Properties

Label 952.2.q.c.137.1
Level $952$
Weight $2$
Character 952.137
Analytic conductor $7.602$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [952,2,Mod(137,952)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("952.137"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(952, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 952 = 2^{3} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 952.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.60175827243\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 10 x^{10} - 11 x^{9} + 73 x^{8} - 77 x^{7} + 243 x^{6} - 236 x^{5} + 572 x^{4} + \cdots + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 137.1
Root \(1.18253 - 2.04820i\) of defining polynomial
Character \(\chi\) \(=\) 952.137
Dual form 952.2.q.c.681.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.18253 + 2.04820i) q^{3} +(0.949958 + 1.64538i) q^{5} +(-1.39834 + 2.24603i) q^{7} +(-1.29675 - 2.24603i) q^{9} +(-1.88435 + 3.26379i) q^{11} -0.189847 q^{13} -4.49341 q^{15} +(0.500000 - 0.866025i) q^{17} +(0.440306 + 0.762633i) q^{19} +(-2.94675 - 5.52007i) q^{21} +(1.98519 + 3.43845i) q^{23} +(0.695159 - 1.20405i) q^{25} -0.961410 q^{27} -6.30040 q^{29} +(2.94008 - 5.09238i) q^{31} +(-4.45660 - 7.71906i) q^{33} +(-5.02393 - 0.167151i) q^{35} +(5.44675 + 9.43405i) q^{37} +(0.224499 - 0.388844i) q^{39} +3.28277 q^{41} -0.477269 q^{43} +(2.46371 - 4.26727i) q^{45} +(-1.22232 - 2.11712i) q^{47} +(-3.08932 - 6.28141i) q^{49} +(1.18253 + 2.04820i) q^{51} +(3.58189 - 6.20402i) q^{53} -7.16022 q^{55} -2.08270 q^{57} +(2.26640 - 3.92552i) q^{59} +(-5.66136 - 9.80576i) q^{61} +(6.85795 + 0.228170i) q^{63} +(-0.180347 - 0.312370i) q^{65} +(-4.38157 + 7.58911i) q^{67} -9.39016 q^{69} -6.72185 q^{71} +(-0.347772 + 0.602358i) q^{73} +(1.64409 + 2.84765i) q^{75} +(-4.69563 - 8.79619i) q^{77} +(1.99036 + 3.44740i) q^{79} +(5.02714 - 8.70725i) q^{81} -7.77110 q^{83} +1.89992 q^{85} +(7.45040 - 12.9045i) q^{87} +(-0.118503 - 0.205254i) q^{89} +(0.265470 - 0.426402i) q^{91} +(6.95347 + 12.0438i) q^{93} +(-0.836545 + 1.44894i) q^{95} -6.81746 q^{97} +9.77411 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - q^{3} - q^{5} + 3 q^{7} - q^{9} + 6 q^{11} - 4 q^{13} + 6 q^{17} - 2 q^{19} + 14 q^{21} + 5 q^{23} - q^{25} - 16 q^{27} - 30 q^{29} - 8 q^{31} - 11 q^{33} + 7 q^{35} + 16 q^{37} + 2 q^{39} + 8 q^{41}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/952\mathbb{Z}\right)^\times\).

\(n\) \(239\) \(409\) \(477\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.18253 + 2.04820i −0.682733 + 1.18253i 0.291410 + 0.956598i \(0.405875\pi\)
−0.974143 + 0.225930i \(0.927458\pi\)
\(4\) 0 0
\(5\) 0.949958 + 1.64538i 0.424834 + 0.735834i 0.996405 0.0847183i \(-0.0269990\pi\)
−0.571571 + 0.820553i \(0.693666\pi\)
\(6\) 0 0
\(7\) −1.39834 + 2.24603i −0.528521 + 0.848920i
\(8\) 0 0
\(9\) −1.29675 2.24603i −0.432249 0.748677i
\(10\) 0 0
\(11\) −1.88435 + 3.26379i −0.568154 + 0.984071i 0.428595 + 0.903497i \(0.359009\pi\)
−0.996749 + 0.0805741i \(0.974325\pi\)
\(12\) 0 0
\(13\) −0.189847 −0.0526541 −0.0263270 0.999653i \(-0.508381\pi\)
−0.0263270 + 0.999653i \(0.508381\pi\)
\(14\) 0 0
\(15\) −4.49341 −1.16019
\(16\) 0 0
\(17\) 0.500000 0.866025i 0.121268 0.210042i
\(18\) 0 0
\(19\) 0.440306 + 0.762633i 0.101013 + 0.174960i 0.912102 0.409963i \(-0.134458\pi\)
−0.811089 + 0.584923i \(0.801125\pi\)
\(20\) 0 0
\(21\) −2.94675 5.52007i −0.643033 1.20458i
\(22\) 0 0
\(23\) 1.98519 + 3.43845i 0.413940 + 0.716966i 0.995317 0.0966692i \(-0.0308189\pi\)
−0.581376 + 0.813635i \(0.697486\pi\)
\(24\) 0 0
\(25\) 0.695159 1.20405i 0.139032 0.240810i
\(26\) 0 0
\(27\) −0.961410 −0.185023
\(28\) 0 0
\(29\) −6.30040 −1.16996 −0.584978 0.811049i \(-0.698897\pi\)
−0.584978 + 0.811049i \(0.698897\pi\)
\(30\) 0 0
\(31\) 2.94008 5.09238i 0.528055 0.914618i −0.471410 0.881914i \(-0.656255\pi\)
0.999465 0.0327037i \(-0.0104118\pi\)
\(32\) 0 0
\(33\) −4.45660 7.71906i −0.775794 1.34372i
\(34\) 0 0
\(35\) −5.02393 0.167151i −0.849199 0.0282537i
\(36\) 0 0
\(37\) 5.44675 + 9.43405i 0.895440 + 1.55095i 0.833259 + 0.552883i \(0.186472\pi\)
0.0621811 + 0.998065i \(0.480194\pi\)
\(38\) 0 0
\(39\) 0.224499 0.388844i 0.0359487 0.0622649i
\(40\) 0 0
\(41\) 3.28277 0.512683 0.256341 0.966586i \(-0.417483\pi\)
0.256341 + 0.966586i \(0.417483\pi\)
\(42\) 0 0
\(43\) −0.477269 −0.0727828 −0.0363914 0.999338i \(-0.511586\pi\)
−0.0363914 + 0.999338i \(0.511586\pi\)
\(44\) 0 0
\(45\) 2.46371 4.26727i 0.367268 0.636127i
\(46\) 0 0
\(47\) −1.22232 2.11712i −0.178293 0.308813i 0.763003 0.646395i \(-0.223724\pi\)
−0.941296 + 0.337582i \(0.890391\pi\)
\(48\) 0 0
\(49\) −3.08932 6.28141i −0.441331 0.897344i
\(50\) 0 0
\(51\) 1.18253 + 2.04820i 0.165587 + 0.286805i
\(52\) 0 0
\(53\) 3.58189 6.20402i 0.492011 0.852187i −0.507947 0.861388i \(-0.669595\pi\)
0.999958 + 0.00920100i \(0.00292881\pi\)
\(54\) 0 0
\(55\) −7.16022 −0.965484
\(56\) 0 0
\(57\) −2.08270 −0.275860
\(58\) 0 0
\(59\) 2.26640 3.92552i 0.295061 0.511060i −0.679938 0.733269i \(-0.737994\pi\)
0.974999 + 0.222209i \(0.0713269\pi\)
\(60\) 0 0
\(61\) −5.66136 9.80576i −0.724863 1.25550i −0.959031 0.283303i \(-0.908570\pi\)
0.234168 0.972196i \(-0.424763\pi\)
\(62\) 0 0
\(63\) 6.85795 + 0.228170i 0.864020 + 0.0287468i
\(64\) 0 0
\(65\) −0.180347 0.312370i −0.0223692 0.0387447i
\(66\) 0 0
\(67\) −4.38157 + 7.58911i −0.535294 + 0.927157i 0.463855 + 0.885911i \(0.346466\pi\)
−0.999149 + 0.0412455i \(0.986867\pi\)
\(68\) 0 0
\(69\) −9.39016 −1.13044
\(70\) 0 0
\(71\) −6.72185 −0.797737 −0.398868 0.917008i \(-0.630597\pi\)
−0.398868 + 0.917008i \(0.630597\pi\)
\(72\) 0 0
\(73\) −0.347772 + 0.602358i −0.0407036 + 0.0705007i −0.885659 0.464335i \(-0.846293\pi\)
0.844956 + 0.534836i \(0.179627\pi\)
\(74\) 0 0
\(75\) 1.64409 + 2.84765i 0.189843 + 0.328818i
\(76\) 0 0
\(77\) −4.69563 8.79619i −0.535116 1.00242i
\(78\) 0 0
\(79\) 1.99036 + 3.44740i 0.223933 + 0.387863i 0.955999 0.293371i \(-0.0947771\pi\)
−0.732066 + 0.681234i \(0.761444\pi\)
\(80\) 0 0
\(81\) 5.02714 8.70725i 0.558571 0.967473i
\(82\) 0 0
\(83\) −7.77110 −0.852989 −0.426495 0.904490i \(-0.640252\pi\)
−0.426495 + 0.904490i \(0.640252\pi\)
\(84\) 0 0
\(85\) 1.89992 0.206075
\(86\) 0 0
\(87\) 7.45040 12.9045i 0.798767 1.38351i
\(88\) 0 0
\(89\) −0.118503 0.205254i −0.0125613 0.0217569i 0.859676 0.510839i \(-0.170665\pi\)
−0.872238 + 0.489082i \(0.837332\pi\)
\(90\) 0 0
\(91\) 0.265470 0.426402i 0.0278288 0.0446991i
\(92\) 0 0
\(93\) 6.95347 + 12.0438i 0.721041 + 1.24888i
\(94\) 0 0
\(95\) −0.836545 + 1.44894i −0.0858277 + 0.148658i
\(96\) 0 0
\(97\) −6.81746 −0.692208 −0.346104 0.938196i \(-0.612496\pi\)
−0.346104 + 0.938196i \(0.612496\pi\)
\(98\) 0 0
\(99\) 9.77411 0.982335
\(100\) 0 0
\(101\) −8.47566 + 14.6803i −0.843360 + 1.46074i 0.0436777 + 0.999046i \(0.486093\pi\)
−0.887038 + 0.461697i \(0.847241\pi\)
\(102\) 0 0
\(103\) −1.23513 2.13930i −0.121701 0.210791i 0.798738 0.601679i \(-0.205501\pi\)
−0.920438 + 0.390888i \(0.872168\pi\)
\(104\) 0 0
\(105\) 6.28329 10.0923i 0.613187 0.984912i
\(106\) 0 0
\(107\) 1.24395 + 2.15458i 0.120257 + 0.208291i 0.919869 0.392226i \(-0.128295\pi\)
−0.799612 + 0.600517i \(0.794961\pi\)
\(108\) 0 0
\(109\) −3.90597 + 6.76534i −0.374124 + 0.648002i −0.990195 0.139689i \(-0.955390\pi\)
0.616072 + 0.787690i \(0.288723\pi\)
\(110\) 0 0
\(111\) −25.7637 −2.44539
\(112\) 0 0
\(113\) 7.15811 0.673378 0.336689 0.941616i \(-0.390693\pi\)
0.336689 + 0.941616i \(0.390693\pi\)
\(114\) 0 0
\(115\) −3.77169 + 6.53276i −0.351712 + 0.609183i
\(116\) 0 0
\(117\) 0.246183 + 0.426402i 0.0227597 + 0.0394209i
\(118\) 0 0
\(119\) 1.24595 + 2.33401i 0.114216 + 0.213958i
\(120\) 0 0
\(121\) −1.60156 2.77399i −0.145597 0.252181i
\(122\) 0 0
\(123\) −3.88197 + 6.72377i −0.350026 + 0.606262i
\(124\) 0 0
\(125\) 12.1411 1.08593
\(126\) 0 0
\(127\) 5.32958 0.472924 0.236462 0.971641i \(-0.424012\pi\)
0.236462 + 0.971641i \(0.424012\pi\)
\(128\) 0 0
\(129\) 0.564384 0.977542i 0.0496912 0.0860677i
\(130\) 0 0
\(131\) 2.98396 + 5.16836i 0.260710 + 0.451562i 0.966431 0.256928i \(-0.0827102\pi\)
−0.705721 + 0.708490i \(0.749377\pi\)
\(132\) 0 0
\(133\) −2.32859 0.0774745i −0.201915 0.00671790i
\(134\) 0 0
\(135\) −0.913299 1.58188i −0.0786043 0.136147i
\(136\) 0 0
\(137\) −8.50919 + 14.7383i −0.726989 + 1.25918i 0.231161 + 0.972916i \(0.425748\pi\)
−0.958150 + 0.286267i \(0.907586\pi\)
\(138\) 0 0
\(139\) 8.57639 0.727440 0.363720 0.931508i \(-0.381506\pi\)
0.363720 + 0.931508i \(0.381506\pi\)
\(140\) 0 0
\(141\) 5.78170 0.486907
\(142\) 0 0
\(143\) 0.357738 0.619621i 0.0299156 0.0518153i
\(144\) 0 0
\(145\) −5.98512 10.3665i −0.497037 0.860893i
\(146\) 0 0
\(147\) 16.5188 + 1.10041i 1.36245 + 0.0907603i
\(148\) 0 0
\(149\) 10.5106 + 18.2049i 0.861063 + 1.49141i 0.870903 + 0.491454i \(0.163534\pi\)
−0.00984000 + 0.999952i \(0.503132\pi\)
\(150\) 0 0
\(151\) 11.7576 20.3647i 0.956817 1.65726i 0.226663 0.973973i \(-0.427219\pi\)
0.730154 0.683282i \(-0.239448\pi\)
\(152\) 0 0
\(153\) −2.59349 −0.209672
\(154\) 0 0
\(155\) 11.1718 0.897343
\(156\) 0 0
\(157\) 9.41179 16.3017i 0.751143 1.30102i −0.196127 0.980579i \(-0.562836\pi\)
0.947269 0.320439i \(-0.103830\pi\)
\(158\) 0 0
\(159\) 8.47138 + 14.6729i 0.671824 + 1.16363i
\(160\) 0 0
\(161\) −10.4988 0.349306i −0.827423 0.0275292i
\(162\) 0 0
\(163\) 8.40911 + 14.5650i 0.658652 + 1.14082i 0.980965 + 0.194186i \(0.0622064\pi\)
−0.322313 + 0.946633i \(0.604460\pi\)
\(164\) 0 0
\(165\) 8.46717 14.6656i 0.659168 1.14171i
\(166\) 0 0
\(167\) −10.9092 −0.844182 −0.422091 0.906554i \(-0.638704\pi\)
−0.422091 + 0.906554i \(0.638704\pi\)
\(168\) 0 0
\(169\) −12.9640 −0.997228
\(170\) 0 0
\(171\) 1.14193 1.97788i 0.0873257 0.151253i
\(172\) 0 0
\(173\) 5.67082 + 9.82215i 0.431145 + 0.746764i 0.996972 0.0777592i \(-0.0247765\pi\)
−0.565827 + 0.824524i \(0.691443\pi\)
\(174\) 0 0
\(175\) 1.73227 + 3.24501i 0.130947 + 0.245300i
\(176\) 0 0
\(177\) 5.36017 + 9.28409i 0.402895 + 0.697835i
\(178\) 0 0
\(179\) −4.50993 + 7.81142i −0.337088 + 0.583853i −0.983884 0.178810i \(-0.942775\pi\)
0.646796 + 0.762663i \(0.276109\pi\)
\(180\) 0 0
\(181\) 3.13099 0.232725 0.116363 0.993207i \(-0.462877\pi\)
0.116363 + 0.993207i \(0.462877\pi\)
\(182\) 0 0
\(183\) 26.7789 1.97955
\(184\) 0 0
\(185\) −10.3484 + 17.9239i −0.760827 + 1.31779i
\(186\) 0 0
\(187\) 1.88435 + 3.26379i 0.137797 + 0.238672i
\(188\) 0 0
\(189\) 1.34437 2.15936i 0.0977888 0.157070i
\(190\) 0 0
\(191\) 10.0676 + 17.4376i 0.728466 + 1.26174i 0.957531 + 0.288329i \(0.0930997\pi\)
−0.229065 + 0.973411i \(0.573567\pi\)
\(192\) 0 0
\(193\) −10.5515 + 18.2758i −0.759517 + 1.31552i 0.183580 + 0.983005i \(0.441231\pi\)
−0.943097 + 0.332517i \(0.892102\pi\)
\(194\) 0 0
\(195\) 0.853060 0.0610889
\(196\) 0 0
\(197\) 16.8747 1.20227 0.601136 0.799147i \(-0.294715\pi\)
0.601136 + 0.799147i \(0.294715\pi\)
\(198\) 0 0
\(199\) −4.71342 + 8.16388i −0.334125 + 0.578722i −0.983316 0.181903i \(-0.941774\pi\)
0.649191 + 0.760625i \(0.275108\pi\)
\(200\) 0 0
\(201\) −10.3627 17.9487i −0.730926 1.26600i
\(202\) 0 0
\(203\) 8.81007 14.1509i 0.618346 0.993199i
\(204\) 0 0
\(205\) 3.11850 + 5.40139i 0.217805 + 0.377250i
\(206\) 0 0
\(207\) 5.14857 8.91759i 0.357851 0.619815i
\(208\) 0 0
\(209\) −3.31877 −0.229564
\(210\) 0 0
\(211\) −0.0770744 −0.00530602 −0.00265301 0.999996i \(-0.500844\pi\)
−0.00265301 + 0.999996i \(0.500844\pi\)
\(212\) 0 0
\(213\) 7.94878 13.7677i 0.544641 0.943346i
\(214\) 0 0
\(215\) −0.453385 0.785287i −0.0309206 0.0535561i
\(216\) 0 0
\(217\) 7.32641 + 13.7244i 0.497349 + 0.931671i
\(218\) 0 0
\(219\) −0.822500 1.42461i −0.0555794 0.0962663i
\(220\) 0 0
\(221\) −0.0949235 + 0.164412i −0.00638524 + 0.0110596i
\(222\) 0 0
\(223\) 10.0086 0.670226 0.335113 0.942178i \(-0.391226\pi\)
0.335113 + 0.942178i \(0.391226\pi\)
\(224\) 0 0
\(225\) −3.60578 −0.240385
\(226\) 0 0
\(227\) −5.34431 + 9.25661i −0.354714 + 0.614383i −0.987069 0.160296i \(-0.948755\pi\)
0.632355 + 0.774679i \(0.282089\pi\)
\(228\) 0 0
\(229\) 7.87679 + 13.6430i 0.520513 + 0.901555i 0.999716 + 0.0238504i \(0.00759254\pi\)
−0.479203 + 0.877704i \(0.659074\pi\)
\(230\) 0 0
\(231\) 23.5691 + 0.784166i 1.55073 + 0.0515943i
\(232\) 0 0
\(233\) −9.27108 16.0580i −0.607369 1.05199i −0.991672 0.128787i \(-0.958892\pi\)
0.384304 0.923207i \(-0.374442\pi\)
\(234\) 0 0
\(235\) 2.32230 4.02234i 0.151490 0.262389i
\(236\) 0 0
\(237\) −9.41461 −0.611545
\(238\) 0 0
\(239\) −13.8718 −0.897295 −0.448647 0.893709i \(-0.648094\pi\)
−0.448647 + 0.893709i \(0.648094\pi\)
\(240\) 0 0
\(241\) −3.69105 + 6.39309i −0.237762 + 0.411815i −0.960072 0.279754i \(-0.909747\pi\)
0.722310 + 0.691569i \(0.243080\pi\)
\(242\) 0 0
\(243\) 10.4473 + 18.0953i 0.670198 + 1.16082i
\(244\) 0 0
\(245\) 7.40056 11.0502i 0.472804 0.705969i
\(246\) 0 0
\(247\) −0.0835908 0.144783i −0.00531875 0.00921235i
\(248\) 0 0
\(249\) 9.18955 15.9168i 0.582364 1.00868i
\(250\) 0 0
\(251\) −25.1206 −1.58560 −0.792799 0.609484i \(-0.791377\pi\)
−0.792799 + 0.609484i \(0.791377\pi\)
\(252\) 0 0
\(253\) −14.9632 −0.940727
\(254\) 0 0
\(255\) −2.24671 + 3.89141i −0.140694 + 0.243689i
\(256\) 0 0
\(257\) 12.5955 + 21.8160i 0.785684 + 1.36084i 0.928590 + 0.371108i \(0.121022\pi\)
−0.142905 + 0.989736i \(0.545644\pi\)
\(258\) 0 0
\(259\) −28.8055 0.958389i −1.78989 0.0595514i
\(260\) 0 0
\(261\) 8.17003 + 14.1509i 0.505712 + 0.875919i
\(262\) 0 0
\(263\) 2.63457 4.56321i 0.162455 0.281380i −0.773294 0.634048i \(-0.781392\pi\)
0.935748 + 0.352668i \(0.114726\pi\)
\(264\) 0 0
\(265\) 13.6106 0.836092
\(266\) 0 0
\(267\) 0.560534 0.0343041
\(268\) 0 0
\(269\) −6.90938 + 11.9674i −0.421272 + 0.729665i −0.996064 0.0886344i \(-0.971750\pi\)
0.574792 + 0.818300i \(0.305083\pi\)
\(270\) 0 0
\(271\) −14.8763 25.7665i −0.903669 1.56520i −0.822694 0.568485i \(-0.807530\pi\)
−0.0809757 0.996716i \(-0.525804\pi\)
\(272\) 0 0
\(273\) 0.559431 + 1.04797i 0.0338583 + 0.0634259i
\(274\) 0 0
\(275\) 2.61985 + 4.53771i 0.157983 + 0.273634i
\(276\) 0 0
\(277\) 7.26340 12.5806i 0.436415 0.755893i −0.560995 0.827819i \(-0.689581\pi\)
0.997410 + 0.0719261i \(0.0229146\pi\)
\(278\) 0 0
\(279\) −15.2502 −0.913005
\(280\) 0 0
\(281\) −17.3065 −1.03242 −0.516209 0.856462i \(-0.672657\pi\)
−0.516209 + 0.856462i \(0.672657\pi\)
\(282\) 0 0
\(283\) 11.5507 20.0065i 0.686621 1.18926i −0.286304 0.958139i \(-0.592427\pi\)
0.972925 0.231123i \(-0.0742399\pi\)
\(284\) 0 0
\(285\) −1.97848 3.42682i −0.117195 0.202987i
\(286\) 0 0
\(287\) −4.59042 + 7.37321i −0.270964 + 0.435227i
\(288\) 0 0
\(289\) −0.500000 0.866025i −0.0294118 0.0509427i
\(290\) 0 0
\(291\) 8.06184 13.9635i 0.472594 0.818556i
\(292\) 0 0
\(293\) 31.4518 1.83743 0.918717 0.394917i \(-0.129227\pi\)
0.918717 + 0.394917i \(0.129227\pi\)
\(294\) 0 0
\(295\) 8.61195 0.501407
\(296\) 0 0
\(297\) 1.81163 3.13784i 0.105122 0.182076i
\(298\) 0 0
\(299\) −0.376882 0.652778i −0.0217956 0.0377511i
\(300\) 0 0
\(301\) 0.667382 1.07196i 0.0384672 0.0617868i
\(302\) 0 0
\(303\) −20.0454 34.7197i −1.15158 1.99459i
\(304\) 0 0
\(305\) 10.7561 18.6301i 0.615893 1.06676i
\(306\) 0 0
\(307\) −14.9725 −0.854527 −0.427263 0.904127i \(-0.640522\pi\)
−0.427263 + 0.904127i \(0.640522\pi\)
\(308\) 0 0
\(309\) 5.84228 0.332356
\(310\) 0 0
\(311\) −0.206327 + 0.357368i −0.0116997 + 0.0202645i −0.871816 0.489834i \(-0.837058\pi\)
0.860116 + 0.510098i \(0.170391\pi\)
\(312\) 0 0
\(313\) −2.16464 3.74927i −0.122353 0.211921i 0.798342 0.602204i \(-0.205711\pi\)
−0.920695 + 0.390283i \(0.872377\pi\)
\(314\) 0 0
\(315\) 6.13934 + 11.5007i 0.345912 + 0.647988i
\(316\) 0 0
\(317\) 14.9896 + 25.9627i 0.841898 + 1.45821i 0.888288 + 0.459286i \(0.151895\pi\)
−0.0463903 + 0.998923i \(0.514772\pi\)
\(318\) 0 0
\(319\) 11.8722 20.5632i 0.664714 1.15132i
\(320\) 0 0
\(321\) −5.88402 −0.328414
\(322\) 0 0
\(323\) 0.880612 0.0489986
\(324\) 0 0
\(325\) −0.131974 + 0.228585i −0.00732059 + 0.0126796i
\(326\) 0 0
\(327\) −9.23784 16.0004i −0.510854 0.884824i
\(328\) 0 0
\(329\) 6.46432 + 0.215074i 0.356389 + 0.0118574i
\(330\) 0 0
\(331\) −11.8703 20.5599i −0.652450 1.13008i −0.982527 0.186122i \(-0.940408\pi\)
0.330077 0.943954i \(-0.392925\pi\)
\(332\) 0 0
\(333\) 14.1261 24.4671i 0.774106 1.34079i
\(334\) 0 0
\(335\) −16.6492 −0.909645
\(336\) 0 0
\(337\) −11.1783 −0.608921 −0.304460 0.952525i \(-0.598476\pi\)
−0.304460 + 0.952525i \(0.598476\pi\)
\(338\) 0 0
\(339\) −8.46467 + 14.6612i −0.459738 + 0.796289i
\(340\) 0 0
\(341\) 11.0803 + 19.1917i 0.600032 + 1.03929i
\(342\) 0 0
\(343\) 18.4281 + 1.84481i 0.995026 + 0.0996106i
\(344\) 0 0
\(345\) −8.92026 15.4504i −0.480251 0.831819i
\(346\) 0 0
\(347\) 6.15697 10.6642i 0.330523 0.572483i −0.652091 0.758141i \(-0.726108\pi\)
0.982615 + 0.185657i \(0.0594414\pi\)
\(348\) 0 0
\(349\) −20.2052 −1.08156 −0.540780 0.841164i \(-0.681871\pi\)
−0.540780 + 0.841164i \(0.681871\pi\)
\(350\) 0 0
\(351\) 0.182521 0.00974223
\(352\) 0 0
\(353\) −0.128024 + 0.221744i −0.00681402 + 0.0118022i −0.869412 0.494087i \(-0.835502\pi\)
0.862598 + 0.505890i \(0.168836\pi\)
\(354\) 0 0
\(355\) −6.38547 11.0600i −0.338906 0.587002i
\(356\) 0 0
\(357\) −6.25389 0.208073i −0.330991 0.0110124i
\(358\) 0 0
\(359\) 7.69254 + 13.3239i 0.405997 + 0.703207i 0.994437 0.105334i \(-0.0335911\pi\)
−0.588440 + 0.808541i \(0.700258\pi\)
\(360\) 0 0
\(361\) 9.11226 15.7829i 0.479593 0.830679i
\(362\) 0 0
\(363\) 7.57558 0.397615
\(364\) 0 0
\(365\) −1.32147 −0.0691691
\(366\) 0 0
\(367\) 1.21673 2.10743i 0.0635125 0.110007i −0.832521 0.553994i \(-0.813103\pi\)
0.896033 + 0.443987i \(0.146436\pi\)
\(368\) 0 0
\(369\) −4.25693 7.37321i −0.221607 0.383834i
\(370\) 0 0
\(371\) 8.92573 + 16.7203i 0.463401 + 0.868077i
\(372\) 0 0
\(373\) 10.1959 + 17.6599i 0.527926 + 0.914394i 0.999470 + 0.0325520i \(0.0103635\pi\)
−0.471544 + 0.881842i \(0.656303\pi\)
\(374\) 0 0
\(375\) −14.3572 + 24.8673i −0.741401 + 1.28414i
\(376\) 0 0
\(377\) 1.19611 0.0616029
\(378\) 0 0
\(379\) −27.1309 −1.39362 −0.696810 0.717256i \(-0.745398\pi\)
−0.696810 + 0.717256i \(0.745398\pi\)
\(380\) 0 0
\(381\) −6.30238 + 10.9160i −0.322881 + 0.559246i
\(382\) 0 0
\(383\) 9.33746 + 16.1730i 0.477122 + 0.826399i 0.999656 0.0262189i \(-0.00834669\pi\)
−0.522534 + 0.852618i \(0.675013\pi\)
\(384\) 0 0
\(385\) 10.0124 16.0821i 0.510279 0.819619i
\(386\) 0 0
\(387\) 0.618897 + 1.07196i 0.0314603 + 0.0544908i
\(388\) 0 0
\(389\) −1.57823 + 2.73358i −0.0800195 + 0.138598i −0.903258 0.429098i \(-0.858832\pi\)
0.823239 + 0.567696i \(0.192165\pi\)
\(390\) 0 0
\(391\) 3.97038 0.200791
\(392\) 0 0
\(393\) −14.1145 −0.711980
\(394\) 0 0
\(395\) −3.78151 + 6.54977i −0.190269 + 0.329555i
\(396\) 0 0
\(397\) −14.3305 24.8211i −0.719226 1.24574i −0.961307 0.275480i \(-0.911163\pi\)
0.242081 0.970256i \(-0.422170\pi\)
\(398\) 0 0
\(399\) 2.91231 4.67781i 0.145798 0.234183i
\(400\) 0 0
\(401\) 6.18351 + 10.7102i 0.308790 + 0.534839i 0.978098 0.208145i \(-0.0667427\pi\)
−0.669308 + 0.742985i \(0.733409\pi\)
\(402\) 0 0
\(403\) −0.558166 + 0.966772i −0.0278042 + 0.0481583i
\(404\) 0 0
\(405\) 19.1023 0.949200
\(406\) 0 0
\(407\) −41.0544 −2.03499
\(408\) 0 0
\(409\) −13.8103 + 23.9202i −0.682878 + 1.18278i 0.291221 + 0.956656i \(0.405938\pi\)
−0.974099 + 0.226123i \(0.927395\pi\)
\(410\) 0 0
\(411\) −20.1247 34.8570i −0.992679 1.71937i
\(412\) 0 0
\(413\) 5.64766 + 10.5796i 0.277903 + 0.520589i
\(414\) 0 0
\(415\) −7.38222 12.7864i −0.362379 0.627659i
\(416\) 0 0
\(417\) −10.1418 + 17.5662i −0.496648 + 0.860219i
\(418\) 0 0
\(419\) −21.1268 −1.03211 −0.516055 0.856555i \(-0.672600\pi\)
−0.516055 + 0.856555i \(0.672600\pi\)
\(420\) 0 0
\(421\) −4.03124 −0.196471 −0.0982353 0.995163i \(-0.531320\pi\)
−0.0982353 + 0.995163i \(0.531320\pi\)
\(422\) 0 0
\(423\) −3.17007 + 5.49073i −0.154134 + 0.266968i
\(424\) 0 0
\(425\) −0.695159 1.20405i −0.0337202 0.0584050i
\(426\) 0 0
\(427\) 29.9405 + 0.996150i 1.44892 + 0.0482071i
\(428\) 0 0
\(429\) 0.846072 + 1.46544i 0.0408487 + 0.0707521i
\(430\) 0 0
\(431\) −5.58148 + 9.66740i −0.268850 + 0.465662i −0.968565 0.248760i \(-0.919977\pi\)
0.699715 + 0.714422i \(0.253310\pi\)
\(432\) 0 0
\(433\) 30.3717 1.45957 0.729785 0.683676i \(-0.239620\pi\)
0.729785 + 0.683676i \(0.239620\pi\)
\(434\) 0 0
\(435\) 28.3103 1.35737
\(436\) 0 0
\(437\) −1.74818 + 3.02794i −0.0836268 + 0.144846i
\(438\) 0 0
\(439\) −8.73879 15.1360i −0.417080 0.722404i 0.578564 0.815637i \(-0.303613\pi\)
−0.995644 + 0.0932331i \(0.970280\pi\)
\(440\) 0 0
\(441\) −10.1022 + 15.0841i −0.481056 + 0.718291i
\(442\) 0 0
\(443\) 4.52098 + 7.83057i 0.214798 + 0.372042i 0.953210 0.302308i \(-0.0977572\pi\)
−0.738412 + 0.674350i \(0.764424\pi\)
\(444\) 0 0
\(445\) 0.225146 0.389965i 0.0106730 0.0184861i
\(446\) 0 0
\(447\) −49.7164 −2.35151
\(448\) 0 0
\(449\) −20.6592 −0.974966 −0.487483 0.873132i \(-0.662085\pi\)
−0.487483 + 0.873132i \(0.662085\pi\)
\(450\) 0 0
\(451\) −6.18590 + 10.7143i −0.291283 + 0.504516i
\(452\) 0 0
\(453\) 27.8073 + 48.1637i 1.30650 + 2.26293i
\(454\) 0 0
\(455\) 0.953777 + 0.0317331i 0.0447138 + 0.00148767i
\(456\) 0 0
\(457\) 10.7505 + 18.6203i 0.502885 + 0.871023i 0.999994 + 0.00333478i \(0.00106149\pi\)
−0.497109 + 0.867688i \(0.665605\pi\)
\(458\) 0 0
\(459\) −0.480705 + 0.832605i −0.0224374 + 0.0388627i
\(460\) 0 0
\(461\) 15.7330 0.732758 0.366379 0.930466i \(-0.380597\pi\)
0.366379 + 0.930466i \(0.380597\pi\)
\(462\) 0 0
\(463\) 41.7714 1.94128 0.970640 0.240537i \(-0.0773236\pi\)
0.970640 + 0.240537i \(0.0773236\pi\)
\(464\) 0 0
\(465\) −13.2110 + 22.8821i −0.612646 + 1.06113i
\(466\) 0 0
\(467\) −17.9496 31.0897i −0.830611 1.43866i −0.897555 0.440903i \(-0.854658\pi\)
0.0669441 0.997757i \(-0.478675\pi\)
\(468\) 0 0
\(469\) −10.9185 20.4533i −0.504168 0.944444i
\(470\) 0 0
\(471\) 22.2594 + 38.5544i 1.02566 + 1.77650i
\(472\) 0 0
\(473\) 0.899342 1.55771i 0.0413518 0.0716234i
\(474\) 0 0
\(475\) 1.22433 0.0561762
\(476\) 0 0
\(477\) −18.5792 −0.850684
\(478\) 0 0
\(479\) −3.63726 + 6.29992i −0.166191 + 0.287851i −0.937078 0.349121i \(-0.886480\pi\)
0.770887 + 0.636972i \(0.219813\pi\)
\(480\) 0 0
\(481\) −1.03405 1.79102i −0.0471486 0.0816637i
\(482\) 0 0
\(483\) 13.1306 21.0906i 0.597463 0.959656i
\(484\) 0 0
\(485\) −6.47630 11.2173i −0.294074 0.509351i
\(486\) 0 0
\(487\) 5.86298 10.1550i 0.265677 0.460166i −0.702064 0.712114i \(-0.747738\pi\)
0.967741 + 0.251948i \(0.0810713\pi\)
\(488\) 0 0
\(489\) −39.7760 −1.79873
\(490\) 0 0
\(491\) 0.539527 0.0243485 0.0121742 0.999926i \(-0.496125\pi\)
0.0121742 + 0.999926i \(0.496125\pi\)
\(492\) 0 0
\(493\) −3.15020 + 5.45631i −0.141878 + 0.245740i
\(494\) 0 0
\(495\) 9.28500 + 16.0821i 0.417330 + 0.722836i
\(496\) 0 0
\(497\) 9.39940 15.0975i 0.421621 0.677215i
\(498\) 0 0
\(499\) −9.85972 17.0775i −0.441382 0.764495i 0.556411 0.830907i \(-0.312178\pi\)
−0.997792 + 0.0664120i \(0.978845\pi\)
\(500\) 0 0
\(501\) 12.9005 22.3443i 0.576351 0.998269i
\(502\) 0 0
\(503\) 23.4213 1.04430 0.522152 0.852852i \(-0.325129\pi\)
0.522152 + 0.852852i \(0.325129\pi\)
\(504\) 0 0
\(505\) −32.2061 −1.43315
\(506\) 0 0
\(507\) 15.3302 26.5528i 0.680840 1.17925i
\(508\) 0 0
\(509\) 10.2938 + 17.8294i 0.456266 + 0.790275i 0.998760 0.0497841i \(-0.0158533\pi\)
−0.542494 + 0.840059i \(0.682520\pi\)
\(510\) 0 0
\(511\) −0.866614 1.62341i −0.0383368 0.0718152i
\(512\) 0 0
\(513\) −0.423315 0.733203i −0.0186898 0.0323717i
\(514\) 0 0
\(515\) 2.34664 4.06449i 0.103405 0.179103i
\(516\) 0 0
\(517\) 9.21311 0.405192
\(518\) 0 0
\(519\) −26.8236 −1.17743
\(520\) 0 0
\(521\) −0.704286 + 1.21986i −0.0308553 + 0.0534430i −0.881041 0.473040i \(-0.843156\pi\)
0.850185 + 0.526483i \(0.176490\pi\)
\(522\) 0 0
\(523\) −12.9386 22.4103i −0.565766 0.979935i −0.996978 0.0776844i \(-0.975247\pi\)
0.431212 0.902250i \(-0.358086\pi\)
\(524\) 0 0
\(525\) −8.69490 0.289288i −0.379476 0.0126255i
\(526\) 0 0
\(527\) −2.94008 5.09238i −0.128072 0.221827i
\(528\) 0 0
\(529\) 3.61806 6.26666i 0.157307 0.272463i
\(530\) 0 0
\(531\) −11.7558 −0.510158
\(532\) 0 0
\(533\) −0.623224 −0.0269948
\(534\) 0 0
\(535\) −2.36340 + 4.09353i −0.102179 + 0.176979i
\(536\) 0 0
\(537\) −10.6662 18.4745i −0.460282 0.797231i
\(538\) 0 0
\(539\) 26.3226 + 1.75350i 1.13379 + 0.0755285i
\(540\) 0 0
\(541\) −13.5298 23.4343i −0.581691 1.00752i −0.995279 0.0970546i \(-0.969058\pi\)
0.413588 0.910464i \(-0.364275\pi\)
\(542\) 0 0
\(543\) −3.70249 + 6.41290i −0.158889 + 0.275204i
\(544\) 0 0
\(545\) −14.8420 −0.635763
\(546\) 0 0
\(547\) 0.235008 0.0100482 0.00502410 0.999987i \(-0.498401\pi\)
0.00502410 + 0.999987i \(0.498401\pi\)
\(548\) 0 0
\(549\) −14.6827 + 25.4312i −0.626642 + 1.08538i
\(550\) 0 0
\(551\) −2.77411 4.80489i −0.118181 0.204695i
\(552\) 0 0
\(553\) −10.5262 0.350215i −0.447618 0.0148927i
\(554\) 0 0
\(555\) −24.4745 42.3910i −1.03888 1.79940i
\(556\) 0 0
\(557\) −14.1983 + 24.5921i −0.601600 + 1.04200i 0.390978 + 0.920400i \(0.372137\pi\)
−0.992579 + 0.121603i \(0.961197\pi\)
\(558\) 0 0
\(559\) 0.0906080 0.00383231
\(560\) 0 0
\(561\) −8.91320 −0.376316
\(562\) 0 0
\(563\) −6.66425 + 11.5428i −0.280865 + 0.486472i −0.971598 0.236638i \(-0.923955\pi\)
0.690733 + 0.723110i \(0.257288\pi\)
\(564\) 0 0
\(565\) 6.79991 + 11.7778i 0.286074 + 0.495495i
\(566\) 0 0
\(567\) 12.5271 + 23.4668i 0.526091 + 0.985512i
\(568\) 0 0
\(569\) −22.4200 38.8326i −0.939896 1.62795i −0.765662 0.643243i \(-0.777589\pi\)
−0.174234 0.984704i \(-0.555745\pi\)
\(570\) 0 0
\(571\) −8.95179 + 15.5050i −0.374621 + 0.648862i −0.990270 0.139158i \(-0.955560\pi\)
0.615649 + 0.788020i \(0.288894\pi\)
\(572\) 0 0
\(573\) −47.6209 −1.98939
\(574\) 0 0
\(575\) 5.52008 0.230203
\(576\) 0 0
\(577\) −12.4993 + 21.6495i −0.520353 + 0.901278i 0.479367 + 0.877615i \(0.340866\pi\)
−0.999720 + 0.0236637i \(0.992467\pi\)
\(578\) 0 0
\(579\) −24.9550 43.2233i −1.03709 1.79630i
\(580\) 0 0
\(581\) 10.8666 17.4541i 0.450823 0.724120i
\(582\) 0 0
\(583\) 13.4991 + 23.3811i 0.559075 + 0.968346i
\(584\) 0 0
\(585\) −0.467728 + 0.810129i −0.0193382 + 0.0334947i
\(586\) 0 0
\(587\) 40.3825 1.66676 0.833382 0.552697i \(-0.186401\pi\)
0.833382 + 0.552697i \(0.186401\pi\)
\(588\) 0 0
\(589\) 5.17815 0.213362
\(590\) 0 0
\(591\) −19.9548 + 34.5627i −0.820831 + 1.42172i
\(592\) 0 0
\(593\) 2.61105 + 4.52246i 0.107223 + 0.185715i 0.914644 0.404260i \(-0.132471\pi\)
−0.807421 + 0.589975i \(0.799138\pi\)
\(594\) 0 0
\(595\) −2.65672 + 4.26727i −0.108915 + 0.174941i
\(596\) 0 0
\(597\) −11.1475 19.3080i −0.456237 0.790225i
\(598\) 0 0
\(599\) −0.548947 + 0.950804i −0.0224294 + 0.0388488i −0.877022 0.480450i \(-0.840473\pi\)
0.854593 + 0.519299i \(0.173807\pi\)
\(600\) 0 0
\(601\) 16.3752 0.667958 0.333979 0.942581i \(-0.391609\pi\)
0.333979 + 0.942581i \(0.391609\pi\)
\(602\) 0 0
\(603\) 22.7272 0.925522
\(604\) 0 0
\(605\) 3.04284 5.27035i 0.123709 0.214270i
\(606\) 0 0
\(607\) −21.0993 36.5451i −0.856396 1.48332i −0.875344 0.483501i \(-0.839365\pi\)
0.0189477 0.999820i \(-0.493968\pi\)
\(608\) 0 0
\(609\) 18.5657 + 34.7786i 0.752320 + 1.40930i
\(610\) 0 0
\(611\) 0.232053 + 0.401928i 0.00938787 + 0.0162603i
\(612\) 0 0
\(613\) −15.4561 + 26.7707i −0.624265 + 1.08126i 0.364417 + 0.931236i \(0.381268\pi\)
−0.988683 + 0.150023i \(0.952065\pi\)
\(614\) 0 0
\(615\) −14.7508 −0.594811
\(616\) 0 0
\(617\) −11.2653 −0.453526 −0.226763 0.973950i \(-0.572814\pi\)
−0.226763 + 0.973950i \(0.572814\pi\)
\(618\) 0 0
\(619\) 15.5012 26.8489i 0.623047 1.07915i −0.365868 0.930667i \(-0.619228\pi\)
0.988915 0.148483i \(-0.0474390\pi\)
\(620\) 0 0
\(621\) −1.90858 3.30576i −0.0765886 0.132655i
\(622\) 0 0
\(623\) 0.626714 + 0.0208514i 0.0251088 + 0.000835393i
\(624\) 0 0
\(625\) 8.05772 + 13.9564i 0.322309 + 0.558255i
\(626\) 0 0
\(627\) 3.92454 6.79750i 0.156731 0.271466i
\(628\) 0 0
\(629\) 10.8935 0.434352
\(630\) 0 0
\(631\) 25.0599 0.997621 0.498810 0.866711i \(-0.333770\pi\)
0.498810 + 0.866711i \(0.333770\pi\)
\(632\) 0 0
\(633\) 0.0911427 0.157864i 0.00362260 0.00627452i
\(634\) 0 0
\(635\) 5.06288 + 8.76917i 0.200914 + 0.347994i
\(636\) 0 0
\(637\) 0.586497 + 1.19251i 0.0232379 + 0.0472488i
\(638\) 0 0
\(639\) 8.71654 + 15.0975i 0.344821 + 0.597247i
\(640\) 0 0
\(641\) 16.6285 28.8014i 0.656787 1.13759i −0.324656 0.945832i \(-0.605249\pi\)
0.981443 0.191756i \(-0.0614181\pi\)
\(642\) 0 0
\(643\) 21.0140 0.828710 0.414355 0.910115i \(-0.364007\pi\)
0.414355 + 0.910115i \(0.364007\pi\)
\(644\) 0 0
\(645\) 2.14456 0.0844421
\(646\) 0 0
\(647\) 10.6395 18.4282i 0.418284 0.724489i −0.577483 0.816403i \(-0.695965\pi\)
0.995767 + 0.0919139i \(0.0292985\pi\)
\(648\) 0 0
\(649\) 8.54140 + 14.7941i 0.335279 + 0.580721i
\(650\) 0 0
\(651\) −36.7739 1.22350i −1.44128 0.0479529i
\(652\) 0 0
\(653\) −0.809444 1.40200i −0.0316760 0.0548644i 0.849753 0.527181i \(-0.176751\pi\)
−0.881429 + 0.472317i \(0.843418\pi\)
\(654\) 0 0
\(655\) −5.66927 + 9.81946i −0.221517 + 0.383678i
\(656\) 0 0
\(657\) 1.80389 0.0703764
\(658\) 0 0
\(659\) 9.90958 0.386022 0.193011 0.981197i \(-0.438175\pi\)
0.193011 + 0.981197i \(0.438175\pi\)
\(660\) 0 0
\(661\) 6.08842 10.5455i 0.236812 0.410171i −0.722986 0.690863i \(-0.757231\pi\)
0.959798 + 0.280692i \(0.0905641\pi\)
\(662\) 0 0
\(663\) −0.224499 0.388844i −0.00871883 0.0151015i
\(664\) 0 0
\(665\) −2.08459 3.90501i −0.0808370 0.151430i
\(666\) 0 0
\(667\) −12.5075 21.6636i −0.484292 0.838818i
\(668\) 0 0
\(669\) −11.8355 + 20.4996i −0.457585 + 0.792561i
\(670\) 0 0
\(671\) 42.6720 1.64733
\(672\) 0 0
\(673\) 4.19259 0.161612 0.0808062 0.996730i \(-0.474251\pi\)
0.0808062 + 0.996730i \(0.474251\pi\)
\(674\) 0 0
\(675\) −0.668332 + 1.15759i −0.0257241 + 0.0445555i
\(676\) 0 0
\(677\) 8.11027 + 14.0474i 0.311703 + 0.539885i 0.978731 0.205147i \(-0.0657673\pi\)
−0.667028 + 0.745032i \(0.732434\pi\)
\(678\) 0 0
\(679\) 9.53310 15.3122i 0.365847 0.587630i
\(680\) 0 0
\(681\) −12.6396 21.8924i −0.484350 0.838919i
\(682\) 0 0
\(683\) −9.09220 + 15.7481i −0.347903 + 0.602586i −0.985877 0.167472i \(-0.946440\pi\)
0.637974 + 0.770058i \(0.279773\pi\)
\(684\) 0 0
\(685\) −32.3335 −1.23540
\(686\) 0 0
\(687\) −37.2581 −1.42149
\(688\) 0 0
\(689\) −0.680011 + 1.17781i −0.0259064 + 0.0448711i
\(690\) 0 0
\(691\) −17.2688 29.9104i −0.656936 1.13785i −0.981405 0.191950i \(-0.938519\pi\)
0.324469 0.945896i \(-0.394814\pi\)
\(692\) 0 0
\(693\) −13.6675 + 21.9530i −0.519185 + 0.833924i
\(694\) 0 0
\(695\) 8.14722 + 14.1114i 0.309042 + 0.535276i
\(696\) 0 0
\(697\) 1.64139 2.84296i 0.0621719 0.107685i
\(698\) 0 0
\(699\) 43.8533 1.65868
\(700\) 0 0
\(701\) −13.4147 −0.506665 −0.253333 0.967379i \(-0.581527\pi\)
−0.253333 + 0.967379i \(0.581527\pi\)
\(702\) 0 0
\(703\) −4.79648 + 8.30774i −0.180902 + 0.313332i
\(704\) 0 0
\(705\) 5.49237 + 9.51307i 0.206855 + 0.358283i
\(706\) 0 0
\(707\) −21.1206 39.5646i −0.794320 1.48798i
\(708\) 0 0
\(709\) 6.45422 + 11.1790i 0.242393 + 0.419837i 0.961395 0.275170i \(-0.0887343\pi\)
−0.719002 + 0.695008i \(0.755401\pi\)
\(710\) 0 0
\(711\) 5.16198 8.94081i 0.193589 0.335307i
\(712\) 0 0
\(713\) 23.3465 0.874333
\(714\) 0 0
\(715\) 1.35935 0.0508367
\(716\) 0 0
\(717\) 16.4038 28.4123i 0.612613 1.06108i
\(718\) 0 0
\(719\) 7.97727 + 13.8170i 0.297502 + 0.515289i 0.975564 0.219716i \(-0.0705132\pi\)
−0.678062 + 0.735005i \(0.737180\pi\)
\(720\) 0 0
\(721\) 6.53205 + 0.217328i 0.243266 + 0.00809371i
\(722\) 0 0
\(723\) −8.72955 15.1200i −0.324656 0.562320i
\(724\) 0 0
\(725\) −4.37978 + 7.58600i −0.162661 + 0.281737i
\(726\) 0 0
\(727\) 11.5506 0.428389 0.214195 0.976791i \(-0.431287\pi\)
0.214195 + 0.976791i \(0.431287\pi\)
\(728\) 0 0
\(729\) −19.2543 −0.713123
\(730\) 0 0
\(731\) −0.238634 + 0.413327i −0.00882621 + 0.0152874i
\(732\) 0 0
\(733\) −3.68030 6.37447i −0.135935 0.235447i 0.790019 0.613082i \(-0.210071\pi\)
−0.925954 + 0.377636i \(0.876737\pi\)
\(734\) 0 0
\(735\) 13.8816 + 28.2250i 0.512029 + 1.04109i
\(736\) 0 0
\(737\) −16.5128 28.6011i −0.608259 1.05353i
\(738\) 0 0
\(739\) −20.9898 + 36.3554i −0.772122 + 1.33735i 0.164276 + 0.986414i \(0.447471\pi\)
−0.936398 + 0.350940i \(0.885862\pi\)
\(740\) 0 0
\(741\) 0.395394 0.0145252
\(742\) 0 0
\(743\) 33.2804 1.22094 0.610469 0.792040i \(-0.290981\pi\)
0.610469 + 0.792040i \(0.290981\pi\)
\(744\) 0 0
\(745\) −19.9693 + 34.5878i −0.731618 + 1.26720i
\(746\) 0 0
\(747\) 10.0772 + 17.4541i 0.368704 + 0.638614i
\(748\) 0 0
\(749\) −6.57872 0.218880i −0.240381 0.00799771i
\(750\) 0 0
\(751\) 10.2979 + 17.8364i 0.375774 + 0.650860i 0.990443 0.137926i \(-0.0440435\pi\)
−0.614668 + 0.788786i \(0.710710\pi\)
\(752\) 0 0
\(753\) 29.7058 51.4520i 1.08254 1.87501i
\(754\) 0 0
\(755\) 44.6768 1.62595
\(756\) 0 0
\(757\) 38.5859 1.40243 0.701214 0.712950i \(-0.252642\pi\)
0.701214 + 0.712950i \(0.252642\pi\)
\(758\) 0 0
\(759\) 17.6944 30.6476i 0.642265 1.11244i
\(760\) 0 0
\(761\) −4.41939 7.65461i −0.160203 0.277479i 0.774739 0.632282i \(-0.217881\pi\)
−0.934941 + 0.354802i \(0.884548\pi\)
\(762\) 0 0
\(763\) −9.73331 18.2331i −0.352369 0.660084i
\(764\) 0 0
\(765\) −2.46371 4.26727i −0.0890757 0.154284i
\(766\) 0 0
\(767\) −0.430270 + 0.745249i −0.0155361 + 0.0269094i
\(768\) 0 0
\(769\) −7.92516 −0.285789 −0.142894 0.989738i \(-0.545641\pi\)
−0.142894 + 0.989738i \(0.545641\pi\)
\(770\) 0 0
\(771\) −59.5780 −2.14565
\(772\) 0 0
\(773\) 24.8690 43.0743i 0.894475 1.54928i 0.0600225 0.998197i \(-0.480883\pi\)
0.834453 0.551080i \(-0.185784\pi\)
\(774\) 0 0
\(775\) −4.08765 7.08002i −0.146833 0.254322i
\(776\) 0 0
\(777\) 36.0264 57.8662i 1.29244 2.07594i
\(778\) 0 0
\(779\) 1.44543 + 2.50355i 0.0517877 + 0.0896990i
\(780\) 0 0
\(781\) 12.6663 21.9387i 0.453237 0.785029i
\(782\) 0 0
\(783\) 6.05727 0.216469
\(784\) 0 0
\(785\) 35.7632 1.27644
\(786\) 0 0
\(787\) −6.28276 + 10.8821i −0.223956 + 0.387904i −0.956006 0.293348i \(-0.905231\pi\)
0.732049 + 0.681252i \(0.238564\pi\)
\(788\) 0 0
\(789\) 6.23091 + 10.7923i 0.221826 + 0.384215i
\(790\) 0 0
\(791\) −10.0094 + 16.0773i −0.355895 + 0.571645i
\(792\) 0 0
\(793\) 1.07479 + 1.86159i 0.0381670 + 0.0661071i
\(794\) 0 0
\(795\) −16.0949 + 27.8772i −0.570827 + 0.988702i
\(796\) 0 0
\(797\) −2.30988 −0.0818200 −0.0409100 0.999163i \(-0.513026\pi\)
−0.0409100 + 0.999163i \(0.513026\pi\)
\(798\) 0 0
\(799\) −2.44464 −0.0864850
\(800\) 0 0
\(801\) −0.307338 + 0.532325i −0.0108592 + 0.0188088i
\(802\) 0 0
\(803\) −1.31065 2.27011i −0.0462518 0.0801104i
\(804\) 0 0
\(805\) −9.39870 17.6063i −0.331261 0.620542i
\(806\) 0 0
\(807\) −16.3411 28.3036i −0.575233 0.996333i
\(808\) 0 0
\(809\) 24.8855 43.1030i 0.874928 1.51542i 0.0180879 0.999836i \(-0.494242\pi\)
0.856840 0.515583i \(-0.172425\pi\)
\(810\) 0 0
\(811\) 28.5230 1.00158 0.500789 0.865569i \(-0.333043\pi\)
0.500789 + 0.865569i \(0.333043\pi\)
\(812\) 0 0
\(813\) 70.3665 2.46786
\(814\) 0 0
\(815\) −15.9766 + 27.6723i −0.559636 + 0.969318i
\(816\) 0 0
\(817\) −0.210144 0.363981i −0.00735202 0.0127341i
\(818\) 0 0
\(819\) −1.30196 0.0433175i −0.0454942 0.00151363i
\(820\) 0 0
\(821\) 18.0649 + 31.2893i 0.630469 + 1.09200i 0.987456 + 0.157895i \(0.0504706\pi\)
−0.356987 + 0.934109i \(0.616196\pi\)
\(822\) 0 0
\(823\) 25.3144 43.8458i 0.882404 1.52837i 0.0337435 0.999431i \(-0.489257\pi\)
0.848660 0.528938i \(-0.177410\pi\)
\(824\) 0 0
\(825\) −12.3922 −0.431440
\(826\) 0 0
\(827\) −12.6809 −0.440957 −0.220479 0.975392i \(-0.570762\pi\)
−0.220479 + 0.975392i \(0.570762\pi\)
\(828\) 0 0
\(829\) 11.8010 20.4400i 0.409866 0.709909i −0.585008 0.811027i \(-0.698909\pi\)
0.994874 + 0.101118i \(0.0322420\pi\)
\(830\) 0 0
\(831\) 17.1783 + 29.7538i 0.595910 + 1.03215i
\(832\) 0 0
\(833\) −6.98452 0.465279i −0.241999 0.0161209i
\(834\) 0 0
\(835\) −10.3633 17.9498i −0.358637 0.621178i
\(836\) 0 0
\(837\) −2.82663 + 4.89586i −0.0977025 + 0.169226i
\(838\) 0 0
\(839\) −40.8581 −1.41058 −0.705290 0.708919i \(-0.749183\pi\)
−0.705290 + 0.708919i \(0.749183\pi\)
\(840\) 0 0
\(841\) 10.6951 0.368795
\(842\) 0 0
\(843\) 20.4654 35.4471i 0.704866 1.22086i
\(844\) 0 0
\(845\) −12.3152 21.3306i −0.423656 0.733794i
\(846\) 0 0
\(847\) 8.47000 + 0.281805i 0.291033 + 0.00968294i
\(848\) 0 0
\(849\) 27.3182 + 47.3165i 0.937557 + 1.62390i
\(850\) 0 0
\(851\) −21.6256 + 37.4567i −0.741317 + 1.28400i
\(852\) 0 0
\(853\) −25.7967 −0.883261 −0.441630 0.897197i \(-0.645600\pi\)
−0.441630 + 0.897197i \(0.645600\pi\)
\(854\) 0 0
\(855\) 4.33915 0.148396
\(856\) 0 0
\(857\) −20.7224 + 35.8923i −0.707864 + 1.22606i 0.257784 + 0.966202i \(0.417008\pi\)
−0.965648 + 0.259853i \(0.916326\pi\)
\(858\) 0 0
\(859\) 23.3179 + 40.3879i 0.795598 + 1.37802i 0.922459 + 0.386095i \(0.126176\pi\)
−0.126861 + 0.991920i \(0.540490\pi\)
\(860\) 0 0
\(861\) −9.67351 18.1211i −0.329672 0.617566i
\(862\) 0 0
\(863\) 2.51419 + 4.35470i 0.0855839 + 0.148236i 0.905640 0.424048i \(-0.139391\pi\)
−0.820056 + 0.572283i \(0.806058\pi\)
\(864\) 0 0
\(865\) −10.7741 + 18.6613i −0.366330 + 0.634502i
\(866\) 0 0
\(867\) 2.36506 0.0803215
\(868\) 0 0
\(869\) −15.0021 −0.508912
\(870\) 0 0
\(871\) 0.831828 1.44077i 0.0281854 0.0488186i
\(872\) 0 0
\(873\) 8.84052 + 15.3122i 0.299206 + 0.518241i
\(874\) 0 0
\(875\) −16.9773 + 27.2692i −0.573937 + 0.921868i
\(876\) 0 0
\(877\) 18.6983 + 32.3864i 0.631396 + 1.09361i 0.987267 + 0.159074i \(0.0508510\pi\)
−0.355871 + 0.934535i \(0.615816\pi\)
\(878\) 0 0
\(879\) −37.1926 + 64.4195i −1.25448 + 2.17282i
\(880\) 0 0
\(881\) 52.7508 1.77722 0.888609 0.458665i \(-0.151672\pi\)
0.888609 + 0.458665i \(0.151672\pi\)
\(882\) 0 0
\(883\) 45.9674 1.54692 0.773462 0.633842i \(-0.218523\pi\)
0.773462 + 0.633842i \(0.218523\pi\)
\(884\) 0 0
\(885\) −10.1839 + 17.6390i −0.342327 + 0.592928i
\(886\) 0 0
\(887\) −2.73443 4.73617i −0.0918131 0.159025i 0.816461 0.577401i \(-0.195933\pi\)
−0.908274 + 0.418376i \(0.862600\pi\)
\(888\) 0 0
\(889\) −7.45254 + 11.9704i −0.249950 + 0.401475i
\(890\) 0 0
\(891\) 18.9458 + 32.8151i 0.634708 + 1.09935i
\(892\) 0 0
\(893\) 1.07639 1.86436i 0.0360200 0.0623884i
\(894\) 0 0
\(895\) −17.1370 −0.572826
\(896\) 0 0
\(897\) 1.78269 0.0595224
\(898\) 0 0
\(899\) −18.5237 + 32.0840i −0.617800 + 1.07006i
\(900\) 0 0
\(901\) −3.58189 6.20402i −0.119330 0.206686i
\(902\) 0 0
\(903\) 1.40639 + 2.63456i 0.0468018 + 0.0876725i
\(904\) 0 0
\(905\) 2.97431 + 5.15166i 0.0988696 + 0.171247i
\(906\) 0 0
\(907\) −25.3835 + 43.9656i −0.842846 + 1.45985i 0.0446322 + 0.999003i \(0.485788\pi\)
−0.887478 + 0.460849i \(0.847545\pi\)
\(908\) 0 0
\(909\) 43.9632 1.45817
\(910\) 0 0
\(911\) 15.2983 0.506856 0.253428 0.967354i \(-0.418442\pi\)
0.253428 + 0.967354i \(0.418442\pi\)
\(912\) 0 0
\(913\) 14.6435 25.3633i 0.484629 0.839402i
\(914\) 0 0
\(915\) 25.4388 + 44.0613i 0.840981 + 1.45662i
\(916\) 0 0
\(917\) −15.7809 0.525045i −0.521131 0.0173385i
\(918\) 0 0
\(919\) 16.3929 + 28.3933i 0.540750 + 0.936607i 0.998861 + 0.0477121i \(0.0151930\pi\)
−0.458111 + 0.888895i \(0.651474\pi\)
\(920\) 0 0
\(921\) 17.7054 30.6667i 0.583414 1.01050i
\(922\) 0 0
\(923\) 1.27612 0.0420041
\(924\) 0 0
\(925\) 15.1454 0.497978
\(926\) 0 0
\(927\) −3.20329 + 5.54826i −0.105210 + 0.182229i
\(928\) 0 0
\(929\) 5.15864 + 8.93502i 0.169249 + 0.293149i 0.938156 0.346212i \(-0.112532\pi\)
−0.768907 + 0.639361i \(0.779199\pi\)
\(930\) 0 0
\(931\) 3.43016 5.12176i 0.112419 0.167859i
\(932\) 0 0
\(933\) −0.487974 0.845196i −0.0159756 0.0276705i
\(934\) 0 0
\(935\) −3.58011 + 6.20093i −0.117082 + 0.202792i
\(936\) 0 0
\(937\) −38.7047 −1.26443 −0.632214 0.774794i \(-0.717854\pi\)
−0.632214 + 0.774794i \(0.717854\pi\)
\(938\) 0 0
\(939\) 10.2390 0.334137
\(940\) 0 0
\(941\) 21.6898 37.5678i 0.707067 1.22468i −0.258873 0.965911i \(-0.583351\pi\)
0.965940 0.258765i \(-0.0833156\pi\)
\(942\) 0 0
\(943\) 6.51692 + 11.2876i 0.212220 + 0.367576i
\(944\) 0 0
\(945\) 4.83005 + 0.160701i 0.157122 + 0.00522759i
\(946\) 0 0
\(947\) 26.6426 + 46.1463i 0.865768 + 1.49955i 0.866283 + 0.499554i \(0.166503\pi\)
−0.000514495 1.00000i \(0.500164\pi\)
\(948\) 0 0
\(949\) 0.0660234 0.114356i 0.00214321 0.00371215i
\(950\) 0 0
\(951\) −70.9023 −2.29917
\(952\) 0 0
\(953\) −54.3851 −1.76170 −0.880852 0.473391i \(-0.843030\pi\)
−0.880852 + 0.473391i \(0.843030\pi\)
\(954\) 0 0
\(955\) −19.1276 + 33.1300i −0.618955 + 1.07206i
\(956\) 0 0
\(957\) 28.0784 + 48.6332i 0.907645 + 1.57209i
\(958\) 0 0
\(959\) −21.2041 39.7211i −0.684716 1.28266i
\(960\) 0 0
\(961\) −1.78819 3.09724i −0.0576837 0.0999111i
\(962\) 0 0
\(963\) 3.22617 5.58790i 0.103962 0.180067i
\(964\) 0 0
\(965\) −40.0941 −1.29068
\(966\) 0 0
\(967\) 38.2418 1.22977 0.614887 0.788615i \(-0.289202\pi\)
0.614887 + 0.788615i \(0.289202\pi\)
\(968\) 0 0
\(969\) −1.04135 + 1.80367i −0.0334530 + 0.0579422i
\(970\) 0 0
\(971\) 2.57515 + 4.46028i 0.0826404 + 0.143137i 0.904383 0.426721i \(-0.140331\pi\)
−0.821743 + 0.569858i \(0.806998\pi\)
\(972\) 0 0
\(973\) −11.9927 + 19.2629i −0.384468 + 0.617539i
\(974\) 0 0
\(975\) −0.312125 0.540617i −0.00999601 0.0173136i
\(976\) 0 0
\(977\) −9.72956 + 16.8521i −0.311276 + 0.539146i −0.978639 0.205587i \(-0.934090\pi\)
0.667363 + 0.744733i \(0.267423\pi\)
\(978\) 0 0
\(979\) 0.893208 0.0285471
\(980\) 0 0
\(981\) 20.2602 0.646859
\(982\) 0 0
\(983\) −9.15008 + 15.8484i −0.291842 + 0.505485i −0.974245 0.225491i \(-0.927602\pi\)
0.682403 + 0.730976i \(0.260935\pi\)
\(984\) 0 0
\(985\) 16.0303 + 27.7652i 0.510766 + 0.884673i
\(986\) 0 0
\(987\) −8.08476 + 12.9859i −0.257341 + 0.413345i
\(988\) 0 0
\(989\) −0.947468 1.64106i −0.0301277 0.0521828i
\(990\) 0 0
\(991\) −22.3497 + 38.7109i −0.709963 + 1.22969i 0.254908 + 0.966965i \(0.417955\pi\)
−0.964870 + 0.262726i \(0.915378\pi\)
\(992\) 0 0
\(993\) 56.1478 1.78180
\(994\) 0 0
\(995\) −17.9102 −0.567792
\(996\) 0 0
\(997\) 7.45316 12.9093i 0.236044 0.408840i −0.723532 0.690291i \(-0.757482\pi\)
0.959576 + 0.281451i \(0.0908157\pi\)
\(998\) 0 0
\(999\) −5.23656 9.06998i −0.165677 0.286962i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 952.2.q.c.137.1 12
7.2 even 3 inner 952.2.q.c.681.1 yes 12
7.3 odd 6 6664.2.a.r.1.1 6
7.4 even 3 6664.2.a.s.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
952.2.q.c.137.1 12 1.1 even 1 trivial
952.2.q.c.681.1 yes 12 7.2 even 3 inner
6664.2.a.r.1.1 6 7.3 odd 6
6664.2.a.s.1.6 6 7.4 even 3