Properties

Label 1190.2.a.l.1.1
Level $1190$
Weight $2$
Character 1190.1
Self dual yes
Analytic conductor $9.502$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1190,2,Mod(1,1190)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1190, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1190.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1190 = 2 \cdot 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1190.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-3,0,3,-3,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.50219784053\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.837.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 6x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.36147\) of defining polynomial
Character \(\chi\) \(=\) 1190.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -2.36147 q^{3} +1.00000 q^{4} -1.00000 q^{5} +2.36147 q^{6} +1.00000 q^{7} -1.00000 q^{8} +2.57653 q^{9} +1.00000 q^{10} -3.36147 q^{11} -2.36147 q^{12} +6.93800 q^{13} -1.00000 q^{14} +2.36147 q^{15} +1.00000 q^{16} -1.00000 q^{17} -2.57653 q^{18} -6.29947 q^{19} -1.00000 q^{20} -2.36147 q^{21} +3.36147 q^{22} -5.29947 q^{23} +2.36147 q^{24} +1.00000 q^{25} -6.93800 q^{26} +1.00000 q^{27} +1.00000 q^{28} -2.79160 q^{29} -2.36147 q^{30} -3.14640 q^{31} -1.00000 q^{32} +7.93800 q^{33} +1.00000 q^{34} -1.00000 q^{35} +2.57653 q^{36} +8.72294 q^{37} +6.29947 q^{38} -16.3839 q^{39} +1.00000 q^{40} -3.36147 q^{41} +2.36147 q^{42} +3.42347 q^{43} -3.36147 q^{44} -2.57653 q^{45} +5.29947 q^{46} -3.51454 q^{47} -2.36147 q^{48} +1.00000 q^{49} -1.00000 q^{50} +2.36147 q^{51} +6.93800 q^{52} +5.94467 q^{53} -1.00000 q^{54} +3.36147 q^{55} -1.00000 q^{56} +14.8760 q^{57} +2.79160 q^{58} +10.2375 q^{59} +2.36147 q^{60} -10.3839 q^{61} +3.14640 q^{62} +2.57653 q^{63} +1.00000 q^{64} -6.93800 q^{65} -7.93800 q^{66} +12.0844 q^{67} -1.00000 q^{68} +12.5145 q^{69} +1.00000 q^{70} +14.8140 q^{71} -2.57653 q^{72} -15.2441 q^{73} -8.72294 q^{74} -2.36147 q^{75} -6.29947 q^{76} -3.36147 q^{77} +16.3839 q^{78} +5.56987 q^{79} -1.00000 q^{80} -10.0911 q^{81} +3.36147 q^{82} -13.7520 q^{83} -2.36147 q^{84} +1.00000 q^{85} -3.42347 q^{86} +6.59228 q^{87} +3.36147 q^{88} +10.9380 q^{89} +2.57653 q^{90} +6.93800 q^{91} -5.29947 q^{92} +7.43013 q^{93} +3.51454 q^{94} +6.29947 q^{95} +2.36147 q^{96} +14.3839 q^{97} -1.00000 q^{98} -8.66094 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} + 3 q^{4} - 3 q^{5} + 3 q^{7} - 3 q^{8} + 3 q^{9} + 3 q^{10} - 3 q^{11} + 9 q^{13} - 3 q^{14} + 3 q^{16} - 3 q^{17} - 3 q^{18} - 3 q^{20} + 3 q^{22} + 3 q^{23} + 3 q^{25} - 9 q^{26} + 3 q^{27}+ \cdots - 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −2.36147 −1.36339 −0.681697 0.731634i \(-0.738758\pi\)
−0.681697 + 0.731634i \(0.738758\pi\)
\(4\) 1.00000 0.500000
\(5\) −1.00000 −0.447214
\(6\) 2.36147 0.964066
\(7\) 1.00000 0.377964
\(8\) −1.00000 −0.353553
\(9\) 2.57653 0.858845
\(10\) 1.00000 0.316228
\(11\) −3.36147 −1.01352 −0.506760 0.862087i \(-0.669157\pi\)
−0.506760 + 0.862087i \(0.669157\pi\)
\(12\) −2.36147 −0.681697
\(13\) 6.93800 1.92426 0.962128 0.272598i \(-0.0878830\pi\)
0.962128 + 0.272598i \(0.0878830\pi\)
\(14\) −1.00000 −0.267261
\(15\) 2.36147 0.609729
\(16\) 1.00000 0.250000
\(17\) −1.00000 −0.242536
\(18\) −2.57653 −0.607295
\(19\) −6.29947 −1.44520 −0.722599 0.691267i \(-0.757053\pi\)
−0.722599 + 0.691267i \(0.757053\pi\)
\(20\) −1.00000 −0.223607
\(21\) −2.36147 −0.515315
\(22\) 3.36147 0.716668
\(23\) −5.29947 −1.10502 −0.552508 0.833507i \(-0.686329\pi\)
−0.552508 + 0.833507i \(0.686329\pi\)
\(24\) 2.36147 0.482033
\(25\) 1.00000 0.200000
\(26\) −6.93800 −1.36065
\(27\) 1.00000 0.192450
\(28\) 1.00000 0.188982
\(29\) −2.79160 −0.518387 −0.259194 0.965825i \(-0.583457\pi\)
−0.259194 + 0.965825i \(0.583457\pi\)
\(30\) −2.36147 −0.431143
\(31\) −3.14640 −0.565111 −0.282555 0.959251i \(-0.591182\pi\)
−0.282555 + 0.959251i \(0.591182\pi\)
\(32\) −1.00000 −0.176777
\(33\) 7.93800 1.38183
\(34\) 1.00000 0.171499
\(35\) −1.00000 −0.169031
\(36\) 2.57653 0.429422
\(37\) 8.72294 1.43404 0.717021 0.697052i \(-0.245505\pi\)
0.717021 + 0.697052i \(0.245505\pi\)
\(38\) 6.29947 1.02191
\(39\) −16.3839 −2.62352
\(40\) 1.00000 0.158114
\(41\) −3.36147 −0.524973 −0.262487 0.964936i \(-0.584543\pi\)
−0.262487 + 0.964936i \(0.584543\pi\)
\(42\) 2.36147 0.364383
\(43\) 3.42347 0.522074 0.261037 0.965329i \(-0.415936\pi\)
0.261037 + 0.965329i \(0.415936\pi\)
\(44\) −3.36147 −0.506760
\(45\) −2.57653 −0.384087
\(46\) 5.29947 0.781365
\(47\) −3.51454 −0.512648 −0.256324 0.966591i \(-0.582511\pi\)
−0.256324 + 0.966591i \(0.582511\pi\)
\(48\) −2.36147 −0.340849
\(49\) 1.00000 0.142857
\(50\) −1.00000 −0.141421
\(51\) 2.36147 0.330672
\(52\) 6.93800 0.962128
\(53\) 5.94467 0.816563 0.408282 0.912856i \(-0.366128\pi\)
0.408282 + 0.912856i \(0.366128\pi\)
\(54\) −1.00000 −0.136083
\(55\) 3.36147 0.453260
\(56\) −1.00000 −0.133631
\(57\) 14.8760 1.97038
\(58\) 2.79160 0.366555
\(59\) 10.2375 1.33281 0.666403 0.745592i \(-0.267833\pi\)
0.666403 + 0.745592i \(0.267833\pi\)
\(60\) 2.36147 0.304864
\(61\) −10.3839 −1.32952 −0.664760 0.747057i \(-0.731466\pi\)
−0.664760 + 0.747057i \(0.731466\pi\)
\(62\) 3.14640 0.399594
\(63\) 2.57653 0.324613
\(64\) 1.00000 0.125000
\(65\) −6.93800 −0.860553
\(66\) −7.93800 −0.977101
\(67\) 12.0844 1.47635 0.738173 0.674612i \(-0.235689\pi\)
0.738173 + 0.674612i \(0.235689\pi\)
\(68\) −1.00000 −0.121268
\(69\) 12.5145 1.50657
\(70\) 1.00000 0.119523
\(71\) 14.8140 1.75810 0.879050 0.476730i \(-0.158178\pi\)
0.879050 + 0.476730i \(0.158178\pi\)
\(72\) −2.57653 −0.303648
\(73\) −15.2441 −1.78419 −0.892096 0.451846i \(-0.850766\pi\)
−0.892096 + 0.451846i \(0.850766\pi\)
\(74\) −8.72294 −1.01402
\(75\) −2.36147 −0.272679
\(76\) −6.29947 −0.722599
\(77\) −3.36147 −0.383075
\(78\) 16.3839 1.85511
\(79\) 5.56987 0.626659 0.313330 0.949644i \(-0.398556\pi\)
0.313330 + 0.949644i \(0.398556\pi\)
\(80\) −1.00000 −0.111803
\(81\) −10.0911 −1.12123
\(82\) 3.36147 0.371212
\(83\) −13.7520 −1.50948 −0.754740 0.656024i \(-0.772237\pi\)
−0.754740 + 0.656024i \(0.772237\pi\)
\(84\) −2.36147 −0.257657
\(85\) 1.00000 0.108465
\(86\) −3.42347 −0.369162
\(87\) 6.59228 0.706766
\(88\) 3.36147 0.358334
\(89\) 10.9380 1.15943 0.579713 0.814821i \(-0.303165\pi\)
0.579713 + 0.814821i \(0.303165\pi\)
\(90\) 2.57653 0.271591
\(91\) 6.93800 0.727300
\(92\) −5.29947 −0.552508
\(93\) 7.43013 0.770469
\(94\) 3.51454 0.362497
\(95\) 6.29947 0.646312
\(96\) 2.36147 0.241016
\(97\) 14.3839 1.46046 0.730231 0.683201i \(-0.239413\pi\)
0.730231 + 0.683201i \(0.239413\pi\)
\(98\) −1.00000 −0.101015
\(99\) −8.66094 −0.870457
\(100\) 1.00000 0.100000
\(101\) 14.6834 1.46105 0.730524 0.682887i \(-0.239276\pi\)
0.730524 + 0.682887i \(0.239276\pi\)
\(102\) −2.36147 −0.233820
\(103\) 12.5765 1.23920 0.619601 0.784917i \(-0.287294\pi\)
0.619601 + 0.784917i \(0.287294\pi\)
\(104\) −6.93800 −0.680327
\(105\) 2.36147 0.230456
\(106\) −5.94467 −0.577397
\(107\) 6.30614 0.609637 0.304819 0.952410i \(-0.401404\pi\)
0.304819 + 0.952410i \(0.401404\pi\)
\(108\) 1.00000 0.0962250
\(109\) 17.0224 1.63045 0.815226 0.579144i \(-0.196613\pi\)
0.815226 + 0.579144i \(0.196613\pi\)
\(110\) −3.36147 −0.320503
\(111\) −20.5989 −1.95517
\(112\) 1.00000 0.0944911
\(113\) 15.4392 1.45240 0.726199 0.687484i \(-0.241285\pi\)
0.726199 + 0.687484i \(0.241285\pi\)
\(114\) −14.8760 −1.39327
\(115\) 5.29947 0.494178
\(116\) −2.79160 −0.259194
\(117\) 17.8760 1.65264
\(118\) −10.2375 −0.942436
\(119\) −1.00000 −0.0916698
\(120\) −2.36147 −0.215572
\(121\) 0.299472 0.0272248
\(122\) 10.3839 0.940112
\(123\) 7.93800 0.715746
\(124\) −3.14640 −0.282555
\(125\) −1.00000 −0.0894427
\(126\) −2.57653 −0.229536
\(127\) 2.33906 0.207558 0.103779 0.994600i \(-0.466907\pi\)
0.103779 + 0.994600i \(0.466907\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −8.08441 −0.711792
\(130\) 6.93800 0.608503
\(131\) 8.16881 0.713712 0.356856 0.934159i \(-0.383849\pi\)
0.356856 + 0.934159i \(0.383849\pi\)
\(132\) 7.93800 0.690915
\(133\) −6.29947 −0.546234
\(134\) −12.0844 −1.04393
\(135\) −1.00000 −0.0860663
\(136\) 1.00000 0.0857493
\(137\) 16.2928 1.39199 0.695994 0.718047i \(-0.254964\pi\)
0.695994 + 0.718047i \(0.254964\pi\)
\(138\) −12.5145 −1.06531
\(139\) 1.27706 0.108319 0.0541595 0.998532i \(-0.482752\pi\)
0.0541595 + 0.998532i \(0.482752\pi\)
\(140\) −1.00000 −0.0845154
\(141\) 8.29947 0.698942
\(142\) −14.8140 −1.24316
\(143\) −23.3219 −1.95027
\(144\) 2.57653 0.214711
\(145\) 2.79160 0.231830
\(146\) 15.2441 1.26161
\(147\) −2.36147 −0.194771
\(148\) 8.72294 0.717021
\(149\) −7.02908 −0.575844 −0.287922 0.957654i \(-0.592964\pi\)
−0.287922 + 0.957654i \(0.592964\pi\)
\(150\) 2.36147 0.192813
\(151\) −10.9313 −0.889580 −0.444790 0.895635i \(-0.646722\pi\)
−0.444790 + 0.895635i \(0.646722\pi\)
\(152\) 6.29947 0.510955
\(153\) −2.57653 −0.208300
\(154\) 3.36147 0.270875
\(155\) 3.14640 0.252725
\(156\) −16.3839 −1.31176
\(157\) −0.430132 −0.0343283 −0.0171641 0.999853i \(-0.505464\pi\)
−0.0171641 + 0.999853i \(0.505464\pi\)
\(158\) −5.56987 −0.443115
\(159\) −14.0382 −1.11330
\(160\) 1.00000 0.0790569
\(161\) −5.29947 −0.417657
\(162\) 10.0911 0.792830
\(163\) 17.1531 1.34353 0.671766 0.740763i \(-0.265536\pi\)
0.671766 + 0.740763i \(0.265536\pi\)
\(164\) −3.36147 −0.262487
\(165\) −7.93800 −0.617973
\(166\) 13.7520 1.06736
\(167\) −23.0157 −1.78101 −0.890506 0.454972i \(-0.849649\pi\)
−0.890506 + 0.454972i \(0.849649\pi\)
\(168\) 2.36147 0.182191
\(169\) 35.1359 2.70276
\(170\) −1.00000 −0.0766965
\(171\) −16.2308 −1.24120
\(172\) 3.42347 0.261037
\(173\) 2.63853 0.200604 0.100302 0.994957i \(-0.468019\pi\)
0.100302 + 0.994957i \(0.468019\pi\)
\(174\) −6.59228 −0.499759
\(175\) 1.00000 0.0755929
\(176\) −3.36147 −0.253380
\(177\) −24.1755 −1.81714
\(178\) −10.9380 −0.819838
\(179\) 6.72294 0.502496 0.251248 0.967923i \(-0.419159\pi\)
0.251248 + 0.967923i \(0.419159\pi\)
\(180\) −2.57653 −0.192044
\(181\) −20.5989 −1.53111 −0.765554 0.643372i \(-0.777535\pi\)
−0.765554 + 0.643372i \(0.777535\pi\)
\(182\) −6.93800 −0.514279
\(183\) 24.5212 1.81266
\(184\) 5.29947 0.390682
\(185\) −8.72294 −0.641323
\(186\) −7.43013 −0.544804
\(187\) 3.36147 0.245815
\(188\) −3.51454 −0.256324
\(189\) 1.00000 0.0727393
\(190\) −6.29947 −0.457012
\(191\) −25.2375 −1.82612 −0.913060 0.407826i \(-0.866287\pi\)
−0.913060 + 0.407826i \(0.866287\pi\)
\(192\) −2.36147 −0.170424
\(193\) −26.6214 −1.91625 −0.958124 0.286355i \(-0.907556\pi\)
−0.958124 + 0.286355i \(0.907556\pi\)
\(194\) −14.3839 −1.03270
\(195\) 16.3839 1.17327
\(196\) 1.00000 0.0714286
\(197\) 16.2928 1.16081 0.580407 0.814326i \(-0.302893\pi\)
0.580407 + 0.814326i \(0.302893\pi\)
\(198\) 8.66094 0.615506
\(199\) −16.3615 −1.15983 −0.579917 0.814676i \(-0.696915\pi\)
−0.579917 + 0.814676i \(0.696915\pi\)
\(200\) −1.00000 −0.0707107
\(201\) −28.5369 −2.01284
\(202\) −14.6834 −1.03312
\(203\) −2.79160 −0.195932
\(204\) 2.36147 0.165336
\(205\) 3.36147 0.234775
\(206\) −12.5765 −0.876249
\(207\) −13.6543 −0.949038
\(208\) 6.93800 0.481064
\(209\) 21.1755 1.46474
\(210\) −2.36147 −0.162957
\(211\) 3.13974 0.216148 0.108074 0.994143i \(-0.465532\pi\)
0.108074 + 0.994143i \(0.465532\pi\)
\(212\) 5.94467 0.408282
\(213\) −34.9828 −2.39698
\(214\) −6.30614 −0.431079
\(215\) −3.42347 −0.233478
\(216\) −1.00000 −0.0680414
\(217\) −3.14640 −0.213592
\(218\) −17.0224 −1.15290
\(219\) 35.9986 2.43256
\(220\) 3.36147 0.226630
\(221\) −6.93800 −0.466701
\(222\) 20.5989 1.38251
\(223\) 1.24414 0.0833139 0.0416570 0.999132i \(-0.486736\pi\)
0.0416570 + 0.999132i \(0.486736\pi\)
\(224\) −1.00000 −0.0668153
\(225\) 2.57653 0.171769
\(226\) −15.4392 −1.02700
\(227\) −10.4235 −0.691830 −0.345915 0.938266i \(-0.612431\pi\)
−0.345915 + 0.938266i \(0.612431\pi\)
\(228\) 14.8760 0.985188
\(229\) 15.4235 1.01921 0.509606 0.860408i \(-0.329791\pi\)
0.509606 + 0.860408i \(0.329791\pi\)
\(230\) −5.29947 −0.349437
\(231\) 7.93800 0.522282
\(232\) 2.79160 0.183278
\(233\) 16.2599 1.06522 0.532610 0.846361i \(-0.321211\pi\)
0.532610 + 0.846361i \(0.321211\pi\)
\(234\) −17.8760 −1.16859
\(235\) 3.51454 0.229263
\(236\) 10.2375 0.666403
\(237\) −13.1531 −0.854384
\(238\) 1.00000 0.0648204
\(239\) 6.93134 0.448351 0.224175 0.974549i \(-0.428031\pi\)
0.224175 + 0.974549i \(0.428031\pi\)
\(240\) 2.36147 0.152432
\(241\) −8.57653 −0.552463 −0.276232 0.961091i \(-0.589086\pi\)
−0.276232 + 0.961091i \(0.589086\pi\)
\(242\) −0.299472 −0.0192508
\(243\) 20.8298 1.33623
\(244\) −10.3839 −0.664760
\(245\) −1.00000 −0.0638877
\(246\) −7.93800 −0.506109
\(247\) −43.7058 −2.78093
\(248\) 3.14640 0.199797
\(249\) 32.4750 2.05802
\(250\) 1.00000 0.0632456
\(251\) 21.4063 1.35115 0.675576 0.737290i \(-0.263895\pi\)
0.675576 + 0.737290i \(0.263895\pi\)
\(252\) 2.57653 0.162306
\(253\) 17.8140 1.11996
\(254\) −2.33906 −0.146766
\(255\) −2.36147 −0.147881
\(256\) 1.00000 0.0625000
\(257\) −15.5923 −0.972620 −0.486310 0.873786i \(-0.661657\pi\)
−0.486310 + 0.873786i \(0.661657\pi\)
\(258\) 8.08441 0.503313
\(259\) 8.72294 0.542017
\(260\) −6.93800 −0.430277
\(261\) −7.19266 −0.445214
\(262\) −8.16881 −0.504671
\(263\) −15.1201 −0.932348 −0.466174 0.884693i \(-0.654368\pi\)
−0.466174 + 0.884693i \(0.654368\pi\)
\(264\) −7.93800 −0.488550
\(265\) −5.94467 −0.365178
\(266\) 6.29947 0.386245
\(267\) −25.8298 −1.58076
\(268\) 12.0844 0.738173
\(269\) 16.2599 0.991383 0.495691 0.868499i \(-0.334915\pi\)
0.495691 + 0.868499i \(0.334915\pi\)
\(270\) 1.00000 0.0608581
\(271\) −5.70719 −0.346687 −0.173344 0.984861i \(-0.555457\pi\)
−0.173344 + 0.984861i \(0.555457\pi\)
\(272\) −1.00000 −0.0606339
\(273\) −16.3839 −0.991597
\(274\) −16.2928 −0.984284
\(275\) −3.36147 −0.202704
\(276\) 12.5145 0.753287
\(277\) 9.13974 0.549154 0.274577 0.961565i \(-0.411462\pi\)
0.274577 + 0.961565i \(0.411462\pi\)
\(278\) −1.27706 −0.0765931
\(279\) −8.10682 −0.485342
\(280\) 1.00000 0.0597614
\(281\) 19.6967 1.17501 0.587503 0.809222i \(-0.300111\pi\)
0.587503 + 0.809222i \(0.300111\pi\)
\(282\) −8.29947 −0.494226
\(283\) 1.24414 0.0739566 0.0369783 0.999316i \(-0.488227\pi\)
0.0369783 + 0.999316i \(0.488227\pi\)
\(284\) 14.8140 0.879050
\(285\) −14.8760 −0.881179
\(286\) 23.3219 1.37905
\(287\) −3.36147 −0.198421
\(288\) −2.57653 −0.151824
\(289\) 1.00000 0.0588235
\(290\) −2.79160 −0.163928
\(291\) −33.9671 −1.99119
\(292\) −15.2441 −0.892096
\(293\) 14.0911 0.823209 0.411605 0.911363i \(-0.364968\pi\)
0.411605 + 0.911363i \(0.364968\pi\)
\(294\) 2.36147 0.137724
\(295\) −10.2375 −0.596049
\(296\) −8.72294 −0.507010
\(297\) −3.36147 −0.195052
\(298\) 7.02908 0.407183
\(299\) −36.7678 −2.12633
\(300\) −2.36147 −0.136339
\(301\) 3.42347 0.197325
\(302\) 10.9313 0.629028
\(303\) −34.6743 −1.99199
\(304\) −6.29947 −0.361300
\(305\) 10.3839 0.594579
\(306\) 2.57653 0.147291
\(307\) 22.4750 1.28271 0.641357 0.767243i \(-0.278372\pi\)
0.641357 + 0.767243i \(0.278372\pi\)
\(308\) −3.36147 −0.191537
\(309\) −29.6991 −1.68952
\(310\) −3.14640 −0.178704
\(311\) −9.85360 −0.558746 −0.279373 0.960183i \(-0.590127\pi\)
−0.279373 + 0.960183i \(0.590127\pi\)
\(312\) 16.3839 0.927554
\(313\) 5.45921 0.308573 0.154286 0.988026i \(-0.450692\pi\)
0.154286 + 0.988026i \(0.450692\pi\)
\(314\) 0.430132 0.0242737
\(315\) −2.57653 −0.145171
\(316\) 5.56987 0.313330
\(317\) −15.1531 −0.851081 −0.425541 0.904939i \(-0.639916\pi\)
−0.425541 + 0.904939i \(0.639916\pi\)
\(318\) 14.0382 0.787221
\(319\) 9.38388 0.525396
\(320\) −1.00000 −0.0559017
\(321\) −14.8918 −0.831176
\(322\) 5.29947 0.295328
\(323\) 6.29947 0.350512
\(324\) −10.0911 −0.560615
\(325\) 6.93800 0.384851
\(326\) −17.1531 −0.950021
\(327\) −40.1979 −2.22295
\(328\) 3.36147 0.185606
\(329\) −3.51454 −0.193763
\(330\) 7.93800 0.436973
\(331\) 8.38388 0.460820 0.230410 0.973094i \(-0.425993\pi\)
0.230410 + 0.973094i \(0.425993\pi\)
\(332\) −13.7520 −0.754740
\(333\) 22.4750 1.23162
\(334\) 23.0157 1.25937
\(335\) −12.0844 −0.660242
\(336\) −2.36147 −0.128829
\(337\) −9.94467 −0.541721 −0.270860 0.962619i \(-0.587308\pi\)
−0.270860 + 0.962619i \(0.587308\pi\)
\(338\) −35.1359 −1.91114
\(339\) −36.4592 −1.98019
\(340\) 1.00000 0.0542326
\(341\) 10.5765 0.572751
\(342\) 16.2308 0.877662
\(343\) 1.00000 0.0539949
\(344\) −3.42347 −0.184581
\(345\) −12.5145 −0.673760
\(346\) −2.63853 −0.141848
\(347\) 4.21507 0.226277 0.113138 0.993579i \(-0.463910\pi\)
0.113138 + 0.993579i \(0.463910\pi\)
\(348\) 6.59228 0.353383
\(349\) 5.56987 0.298148 0.149074 0.988826i \(-0.452371\pi\)
0.149074 + 0.988826i \(0.452371\pi\)
\(350\) −1.00000 −0.0534522
\(351\) 6.93800 0.370323
\(352\) 3.36147 0.179167
\(353\) −1.34814 −0.0717540 −0.0358770 0.999356i \(-0.511422\pi\)
−0.0358770 + 0.999356i \(0.511422\pi\)
\(354\) 24.1755 1.28491
\(355\) −14.8140 −0.786246
\(356\) 10.9380 0.579713
\(357\) 2.36147 0.124982
\(358\) −6.72294 −0.355318
\(359\) 9.89842 0.522418 0.261209 0.965282i \(-0.415879\pi\)
0.261209 + 0.965282i \(0.415879\pi\)
\(360\) 2.57653 0.135795
\(361\) 20.6834 1.08860
\(362\) 20.5989 1.08266
\(363\) −0.707194 −0.0371181
\(364\) 6.93800 0.363650
\(365\) 15.2441 0.797915
\(366\) −24.5212 −1.28174
\(367\) 30.4883 1.59148 0.795738 0.605641i \(-0.207083\pi\)
0.795738 + 0.605641i \(0.207083\pi\)
\(368\) −5.29947 −0.276254
\(369\) −8.66094 −0.450871
\(370\) 8.72294 0.453484
\(371\) 5.94467 0.308632
\(372\) 7.43013 0.385234
\(373\) 10.8693 0.562793 0.281397 0.959592i \(-0.409202\pi\)
0.281397 + 0.959592i \(0.409202\pi\)
\(374\) −3.36147 −0.173817
\(375\) 2.36147 0.121946
\(376\) 3.51454 0.181248
\(377\) −19.3681 −0.997510
\(378\) −1.00000 −0.0514344
\(379\) −18.7587 −0.963569 −0.481784 0.876290i \(-0.660011\pi\)
−0.481784 + 0.876290i \(0.660011\pi\)
\(380\) 6.29947 0.323156
\(381\) −5.52361 −0.282983
\(382\) 25.2375 1.29126
\(383\) 21.7453 1.11114 0.555568 0.831471i \(-0.312501\pi\)
0.555568 + 0.831471i \(0.312501\pi\)
\(384\) 2.36147 0.120508
\(385\) 3.36147 0.171316
\(386\) 26.6214 1.35499
\(387\) 8.82068 0.448380
\(388\) 14.3839 0.730231
\(389\) −9.45921 −0.479601 −0.239800 0.970822i \(-0.577082\pi\)
−0.239800 + 0.970822i \(0.577082\pi\)
\(390\) −16.3839 −0.829630
\(391\) 5.29947 0.268006
\(392\) −1.00000 −0.0505076
\(393\) −19.2904 −0.973072
\(394\) −16.2928 −0.820820
\(395\) −5.56987 −0.280250
\(396\) −8.66094 −0.435229
\(397\) 25.6056 1.28511 0.642554 0.766240i \(-0.277875\pi\)
0.642554 + 0.766240i \(0.277875\pi\)
\(398\) 16.3615 0.820126
\(399\) 14.8760 0.744732
\(400\) 1.00000 0.0500000
\(401\) 1.40106 0.0699654 0.0349827 0.999388i \(-0.488862\pi\)
0.0349827 + 0.999388i \(0.488862\pi\)
\(402\) 28.5369 1.42329
\(403\) −21.8298 −1.08742
\(404\) 14.6834 0.730524
\(405\) 10.0911 0.501429
\(406\) 2.79160 0.138545
\(407\) −29.3219 −1.45343
\(408\) −2.36147 −0.116910
\(409\) 8.49454 0.420028 0.210014 0.977698i \(-0.432649\pi\)
0.210014 + 0.977698i \(0.432649\pi\)
\(410\) −3.36147 −0.166011
\(411\) −38.4750 −1.89783
\(412\) 12.5765 0.619601
\(413\) 10.2375 0.503753
\(414\) 13.6543 0.671071
\(415\) 13.7520 0.675060
\(416\) −6.93800 −0.340164
\(417\) −3.01574 −0.147682
\(418\) −21.1755 −1.03573
\(419\) 11.0157 0.538154 0.269077 0.963119i \(-0.413281\pi\)
0.269077 + 0.963119i \(0.413281\pi\)
\(420\) 2.36147 0.115228
\(421\) −29.7968 −1.45221 −0.726104 0.687584i \(-0.758671\pi\)
−0.726104 + 0.687584i \(0.758671\pi\)
\(422\) −3.13974 −0.152840
\(423\) −9.05533 −0.440285
\(424\) −5.94467 −0.288699
\(425\) −1.00000 −0.0485071
\(426\) 34.9828 1.69492
\(427\) −10.3839 −0.502511
\(428\) 6.30614 0.304819
\(429\) 55.0739 2.65899
\(430\) 3.42347 0.165094
\(431\) −19.1397 −0.921929 −0.460964 0.887419i \(-0.652496\pi\)
−0.460964 + 0.887419i \(0.652496\pi\)
\(432\) 1.00000 0.0481125
\(433\) −24.0582 −1.15616 −0.578081 0.815980i \(-0.696198\pi\)
−0.578081 + 0.815980i \(0.696198\pi\)
\(434\) 3.14640 0.151032
\(435\) −6.59228 −0.316076
\(436\) 17.0224 0.815226
\(437\) 33.3839 1.59697
\(438\) −35.9986 −1.72008
\(439\) 5.89842 0.281516 0.140758 0.990044i \(-0.455046\pi\)
0.140758 + 0.990044i \(0.455046\pi\)
\(440\) −3.36147 −0.160252
\(441\) 2.57653 0.122692
\(442\) 6.93800 0.330007
\(443\) −13.1621 −0.625352 −0.312676 0.949860i \(-0.601225\pi\)
−0.312676 + 0.949860i \(0.601225\pi\)
\(444\) −20.5989 −0.977583
\(445\) −10.9380 −0.518511
\(446\) −1.24414 −0.0589119
\(447\) 16.5989 0.785103
\(448\) 1.00000 0.0472456
\(449\) 7.44588 0.351393 0.175696 0.984444i \(-0.443782\pi\)
0.175696 + 0.984444i \(0.443782\pi\)
\(450\) −2.57653 −0.121459
\(451\) 11.2995 0.532071
\(452\) 15.4392 0.726199
\(453\) 25.8140 1.21285
\(454\) 10.4235 0.489197
\(455\) −6.93800 −0.325259
\(456\) −14.8760 −0.696633
\(457\) 27.0291 1.26437 0.632183 0.774819i \(-0.282159\pi\)
0.632183 + 0.774819i \(0.282159\pi\)
\(458\) −15.4235 −0.720691
\(459\) −1.00000 −0.0466760
\(460\) 5.29947 0.247089
\(461\) −29.4196 −1.37021 −0.685104 0.728445i \(-0.740243\pi\)
−0.685104 + 0.728445i \(0.740243\pi\)
\(462\) −7.93800 −0.369309
\(463\) 12.2151 0.567682 0.283841 0.958871i \(-0.408391\pi\)
0.283841 + 0.958871i \(0.408391\pi\)
\(464\) −2.79160 −0.129597
\(465\) −7.43013 −0.344564
\(466\) −16.2599 −0.753225
\(467\) 12.1555 0.562488 0.281244 0.959636i \(-0.409253\pi\)
0.281244 + 0.959636i \(0.409253\pi\)
\(468\) 17.8760 0.826319
\(469\) 12.0844 0.558006
\(470\) −3.51454 −0.162114
\(471\) 1.01574 0.0468030
\(472\) −10.2375 −0.471218
\(473\) −11.5079 −0.529132
\(474\) 13.1531 0.604140
\(475\) −6.29947 −0.289040
\(476\) −1.00000 −0.0458349
\(477\) 15.3166 0.701301
\(478\) −6.93134 −0.317032
\(479\) 12.3839 0.565834 0.282917 0.959144i \(-0.408698\pi\)
0.282917 + 0.959144i \(0.408698\pi\)
\(480\) −2.36147 −0.107786
\(481\) 60.5198 2.75946
\(482\) 8.57653 0.390650
\(483\) 12.5145 0.569431
\(484\) 0.299472 0.0136124
\(485\) −14.3839 −0.653138
\(486\) −20.8298 −0.944857
\(487\) 20.5145 0.929602 0.464801 0.885415i \(-0.346126\pi\)
0.464801 + 0.885415i \(0.346126\pi\)
\(488\) 10.3839 0.470056
\(489\) −40.5064 −1.83176
\(490\) 1.00000 0.0451754
\(491\) −8.20173 −0.370139 −0.185070 0.982725i \(-0.559251\pi\)
−0.185070 + 0.982725i \(0.559251\pi\)
\(492\) 7.93800 0.357873
\(493\) 2.79160 0.125727
\(494\) 43.7058 1.96642
\(495\) 8.66094 0.389280
\(496\) −3.14640 −0.141278
\(497\) 14.8140 0.664499
\(498\) −32.4750 −1.45524
\(499\) 22.9447 1.02714 0.513572 0.858046i \(-0.328322\pi\)
0.513572 + 0.858046i \(0.328322\pi\)
\(500\) −1.00000 −0.0447214
\(501\) 54.3510 2.42822
\(502\) −21.4063 −0.955409
\(503\) −7.33522 −0.327061 −0.163531 0.986538i \(-0.552288\pi\)
−0.163531 + 0.986538i \(0.552288\pi\)
\(504\) −2.57653 −0.114768
\(505\) −14.6834 −0.653401
\(506\) −17.8140 −0.791929
\(507\) −82.9723 −3.68493
\(508\) 2.33906 0.103779
\(509\) −3.89842 −0.172794 −0.0863971 0.996261i \(-0.527535\pi\)
−0.0863971 + 0.996261i \(0.527535\pi\)
\(510\) 2.36147 0.104568
\(511\) −15.2441 −0.674361
\(512\) −1.00000 −0.0441942
\(513\) −6.29947 −0.278128
\(514\) 15.5923 0.687746
\(515\) −12.5765 −0.554188
\(516\) −8.08441 −0.355896
\(517\) 11.8140 0.519580
\(518\) −8.72294 −0.383264
\(519\) −6.23081 −0.273502
\(520\) 6.93800 0.304252
\(521\) −7.46828 −0.327192 −0.163596 0.986527i \(-0.552309\pi\)
−0.163596 + 0.986527i \(0.552309\pi\)
\(522\) 7.19266 0.314814
\(523\) −31.7653 −1.38900 −0.694501 0.719492i \(-0.744375\pi\)
−0.694501 + 0.719492i \(0.744375\pi\)
\(524\) 8.16881 0.356856
\(525\) −2.36147 −0.103063
\(526\) 15.1201 0.659270
\(527\) 3.14640 0.137059
\(528\) 7.93800 0.345457
\(529\) 5.08441 0.221061
\(530\) 5.94467 0.258220
\(531\) 26.3772 1.14467
\(532\) −6.29947 −0.273117
\(533\) −23.3219 −1.01018
\(534\) 25.8298 1.11776
\(535\) −6.30614 −0.272638
\(536\) −12.0844 −0.521967
\(537\) −15.8760 −0.685100
\(538\) −16.2599 −0.701013
\(539\) −3.36147 −0.144789
\(540\) −1.00000 −0.0430331
\(541\) −29.3930 −1.26370 −0.631851 0.775090i \(-0.717705\pi\)
−0.631851 + 0.775090i \(0.717705\pi\)
\(542\) 5.70719 0.245145
\(543\) 48.6438 2.08750
\(544\) 1.00000 0.0428746
\(545\) −17.0224 −0.729160
\(546\) 16.3839 0.701165
\(547\) 25.6609 1.09718 0.548591 0.836091i \(-0.315164\pi\)
0.548591 + 0.836091i \(0.315164\pi\)
\(548\) 16.2928 0.695994
\(549\) −26.7544 −1.14185
\(550\) 3.36147 0.143334
\(551\) 17.5856 0.749172
\(552\) −12.5145 −0.532654
\(553\) 5.56987 0.236855
\(554\) −9.13974 −0.388310
\(555\) 20.5989 0.874376
\(556\) 1.27706 0.0541595
\(557\) −4.46828 −0.189327 −0.0946637 0.995509i \(-0.530178\pi\)
−0.0946637 + 0.995509i \(0.530178\pi\)
\(558\) 8.10682 0.343189
\(559\) 23.7520 1.00460
\(560\) −1.00000 −0.0422577
\(561\) −7.93800 −0.335143
\(562\) −19.6967 −0.830854
\(563\) −6.00000 −0.252870 −0.126435 0.991975i \(-0.540353\pi\)
−0.126435 + 0.991975i \(0.540353\pi\)
\(564\) 8.29947 0.349471
\(565\) −15.4392 −0.649532
\(566\) −1.24414 −0.0522952
\(567\) −10.0911 −0.423785
\(568\) −14.8140 −0.621582
\(569\) 7.99333 0.335098 0.167549 0.985864i \(-0.446415\pi\)
0.167549 + 0.985864i \(0.446415\pi\)
\(570\) 14.8760 0.623087
\(571\) 13.4855 0.564349 0.282175 0.959363i \(-0.408944\pi\)
0.282175 + 0.959363i \(0.408944\pi\)
\(572\) −23.3219 −0.975137
\(573\) 59.5975 2.48972
\(574\) 3.36147 0.140305
\(575\) −5.29947 −0.221003
\(576\) 2.57653 0.107356
\(577\) −13.7783 −0.573597 −0.286798 0.957991i \(-0.592591\pi\)
−0.286798 + 0.957991i \(0.592591\pi\)
\(578\) −1.00000 −0.0415945
\(579\) 62.8655 2.61260
\(580\) 2.79160 0.115915
\(581\) −13.7520 −0.570530
\(582\) 33.9671 1.40798
\(583\) −19.9828 −0.827604
\(584\) 15.2441 0.630807
\(585\) −17.8760 −0.739082
\(586\) −14.0911 −0.582097
\(587\) 31.1846 1.28712 0.643562 0.765394i \(-0.277456\pi\)
0.643562 + 0.765394i \(0.277456\pi\)
\(588\) −2.36147 −0.0973853
\(589\) 19.8207 0.816697
\(590\) 10.2375 0.421470
\(591\) −38.4750 −1.58265
\(592\) 8.72294 0.358511
\(593\) 8.56320 0.351649 0.175824 0.984422i \(-0.443741\pi\)
0.175824 + 0.984422i \(0.443741\pi\)
\(594\) 3.36147 0.137923
\(595\) 1.00000 0.0409960
\(596\) −7.02908 −0.287922
\(597\) 38.6371 1.58131
\(598\) 36.7678 1.50355
\(599\) −33.2203 −1.35734 −0.678672 0.734441i \(-0.737444\pi\)
−0.678672 + 0.734441i \(0.737444\pi\)
\(600\) 2.36147 0.0964066
\(601\) 5.25081 0.214185 0.107092 0.994249i \(-0.465846\pi\)
0.107092 + 0.994249i \(0.465846\pi\)
\(602\) −3.42347 −0.139530
\(603\) 31.1359 1.26795
\(604\) −10.9313 −0.444790
\(605\) −0.299472 −0.0121753
\(606\) 34.6743 1.40855
\(607\) 16.0582 0.651780 0.325890 0.945408i \(-0.394336\pi\)
0.325890 + 0.945408i \(0.394336\pi\)
\(608\) 6.29947 0.255477
\(609\) 6.59228 0.267133
\(610\) −10.3839 −0.420431
\(611\) −24.3839 −0.986466
\(612\) −2.57653 −0.104150
\(613\) −0.507872 −0.0205127 −0.0102564 0.999947i \(-0.503265\pi\)
−0.0102564 + 0.999947i \(0.503265\pi\)
\(614\) −22.4750 −0.907015
\(615\) −7.93800 −0.320091
\(616\) 3.36147 0.135437
\(617\) 14.5303 0.584967 0.292484 0.956271i \(-0.405518\pi\)
0.292484 + 0.956271i \(0.405518\pi\)
\(618\) 29.6991 1.19467
\(619\) −11.7072 −0.470552 −0.235276 0.971929i \(-0.575599\pi\)
−0.235276 + 0.971929i \(0.575599\pi\)
\(620\) 3.14640 0.126363
\(621\) −5.29947 −0.212660
\(622\) 9.85360 0.395093
\(623\) 10.9380 0.438222
\(624\) −16.3839 −0.655880
\(625\) 1.00000 0.0400000
\(626\) −5.45921 −0.218194
\(627\) −50.0052 −1.99702
\(628\) −0.430132 −0.0171641
\(629\) −8.72294 −0.347806
\(630\) 2.57653 0.102652
\(631\) −16.9762 −0.675810 −0.337905 0.941180i \(-0.609718\pi\)
−0.337905 + 0.941180i \(0.609718\pi\)
\(632\) −5.56987 −0.221557
\(633\) −7.41439 −0.294695
\(634\) 15.1531 0.601805
\(635\) −2.33906 −0.0928227
\(636\) −14.0382 −0.556649
\(637\) 6.93800 0.274894
\(638\) −9.38388 −0.371511
\(639\) 38.1688 1.50993
\(640\) 1.00000 0.0395285
\(641\) −22.7544 −0.898746 −0.449373 0.893344i \(-0.648353\pi\)
−0.449373 + 0.893344i \(0.648353\pi\)
\(642\) 14.8918 0.587730
\(643\) −3.38772 −0.133599 −0.0667994 0.997766i \(-0.521279\pi\)
−0.0667994 + 0.997766i \(0.521279\pi\)
\(644\) −5.29947 −0.208828
\(645\) 8.08441 0.318323
\(646\) −6.29947 −0.247849
\(647\) 3.18599 0.125254 0.0626271 0.998037i \(-0.480052\pi\)
0.0626271 + 0.998037i \(0.480052\pi\)
\(648\) 10.0911 0.396415
\(649\) −34.4130 −1.35083
\(650\) −6.93800 −0.272131
\(651\) 7.43013 0.291210
\(652\) 17.1531 0.671766
\(653\) −32.6304 −1.27693 −0.638464 0.769652i \(-0.720430\pi\)
−0.638464 + 0.769652i \(0.720430\pi\)
\(654\) 40.1979 1.57186
\(655\) −8.16881 −0.319182
\(656\) −3.36147 −0.131243
\(657\) −39.2771 −1.53234
\(658\) 3.51454 0.137011
\(659\) −9.23081 −0.359581 −0.179791 0.983705i \(-0.557542\pi\)
−0.179791 + 0.983705i \(0.557542\pi\)
\(660\) −7.93800 −0.308986
\(661\) 49.9919 1.94446 0.972230 0.234028i \(-0.0751909\pi\)
0.972230 + 0.234028i \(0.0751909\pi\)
\(662\) −8.38388 −0.325849
\(663\) 16.3839 0.636297
\(664\) 13.7520 0.533682
\(665\) 6.29947 0.244283
\(666\) −22.4750 −0.870887
\(667\) 14.7940 0.572826
\(668\) −23.0157 −0.890506
\(669\) −2.93800 −0.113590
\(670\) 12.0844 0.466861
\(671\) 34.9051 1.34750
\(672\) 2.36147 0.0910956
\(673\) −25.3285 −0.976344 −0.488172 0.872747i \(-0.662336\pi\)
−0.488172 + 0.872747i \(0.662336\pi\)
\(674\) 9.94467 0.383054
\(675\) 1.00000 0.0384900
\(676\) 35.1359 1.35138
\(677\) −30.4392 −1.16987 −0.584937 0.811079i \(-0.698881\pi\)
−0.584937 + 0.811079i \(0.698881\pi\)
\(678\) 36.4592 1.40021
\(679\) 14.3839 0.552003
\(680\) −1.00000 −0.0383482
\(681\) 24.6147 0.943237
\(682\) −10.5765 −0.404996
\(683\) 33.1201 1.26731 0.633654 0.773617i \(-0.281554\pi\)
0.633654 + 0.773617i \(0.281554\pi\)
\(684\) −16.2308 −0.620600
\(685\) −16.2928 −0.622516
\(686\) −1.00000 −0.0381802
\(687\) −36.4220 −1.38959
\(688\) 3.42347 0.130518
\(689\) 41.2441 1.57128
\(690\) 12.5145 0.476420
\(691\) 30.7544 1.16995 0.584977 0.811050i \(-0.301104\pi\)
0.584977 + 0.811050i \(0.301104\pi\)
\(692\) 2.63853 0.100302
\(693\) −8.66094 −0.329002
\(694\) −4.21507 −0.160002
\(695\) −1.27706 −0.0484417
\(696\) −6.59228 −0.249880
\(697\) 3.36147 0.127325
\(698\) −5.56987 −0.210823
\(699\) −38.3972 −1.45232
\(700\) 1.00000 0.0377964
\(701\) −22.4883 −0.849371 −0.424685 0.905341i \(-0.639615\pi\)
−0.424685 + 0.905341i \(0.639615\pi\)
\(702\) −6.93800 −0.261858
\(703\) −54.9499 −2.07247
\(704\) −3.36147 −0.126690
\(705\) −8.29947 −0.312576
\(706\) 1.34814 0.0507377
\(707\) 14.6834 0.552224
\(708\) −24.1755 −0.908570
\(709\) −23.1292 −0.868636 −0.434318 0.900760i \(-0.643011\pi\)
−0.434318 + 0.900760i \(0.643011\pi\)
\(710\) 14.8140 0.555960
\(711\) 14.3510 0.538203
\(712\) −10.9380 −0.409919
\(713\) 16.6743 0.624456
\(714\) −2.36147 −0.0883757
\(715\) 23.3219 0.872189
\(716\) 6.72294 0.251248
\(717\) −16.3681 −0.611279
\(718\) −9.89842 −0.369406
\(719\) −1.00908 −0.0376322 −0.0188161 0.999823i \(-0.505990\pi\)
−0.0188161 + 0.999823i \(0.505990\pi\)
\(720\) −2.57653 −0.0960218
\(721\) 12.5765 0.468375
\(722\) −20.6834 −0.769755
\(723\) 20.2532 0.753225
\(724\) −20.5989 −0.765554
\(725\) −2.79160 −0.103677
\(726\) 0.707194 0.0262464
\(727\) −24.3748 −0.904011 −0.452006 0.892015i \(-0.649291\pi\)
−0.452006 + 0.892015i \(0.649291\pi\)
\(728\) −6.93800 −0.257140
\(729\) −18.9156 −0.700578
\(730\) −15.2441 −0.564211
\(731\) −3.42347 −0.126621
\(732\) 24.5212 0.906330
\(733\) −7.15307 −0.264205 −0.132102 0.991236i \(-0.542173\pi\)
−0.132102 + 0.991236i \(0.542173\pi\)
\(734\) −30.4883 −1.12534
\(735\) 2.36147 0.0871041
\(736\) 5.29947 0.195341
\(737\) −40.6214 −1.49631
\(738\) 8.66094 0.318814
\(739\) 7.92226 0.291425 0.145713 0.989327i \(-0.453453\pi\)
0.145713 + 0.989327i \(0.453453\pi\)
\(740\) −8.72294 −0.320662
\(741\) 103.210 3.79151
\(742\) −5.94467 −0.218236
\(743\) −7.59653 −0.278690 −0.139345 0.990244i \(-0.544500\pi\)
−0.139345 + 0.990244i \(0.544500\pi\)
\(744\) −7.43013 −0.272402
\(745\) 7.02908 0.257525
\(746\) −10.8693 −0.397955
\(747\) −35.4325 −1.29641
\(748\) 3.36147 0.122907
\(749\) 6.30614 0.230421
\(750\) −2.36147 −0.0862286
\(751\) 45.1516 1.64761 0.823803 0.566876i \(-0.191848\pi\)
0.823803 + 0.566876i \(0.191848\pi\)
\(752\) −3.51454 −0.128162
\(753\) −50.5503 −1.84215
\(754\) 19.3681 0.705346
\(755\) 10.9313 0.397832
\(756\) 1.00000 0.0363696
\(757\) 38.3839 1.39509 0.697543 0.716543i \(-0.254277\pi\)
0.697543 + 0.716543i \(0.254277\pi\)
\(758\) 18.7587 0.681346
\(759\) −42.0672 −1.52694
\(760\) −6.29947 −0.228506
\(761\) 20.0582 0.727107 0.363554 0.931573i \(-0.381563\pi\)
0.363554 + 0.931573i \(0.381563\pi\)
\(762\) 5.52361 0.200099
\(763\) 17.0224 0.616253
\(764\) −25.2375 −0.913060
\(765\) 2.57653 0.0931548
\(766\) −21.7453 −0.785691
\(767\) 71.0276 2.56466
\(768\) −2.36147 −0.0852122
\(769\) −14.9828 −0.540294 −0.270147 0.962819i \(-0.587072\pi\)
−0.270147 + 0.962819i \(0.587072\pi\)
\(770\) −3.36147 −0.121139
\(771\) 36.8207 1.32606
\(772\) −26.6214 −0.958124
\(773\) 33.8760 1.21844 0.609218 0.793003i \(-0.291484\pi\)
0.609218 + 0.793003i \(0.291484\pi\)
\(774\) −8.82068 −0.317053
\(775\) −3.14640 −0.113022
\(776\) −14.3839 −0.516351
\(777\) −20.5989 −0.738983
\(778\) 9.45921 0.339129
\(779\) 21.1755 0.758690
\(780\) 16.3839 0.586637
\(781\) −49.7968 −1.78187
\(782\) −5.29947 −0.189509
\(783\) −2.79160 −0.0997637
\(784\) 1.00000 0.0357143
\(785\) 0.430132 0.0153521
\(786\) 19.2904 0.688066
\(787\) −6.60561 −0.235465 −0.117732 0.993045i \(-0.537562\pi\)
−0.117732 + 0.993045i \(0.537562\pi\)
\(788\) 16.2928 0.580407
\(789\) 35.7058 1.27116
\(790\) 5.56987 0.198167
\(791\) 15.4392 0.548955
\(792\) 8.66094 0.307753
\(793\) −72.0434 −2.55834
\(794\) −25.6056 −0.908709
\(795\) 14.0382 0.497882
\(796\) −16.3615 −0.579917
\(797\) −18.4616 −0.653944 −0.326972 0.945034i \(-0.606028\pi\)
−0.326972 + 0.945034i \(0.606028\pi\)
\(798\) −14.8760 −0.526605
\(799\) 3.51454 0.124335
\(800\) −1.00000 −0.0353553
\(801\) 28.1821 0.995767
\(802\) −1.40106 −0.0494730
\(803\) 51.2427 1.80832
\(804\) −28.5369 −1.00642
\(805\) 5.29947 0.186782
\(806\) 21.8298 0.768920
\(807\) −38.3972 −1.35165
\(808\) −14.6834 −0.516558
\(809\) 28.9499 1.01782 0.508912 0.860818i \(-0.330048\pi\)
0.508912 + 0.860818i \(0.330048\pi\)
\(810\) −10.0911 −0.354564
\(811\) −51.6280 −1.81291 −0.906453 0.422308i \(-0.861220\pi\)
−0.906453 + 0.422308i \(0.861220\pi\)
\(812\) −2.79160 −0.0979660
\(813\) 13.4774 0.472672
\(814\) 29.3219 1.02773
\(815\) −17.1531 −0.600846
\(816\) 2.36147 0.0826679
\(817\) −21.5660 −0.754500
\(818\) −8.49454 −0.297005
\(819\) 17.8760 0.624638
\(820\) 3.36147 0.117388
\(821\) −10.5660 −0.368757 −0.184378 0.982855i \(-0.559027\pi\)
−0.184378 + 0.982855i \(0.559027\pi\)
\(822\) 38.4750 1.34197
\(823\) −28.0977 −0.979426 −0.489713 0.871884i \(-0.662898\pi\)
−0.489713 + 0.871884i \(0.662898\pi\)
\(824\) −12.5765 −0.438124
\(825\) 7.93800 0.276366
\(826\) −10.2375 −0.356207
\(827\) −8.54079 −0.296992 −0.148496 0.988913i \(-0.547443\pi\)
−0.148496 + 0.988913i \(0.547443\pi\)
\(828\) −13.6543 −0.474519
\(829\) 15.2823 0.530776 0.265388 0.964142i \(-0.414500\pi\)
0.265388 + 0.964142i \(0.414500\pi\)
\(830\) −13.7520 −0.477339
\(831\) −21.5832 −0.748713
\(832\) 6.93800 0.240532
\(833\) −1.00000 −0.0346479
\(834\) 3.01574 0.104427
\(835\) 23.0157 0.796493
\(836\) 21.1755 0.732369
\(837\) −3.14640 −0.108756
\(838\) −11.0157 −0.380533
\(839\) −10.3481 −0.357257 −0.178629 0.983917i \(-0.557166\pi\)
−0.178629 + 0.983917i \(0.557166\pi\)
\(840\) −2.36147 −0.0814784
\(841\) −21.2070 −0.731275
\(842\) 29.7968 1.02687
\(843\) −46.5131 −1.60200
\(844\) 3.13974 0.108074
\(845\) −35.1359 −1.20871
\(846\) 9.05533 0.311329
\(847\) 0.299472 0.0102900
\(848\) 5.94467 0.204141
\(849\) −2.93800 −0.100832
\(850\) 1.00000 0.0342997
\(851\) −46.2270 −1.58464
\(852\) −34.9828 −1.19849
\(853\) −26.0091 −0.890534 −0.445267 0.895398i \(-0.646891\pi\)
−0.445267 + 0.895398i \(0.646891\pi\)
\(854\) 10.3839 0.355329
\(855\) 16.2308 0.555082
\(856\) −6.30614 −0.215539
\(857\) 8.24655 0.281697 0.140848 0.990031i \(-0.455017\pi\)
0.140848 + 0.990031i \(0.455017\pi\)
\(858\) −55.0739 −1.88019
\(859\) −42.5975 −1.45341 −0.726704 0.686951i \(-0.758949\pi\)
−0.726704 + 0.686951i \(0.758949\pi\)
\(860\) −3.42347 −0.116739
\(861\) 7.93800 0.270526
\(862\) 19.1397 0.651902
\(863\) 25.4011 0.864662 0.432331 0.901715i \(-0.357691\pi\)
0.432331 + 0.901715i \(0.357691\pi\)
\(864\) −1.00000 −0.0340207
\(865\) −2.63853 −0.0897128
\(866\) 24.0582 0.817529
\(867\) −2.36147 −0.0801997
\(868\) −3.14640 −0.106796
\(869\) −18.7229 −0.635132
\(870\) 6.59228 0.223499
\(871\) 83.8417 2.84087
\(872\) −17.0224 −0.576452
\(873\) 37.0606 1.25431
\(874\) −33.3839 −1.12923
\(875\) −1.00000 −0.0338062
\(876\) 35.9986 1.21628
\(877\) 25.2771 0.853546 0.426773 0.904359i \(-0.359650\pi\)
0.426773 + 0.904359i \(0.359650\pi\)
\(878\) −5.89842 −0.199062
\(879\) −33.2756 −1.12236
\(880\) 3.36147 0.113315
\(881\) −28.5107 −0.960550 −0.480275 0.877118i \(-0.659463\pi\)
−0.480275 + 0.877118i \(0.659463\pi\)
\(882\) −2.57653 −0.0867564
\(883\) 17.1979 0.578755 0.289378 0.957215i \(-0.406552\pi\)
0.289378 + 0.957215i \(0.406552\pi\)
\(884\) −6.93800 −0.233350
\(885\) 24.1755 0.812650
\(886\) 13.1621 0.442191
\(887\) 53.4115 1.79338 0.896692 0.442656i \(-0.145964\pi\)
0.896692 + 0.442656i \(0.145964\pi\)
\(888\) 20.5989 0.691255
\(889\) 2.33906 0.0784495
\(890\) 10.9380 0.366643
\(891\) 33.9208 1.13639
\(892\) 1.24414 0.0416570
\(893\) 22.1397 0.740878
\(894\) −16.5989 −0.555152
\(895\) −6.72294 −0.224723
\(896\) −1.00000 −0.0334077
\(897\) 86.8259 2.89903
\(898\) −7.44588 −0.248472
\(899\) 8.78350 0.292946
\(900\) 2.57653 0.0858845
\(901\) −5.94467 −0.198046
\(902\) −11.2995 −0.376231
\(903\) −8.08441 −0.269032
\(904\) −15.4392 −0.513500
\(905\) 20.5989 0.684732
\(906\) −25.8140 −0.857613
\(907\) 2.80068 0.0929950 0.0464975 0.998918i \(-0.485194\pi\)
0.0464975 + 0.998918i \(0.485194\pi\)
\(908\) −10.4235 −0.345915
\(909\) 37.8322 1.25481
\(910\) 6.93800 0.229993
\(911\) 21.5699 0.714642 0.357321 0.933982i \(-0.383690\pi\)
0.357321 + 0.933982i \(0.383690\pi\)
\(912\) 14.8760 0.492594
\(913\) 46.2270 1.52989
\(914\) −27.0291 −0.894042
\(915\) −24.5212 −0.810646
\(916\) 15.4235 0.509606
\(917\) 8.16881 0.269758
\(918\) 1.00000 0.0330049
\(919\) 18.5765 0.612783 0.306392 0.951906i \(-0.400878\pi\)
0.306392 + 0.951906i \(0.400878\pi\)
\(920\) −5.29947 −0.174718
\(921\) −53.0739 −1.74884
\(922\) 29.4196 0.968884
\(923\) 102.780 3.38303
\(924\) 7.93800 0.261141
\(925\) 8.72294 0.286808
\(926\) −12.2151 −0.401412
\(927\) 32.4039 1.06428
\(928\) 2.79160 0.0916388
\(929\) −13.7520 −0.451189 −0.225594 0.974221i \(-0.572432\pi\)
−0.225594 + 0.974221i \(0.572432\pi\)
\(930\) 7.43013 0.243644
\(931\) −6.29947 −0.206457
\(932\) 16.2599 0.532610
\(933\) 23.2690 0.761792
\(934\) −12.1555 −0.397739
\(935\) −3.36147 −0.109932
\(936\) −17.8760 −0.584296
\(937\) −37.8536 −1.23662 −0.618312 0.785933i \(-0.712183\pi\)
−0.618312 + 0.785933i \(0.712183\pi\)
\(938\) −12.0844 −0.394570
\(939\) −12.8918 −0.420706
\(940\) 3.51454 0.114632
\(941\) 31.2175 1.01766 0.508830 0.860867i \(-0.330078\pi\)
0.508830 + 0.860867i \(0.330078\pi\)
\(942\) −1.01574 −0.0330947
\(943\) 17.8140 0.580104
\(944\) 10.2375 0.333201
\(945\) −1.00000 −0.0325300
\(946\) 11.5079 0.374153
\(947\) −20.9695 −0.681417 −0.340708 0.940169i \(-0.610667\pi\)
−0.340708 + 0.940169i \(0.610667\pi\)
\(948\) −13.1531 −0.427192
\(949\) −105.764 −3.43324
\(950\) 6.29947 0.204382
\(951\) 35.7835 1.16036
\(952\) 1.00000 0.0324102
\(953\) −10.7096 −0.346918 −0.173459 0.984841i \(-0.555494\pi\)
−0.173459 + 0.984841i \(0.555494\pi\)
\(954\) −15.3166 −0.495895
\(955\) 25.2375 0.816666
\(956\) 6.93134 0.224175
\(957\) −22.1597 −0.716323
\(958\) −12.3839 −0.400105
\(959\) 16.2928 0.526122
\(960\) 2.36147 0.0762161
\(961\) −21.1001 −0.680650
\(962\) −60.5198 −1.95124
\(963\) 16.2480 0.523584
\(964\) −8.57653 −0.276232
\(965\) 26.6214 0.856972
\(966\) −12.5145 −0.402649
\(967\) −7.45921 −0.239872 −0.119936 0.992782i \(-0.538269\pi\)
−0.119936 + 0.992782i \(0.538269\pi\)
\(968\) −0.299472 −0.00962540
\(969\) −14.8760 −0.477886
\(970\) 14.3839 0.461839
\(971\) 43.5107 1.39632 0.698162 0.715940i \(-0.254001\pi\)
0.698162 + 0.715940i \(0.254001\pi\)
\(972\) 20.8298 0.668115
\(973\) 1.27706 0.0409407
\(974\) −20.5145 −0.657328
\(975\) −16.3839 −0.524704
\(976\) −10.3839 −0.332380
\(977\) 43.6414 1.39621 0.698105 0.715995i \(-0.254027\pi\)
0.698105 + 0.715995i \(0.254027\pi\)
\(978\) 40.5064 1.29525
\(979\) −36.7678 −1.17510
\(980\) −1.00000 −0.0319438
\(981\) 43.8588 1.40030
\(982\) 8.20173 0.261728
\(983\) −22.7544 −0.725753 −0.362877 0.931837i \(-0.618205\pi\)
−0.362877 + 0.931837i \(0.618205\pi\)
\(984\) −7.93800 −0.253054
\(985\) −16.2928 −0.519132
\(986\) −2.79160 −0.0889027
\(987\) 8.29947 0.264175
\(988\) −43.7058 −1.39047
\(989\) −18.1426 −0.576900
\(990\) −8.66094 −0.275263
\(991\) 4.65853 0.147983 0.0739916 0.997259i \(-0.476426\pi\)
0.0739916 + 0.997259i \(0.476426\pi\)
\(992\) 3.14640 0.0998984
\(993\) −19.7983 −0.628279
\(994\) −14.8140 −0.469872
\(995\) 16.3615 0.518693
\(996\) 32.4750 1.02901
\(997\) −41.0739 −1.30082 −0.650412 0.759582i \(-0.725404\pi\)
−0.650412 + 0.759582i \(0.725404\pi\)
\(998\) −22.9447 −0.726301
\(999\) 8.72294 0.275982
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1190.2.a.l.1.1 3
4.3 odd 2 9520.2.a.u.1.3 3
5.4 even 2 5950.2.a.bk.1.3 3
7.6 odd 2 8330.2.a.bs.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1190.2.a.l.1.1 3 1.1 even 1 trivial
5950.2.a.bk.1.3 3 5.4 even 2
8330.2.a.bs.1.3 3 7.6 odd 2
9520.2.a.u.1.3 3 4.3 odd 2