 0 0
\(43\) −3.42347 −0.522074 −0.261037 0.965329i \(-0.584064\pi\)
−0.261037 + 0.965329i \(0.584064\pi\)
\(44\) 0 0
\(45\) −2.57653 −0.384087
\(46\) 0 0
\(47\) 3.51454 0.512648 0.256324 0.966591i \(-0.417489\pi\)
0.256324 + 0.966591i \(0.417489\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −2.36147 −0.330672
\(52\) 0 0
\(53\) 5.94467 0.816563 0.408282 0.912856i \(-0.366128\pi\)
0.408282 + 0.912856i \(0.366128\pi\)
\(54\) 0 0
\(55\) −3.36147 −0.453260
\(56\) 0 0
\(57\) 14.8760 1.97038
\(58\) 0 0
\(59\) −10.2375 −1.33281 −0.666403 0.745592i \(-0.732167\pi\)
−0.666403 + 0.745592i \(0.732167\pi\)
\(60\) 0 0
\(61\) −10.3839 −1.32952 −0.664760 0.747057i \(-0.731466\pi\)
−0.664760 + 0.747057i \(0.731466\pi\)
\(62\) 0 0
\(63\) −2.57653 −0.324613
\(64\) 0 0
\(65\) −6.93800 −0.860553
\(66\) 0 0
\(67\) −12.0844 −1.47635 −0.738173 0.674612i \(-0.764311\pi\)
−0.738173 + 0.674612i \(0.764311\pi\)
\(68\) 0 0
\(69\) 12.5145 1.50657
\(70\) 0 0
\(71\) −14.8140 −1.75810 −0.879050 0.476730i \(-0.841822\pi\)
−0.879050 + 0.476730i \(0.841822\pi\)
\(72\) 0 0
\(73\) −15.2441 −1.78419 −0.892096 0.451846i \(-0.850766\pi\)
−0.892096 + 0.451846i \(0.850766\pi\)
\(74\) 0 0
\(75\) 2.36147 0.272679
\(76\) 0 0
\(77\) −3.36147 −0.383075
\(78\) 0 0
\(79\) −5.56987 −0.626659 −0.313330 0.949644i \(-0.601444\pi\)
−0.313330 + 0.949644i \(0.601444\pi\)
\(80\) 0 0
\(81\) −10.0911 −1.12123
\(82\) 0 0
\(83\) 13.7520 1.50948 0.754740 0.656024i \(-0.227763\pi\)
0.754740 + 0.656024i \(0.227763\pi\)
\(84\) 0 0
\(85\) 1.00000 0.108465
\(86\) 0 0
\(87\) −6.59228 −0.706766
\(88\) 0 0
\(89\) 10.9380 1.15943 0.579713 0.814821i \(-0.303165\pi\)
0.579713 + 0.814821i \(0.303165\pi\)
\(90\) 0 0
\(91\) −6.93800 −0.727300
\(92\) 0 0
\(93\) 7.43013 0.770469
\(94\) 0 0
\(95\) −6.29947 −0.646312
\(96\) 0 0
\(97\) 14.3839 1.46046 0.730231 0.683201i \(-0.239413\pi\)
0.730231 + 0.683201i \(0.239413\pi\)
\(98\) 0 0
\(99\) 8.66094 0.870457
\(100\) 0 0
\(101\) 14.6834 1.46105 0.730524 0.682887i \(-0.239276\pi\)
0.730524 + 0.682887i \(0.239276\pi\)
\(102\) 0 0
\(103\) −12.5765 −1.23920 −0.619601 0.784917i \(-0.712706\pi\)
−0.619601 + 0.784917i \(0.712706\pi\)
\(104\) 0 0
\(105\) 2.36147 0.230456
\(106\) 0 0
\(107\) −6.30614 −0.609637 −0.304819 0.952410i \(-0.598596\pi\)
−0.304819 + 0.952410i \(0.598596\pi\)
\(108\) 0 0
\(109\) 17.0224 1.63045 0.815226 0.579144i \(-0.196613\pi\)
0.815226 + 0.579144i \(0.196613\pi\)
\(110\) 0 0
\(111\) 20.5989 1.95517
\(112\) 0 0
\(113\) 15.4392 1.45240 0.726199 0.687484i \(-0.241285\pi\)
0.726199 + 0.687484i \(0.241285\pi\)
\(114\) 0 0
\(115\) −5.29947 −0.494178
\(116\) 0 0
\(117\) 17.8760 1.65264
\(118\) 0 0
\(119\) 1.00000 0.0916698
\(120\) 0 0
\(121\) 0.299472 0.0272248
\(122\) 0 0
\(123\) −7.93800 −0.715746
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −2.33906 −0.207558 −0.103779 0.994600i \(-0.533093\pi\)
−0.103779 + 0.994600i \(0.533093\pi\)
\(128\) 0 0
\(129\) −8.08441 −0.711792
\(130\) 0 0
\(131\) −8.16881 −0.713712 −0.356856 0.934159i \(-0.616151\pi\)
−0.356856 + 0.934159i \(0.616151\pi\)
\(132\) 0 0
\(133\) −6.29947 −0.546234
\(134\) 0 0
\(135\) 1.00000 0.0860663
\(136\) 0 0
\(137\) 16.2928 1.39199 0.695994 0.718047i \(-0.254964\pi\)
0.695994 + 0.718047i \(0.254964\pi\)
\(138\) 0 0
\(139\) −1.27706 −0.108319 −0.0541595 0.998532i \(-0.517248\pi\)
−0.0541595 + 0.998532i \(0.517248\pi\)
\(140\) 0 0
\(141\) 8.29947 0.698942
\(142\) 0 0
\(143\) 23.3219 1.95027
\(144\) 0 0
\(145\) 2.79160 0.231830
\(146\) 0 0
\(147\) 2.36147 0.194771
\(148\) 0 0
\(149\) −7.02908 −0.575844 −0.287922 0.957654i \(-0.592964\pi\)
−0.287922 + 0.957654i \(0.592964\pi\)
\(150\) 0 0
\(151\) 10.9313 0.889580 0.444790 0.895635i \(-0.353278\pi\)
0.444790 + 0.895635i \(0.353278\pi\)
\(152\) 0 0
\(153\) −2.57653 −0.208300
\(154\) 0 0
\(155\) −3.14640 −0.252725
\(156\) 0 0
\(157\) −0.430132 −0.0343283 −0.0171641 0.999853i \(-0.505464\pi\)
−0.0171641 + 0.999853i \(0.505464\pi\)
\(158\) 0 0
\(159\) 14.0382 1.11330
\(160\) 0 0
\(161\) −5.29947 −0.417657
\(162\) 0 0
\(163\) −17.1531 −1.34353 −0.671766 0.740763i \(-0.734464\pi\)
−0.671766 + 0.740763i \(0.734464\pi\)
\(164\) 0 0
\(165\) −7.93800 −0.617973
\(166\) 0 0
\(167\) 23.0157 1.78101 0.890506 0.454972i \(-0.150351\pi\)
0.890506 + 0.454972i \(0.150351\pi\)
\(168\) 0 0
\(169\) 35.1359 2.70276
\(170\) 0 0
\(171\) 16.2308 1.24120
\(172\) 0 0
\(173\) 2.63853 0.200604 0.100302 0.994957i \(-0.468019\pi\)
0.100302 + 0.994957i \(0.468019\pi\)
\(174\) 0 0
\(175\) −1.00000 −0.0755929
\(176\) 0 0
\(177\) −24.1755 −1.81714
\(178\) 0 0
\(179\) −6.72294 −0.502496 −0.251248 0.967923i \(-0.580841\pi\)
−0.251248 + 0.967923i \(0.580841\pi\)
\(180\) 0 0
\(181\) −20.5989 −1.53111 −0.765554 0.643372i \(-0.777535\pi\)
−0.765554 + 0.643372i \(0.777535\pi\)
\(182\) 0 0
\(183\) −24.5212 −1.81266
\(184\) 0 0
\(185\) −8.72294 −0.641323
\(186\) 0 0
\(187\) −3.36147 −0.245815
\(188\) 0 0
\(189\) 1.00000 0.0727393
\(190\) 0 0
\(191\) 25.2375 1.82612 0.913060 0.407826i \(-0.133713\pi\)
0.913060 + 0.407826i \(0.133713\pi\)
\(192\) 0 0
\(193\) −26.6214 −1.91625 −0.958124 0.286355i \(-0.907556\pi\)
−0.958124 + 0.286355i \(0.907556\pi\)
\(194\) 0 0
\(195\) −16.3839 −1.17327
\(196\) 0 0
\(197\) 16.2928 1.16081 0.580407 0.814326i \(-0.302893\pi\)
0.580407 + 0.814326i \(0.302893\pi\)
\(198\) 0 0
\(199\) 16.3615 1.15983 0.579917 0.814676i \(-0.303085\pi\)
0.579917 + 0.814676i \(0.303085\pi\)
\(200\) 0 0
\(201\) −28.5369 −2.01284
\(202\) 0 0
\(203\) 2.79160 0.195932
\(204\) 0 0
\(205\) 3.36147 0.234775
\(206\) 0 0
\(207\) 13.6543 0.949038
\(208\) 0 0
\(209\) 21.1755 1.46474
\(210\) 0 0
\(211\) −3.13974 −0.216148 −0.108074 0.994143i \(-0.534468\pi\)
−0.108074 + 0.994143i \(0.534468\pi\)
\(212\) 0 0
\(213\) −34.9828 −2.39698
\(214\) 0 0
\(215\) 3.42347 0.233478
\(216\) 0 0
\(217\) −3.14640 −0.213592
\(218\) 0 0
\(219\) −35.9986 −2.43256
\(220\) 0 0
\(221\) −6.93800 −0.466701
\(222\) 0 0
\(223\) −1.24414 −0.0833139 −0.0416570 0.999132i \(-0.513264\pi\)
−0.0416570 + 0.999132i \(0.513264\pi\)
\(224\) 0 0
\(225\) 2.57653 0.171769
\(226\) 0 0
\(227\) 10.4235 0.691830 0.345915 0.938266i \(-0.387569\pi\)
0.345915 + 0.938266i \(0.387569\pi\)
\(228\) 0 0
\(229\) 15.4235 1.01921 0.509606 0.860408i \(-0.329791\pi\)
0.509606 + 0.860408i \(0.329791\pi\)
\(230\) 0 0
\(231\) −7.93800 −0.522282
\(232\) 0 0
\(233\) 16.2599 1.06522 0.532610 0.846361i \(-0.321211\pi\)
0.532610 + 0.846361i \(0.321211\pi\)
\(234\) 0 0
\(235\) −3.51454 −0.229263
\(236\) 0 0
\(237\) −13.1531 −0.854384
\(238\) 0 0
\(239\) −6.93134 −0.448351 −0.224175 0.974549i \(-0.571969\pi\)
−0.224175 + 0.974549i \(0.571969\pi\)
\(240\) 0 0
\(241\) −8.57653 −0.552463 −0.276232 0.961091i \(-0.589086\pi\)
−0.276232 + 0.961091i \(0.589086\pi\)
\(242\) 0 0
\(243\) −20.8298 −1.33623
\(244\) 0 0
\(245\) −1.00000 −0.0638877
\(246\) 0 0
\(247\) 43.7058 2.78093
\(248\) 0 0
\(249\) 32.4750 2.05802
\(250\) 0 0
\(251\) −21.4063 −1.35115 −0.675576 0.737290i \(-0.736105\pi\)
−0.675576 + 0.737290i \(0.736105\pi\)
\(252\) 0 0
\(253\) 17.8140 1.11996
\(254\) 0 0
\(255\) 2.36147 0.147881
\(256\) 0 0
\(257\) −15.5923 −0.972620 −0.486310 0.873786i \(-0.661657\pi\)
−0.486310 + 0.873786i \(0.661657\pi\)
\(258\) 0 0
\(259\) −8.72294 −0.542017
\(260\) 0 0
\(261\) −7.19266 −0.445214
\(262\) 0 0
\(263\) 15.1201 0.932348 0.466174 0.884693i \(-0.345632\pi\)
0.466174 + 0.884693i \(0.345632\pi\)
\(264\) 0 0
\(265\) −5.94467 −0.365178
\(266\) 0 0
\(267\) 25.8298 1.58076
\(268\) 0 0
\(269\) 16.2599 0.991383 0.495691 0.868499i \(-0.334915\pi\)
0.495691 + 0.868499i \(0.334915\pi\)
\(270\) 0 0
\(271\) 5.70719 0.346687 0.173344 0.984861i \(-0.444543\pi\)
0.173344 + 0.984861i \(0.444543\pi\)
\(272\) 0 0
\(273\) −16.3839 −0.991597
\(274\) 0 0
\(275\) 3.36147 0.202704
\(276\) 0 0
\(277\) 9.13974 0.549154 0.274577 0.961565i \(-0.411462\pi\)
0.274577 + 0.961565i \(0.411462\pi\)
\(278\) 0 0
\(279\) 8.10682 0.485342
\(280\) 0 0
\(281\) 19.6967 1.17501 0.587503 0.809222i \(-0.300111\pi\)
0.587503 + 0.809222i \(0.300111\pi\)
\(282\) 0 0
\(283\) −1.24414 −0.0739566 −0.0369783 0.999316i \(-0.511773\pi\)
−0.0369783 + 0.999316i \(0.511773\pi\)
\(284\) 0 0
\(285\) −14.8760 −0.881179
\(286\) 0 0
\(287\) 3.36147 0.198421
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 33.9671 1.99119
\(292\) 0 0
\(293\) 14.0911 0.823209 0.411605 0.911363i \(-0.364968\pi\)
0.411605 + 0.911363i \(0.364968\pi\)
\(294\) 0 0
\(295\) 10.2375 0.596049
\(296\) 0 0
\(297\) −3.36147 −0.195052
\(298\) 0 0
\(299\) 36.7678 2.12633
\(300\) 0 0
\(301\) 3.42347 0.197325
\(302\) 0 0
\(303\) 34.6743 1.99199
\(304\) 0 0
\(305\) 10.3839 0.594579
\(306\) 0 0
\(307\) −22.4750 −1.28271 −0.641357 0.767243i \(-0.721628\pi\)
−0.641357 + 0.767243i \(0.721628\pi\)
\(308\) 0 0
\(309\) −29.6991 −1.68952
\(310\) 0 0
\(311\) 9.85360 0.558746 0.279373 0.960183i \(-0.409873\pi\)
0.279373 + 0.960183i \(0.409873\pi\)
\(312\) 0 0
\(313\) 5.45921 0.308573 0.154286 0.988026i \(-0.450692\pi\)
0.154286 + 0.988026i \(0.450692\pi\)
\(314\) 0 0
\(315\) 2.57653 0.145171
\(316\) 0 0
\(317\) −15.1531 −0.851081 −0.425541 0.904939i \(-0.639916\pi\)
−0.425541 + 0.904939i \(0.639916\pi\)
\(318\) 0 0
\(319\) −9.38388 −0.525396
\(320\) 0 0
\(321\) −14.8918 −0.831176
\(322\) 0 0
\(323\) −6.29947 −0.350512
\(324\) 0 0
\(325\) 6.93800 0.384851
\(326\) 0 0
\(327\) 40.1979 2.22295
\(328\) 0 0
\(329\) −3.51454 −0.193763
\(330\) 0 0
\(331\) −8.38388 −0.460820 −0.230410 0.973094i \(-0.574007\pi\)
−0.230410 + 0.973094i \(0.574007\pi\)
\(332\) 0 0
\(333\) 22.4750 1.23162
\(334\) 0 0
\(335\) 12.0844 0.660242
\(336\) 0 0
\(337\) −9.94467 −0.541721 −0.270860 0.962619i \(-0.587308\pi\)
−0.270860 + 0.962619i \(0.587308\pi\)
\(338\) 0 0
\(339\) 36.4592 1.98019
\(340\) 0 0
\(341\) 10.5765 0.572751
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) −12.5145 −0.673760
\(346\) 0 0
\(347\) −4.21507 −0.226277 −0.113138 0.993579i \(-0.536090\pi\)
−0.113138 + 0.993579i \(0.536090\pi\)
\(348\) 0 0
\(349\) 5.56987 0.298148 0.149074 0.988826i \(-0.452371\pi\)
0.149074 + 0.988826i \(0.452371\pi\)
\(350\) 0 0
\(351\) −6.93800 −0.370323
\(352\) 0 0
\(353\) −1.34814 −0.0717540 −0.0358770 0.999356i \(-0.511422\pi\)
−0.0358770 + 0.999356i \(0.511422\pi\)
\(354\) 0 0
\(355\) 14.8140 0.786246
\(356\) 0 0
\(357\) 2.36147 0.124982
\(358\) 0 0
\(359\) −9.89842 −0.522418 −0.261209 0.965282i \(-0.584121\pi\)
−0.261209 + 0.965282i \(0.584121\pi\)
\(360\) 0 0
\(361\) 20.6834 1.08860
\(362\) 0 0
\(363\) 0.707194 0.0371181
\(364\) 0 0
\(365\) 15.2441 0.797915
\(366\) 0 0
\(367\) −30.4883 −1.59148 −0.795738 0.605641i \(-0.792917\pi\)
−0.795738 + 0.605641i \(0.792917\pi\)
\(368\) 0 0
\(369\) −8.66094 −0.450871
\(370\) 0 0
\(371\) −5.94467 −0.308632
\(372\) 0 0
\(373\) 10.8693 0.562793 0.281397 0.959592i \(-0.409202\pi\)
0.281397 + 0.959592i \(0.409202\pi\)
\(374\) 0 0
\(375\) −2.36147 −0.121946
\(376\) 0 0
\(377\) −19.3681 −0.997510
\(378\) 0 0
\(379\) 18.7587 0.963569 0.481784 0.876290i \(-0.339989\pi\)
0.481784 + 0.876290i \(0.339989\pi\)
\(380\) 0 0
\(381\) −5.52361 −0.282983
\(382\) 0 0
\(383\) −21.7453 −1.11114 −0.555568 0.831471i \(-0.687499\pi\)
−0.555568 + 0.831471i \(0.687499\pi\)
\(384\) 0 0
\(385\) 3.36147 0.171316
\(386\) 0 0
\(387\) −8.82068 −0.448380
\(388\) 0 0
\(389\) −9.45921 −0.479601 −0.239800 0.970822i \(-0.577082\pi\)
−0.239800 + 0.970822i \(0.577082\pi\)
\(390\) 0 0
\(391\) −5.29947 −0.268006
\(392\) 0 0
\(393\) −19.2904 −0.973072
\(394\) 0 0
\(395\) 5.56987 0.280250
\(396\) 0 0
\(397\) 25.6056 1.28511 0.642554 0.766240i \(-0.277875\pi\)
0.642554 + 0.766240i \(0.277875\pi\)
\(398\) 0 0
\(399\) −14.8760 −0.744732
\(400\) 0 0
\(401\) 1.40106 0.0699654 0.0349827 0.999388i \(-0.488862\pi\)
0.0349827 + 0.999388i \(0.488862\pi\)
\(402\) 0 0
\(403\) 21.8298 1.08742
\(404\) 0 0
\(405\) 10.0911 0.501429
\(406\) 0 0
\(407\) 29.3219 1.45343
\(408\) 0 0
\(409\) 8.49454 0.420028 0.210014 0.977698i \(-0.432649\pi\)
0.210014 + 0.977698i \(0.432649\pi\)
\(410\) 0 0
\(411\) 38.4750 1.89783
\(412\) 0 0
\(413\) 10.2375 0.503753
\(414\) 0 0
\(415\) −13.7520 −0.675060
\(416\) 0 0
\(417\) −3.01574 −0.147682
\(418\) 0 0
\(419\) −11.0157 −0.538154 −0.269077 0.963119i \(-0.586719\pi\)
−0.269077 + 0.963119i \(0.586719\pi\)
\(420\) 0 0
\(421\) −29.7968 −1.45221 −0.726104 0.687584i \(-0.758671\pi\)
−0.726104 + 0.687584i \(0.758671\pi\)
\(422\) 0 0
\(423\) 9.05533 0.440285
\(424\) 0 0
\(425\) −1.00000 −0.0485071
\(426\) 0 0
\(427\) 10.3839 0.502511
\(428\) 0 0
\(429\) 55.0739 2.65899
\(430\) 0 0
\(431\) 19.1397 0.921929 0.460964 0.887419i \(-0.347504\pi\)
0.460964 + 0.887419i \(0.347504\pi\)
\(432\) 0 0
\(433\) −24.0582 −1.15616 −0.578081 0.815980i \(-0.696198\pi\)
−0.578081 + 0.815980i \(0.696198\pi\)
\(434\) 0 0
\(435\) 6.59228 0.316076
\(436\) 0 0
\(437\) 33.3839 1.59697
\(438\) 0 0
\(439\) −5.89842 −0.281516 −0.140758 0.990044i \(-0.544954\pi\)
−0.140758 + 0.990044i \(0.544954\pi\)
\(440\) 0 0
\(441\) 2.57653 0.122692
\(442\) 0 0
\(443\) 13.1621 0.625352 0.312676 0.949860i \(-0.398775\pi\)
0.312676 + 0.949860i \(0.398775\pi\)
\(444\) 0 0
\(445\) −10.9380 −0.518511
\(446\) 0 0
\(447\) −16.5989 −0.785103
\(448\) 0 0
\(449\) 7.44588 0.351393 0.175696 0.984444i \(-0.443782\pi\)
0.175696 + 0.984444i \(0.443782\pi\)
\(450\) 0 0
\(451\) −11.2995 −0.532071
\(452\) 0 0
\(453\) 25.8140 1.21285
\(454\) 0 0
\(455\) 6.93800 0.325259
\(456\) 0 0
\(457\) 27.0291 1.26437 0.632183 0.774819i \(-0.282159\pi\)
0.632183 + 0.774819i \(0.282159\pi\)
\(458\) 0 0
\(459\) 1.00000 0.0466760
\(460\) 0 0
\(461\) −29.4196 −1.37021 −0.685104 0.728445i \(-0.740243\pi\)
−0.685104 + 0.728445i \(0.740243\pi\)
\(462\) 0 0
\(463\) −12.2151 −0.567682 −0.283841 0.958871i \(-0.591609\pi\)
−0.283841 + 0.958871i \(0.591609\pi\)
\(464\) 0 0
\(465\) −7.43013 −0.344564
\(466\) 0 0
\(467\) −12.1555 −0.562488 −0.281244 0.959636i \(-0.590747\pi\)
−0.281244 + 0.959636i \(0.590747\pi\)
\(468\) 0 0
\(469\) 12.0844 0.558006
\(470\) 0 0
\(471\) −1.01574 −0.0468030
\(472\) 0 0
\(473\) −11.5079 −0.529132
\(474\) 0 0
\(475\) 6.29947 0.289040
\(476\) 0 0
\(477\) 15.3166 0.701301
\(478\) 0 0
\(479\) −12.3839 −0.565834 −0.282917 0.959144i \(-0.591302\pi\)
−0.282917 + 0.959144i \(0.591302\pi\)
\(480\) 0 0
\(481\) 60.5198 2.75946
\(482\) 0 0
\(483\) −12.5145 −0.569431
\(484\) 0 0
\(485\) −14.3839 −0.653138
\(486\) 0 0
\(487\) −20.5145 −0.929602 −0.464801 0.885415i \(-0.653874\pi\)
−0.464801 + 0.885415i \(0.653874\pi\)
\(488\) 0 0
\(489\) −40.5064 −1.83176
\(490\) 0 0
\(491\) 8.20173 0.370139 0.185070 0.982725i \(-0.440749\pi\)
0.185070 + 0.982725i \(0.440749\pi\)
\(492\) 0 0
\(493\) 2.79160 0.125727
\(494\) 0 0
\(495\) −8.66094 −0.389280
\(496\) 0 0
\(497\) 14.8140 0.664499
\(498\) 0 0
\(499\) −22.9447 −1.02714 −0.513572 0.858046i \(-0.671678\pi\)
−0.513572 + 0.858046i \(0.671678\pi\)
\(500\) 0 0
\(501\) 54.3510 2.42822
\(502\) 0 0
\(503\) 7.33522 0.327061 0.163531 0.986538i \(-0.447712\pi\)
0.163531 + 0.986538i \(0.447712\pi\)
\(504\) 0 0
\(505\) −14.6834 −0.653401
\(506\) 0 0
\(507\) 82.9723 3.68493
\(508\) 0 0
\(509\) −3.89842 −0.172794 −0.0863971 0.996261i \(-0.527535\pi\)
−0.0863971 + 0.996261i \(0.527535\pi\)
\(510\) 0 0
\(511\) 15.2441 0.674361
\(512\) 0 0
\(513\) −6.29947 −0.278128
\(514\) 0 0
\(515\) 12.5765 0.554188
\(516\) 0 0
\(517\) 11.8140 0.519580
\(518\) 0 0
\(519\) 6.23081 0.273502
\(520\) 0 0
\(521\) −7.46828 −0.327192 −0.163596 0.986527i \(-0.552309\pi\)
−0.163596 + 0.986527i \(0.552309\pi\)
\(522\) 0 0
\(523\) 31.7653 1.38900 0.694501 0.719492i \(-0.255625\pi\)
0.694501 + 0.719492i \(0.255625\pi\)
\(524\) 0 0
\(525\) −2.36147 −0.103063
\(526\) 0 0
\(527\) −3.14640 −0.137059
\(528\) 0 0
\(529\) 5.08441 0.221061
\(530\) 0 0
\(531\) −26.3772 −1.14467
\(532\) 0 0
\(533\) −23.3219 −1.01018
\(534\) 0 0
\(535\) 6.30614 0.272638
\(536\) 0 0
\(537\) −15.8760 −0.685100
\(538\) 0 0
\(539\) 3.36147 0.144789
\(540\) 0 0
\(541\) −29.3930 −1.26370 −0.631851 0.775090i \(-0.717705\pi\)
−0.631851 + 0.775090i \(0.717705\pi\)
\(542\) 0 0
\(543\) −48.6438 −2.08750
\(544\) 0 0
\(545\) −17.0224 −0.729160
\(546\) 0 0
\(547\) −25.6609 −1.09718 −0.548591 0.836091i \(-0.684836\pi\)
−0.548591 + 0.836091i \(0.684836\pi\)
\(548\) 0 0
\(549\) −26.7544 −1.14185
\(550\) 0 0
\(551\) −17.5856 −0.749172
\(552\) 0 0
\(553\) 5.56987 0.236855
\(554\) 0 0
\(555\) −20.5989 −0.874376
\(556\) 0 0
\(557\) −4.46828 −0.189327 −0.0946637 0.995509i \(-0.530178\pi\)
−0.0946637 + 0.995509i \(0.530178\pi\)
\(558\) 0 0
\(559\) −23.7520 −1.00460
\(560\) 0 0
\(561\) −7.93800 −0.335143
\(562\) 0 0
\(563\) 6.00000 0.252870 0.126435 0.991975i \(-0.459647\pi\)
0.126435 + 0.991975i \(0.459647\pi\)
\(564\) 0 0
\(565\) −15.4392 −0.649532
\(566\) 0 0
\(567\) 10.0911 0.423785
\(568\) 0 0
\(569\) 7.99333 0.335098 0.167549 0.985864i \(-0.446415\pi\)
0.167549 + 0.985864i \(0.446415\pi\)
\(570\) 0 0
\(571\) −13.4855 −0.564349 −0.282175 0.959363i \(-0.591056\pi\)
−0.282175 + 0.959363i \(0.591056\pi\)
\(572\) 0 0
\(573\) 59.5975 2.48972
\(574\) 0 0
\(575\) 5.29947 0.221003
\(576\) 0 0
\(577\) −13.7783 −0.573597 −0.286798 0.957991i \(-0.592591\pi\)
−0.286798 + 0.957991i \(0.592591\pi\)
\(578\) 0 0
\(579\) −62.8655 −2.61260
\(580\) 0 0
\(581\) −13.7520 −0.570530
\(582\) 0 0
\(583\) 19.9828 0.827604
\(584\) 0 0
\(585\) −17.8760 −0.739082
\(586\) 0 0
\(587\) −31.1846 −1.28712 −0.643562 0.765394i \(-0.722544\pi\)
−0.643562 + 0.765394i \(0.722544\pi\)
\(588\) 0 0
\(589\) 19.8207 0.816697
\(590\) 0 0
\(591\) 38.4750 1.58265
\(592\) 0 0
\(593\) 8.56320 0.351649 0.175824 0.984422i \(-0.443741\pi\)
0.175824 + 0.984422i \(0.443741\pi\)
\(594\) 0 0
\(595\) −1.00000 −0.0409960
\(596\) 0 0
\(597\) 38.6371 1.58131
\(598\) 0 0
\(599\) 33.2203 1.35734 0.678672 0.734441i \(-0.262556\pi\)
0.678672 + 0.734441i \(0.262556\pi\)
\(600\) 0 0
\(601\) 5.25081 0.214185 0.107092 0.994249i \(-0.465846\pi\)
0.107092 + 0.994249i \(0.465846\pi\)
\(602\) 0 0
\(603\) −31.1359 −1.26795
\(604\) 0 0
\(605\) −0.299472 −0.0121753
\(606\) 0 0
\(607\) −16.0582 −0.651780 −0.325890 0.945408i \(-0.605664\pi\)
−0.325890 + 0.945408i \(0.605664\pi\)
\(608\) 0 0
\(609\) 6.59228 0.267133
\(610\) 0 0
\(611\) 24.3839 0.986466
\(612\) 0 0
\(613\) −0.507872 −0.0205127 −0.0102564 0.999947i \(-0.503265\pi\)
−0.0102564 + 0.999947i \(0.503265\pi\)
\(614\) 0 0
\(615\) 7.93800 0.320091
\(616\) 0 0
\(617\) 14.5303 0.584967 0.292484 0.956271i \(-0.405518\pi\)
0.292484 + 0.956271i \(0.405518\pi\)
\(618\) 0 0
\(619\) 11.7072 0.470552 0.235276 0.971929i \(-0.424401\pi\)
0.235276 + 0.971929i \(0.424401\pi\)
\(620\) 0 0
\(621\) −5.29947 −0.212660
\(622\) 0 0
\(623\) −10.9380 −0.438222
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 50.0052 1.99702
\(628\) 0 0
\(629\) −8.72294 −0.347806
\(630\) 0 0
\(631\) 16.9762 0.675810 0.337905 0.941180i \(-0.390282\pi\)
0.337905 + 0.941180i \(0.390282\pi\)
\(632\) 0 0
\(633\) −7.41439 −0.294695
\(634\) 0 0
\(635\) 2.33906 0.0928227
\(636\) 0 0
\(637\) 6.93800 0.274894
\(638\) 0 0
\(639\) −38.1688 −1.50993
\(640\) 0 0
\(641\) −22.7544 −0.898746 −0.449373 0.893344i \(-0.648353\pi\)
−0.449373 + 0.893344i \(0.648353\pi\)
\(642\) 0 0
\(643\) 3.38772 0.133599 0.0667994 0.997766i \(-0.478721\pi\)
0.0667994 + 0.997766i \(0.478721\pi\)
\(644\) 0 0
\(645\) 8.08441 0.318323
\(646\) 0 0
\(647\) −3.18599 −0.125254 −0.0626271 0.998037i \(-0.519948\pi\)
−0.0626271 + 0.998037i \(0.519948\pi\)
\(648\) 0 0
\(649\) −34.4130 −1.35083
\(650\) 0 0
\(651\) −7.43013 −0.291210
\(652\) 0 0
\(653\) −32.6304 −1.27693 −0.638464 0.769652i \(-0.720430\pi\)
−0.638464 + 0.769652i \(0.720430\pi\)
\(654\) 0 0
\(655\) 8.16881 0.319182
\(656\) 0 0
\(657\) −39.2771 −1.53234
\(658\) 0 0
\(659\) 9.23081 0.359581 0.179791 0.983705i \(-0.442458\pi\)
0.179791 + 0.983705i \(0.442458\pi\)
\(660\) 0 0
\(661\) 49.9919 1.94446 0.972230 0.234028i \(-0.0751909\pi\)
0.972230 + 0.234028i \(0.0751909\pi\)
\(662\) 0 0
\(663\) −16.3839 −0.636297
\(664\) 0 0
\(665\) 6.29947 0.244283
\(666\) 0 0
\(667\) −14.7940 −0.572826
\(668\) 0 0
\(669\) −2.93800 −0.113590
\(670\) 0 0
\(671\) −34.9051 −1.34750
\(672\) 0 0
\(673\) −25.3285 −0.976344 −0.488172 0.872747i \(-0.662336\pi\)
−0.488172 + 0.872747i \(0.662336\pi\)
\(674\) 0 0
\(675\) −1.00000 −0.0384900
\(676\) 0 0
\(677\) −30.4392 −1.16987 −0.584937 0.811079i \(-0.698881\pi\)
−0.584937 + 0.811079i \(0.698881\pi\)
\(678\) 0 0
\(679\) −14.3839 −0.552003
\(680\) 0 0
\(681\) 24.6147 0.943237
\(682\) 0 0
\(683\) −33.1201 −1.26731 −0.633654 0.773617i \(-0.718446\pi\)
−0.633654 + 0.773617i \(0.718446\pi\)
\(684\) 0 0
\(685\) −16.2928 −0.622516
\(686\) 0 0
\(687\) 36.4220 1.38959
\(688\) 0 0
\(689\) 41.2441 1.57128
\(690\) 0 0
\(691\) −30.7544 −1.16995 −0.584977 0.811050i \(-0.698896\pi\)
−0.584977 + 0.811050i \(0.698896\pi\)
\(692\) 0 0
\(693\) −8.66094 −0.329002
\(694\) 0 0
\(695\) 1.27706 0.0484417
\(696\) 0 0
\(697\) 3.36147 0.127325
\(698\) 0 0
\(699\) 38.3972 1.45232
\(700\) 0 0
\(701\) −22.4883 −0.849371 −0.424685 0.905341i \(-0.639615\pi\)
−0.424685 + 0.905341i \(0.639615\pi\)
\(702\) 0 0
\(703\) 54.9499 2.07247
\(704\) 0 0
\(705\) −8.29947 −0.312576
\(706\) 0 0
\(707\) −14.6834 −0.552224
\(708\) 0 0
\(709\) −23.1292 −0.868636 −0.434318 0.900760i \(-0.643011\pi\)
−0.434318 + 0.900760i \(0.643011\pi\)
\(710\) 0 0
\(711\) −14.3510 −0.538203
\(712\) 0 0
\(713\) 16.6743 0.624456
\(714\) 0 0
\(715\) −23.3219 −0.872189
\(716\) 0 0
\(717\) −16.3681 −0.611279
\(718\) 0 0
\(719\) 1.00908 0.0376322 0.0188161 0.999823i \(-0.494010\pi\)
0.0188161 + 0.999823i \(0.494010\pi\)
\(720\) 0 0
\(721\) 12.5765 0.468375
\(722\) 0 0
\(723\) −20.2532 −0.753225
\(724\) 0 0
\(725\) −2.79160 −0.103677
\(726\) 0 0
\(727\) 24.3748 0.904011 0.452006 0.892015i \(-0.350709\pi\)
0.452006 + 0.892015i \(0.350709\pi\)
\(728\) 0 0
\(729\) −18.9156 −0.700578
\(730\) 0 0
\(731\) 3.42347 0.126621
\(732\) 0 0
\(733\) −7.15307 −0.264205 −0.132102 0.991236i \(-0.542173\pi\)
−0.132102 + 0.991236i \(0.542173\pi\)
\(734\) 0 0
\(735\) −2.36147 −0.0871041
\(736\) 0 0
\(737\) −40.6214 −1.49631
\(738\) 0 0
\(739\) −7.92226 −0.291425 −0.145713 0.989327i \(-0.546547\pi\)
−0.145713 + 0.989327i \(0.546547\pi\)
\(740\) 0 0
\(741\) 103.210 3.79151
\(742\) 0 0
\(743\) 7.59653 0.278690 0.139345 0.990244i \(-0.455500\pi\)
0.139345 + 0.990244i \(0.455500\pi\)
\(744\) 0 0
\(745\) 7.02908 0.257525
\(746\) 0 0
\(747\) 35.4325 1.29641
\(748\) 0 0
\(749\) 6.30614 0.230421
\(750\) 0 0
\(751\) −45.1516 −1.64761 −0.823803 0.566876i \(-0.808152\pi\)
−0.823803 + 0.566876i \(0.808152\pi\)
\(752\) 0 0
\(753\) −50.5503 −1.84215
\(754\) 0 0
\(755\) −10.9313 −0.397832
\(756\) 0 0
\(757\) 38.3839 1.39509 0.697543 0.716543i \(-0.254277\pi\)
0.697543 + 0.716543i \(0.254277\pi\)
\(758\) 0 0
\(759\) 42.0672 1.52694
\(760\) 0 0
\(761\) 20.0582 0.727107 0.363554 0.931573i \(-0.381563\pi\)
0.363554 + 0.931573i \(0.381563\pi\)
\(762\) 0 0
\(763\) −17.0224 −0.616253
\(764\) 0 0
\(765\) 2.57653 0.0931548
\(766\) 0 0
\(767\) −71.0276 −2.56466
\(768\) 0 0
\(769\) −14.9828 −0.540294 −0.270147 0.962819i \(-0.587072\pi\)
−0.270147 + 0.962819i \(0.587072\pi\)
\(770\) 0 0
\(771\) −36.8207 −1.32606
\(772\) 0 0
\(773\) 33.8760 1.21844 0.609218 0.793003i \(-0.291484\pi\)
0.609218 + 0.793003i \(0.291484\pi\)
\(774\) 0 0
\(775\) 3.14640 0.113022
\(776\) 0 0
\(777\) −20.5989 −0.738983
\(778\) 0 0
\(779\) −21.1755 −0.758690
\(780\) 0 0
\(781\) −49.7968 −1.78187
\(782\) 0 0
\(783\) 2.79160 0.0997637
\(784\) 0 0
\(785\) 0.430132 0.0153521
\(786\) 0 0
\(787\) 6.60561 0.235465 0.117732 0.993045i \(-0.462438\pi\)
0.117732 + 0.993045i \(0.462438\pi\)
\(788\) 0 0
\(789\) 35.7058 1.27116
\(790\) 0 0
\(791\) −15.4392 −0.548955
\(792\) 0 0
\(793\) −72.0434 −2.55834
\(794\) 0 0
\(795\) −14.0382 −0.497882
\(796\) 0 0
\(797\) −18.4616 −0.653944 −0.326972 0.945034i \(-0.606028\pi\)
−0.326972 + 0.945034i \(0.606028\pi\)
\(798\) 0 0
\(799\) −3.51454 −0.124335
\(800\) 0 0
\(801\) 28.1821 0.995767
\(802\) 0 0
\(803\) −51.2427 −1.80832
\(804\) 0 0
\(805\) 5.29947 0.186782
\(806\) 0 0
\(807\) 38.3972 1.35165
\(808\) 0 0
\(809\) 28.9499 1.01782 0.508912 0.860818i \(-0.330048\pi\)
0.508912 + 0.860818i \(0.330048\pi\)
\(810\) 0 0
\(811\) 51.6280 1.81291 0.906453 0.422308i \(-0.138780\pi\)
0.906453 + 0.422308i \(0.138780\pi\)
\(812\) 0 0
\(813\) 13.4774 0.472672
\(814\) 0 0
\(815\) 17.1531 0.600846
\(816\) 0 0
\(817\) −21.5660 −0.754500
\(818\) 0 0
\(819\) −17.8760 −0.624638
\(820\) 0 0
\(821\) −10.5660 −0.368757 −0.184378 0.982855i \(-0.559027\pi\)
−0.184378 + 0.982855i \(0.559027\pi\)
\(822\) 0 0
\(823\) 28.0977 0.979426 0.489713 0.871884i \(-0.337102\pi\)
0.489713 + 0.871884i \(0.337102\pi\)
\(824\) 0 0
\(825\) 7.93800 0.276366
\(826\) 0 0
\(827\) 8.54079 0.296992 0.148496 0.988913i \(-0.452557\pi\)
0.148496 + 0.988913i \(0.452557\pi\)
\(828\) 0 0
\(829\) 15.2823 0.530776 0.265388 0.964142i \(-0.414500\pi\)
0.265388 + 0.964142i \(0.414500\pi\)
\(830\) 0 0
\(831\) 21.5832 0.748713
\(832\) 0 0
\(833\) −1.00000 −0.0346479
\(834\) 0 0
\(835\) −23.0157 −0.796493
\(836\) 0 0
\(837\) −3.14640 −0.108756
\(838\) 0 0
\(839\) 10.3481 0.357257 0.178629 0.983917i \(-0.442834\pi\)
0.178629 + 0.983917i \(0.442834\pi\)
\(840\) 0 0
\(841\) −21.2070 −0.731275
\(842\) 0 0
\(843\) 46.5131 1.60200
\(844\) 0 0
\(845\) −35.1359 −1.20871
\(846\) 0 0
\(847\) −0.299472 −0.0102900
\(848\) 0 0
\(849\) −2.93800 −0.100832
\(850\) 0 0
\(851\) 46.2270 1.58464
\(852\) 0 0
\(853\) −26.0091 −0.890534 −0.445267 0.895398i \(-0.646891\pi\)
−0.445267 + 0.895398i \(0.646891\pi\)
\(854\) 0 0
\(855\) −16.2308 −0.555082
\(856\) 0 0
\(857\) 8.24655 0.281697 0.140848 0.990031i \(-0.455017\pi\)
0.140848 + 0.990031i \(0.455017\pi\)
\(858\) 0 0
\(859\) 42.5975 1.45341 0.726704 0.686951i \(-0.241051\pi\)
0.726704 + 0.686951i \(0.241051\pi\)
\(860\) 0 0
\(861\) 7.93800 0.270526
\(862\) 0 0
\(863\) −25.4011 −0.864662 −0.432331 0.901715i \(-0.642309\pi\)
−0.432331 + 0.901715i \(0.642309\pi\)
\(864\) 0 0
\(865\) −2.63853 −0.0897128
\(866\) 0 0
\(867\) 2.36147 0.0801997
\(868\) 0 0
\(869\) −18.7229 −0.635132
\(870\) 0 0
\(871\) −83.8417 −2.84087
\(872\) 0 0
\(873\) 37.0606 1.25431
\(874\) 0 0
\(875\) 1.00000 0.0338062
\(876\) 0 0
\(877\) 25.2771 0.853546 0.426773 0.904359i \(-0.359650\pi\)
0.426773 + 0.904359i \(0.359650\pi\)
\(878\) 0 0
\(879\) 33.2756 1.12236
\(880\) 0 0
\(881\) −28.5107 −0.960550 −0.480275 0.877118i \(-0.659463\pi\)
−0.480275 + 0.877118i \(0.659463\pi\)
\(882\) 0 0
\(883\) −17.1979 −0.578755 −0.289378 0.957215i \(-0.593448\pi\)
−0.289378 + 0.957215i \(0.593448\pi\)
\(884\) 0 0
\(885\) 24.1755 0.812650
\(886\) 0 0
\(887\) −53.4115 −1.79338 −0.896692 0.442656i \(-0.854036\pi\)
−0.896692 + 0.442656i \(0.854036\pi\)
\(888\) 0 0
\(889\) 2.33906 0.0784495
\(890\) 0 0
\(891\) −33.9208 −1.13639
\(892\) 0 0
\(893\) 22.1397 0.740878
\(894\) 0 0
\(895\) 6.72294 0.224723
\(896\) 0 0
\(897\) 86.8259 2.89903
\(898\) 0 0
\(899\) −8.78350 −0.292946
\(900\) 0 0
\(901\) −5.94467 −0.198046
\(902\) 0 0
\(903\) 8.08441 0.269032
\(904\) 0 0
\(905\) 20.5989 0.684732
\(906\) 0 0
\(907\) −2.80068 −0.0929950 −0.0464975 0.998918i \(-0.514806\pi\)
−0.0464975 + 0.998918i \(0.514806\pi\)
\(908\) 0 0
\(909\) 37.8322 1.25481
\(910\) 0 0
\(911\) −21.5699 −0.714642 −0.357321 0.933982i \(-0.616310\pi\)
−0.357321 + 0.933982i \(0.616310\pi\)
\(912\) 0 0
\(913\) 46.2270 1.52989
\(914\) 0 0
\(915\) 24.5212 0.810646
\(916\) 0 0
\(917\) 8.16881 0.269758
\(918\) 0 0
\(919\) −18.5765 −0.612783 −0.306392 0.951906i \(-0.599122\pi\)
−0.306392 + 0.951906i \(0.599122\pi\)
\(920\) 0 0
\(921\) −53.0739 −1.74884
\(922\) 0 0
\(923\) −102.780 −3.38303
\(924\) 0 0
\(925\) 8.72294 0.286808
\(926\) 0 0
\(927\) −32.4039 −1.06428
\(928\) 0 0
\(929\) −13.7520 −0.451189 −0.225594 0.974221i \(-0.572432\pi\)
−0.225594 + 0.974221i \(0.572432\pi\)
\(930\) 0 0
\(931\) 6.29947 0.206457
\(932\) 0 0
\(933\) 23.2690 0.761792
\(934\) 0 0
\(935\) 3.36147 0.109932
\(936\) 0 0
\(937\) −37.8536 −1.23662 −0.618312 0.785933i \(-0.712183\pi\)
−0.618312 + 0.785933i \(0.712183\pi\)
\(938\) 0 0
\(939\) 12.8918 0.420706
\(940\) 0 0
\(941\) 31.2175 1.01766 0.508830 0.860867i \(-0.330078\pi\)
0.508830 + 0.860867i \(0.330078\pi\)
\(942\) 0 0
\(943\) −17.8140 −0.580104
\(944\) 0 0
\(945\) −1.00000 −0.0325300
\(946\) 0 0
\(947\) 20.9695 0.681417 0.340708 0.940169i \(-0.389333\pi\)
0.340708 + 0.940169i \(0.389333\pi\)
\(948\) 0 0
\(949\) −105.764 −3.43324
\(950\) 0 0
\(951\) −35.7835 −1.16036
\(952\) 0 0
\(953\) −10.7096 −0.346918 −0.173459 0.984841i \(-0.555494\pi\)
−0.173459 + 0.984841i \(0.555494\pi\)
\(954\) 0 0
\(955\) −25.2375 −0.816666
\(956\) 0 0
\(957\) −22.1597 −0.716323
\(958\) 0 0
\(959\) −16.2928 −0.526122
\(960\) 0 0
\(961\) −21.1001 −0.680650
\(962\) 0 0
\(963\) −16.2480 −0.523584
\(964\) 0 0
\(965\) 26.6214 0.856972
\(966\) 0 0
\(967\) 7.45921 0.239872 0.119936 0.992782i \(-0.461731\pi\)
0.119936 + 0.992782i \(0.461731\pi\)
\(968\) 0 0
\(969\) −14.8760 −0.477886
\(970\) 0 0
\(971\) −43.5107 −1.39632 −0.698162 0.715940i \(-0.745999\pi\)
−0.698162 + 0.715940i \(0.745999\pi\)
\(972\) 0 0
\(973\) 1.27706 0.0409407
\(974\) 0 0
\(975\) 16.3839 0.524704
\(976\) 0 0
\(977\) 43.6414 1.39621 0.698105 0.715995i \(-0.254027\pi\)
0.698105 + 0.715995i \(0.254027\pi\)
\(978\) 0 0
\(979\) 36.7678 1.17510
\(980\) 0 0
\(981\) 43.8588 1.40030
\(982\) 0 0
\(983\) 22.7544 0.725753 0.362877 0.931837i \(-0.381795\pi\)
0.362877 + 0.931837i \(0.381795\pi\)
\(984\) 0 0
\(985\) −16.2928 −0.519132
\(986\) 0 0
\(987\) −8.29947 −0.264175
\(988\) 0 0
\(989\) −18.1426 −0.576900
\(990\) 0 0
\(991\) −4.65853 −0.147983 −0.0739916 0.997259i \(-0.523574\pi\)
−0.0739916 + 0.997259i \(0.523574\pi\)
\(992\) 0 0
\(993\) −19.7983 −0.628279
\(994\) 0 0
\(995\) −16.3615 −0.518693
\(996\) 0 0
\(997\) −41.0739 −1.30082 −0.650412 0.759582i \(-0.725404\pi\)
−0.650412 + 0.759582i \(0.725404\pi\)
\(998\) 0 0
\(999\) −8.72294 −0.275982
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9520.2.a.u.1.3 3
4.3 odd 2 1190.2.a.l.1.1 3
20.19 odd 2 5950.2.a.bk.1.3 3
28.27 even 2 8330.2.a.bs.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1190.2.a.l.1.1 3 4.3 odd 2
5950.2.a.bk.1.3 3 20.19 odd 2
8330.2.a.bs.1.3 3 28.27 even 2
9520.2.a.u.1.3 3 1.1 even 1 trivial