Properties

Label 945.2.bq.a.719.42
Level $945$
Weight $2$
Character 945.719
Analytic conductor $7.546$
Analytic rank $0$
Dimension $88$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [945,2,Mod(719,945)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(945, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("945.719"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 945 = 3^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 945.bq (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.54586299101\)
Analytic rank: \(0\)
Dimension: \(88\)
Relative dimension: \(44\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 315)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 719.42
Character \(\chi\) \(=\) 945.719
Dual form 945.2.bq.a.899.42

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.53172 q^{2} +4.40959 q^{4} +(1.09270 - 1.95090i) q^{5} +(2.57916 - 0.589845i) q^{7} +6.10041 q^{8} +(2.76640 - 4.93913i) q^{10} +(-1.23377 - 0.712319i) q^{11} +(-2.08746 + 3.61559i) q^{13} +(6.52971 - 1.49332i) q^{14} +6.62532 q^{16} +(-4.27416 + 2.46769i) q^{17} +(-4.54377 - 2.62335i) q^{19} +(4.81835 - 8.60267i) q^{20} +(-3.12356 - 1.80339i) q^{22} +(-0.238847 - 0.413696i) q^{23} +(-2.61202 - 4.26349i) q^{25} +(-5.28486 + 9.15364i) q^{26} +(11.3731 - 2.60098i) q^{28} +(1.74963 - 1.01015i) q^{29} +10.6444i q^{31} +4.57262 q^{32} +(-10.8210 + 6.24749i) q^{34} +(1.66752 - 5.67621i) q^{35} +(7.03282 + 4.06040i) q^{37} +(-11.5035 - 6.64157i) q^{38} +(6.66590 - 11.9013i) q^{40} +(-0.421048 + 0.729276i) q^{41} +(3.70789 - 2.14075i) q^{43} +(-5.44044 - 3.14104i) q^{44} +(-0.604694 - 1.04736i) q^{46} -4.94304i q^{47} +(6.30416 - 3.04261i) q^{49} +(-6.61290 - 10.7940i) q^{50} +(-9.20484 + 15.9433i) q^{52} +(2.33122 + 4.03778i) q^{53} +(-2.73781 + 1.62862i) q^{55} +(15.7339 - 3.59830i) q^{56} +(4.42958 - 2.55742i) q^{58} -0.202459 q^{59} -1.78370i q^{61} +26.9486i q^{62} -1.67406 q^{64} +(4.77268 + 8.02317i) q^{65} +2.38316i q^{67} +(-18.8473 + 10.8815i) q^{68} +(4.22169 - 14.3706i) q^{70} +11.7260i q^{71} +(-4.52420 - 7.83614i) q^{73} +(17.8051 + 10.2798i) q^{74} +(-20.0362 - 11.5679i) q^{76} +(-3.60226 - 1.10945i) q^{77} +0.452236 q^{79} +(7.23947 - 12.9253i) q^{80} +(-1.06597 + 1.84632i) q^{82} +(10.6524 - 6.15019i) q^{83} +(0.143843 + 11.0349i) q^{85} +(9.38732 - 5.41977i) q^{86} +(-7.52652 - 4.34544i) q^{88} +(1.33067 - 2.30479i) q^{89} +(-3.25126 + 10.5565i) q^{91} +(-1.05322 - 1.82423i) q^{92} -12.5144i q^{94} +(-10.0829 + 5.99791i) q^{95} +(-4.69437 - 8.13089i) q^{97} +(15.9604 - 7.70304i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q + 76 q^{4} + 3 q^{5} - 6 q^{10} + 12 q^{11} + 12 q^{14} + 52 q^{16} - 12 q^{19} + 6 q^{20} + q^{25} + 12 q^{26} - 6 q^{29} - 12 q^{34} - 30 q^{40} - 6 q^{41} + 84 q^{44} - 18 q^{46} - 8 q^{49} - 30 q^{50}+ \cdots + 20 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/945\mathbb{Z}\right)^\times\).

\(n\) \(136\) \(596\) \(757\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.53172 1.79019 0.895097 0.445871i \(-0.147106\pi\)
0.895097 + 0.445871i \(0.147106\pi\)
\(3\) 0 0
\(4\) 4.40959 2.20480
\(5\) 1.09270 1.95090i 0.488670 0.872469i
\(6\) 0 0
\(7\) 2.57916 0.589845i 0.974832 0.222941i
\(8\) 6.10041 2.15682
\(9\) 0 0
\(10\) 2.76640 4.93913i 0.874814 1.56189i
\(11\) −1.23377 0.712319i −0.371997 0.214772i 0.302334 0.953202i \(-0.402234\pi\)
−0.674330 + 0.738430i \(0.735568\pi\)
\(12\) 0 0
\(13\) −2.08746 + 3.61559i −0.578957 + 1.00278i 0.416642 + 0.909071i \(0.363207\pi\)
−0.995599 + 0.0937125i \(0.970127\pi\)
\(14\) 6.52971 1.49332i 1.74514 0.399107i
\(15\) 0 0
\(16\) 6.62532 1.65633
\(17\) −4.27416 + 2.46769i −1.03664 + 0.598502i −0.918879 0.394540i \(-0.870904\pi\)
−0.117758 + 0.993042i \(0.537571\pi\)
\(18\) 0 0
\(19\) −4.54377 2.62335i −1.04241 0.601837i −0.121896 0.992543i \(-0.538898\pi\)
−0.920515 + 0.390706i \(0.872231\pi\)
\(20\) 4.81835 8.60267i 1.07742 1.92362i
\(21\) 0 0
\(22\) −3.12356 1.80339i −0.665946 0.384484i
\(23\) −0.238847 0.413696i −0.0498031 0.0862616i 0.840049 0.542510i \(-0.182526\pi\)
−0.889852 + 0.456249i \(0.849193\pi\)
\(24\) 0 0
\(25\) −2.61202 4.26349i −0.522404 0.852698i
\(26\) −5.28486 + 9.15364i −1.03645 + 1.79518i
\(27\) 0 0
\(28\) 11.3731 2.60098i 2.14931 0.491539i
\(29\) 1.74963 1.01015i 0.324899 0.187580i −0.328675 0.944443i \(-0.606602\pi\)
0.653574 + 0.756863i \(0.273269\pi\)
\(30\) 0 0
\(31\) 10.6444i 1.91179i 0.293703 + 0.955897i \(0.405112\pi\)
−0.293703 + 0.955897i \(0.594888\pi\)
\(32\) 4.57262 0.808333
\(33\) 0 0
\(34\) −10.8210 + 6.24749i −1.85578 + 1.07144i
\(35\) 1.66752 5.67621i 0.281862 0.959455i
\(36\) 0 0
\(37\) 7.03282 + 4.06040i 1.15619 + 0.667526i 0.950388 0.311068i \(-0.100687\pi\)
0.205801 + 0.978594i \(0.434020\pi\)
\(38\) −11.5035 6.64157i −1.86612 1.07740i
\(39\) 0 0
\(40\) 6.66590 11.9013i 1.05397 1.88176i
\(41\) −0.421048 + 0.729276i −0.0657566 + 0.113894i −0.897029 0.441971i \(-0.854279\pi\)
0.831273 + 0.555865i \(0.187613\pi\)
\(42\) 0 0
\(43\) 3.70789 2.14075i 0.565447 0.326461i −0.189882 0.981807i \(-0.560810\pi\)
0.755329 + 0.655346i \(0.227477\pi\)
\(44\) −5.44044 3.14104i −0.820176 0.473529i
\(45\) 0 0
\(46\) −0.604694 1.04736i −0.0891573 0.154425i
\(47\) 4.94304i 0.721016i −0.932756 0.360508i \(-0.882603\pi\)
0.932756 0.360508i \(-0.117397\pi\)
\(48\) 0 0
\(49\) 6.30416 3.04261i 0.900595 0.434659i
\(50\) −6.61290 10.7940i −0.935205 1.52650i
\(51\) 0 0
\(52\) −9.20484 + 15.9433i −1.27648 + 2.21093i
\(53\) 2.33122 + 4.03778i 0.320217 + 0.554632i 0.980533 0.196356i \(-0.0629108\pi\)
−0.660316 + 0.750988i \(0.729577\pi\)
\(54\) 0 0
\(55\) −2.73781 + 1.62862i −0.369166 + 0.219603i
\(56\) 15.7339 3.59830i 2.10254 0.480843i
\(57\) 0 0
\(58\) 4.42958 2.55742i 0.581632 0.335805i
\(59\) −0.202459 −0.0263579 −0.0131790 0.999913i \(-0.504195\pi\)
−0.0131790 + 0.999913i \(0.504195\pi\)
\(60\) 0 0
\(61\) 1.78370i 0.228379i −0.993459 0.114189i \(-0.963573\pi\)
0.993459 0.114189i \(-0.0364271\pi\)
\(62\) 26.9486i 3.42248i
\(63\) 0 0
\(64\) −1.67406 −0.209257
\(65\) 4.77268 + 8.02317i 0.591978 + 0.995152i
\(66\) 0 0
\(67\) 2.38316i 0.291150i 0.989347 + 0.145575i \(0.0465032\pi\)
−0.989347 + 0.145575i \(0.953497\pi\)
\(68\) −18.8473 + 10.8815i −2.28557 + 1.31958i
\(69\) 0 0
\(70\) 4.22169 14.3706i 0.504588 1.71761i
\(71\) 11.7260i 1.39162i 0.718223 + 0.695812i \(0.244956\pi\)
−0.718223 + 0.695812i \(0.755044\pi\)
\(72\) 0 0
\(73\) −4.52420 7.83614i −0.529517 0.917150i −0.999407 0.0344256i \(-0.989040\pi\)
0.469890 0.882725i \(-0.344293\pi\)
\(74\) 17.8051 + 10.2798i 2.06980 + 1.19500i
\(75\) 0 0
\(76\) −20.0362 11.5679i −2.29831 1.32693i
\(77\) −3.60226 1.10945i −0.410516 0.126434i
\(78\) 0 0
\(79\) 0.452236 0.0508806 0.0254403 0.999676i \(-0.491901\pi\)
0.0254403 + 0.999676i \(0.491901\pi\)
\(80\) 7.23947 12.9253i 0.809398 1.44510i
\(81\) 0 0
\(82\) −1.06597 + 1.84632i −0.117717 + 0.203892i
\(83\) 10.6524 6.15019i 1.16926 0.675071i 0.215752 0.976448i \(-0.430780\pi\)
0.953505 + 0.301378i \(0.0974465\pi\)
\(84\) 0 0
\(85\) 0.143843 + 11.0349i 0.0156019 + 1.19690i
\(86\) 9.38732 5.41977i 1.01226 0.584429i
\(87\) 0 0
\(88\) −7.52652 4.34544i −0.802329 0.463225i
\(89\) 1.33067 2.30479i 0.141051 0.244307i −0.786842 0.617155i \(-0.788285\pi\)
0.927893 + 0.372848i \(0.121619\pi\)
\(90\) 0 0
\(91\) −3.25126 + 10.5565i −0.340825 + 1.10662i
\(92\) −1.05322 1.82423i −0.109806 0.190189i
\(93\) 0 0
\(94\) 12.5144i 1.29076i
\(95\) −10.0829 + 5.99791i −1.03448 + 0.615372i
\(96\) 0 0
\(97\) −4.69437 8.13089i −0.476641 0.825567i 0.523001 0.852332i \(-0.324813\pi\)
−0.999642 + 0.0267656i \(0.991479\pi\)
\(98\) 15.9604 7.70304i 1.61224 0.778125i
\(99\) 0 0
\(100\) −11.5179 18.8003i −1.15179 1.88003i
\(101\) −9.22577 + 15.9795i −0.917998 + 1.59002i −0.115546 + 0.993302i \(0.536862\pi\)
−0.802452 + 0.596717i \(0.796471\pi\)
\(102\) 0 0
\(103\) −9.34498 16.1860i −0.920789 1.59485i −0.798198 0.602396i \(-0.794213\pi\)
−0.122591 0.992457i \(-0.539120\pi\)
\(104\) −12.7343 + 22.0565i −1.24871 + 2.16282i
\(105\) 0 0
\(106\) 5.90198 + 10.2225i 0.573251 + 0.992900i
\(107\) −0.440832 + 0.763543i −0.0426168 + 0.0738145i −0.886547 0.462639i \(-0.846903\pi\)
0.843930 + 0.536453i \(0.180236\pi\)
\(108\) 0 0
\(109\) 2.17023 + 3.75895i 0.207870 + 0.360042i 0.951043 0.309057i \(-0.100013\pi\)
−0.743173 + 0.669099i \(0.766680\pi\)
\(110\) −6.93135 + 4.12320i −0.660878 + 0.393132i
\(111\) 0 0
\(112\) 17.0878 3.90791i 1.61464 0.369263i
\(113\) 4.60460 7.97540i 0.433164 0.750262i −0.563980 0.825789i \(-0.690730\pi\)
0.997144 + 0.0755263i \(0.0240637\pi\)
\(114\) 0 0
\(115\) −1.06807 + 0.0139225i −0.0995978 + 0.00129828i
\(116\) 7.71517 4.45436i 0.716336 0.413577i
\(117\) 0 0
\(118\) −0.512569 −0.0471858
\(119\) −9.56821 + 8.88566i −0.877116 + 0.814548i
\(120\) 0 0
\(121\) −4.48520 7.76860i −0.407746 0.706236i
\(122\) 4.51581i 0.408843i
\(123\) 0 0
\(124\) 46.9375i 4.21511i
\(125\) −11.1718 + 0.437080i −0.999236 + 0.0390936i
\(126\) 0 0
\(127\) 8.82849i 0.783401i −0.920093 0.391701i \(-0.871887\pi\)
0.920093 0.391701i \(-0.128113\pi\)
\(128\) −13.3835 −1.18294
\(129\) 0 0
\(130\) 12.0831 + 20.3124i 1.05976 + 1.78151i
\(131\) 1.10536 + 1.91453i 0.0965753 + 0.167273i 0.910265 0.414026i \(-0.135878\pi\)
−0.813690 + 0.581300i \(0.802544\pi\)
\(132\) 0 0
\(133\) −13.2665 4.08591i −1.15035 0.354294i
\(134\) 6.03350i 0.521215i
\(135\) 0 0
\(136\) −26.0741 + 15.0539i −2.23584 + 1.29086i
\(137\) −2.41786 + 4.18786i −0.206572 + 0.357793i −0.950632 0.310319i \(-0.899564\pi\)
0.744061 + 0.668112i \(0.232897\pi\)
\(138\) 0 0
\(139\) 1.08200 + 0.624695i 0.0917743 + 0.0529859i 0.545185 0.838316i \(-0.316459\pi\)
−0.453410 + 0.891302i \(0.649793\pi\)
\(140\) 7.35308 25.0298i 0.621448 2.11540i
\(141\) 0 0
\(142\) 29.6870i 2.49128i
\(143\) 5.15090 2.97387i 0.430740 0.248688i
\(144\) 0 0
\(145\) −0.0588822 4.51715i −0.00488990 0.375129i
\(146\) −11.4540 19.8389i −0.947938 1.64188i
\(147\) 0 0
\(148\) 31.0119 + 17.9047i 2.54916 + 1.47176i
\(149\) −2.98242 + 1.72190i −0.244329 + 0.141063i −0.617165 0.786834i \(-0.711719\pi\)
0.372836 + 0.927897i \(0.378385\pi\)
\(150\) 0 0
\(151\) 8.51168 14.7427i 0.692671 1.19974i −0.278288 0.960498i \(-0.589767\pi\)
0.970960 0.239244i \(-0.0768995\pi\)
\(152\) −27.7188 16.0035i −2.24829 1.29805i
\(153\) 0 0
\(154\) −9.11990 2.80882i −0.734903 0.226341i
\(155\) 20.7662 + 11.6311i 1.66798 + 0.934235i
\(156\) 0 0
\(157\) 4.68164 0.373636 0.186818 0.982395i \(-0.440183\pi\)
0.186818 + 0.982395i \(0.440183\pi\)
\(158\) 1.14493 0.0910861
\(159\) 0 0
\(160\) 4.99649 8.92072i 0.395008 0.705245i
\(161\) −0.860043 0.926106i −0.0677809 0.0729874i
\(162\) 0 0
\(163\) −13.9563 8.05767i −1.09314 0.631125i −0.158730 0.987322i \(-0.550740\pi\)
−0.934411 + 0.356197i \(0.884073\pi\)
\(164\) −1.85665 + 3.21581i −0.144980 + 0.251112i
\(165\) 0 0
\(166\) 26.9689 15.5705i 2.09320 1.20851i
\(167\) 9.83837 + 5.68018i 0.761316 + 0.439546i 0.829768 0.558108i \(-0.188473\pi\)
−0.0684521 + 0.997654i \(0.521806\pi\)
\(168\) 0 0
\(169\) −2.21497 3.83644i −0.170382 0.295111i
\(170\) 0.364169 + 27.9372i 0.0279305 + 2.14269i
\(171\) 0 0
\(172\) 16.3503 9.43983i 1.24670 0.719780i
\(173\) 13.5586i 1.03084i −0.856938 0.515420i \(-0.827636\pi\)
0.856938 0.515420i \(-0.172364\pi\)
\(174\) 0 0
\(175\) −9.25163 9.45555i −0.699357 0.714772i
\(176\) −8.17414 4.71934i −0.616149 0.355734i
\(177\) 0 0
\(178\) 3.36888 5.83507i 0.252508 0.437357i
\(179\) 0.777342 0.448799i 0.0581013 0.0335448i −0.470668 0.882310i \(-0.655987\pi\)
0.528769 + 0.848766i \(0.322654\pi\)
\(180\) 0 0
\(181\) 13.4784i 1.00184i 0.865493 + 0.500921i \(0.167005\pi\)
−0.865493 + 0.500921i \(0.832995\pi\)
\(182\) −8.23127 + 26.7260i −0.610143 + 1.98106i
\(183\) 0 0
\(184\) −1.45707 2.52371i −0.107416 0.186051i
\(185\) 15.6062 9.28353i 1.14739 0.682539i
\(186\) 0 0
\(187\) 7.03113 0.514167
\(188\) 21.7968i 1.58969i
\(189\) 0 0
\(190\) −25.5269 + 15.1850i −1.85192 + 1.10164i
\(191\) 1.97538i 0.142934i 0.997443 + 0.0714668i \(0.0227680\pi\)
−0.997443 + 0.0714668i \(0.977232\pi\)
\(192\) 0 0
\(193\) 16.5768i 1.19322i −0.802531 0.596611i \(-0.796514\pi\)
0.802531 0.596611i \(-0.203486\pi\)
\(194\) −11.8848 20.5851i −0.853280 1.47792i
\(195\) 0 0
\(196\) 27.7988 13.4167i 1.98563 0.958335i
\(197\) −24.5924 −1.75214 −0.876069 0.482186i \(-0.839843\pi\)
−0.876069 + 0.482186i \(0.839843\pi\)
\(198\) 0 0
\(199\) 0.627348 0.362200i 0.0444715 0.0256757i −0.477599 0.878578i \(-0.658493\pi\)
0.522071 + 0.852902i \(0.325160\pi\)
\(200\) −15.9344 26.0090i −1.12673 1.83912i
\(201\) 0 0
\(202\) −23.3570 + 40.4556i −1.64339 + 2.84644i
\(203\) 3.91676 3.63736i 0.274902 0.255293i
\(204\) 0 0
\(205\) 0.962666 + 1.61830i 0.0672355 + 0.113027i
\(206\) −23.6589 40.9783i −1.64839 2.85510i
\(207\) 0 0
\(208\) −13.8301 + 23.9544i −0.958944 + 1.66094i
\(209\) 3.73732 + 6.47322i 0.258516 + 0.447762i
\(210\) 0 0
\(211\) 5.83962 10.1145i 0.402016 0.696312i −0.591953 0.805972i \(-0.701643\pi\)
0.993969 + 0.109660i \(0.0349763\pi\)
\(212\) 10.2797 + 17.8050i 0.706013 + 1.22285i
\(213\) 0 0
\(214\) −1.11606 + 1.93307i −0.0762924 + 0.132142i
\(215\) −0.124785 9.57291i −0.00851029 0.652867i
\(216\) 0 0
\(217\) 6.27856 + 27.4537i 0.426216 + 1.86368i
\(218\) 5.49441 + 9.51659i 0.372128 + 0.644545i
\(219\) 0 0
\(220\) −12.0726 + 7.18154i −0.813935 + 0.484179i
\(221\) 20.6048i 1.38603i
\(222\) 0 0
\(223\) 13.2349 + 22.9235i 0.886275 + 1.53507i 0.844245 + 0.535957i \(0.180049\pi\)
0.0420295 + 0.999116i \(0.486618\pi\)
\(224\) 11.7935 2.69714i 0.787989 0.180210i
\(225\) 0 0
\(226\) 11.6575 20.1915i 0.775448 1.34312i
\(227\) 6.71384 + 3.87624i 0.445613 + 0.257275i 0.705976 0.708236i \(-0.250509\pi\)
−0.260363 + 0.965511i \(0.583842\pi\)
\(228\) 0 0
\(229\) −16.0456 + 9.26392i −1.06032 + 0.612177i −0.925521 0.378696i \(-0.876373\pi\)
−0.134800 + 0.990873i \(0.543039\pi\)
\(230\) −2.70405 + 0.0352479i −0.178299 + 0.00232418i
\(231\) 0 0
\(232\) 10.6735 6.16233i 0.700748 0.404577i
\(233\) −4.75564 + 8.23700i −0.311552 + 0.539624i −0.978699 0.205302i \(-0.934182\pi\)
0.667146 + 0.744927i \(0.267516\pi\)
\(234\) 0 0
\(235\) −9.64337 5.40125i −0.629064 0.352339i
\(236\) −0.892762 −0.0581139
\(237\) 0 0
\(238\) −24.2240 + 22.4960i −1.57021 + 1.45820i
\(239\) 17.6506 + 10.1906i 1.14173 + 0.659175i 0.946857 0.321654i \(-0.104239\pi\)
0.194868 + 0.980829i \(0.437572\pi\)
\(240\) 0 0
\(241\) −7.82942 4.52032i −0.504337 0.291179i 0.226166 0.974089i \(-0.427381\pi\)
−0.730503 + 0.682910i \(0.760714\pi\)
\(242\) −11.3553 19.6679i −0.729944 1.26430i
\(243\) 0 0
\(244\) 7.86537i 0.503529i
\(245\) 0.952715 15.6235i 0.0608667 0.998146i
\(246\) 0 0
\(247\) 18.9699 10.9523i 1.20702 0.696875i
\(248\) 64.9352i 4.12339i
\(249\) 0 0
\(250\) −28.2838 + 1.10656i −1.78883 + 0.0699852i
\(251\) 4.81421 0.303871 0.151935 0.988390i \(-0.451449\pi\)
0.151935 + 0.988390i \(0.451449\pi\)
\(252\) 0 0
\(253\) 0.680543i 0.0427853i
\(254\) 22.3512i 1.40244i
\(255\) 0 0
\(256\) −30.5351 −1.90844
\(257\) 0.228355 0.131841i 0.0142444 0.00822401i −0.492861 0.870108i \(-0.664049\pi\)
0.507105 + 0.861884i \(0.330716\pi\)
\(258\) 0 0
\(259\) 20.5338 + 6.32416i 1.27591 + 0.392964i
\(260\) 21.0456 + 35.3789i 1.30519 + 2.19411i
\(261\) 0 0
\(262\) 2.79845 + 4.84705i 0.172889 + 0.299452i
\(263\) −4.69057 + 8.12431i −0.289233 + 0.500966i −0.973627 0.228146i \(-0.926734\pi\)
0.684394 + 0.729113i \(0.260067\pi\)
\(264\) 0 0
\(265\) 10.4246 0.135888i 0.640380 0.00834752i
\(266\) −33.5870 10.3444i −2.05935 0.634255i
\(267\) 0 0
\(268\) 10.5088i 0.641926i
\(269\) −5.85382 10.1391i −0.356914 0.618192i 0.630530 0.776165i \(-0.282838\pi\)
−0.987444 + 0.157972i \(0.949504\pi\)
\(270\) 0 0
\(271\) 9.67252 + 5.58443i 0.587564 + 0.339230i 0.764134 0.645058i \(-0.223167\pi\)
−0.176570 + 0.984288i \(0.556500\pi\)
\(272\) −28.3177 + 16.3492i −1.71701 + 0.991317i
\(273\) 0 0
\(274\) −6.12134 + 10.6025i −0.369804 + 0.640519i
\(275\) 0.185674 + 7.12077i 0.0111966 + 0.429399i
\(276\) 0 0
\(277\) −8.68920 5.01671i −0.522083 0.301425i 0.215703 0.976459i \(-0.430796\pi\)
−0.737787 + 0.675034i \(0.764129\pi\)
\(278\) 2.73933 + 1.58155i 0.164294 + 0.0948551i
\(279\) 0 0
\(280\) 10.1725 34.6272i 0.607925 2.06937i
\(281\) 11.3034 6.52601i 0.674303 0.389309i −0.123402 0.992357i \(-0.539380\pi\)
0.797705 + 0.603048i \(0.206047\pi\)
\(282\) 0 0
\(283\) 13.3399 0.792974 0.396487 0.918040i \(-0.370229\pi\)
0.396487 + 0.918040i \(0.370229\pi\)
\(284\) 51.7071i 3.06825i
\(285\) 0 0
\(286\) 13.0406 7.52901i 0.771108 0.445200i
\(287\) −0.655790 + 2.12927i −0.0387101 + 0.125687i
\(288\) 0 0
\(289\) 3.67897 6.37216i 0.216410 0.374833i
\(290\) −0.149073 11.4361i −0.00875388 0.671554i
\(291\) 0 0
\(292\) −19.9499 34.5542i −1.16748 2.02213i
\(293\) −3.97741 2.29636i −0.232363 0.134155i 0.379299 0.925274i \(-0.376165\pi\)
−0.611662 + 0.791120i \(0.709499\pi\)
\(294\) 0 0
\(295\) −0.221227 + 0.394978i −0.0128803 + 0.0229965i
\(296\) 42.9031 + 24.7701i 2.49369 + 1.43973i
\(297\) 0 0
\(298\) −7.55063 + 4.35936i −0.437396 + 0.252531i
\(299\) 1.99434 0.115336
\(300\) 0 0
\(301\) 8.30053 7.70842i 0.478435 0.444306i
\(302\) 21.5492 37.3243i 1.24002 2.14777i
\(303\) 0 0
\(304\) −30.1039 17.3805i −1.72658 0.996840i
\(305\) −3.47981 1.94904i −0.199253 0.111602i
\(306\) 0 0
\(307\) −20.6137 −1.17649 −0.588244 0.808683i \(-0.700181\pi\)
−0.588244 + 0.808683i \(0.700181\pi\)
\(308\) −15.8845 4.89223i −0.905103 0.278761i
\(309\) 0 0
\(310\) 52.5741 + 29.4467i 2.98601 + 1.67246i
\(311\) 11.5614 0.655584 0.327792 0.944750i \(-0.393695\pi\)
0.327792 + 0.944750i \(0.393695\pi\)
\(312\) 0 0
\(313\) 29.0404 1.64146 0.820731 0.571315i \(-0.193566\pi\)
0.820731 + 0.571315i \(0.193566\pi\)
\(314\) 11.8526 0.668881
\(315\) 0 0
\(316\) 1.99418 0.112181
\(317\) 21.6855 1.21798 0.608988 0.793179i \(-0.291576\pi\)
0.608988 + 0.793179i \(0.291576\pi\)
\(318\) 0 0
\(319\) −2.87820 −0.161148
\(320\) −1.82924 + 3.26591i −0.102257 + 0.182570i
\(321\) 0 0
\(322\) −2.17739 2.34464i −0.121341 0.130662i
\(323\) 25.8944 1.44080
\(324\) 0 0
\(325\) 20.8675 0.544119i 1.15752 0.0301823i
\(326\) −35.3334 20.3997i −1.95693 1.12984i
\(327\) 0 0
\(328\) −2.56856 + 4.44888i −0.141825 + 0.245648i
\(329\) −2.91563 12.7489i −0.160744 0.702870i
\(330\) 0 0
\(331\) 5.95239 0.327173 0.163587 0.986529i \(-0.447694\pi\)
0.163587 + 0.986529i \(0.447694\pi\)
\(332\) 46.9729 27.1198i 2.57797 1.48839i
\(333\) 0 0
\(334\) 24.9080 + 14.3806i 1.36290 + 0.786873i
\(335\) 4.64931 + 2.60408i 0.254019 + 0.142276i
\(336\) 0 0
\(337\) 2.43132 + 1.40373i 0.132443 + 0.0764658i 0.564757 0.825257i \(-0.308970\pi\)
−0.432315 + 0.901723i \(0.642303\pi\)
\(338\) −5.60768 9.71279i −0.305018 0.528306i
\(339\) 0 0
\(340\) 0.634288 + 48.6594i 0.0343991 + 2.63893i
\(341\) 7.58222 13.1328i 0.410600 0.711181i
\(342\) 0 0
\(343\) 14.4648 11.5659i 0.781026 0.624499i
\(344\) 22.6196 13.0594i 1.21957 0.704118i
\(345\) 0 0
\(346\) 34.3265i 1.84540i
\(347\) −9.89128 −0.530992 −0.265496 0.964112i \(-0.585536\pi\)
−0.265496 + 0.964112i \(0.585536\pi\)
\(348\) 0 0
\(349\) 0.279669 0.161467i 0.0149703 0.00864312i −0.492496 0.870315i \(-0.663915\pi\)
0.507466 + 0.861671i \(0.330582\pi\)
\(350\) −23.4225 23.9388i −1.25199 1.27958i
\(351\) 0 0
\(352\) −5.64157 3.25716i −0.300697 0.173607i
\(353\) −14.7971 8.54312i −0.787571 0.454704i 0.0515356 0.998671i \(-0.483588\pi\)
−0.839107 + 0.543967i \(0.816922\pi\)
\(354\) 0 0
\(355\) 22.8763 + 12.8130i 1.21415 + 0.680045i
\(356\) 5.86771 10.1632i 0.310988 0.538647i
\(357\) 0 0
\(358\) 1.96801 1.13623i 0.104013 0.0600517i
\(359\) 17.2188 + 9.94126i 0.908772 + 0.524680i 0.880036 0.474907i \(-0.157518\pi\)
0.0287362 + 0.999587i \(0.490852\pi\)
\(360\) 0 0
\(361\) 4.26388 + 7.38525i 0.224415 + 0.388698i
\(362\) 34.1235i 1.79349i
\(363\) 0 0
\(364\) −14.3367 + 46.5497i −0.751449 + 2.43987i
\(365\) −20.2311 + 0.263718i −1.05894 + 0.0138036i
\(366\) 0 0
\(367\) 15.6841 27.1656i 0.818702 1.41803i −0.0879374 0.996126i \(-0.528028\pi\)
0.906639 0.421907i \(-0.138639\pi\)
\(368\) −1.58244 2.74087i −0.0824904 0.142878i
\(369\) 0 0
\(370\) 39.5104 23.5033i 2.05405 1.22188i
\(371\) 8.39425 + 9.03905i 0.435808 + 0.469284i
\(372\) 0 0
\(373\) −22.1887 + 12.8107i −1.14889 + 0.663312i −0.948616 0.316428i \(-0.897516\pi\)
−0.200273 + 0.979740i \(0.564183\pi\)
\(374\) 17.8008 0.920459
\(375\) 0 0
\(376\) 30.1545i 1.55510i
\(377\) 8.43460i 0.434404i
\(378\) 0 0
\(379\) −5.00587 −0.257134 −0.128567 0.991701i \(-0.541038\pi\)
−0.128567 + 0.991701i \(0.541038\pi\)
\(380\) −44.4613 + 26.4483i −2.28081 + 1.35677i
\(381\) 0 0
\(382\) 5.00111i 0.255879i
\(383\) 19.9749 11.5325i 1.02067 0.589284i 0.106372 0.994326i \(-0.466077\pi\)
0.914298 + 0.405043i \(0.132743\pi\)
\(384\) 0 0
\(385\) −6.10061 + 5.81535i −0.310916 + 0.296378i
\(386\) 41.9677i 2.13610i
\(387\) 0 0
\(388\) −20.7003 35.8539i −1.05090 1.82021i
\(389\) −14.5687 8.41123i −0.738661 0.426466i 0.0829213 0.996556i \(-0.473575\pi\)
−0.821582 + 0.570090i \(0.806908\pi\)
\(390\) 0 0
\(391\) 2.04175 + 1.17880i 0.103256 + 0.0596146i
\(392\) 38.4580 18.5612i 1.94242 0.937481i
\(393\) 0 0
\(394\) −62.2611 −3.13667
\(395\) 0.494158 0.882268i 0.0248638 0.0443917i
\(396\) 0 0
\(397\) −13.0997 + 22.6893i −0.657453 + 1.13874i 0.323820 + 0.946119i \(0.395033\pi\)
−0.981273 + 0.192623i \(0.938301\pi\)
\(398\) 1.58827 0.916987i 0.0796127 0.0459644i
\(399\) 0 0
\(400\) −17.3055 28.2470i −0.865273 1.41235i
\(401\) −31.4306 + 18.1465i −1.56957 + 0.906192i −0.573352 + 0.819309i \(0.694357\pi\)
−0.996219 + 0.0868828i \(0.972309\pi\)
\(402\) 0 0
\(403\) −38.4858 22.2198i −1.91711 1.10685i
\(404\) −40.6819 + 70.4631i −2.02400 + 3.50567i
\(405\) 0 0
\(406\) 9.91612 9.20876i 0.492129 0.457023i
\(407\) −5.78460 10.0192i −0.286732 0.496634i
\(408\) 0 0
\(409\) 2.42575i 0.119945i −0.998200 0.0599727i \(-0.980899\pi\)
0.998200 0.0599727i \(-0.0191014\pi\)
\(410\) 2.43720 + 4.09708i 0.120365 + 0.202340i
\(411\) 0 0
\(412\) −41.2076 71.3736i −2.03015 3.51633i
\(413\) −0.522175 + 0.119420i −0.0256946 + 0.00587626i
\(414\) 0 0
\(415\) −0.358497 27.5021i −0.0175979 1.35003i
\(416\) −9.54516 + 16.5327i −0.467990 + 0.810582i
\(417\) 0 0
\(418\) 9.46183 + 16.3884i 0.462793 + 0.801582i
\(419\) −7.51552 + 13.0173i −0.367157 + 0.635935i −0.989120 0.147112i \(-0.953002\pi\)
0.621963 + 0.783047i \(0.286336\pi\)
\(420\) 0 0
\(421\) 11.1388 + 19.2929i 0.542871 + 0.940281i 0.998738 + 0.0502323i \(0.0159962\pi\)
−0.455866 + 0.890048i \(0.650671\pi\)
\(422\) 14.7843 25.6071i 0.719687 1.24653i
\(423\) 0 0
\(424\) 14.2214 + 24.6321i 0.690650 + 1.19624i
\(425\) 21.6852 + 11.7772i 1.05188 + 0.571278i
\(426\) 0 0
\(427\) −1.05210 4.60044i −0.0509149 0.222631i
\(428\) −1.94389 + 3.36691i −0.0939614 + 0.162746i
\(429\) 0 0
\(430\) −0.315921 24.2359i −0.0152351 1.16876i
\(431\) −16.8829 + 9.74735i −0.813221 + 0.469514i −0.848073 0.529879i \(-0.822237\pi\)
0.0348520 + 0.999392i \(0.488904\pi\)
\(432\) 0 0
\(433\) 16.9416 0.814161 0.407080 0.913392i \(-0.366547\pi\)
0.407080 + 0.913392i \(0.366547\pi\)
\(434\) 15.8955 + 69.5050i 0.763010 + 3.33634i
\(435\) 0 0
\(436\) 9.56983 + 16.5754i 0.458312 + 0.793819i
\(437\) 2.50632i 0.119893i
\(438\) 0 0
\(439\) 1.65776i 0.0791207i 0.999217 + 0.0395604i \(0.0125957\pi\)
−0.999217 + 0.0395604i \(0.987404\pi\)
\(440\) −16.7017 + 9.93523i −0.796223 + 0.473643i
\(441\) 0 0
\(442\) 52.1655i 2.48126i
\(443\) 36.0899 1.71468 0.857341 0.514749i \(-0.172115\pi\)
0.857341 + 0.514749i \(0.172115\pi\)
\(444\) 0 0
\(445\) −3.04239 5.11444i −0.144223 0.242448i
\(446\) 33.5070 + 58.0359i 1.58660 + 2.74808i
\(447\) 0 0
\(448\) −4.31766 + 0.987434i −0.203990 + 0.0466519i
\(449\) 26.4059i 1.24617i −0.782154 0.623086i \(-0.785879\pi\)
0.782154 0.623086i \(-0.214121\pi\)
\(450\) 0 0
\(451\) 1.03895 0.599840i 0.0489224 0.0282454i
\(452\) 20.3044 35.1683i 0.955039 1.65418i
\(453\) 0 0
\(454\) 16.9975 + 9.81354i 0.797734 + 0.460572i
\(455\) 17.0420 + 17.8779i 0.798939 + 0.838130i
\(456\) 0 0
\(457\) 31.7898i 1.48706i 0.668700 + 0.743532i \(0.266851\pi\)
−0.668700 + 0.743532i \(0.733149\pi\)
\(458\) −40.6229 + 23.4536i −1.89818 + 1.09592i
\(459\) 0 0
\(460\) −4.70974 + 0.0613927i −0.219593 + 0.00286245i
\(461\) 5.79487 + 10.0370i 0.269894 + 0.467470i 0.968834 0.247710i \(-0.0796780\pi\)
−0.698940 + 0.715180i \(0.746345\pi\)
\(462\) 0 0
\(463\) −25.9642 14.9904i −1.20666 0.696664i −0.244630 0.969616i \(-0.578667\pi\)
−0.962028 + 0.272952i \(0.912000\pi\)
\(464\) 11.5919 6.69257i 0.538139 0.310695i
\(465\) 0 0
\(466\) −12.0399 + 20.8538i −0.557739 + 0.966032i
\(467\) −2.17113 1.25350i −0.100468 0.0580052i 0.448924 0.893570i \(-0.351807\pi\)
−0.549392 + 0.835565i \(0.685141\pi\)
\(468\) 0 0
\(469\) 1.40570 + 6.14657i 0.0649091 + 0.283822i
\(470\) −24.4143 13.6744i −1.12615 0.630755i
\(471\) 0 0
\(472\) −1.23508 −0.0568493
\(473\) −6.09959 −0.280459
\(474\) 0 0
\(475\) 0.683804 + 26.2245i 0.0313751 + 1.20326i
\(476\) −42.1919 + 39.1822i −1.93386 + 1.79591i
\(477\) 0 0
\(478\) 44.6864 + 25.7997i 2.04391 + 1.18005i
\(479\) 17.7777 30.7920i 0.812286 1.40692i −0.0989748 0.995090i \(-0.531556\pi\)
0.911261 0.411830i \(-0.135110\pi\)
\(480\) 0 0
\(481\) −29.3614 + 16.9518i −1.33877 + 0.772937i
\(482\) −19.8219 11.4442i −0.902862 0.521267i
\(483\) 0 0
\(484\) −19.7779 34.2564i −0.898996 1.55711i
\(485\) −20.9921 + 0.273637i −0.953201 + 0.0124252i
\(486\) 0 0
\(487\) 15.4460 8.91776i 0.699926 0.404102i −0.107394 0.994217i \(-0.534251\pi\)
0.807320 + 0.590114i \(0.200917\pi\)
\(488\) 10.8813i 0.492572i
\(489\) 0 0
\(490\) 2.41200 39.5542i 0.108963 1.78688i
\(491\) 6.13294 + 3.54085i 0.276776 + 0.159796i 0.631963 0.774999i \(-0.282250\pi\)
−0.355187 + 0.934795i \(0.615583\pi\)
\(492\) 0 0
\(493\) −4.98548 + 8.63510i −0.224535 + 0.388905i
\(494\) 48.0263 27.7280i 2.16081 1.24754i
\(495\) 0 0
\(496\) 70.5226i 3.16656i
\(497\) 6.91655 + 30.2434i 0.310250 + 1.35660i
\(498\) 0 0
\(499\) −11.4852 19.8930i −0.514149 0.890533i −0.999865 0.0164161i \(-0.994774\pi\)
0.485716 0.874117i \(-0.338559\pi\)
\(500\) −49.2630 + 1.92734i −2.20311 + 0.0861934i
\(501\) 0 0
\(502\) 12.1882 0.543987
\(503\) 5.23692i 0.233503i −0.993161 0.116751i \(-0.962752\pi\)
0.993161 0.116751i \(-0.0372481\pi\)
\(504\) 0 0
\(505\) 21.0934 + 35.4593i 0.938645 + 1.57792i
\(506\) 1.72294i 0.0765941i
\(507\) 0 0
\(508\) 38.9300i 1.72724i
\(509\) 4.85855 + 8.41525i 0.215351 + 0.373000i 0.953381 0.301769i \(-0.0975770\pi\)
−0.738030 + 0.674768i \(0.764244\pi\)
\(510\) 0 0
\(511\) −16.2907 17.5421i −0.720660 0.776017i
\(512\) −50.5392 −2.23354
\(513\) 0 0
\(514\) 0.578131 0.333784i 0.0255003 0.0147226i
\(515\) −41.7885 + 0.544724i −1.84142 + 0.0240034i
\(516\) 0 0
\(517\) −3.52102 + 6.09859i −0.154854 + 0.268216i
\(518\) 51.9858 + 16.0110i 2.28412 + 0.703482i
\(519\) 0 0
\(520\) 29.1153 + 48.9446i 1.27679 + 2.14636i
\(521\) −2.77492 4.80630i −0.121571 0.210568i 0.798816 0.601575i \(-0.205460\pi\)
−0.920387 + 0.391007i \(0.872127\pi\)
\(522\) 0 0
\(523\) −3.79740 + 6.57728i −0.166049 + 0.287605i −0.937027 0.349257i \(-0.886434\pi\)
0.770979 + 0.636861i \(0.219768\pi\)
\(524\) 4.87417 + 8.44230i 0.212929 + 0.368804i
\(525\) 0 0
\(526\) −11.8752 + 20.5685i −0.517784 + 0.896827i
\(527\) −26.2671 45.4959i −1.14421 1.98183i
\(528\) 0 0
\(529\) 11.3859 19.7210i 0.495039 0.857433i
\(530\) 26.3922 0.344029i 1.14640 0.0149437i
\(531\) 0 0
\(532\) −58.4998 18.0172i −2.53629 0.781145i
\(533\) −1.75784 3.04467i −0.0761405 0.131879i
\(534\) 0 0
\(535\) 1.00790 + 1.69434i 0.0435753 + 0.0732527i
\(536\) 14.5383i 0.627957i
\(537\) 0 0
\(538\) −14.8202 25.6694i −0.638945 1.10668i
\(539\) −9.94522 0.736681i −0.428371 0.0317311i
\(540\) 0 0
\(541\) −16.8986 + 29.2693i −0.726530 + 1.25839i 0.231812 + 0.972761i \(0.425535\pi\)
−0.958341 + 0.285626i \(0.907799\pi\)
\(542\) 24.4881 + 14.1382i 1.05185 + 0.607288i
\(543\) 0 0
\(544\) −19.5441 + 11.2838i −0.837947 + 0.483789i
\(545\) 9.70474 0.126504i 0.415705 0.00541883i
\(546\) 0 0
\(547\) 14.5277 8.38754i 0.621158 0.358626i −0.156162 0.987731i \(-0.549912\pi\)
0.777320 + 0.629106i \(0.216579\pi\)
\(548\) −10.6618 + 18.4667i −0.455449 + 0.788860i
\(549\) 0 0
\(550\) 0.470074 + 18.0278i 0.0200440 + 0.768707i
\(551\) −10.5999 −0.451571
\(552\) 0 0
\(553\) 1.16639 0.266749i 0.0496000 0.0113433i
\(554\) −21.9986 12.7009i −0.934631 0.539609i
\(555\) 0 0
\(556\) 4.77119 + 2.75465i 0.202344 + 0.116823i
\(557\) 3.36711 + 5.83201i 0.142669 + 0.247110i 0.928501 0.371330i \(-0.121098\pi\)
−0.785832 + 0.618440i \(0.787765\pi\)
\(558\) 0 0
\(559\) 17.8749i 0.756028i
\(560\) 11.0478 37.6067i 0.466856 1.58917i
\(561\) 0 0
\(562\) 28.6170 16.5220i 1.20713 0.696939i
\(563\) 45.8890i 1.93399i −0.254795 0.966995i \(-0.582008\pi\)
0.254795 0.966995i \(-0.417992\pi\)
\(564\) 0 0
\(565\) −10.5278 17.6978i −0.442906 0.744553i
\(566\) 33.7728 1.41958
\(567\) 0 0
\(568\) 71.5336i 3.00148i
\(569\) 25.9763i 1.08898i −0.838767 0.544491i \(-0.816723\pi\)
0.838767 0.544491i \(-0.183277\pi\)
\(570\) 0 0
\(571\) −27.1543 −1.13637 −0.568187 0.822900i \(-0.692355\pi\)
−0.568187 + 0.822900i \(0.692355\pi\)
\(572\) 22.7134 13.1136i 0.949694 0.548306i
\(573\) 0 0
\(574\) −1.66028 + 5.39072i −0.0692986 + 0.225004i
\(575\) −1.13991 + 2.09891i −0.0475377 + 0.0875304i
\(576\) 0 0
\(577\) −6.23651 10.8020i −0.259629 0.449691i 0.706513 0.707700i \(-0.250267\pi\)
−0.966143 + 0.258008i \(0.916934\pi\)
\(578\) 9.31411 16.1325i 0.387416 0.671024i
\(579\) 0 0
\(580\) −0.259647 19.9188i −0.0107812 0.827083i
\(581\) 23.8467 22.1456i 0.989328 0.918755i
\(582\) 0 0
\(583\) 6.64228i 0.275095i
\(584\) −27.5994 47.8036i −1.14207 1.97813i
\(585\) 0 0
\(586\) −10.0697 5.81373i −0.415974 0.240163i
\(587\) −14.4358 + 8.33452i −0.595830 + 0.344002i −0.767399 0.641170i \(-0.778450\pi\)
0.171569 + 0.985172i \(0.445116\pi\)
\(588\) 0 0
\(589\) 27.9240 48.3657i 1.15059 1.99288i
\(590\) −0.560084 + 0.999972i −0.0230583 + 0.0411682i
\(591\) 0 0
\(592\) 46.5947 + 26.9014i 1.91503 + 1.10564i
\(593\) −0.329806 0.190413i −0.0135435 0.00781934i 0.493213 0.869909i \(-0.335822\pi\)
−0.506756 + 0.862089i \(0.669156\pi\)
\(594\) 0 0
\(595\) 6.87988 + 28.3760i 0.282048 + 1.16330i
\(596\) −13.1512 + 7.59287i −0.538696 + 0.311016i
\(597\) 0 0
\(598\) 5.04910 0.206473
\(599\) 21.0025i 0.858137i −0.903272 0.429069i \(-0.858842\pi\)
0.903272 0.429069i \(-0.141158\pi\)
\(600\) 0 0
\(601\) −3.49714 + 2.01907i −0.142651 + 0.0823597i −0.569627 0.821903i \(-0.692912\pi\)
0.426976 + 0.904263i \(0.359579\pi\)
\(602\) 21.0146 19.5155i 0.856491 0.795394i
\(603\) 0 0
\(604\) 37.5331 65.0092i 1.52720 2.64519i
\(605\) −20.0567 + 0.261445i −0.815422 + 0.0106292i
\(606\) 0 0
\(607\) 8.88367 + 15.3870i 0.360577 + 0.624538i 0.988056 0.154096i \(-0.0492465\pi\)
−0.627479 + 0.778634i \(0.715913\pi\)
\(608\) −20.7769 11.9956i −0.842615 0.486484i
\(609\) 0 0
\(610\) −8.80990 4.93442i −0.356702 0.199789i
\(611\) 17.8720 + 10.3184i 0.723023 + 0.417437i
\(612\) 0 0
\(613\) 12.3044 7.10394i 0.496969 0.286925i −0.230492 0.973074i \(-0.574034\pi\)
0.727461 + 0.686149i \(0.240700\pi\)
\(614\) −52.1881 −2.10614
\(615\) 0 0
\(616\) −21.9752 6.76811i −0.885408 0.272695i
\(617\) −16.5509 + 28.6670i −0.666314 + 1.15409i 0.312614 + 0.949880i \(0.398795\pi\)
−0.978927 + 0.204209i \(0.934538\pi\)
\(618\) 0 0
\(619\) 35.6504 + 20.5828i 1.43291 + 0.827291i 0.997342 0.0728641i \(-0.0232139\pi\)
0.435569 + 0.900155i \(0.356547\pi\)
\(620\) 91.5704 + 51.2886i 3.67756 + 2.05980i
\(621\) 0 0
\(622\) 29.2701 1.17362
\(623\) 2.07254 6.72931i 0.0830348 0.269604i
\(624\) 0 0
\(625\) −11.3547 + 22.2726i −0.454188 + 0.890906i
\(626\) 73.5222 2.93854
\(627\) 0 0
\(628\) 20.6441 0.823791
\(629\) −40.0792 −1.59806
\(630\) 0 0
\(631\) 10.0626 0.400586 0.200293 0.979736i \(-0.435811\pi\)
0.200293 + 0.979736i \(0.435811\pi\)
\(632\) 2.75882 0.109740
\(633\) 0 0
\(634\) 54.9015 2.18042
\(635\) −17.2235 9.64687i −0.683493 0.382824i
\(636\) 0 0
\(637\) −2.15885 + 29.1446i −0.0855369 + 1.15475i
\(638\) −7.28679 −0.288487
\(639\) 0 0
\(640\) −14.6241 + 26.1098i −0.578068 + 1.03208i
\(641\) 33.9181 + 19.5826i 1.33968 + 0.773466i 0.986760 0.162186i \(-0.0518545\pi\)
0.352923 + 0.935652i \(0.385188\pi\)
\(642\) 0 0
\(643\) 7.40682 12.8290i 0.292097 0.505926i −0.682209 0.731157i \(-0.738980\pi\)
0.974305 + 0.225231i \(0.0723138\pi\)
\(644\) −3.79244 4.08375i −0.149443 0.160922i
\(645\) 0 0
\(646\) 65.5573 2.57932
\(647\) 23.0628 13.3153i 0.906691 0.523478i 0.0273261 0.999627i \(-0.491301\pi\)
0.879365 + 0.476148i \(0.157967\pi\)
\(648\) 0 0
\(649\) 0.249789 + 0.144216i 0.00980506 + 0.00566096i
\(650\) 52.8306 1.37756i 2.07219 0.0540322i
\(651\) 0 0
\(652\) −61.5415 35.5310i −2.41015 1.39150i
\(653\) −10.6651 18.4725i −0.417358 0.722885i 0.578315 0.815814i \(-0.303711\pi\)
−0.995673 + 0.0929286i \(0.970377\pi\)
\(654\) 0 0
\(655\) 4.94288 0.0644317i 0.193134 0.00251756i
\(656\) −2.78957 + 4.83168i −0.108915 + 0.188646i
\(657\) 0 0
\(658\) −7.38155 32.2766i −0.287763 1.25827i
\(659\) 3.91124 2.25816i 0.152360 0.0879653i −0.421882 0.906651i \(-0.638630\pi\)
0.574242 + 0.818686i \(0.305297\pi\)
\(660\) 0 0
\(661\) 33.8778i 1.31770i 0.752276 + 0.658848i \(0.228956\pi\)
−0.752276 + 0.658848i \(0.771044\pi\)
\(662\) 15.0698 0.585703
\(663\) 0 0
\(664\) 64.9842 37.5186i 2.52187 1.45601i
\(665\) −22.4675 + 21.4169i −0.871251 + 0.830512i
\(666\) 0 0
\(667\) −0.835791 0.482544i −0.0323620 0.0186842i
\(668\) 43.3832 + 25.0473i 1.67855 + 0.969109i
\(669\) 0 0
\(670\) 11.7707 + 6.59279i 0.454744 + 0.254702i
\(671\) −1.27056 + 2.20068i −0.0490495 + 0.0849561i
\(672\) 0 0
\(673\) −0.00944408 + 0.00545254i −0.000364043 + 0.000210180i −0.500182 0.865920i \(-0.666734\pi\)
0.499818 + 0.866130i \(0.333400\pi\)
\(674\) 6.15542 + 3.55384i 0.237098 + 0.136889i
\(675\) 0 0
\(676\) −9.76712 16.9172i −0.375659 0.650660i
\(677\) 35.1941i 1.35262i −0.736618 0.676309i \(-0.763578\pi\)
0.736618 0.676309i \(-0.236422\pi\)
\(678\) 0 0
\(679\) −16.9035 18.2019i −0.648697 0.698526i
\(680\) 0.877499 + 67.3174i 0.0336506 + 2.58150i
\(681\) 0 0
\(682\) 19.1960 33.2485i 0.735054 1.27315i
\(683\) 13.2893 + 23.0177i 0.508499 + 0.880746i 0.999952 + 0.00984199i \(0.00313285\pi\)
−0.491452 + 0.870904i \(0.663534\pi\)
\(684\) 0 0
\(685\) 5.52810 + 9.29307i 0.211218 + 0.355070i
\(686\) 36.6208 29.2815i 1.39819 1.11797i
\(687\) 0 0
\(688\) 24.5659 14.1831i 0.936567 0.540727i
\(689\) −19.4653 −0.741568
\(690\) 0 0
\(691\) 3.28870i 0.125108i 0.998042 + 0.0625540i \(0.0199246\pi\)
−0.998042 + 0.0625540i \(0.980075\pi\)
\(692\) 59.7878i 2.27279i
\(693\) 0 0
\(694\) −25.0419 −0.950578
\(695\) 2.40102 1.42828i 0.0910759 0.0541776i
\(696\) 0 0
\(697\) 4.15606i 0.157422i
\(698\) 0.708042 0.408788i 0.0267998 0.0154729i
\(699\) 0 0
\(700\) −40.7959 41.6951i −1.54194 1.57593i
\(701\) 39.7933i 1.50297i 0.659749 + 0.751486i \(0.270663\pi\)
−0.659749 + 0.751486i \(0.729337\pi\)
\(702\) 0 0
\(703\) −21.3037 36.8990i −0.803483 1.39167i
\(704\) 2.06540 + 1.19246i 0.0778428 + 0.0449426i
\(705\) 0 0
\(706\) −37.4621 21.6288i −1.40991 0.814009i
\(707\) −14.3693 + 46.6555i −0.540414 + 1.75466i
\(708\) 0 0
\(709\) −3.08929 −0.116021 −0.0580103 0.998316i \(-0.518476\pi\)
−0.0580103 + 0.998316i \(0.518476\pi\)
\(710\) 57.9164 + 32.4390i 2.17356 + 1.21741i
\(711\) 0 0
\(712\) 8.11762 14.0601i 0.304221 0.526926i
\(713\) 4.40355 2.54239i 0.164914 0.0952133i
\(714\) 0 0
\(715\) −0.173349 13.2984i −0.00648287 0.497333i
\(716\) 3.42776 1.97902i 0.128101 0.0739594i
\(717\) 0 0
\(718\) 43.5931 + 25.1685i 1.62688 + 0.939279i
\(719\) −10.5791 + 18.3235i −0.394532 + 0.683350i −0.993041 0.117766i \(-0.962427\pi\)
0.598509 + 0.801116i \(0.295760\pi\)
\(720\) 0 0
\(721\) −33.6495 36.2342i −1.25317 1.34943i
\(722\) 10.7949 + 18.6974i 0.401746 + 0.695844i
\(723\) 0 0
\(724\) 59.4343i 2.20886i
\(725\) −8.87685 4.82101i −0.329678 0.179048i
\(726\) 0 0
\(727\) 4.31669 + 7.47672i 0.160097 + 0.277296i 0.934903 0.354903i \(-0.115486\pi\)
−0.774806 + 0.632199i \(0.782153\pi\)
\(728\) −19.8340 + 64.3987i −0.735097 + 2.38677i
\(729\) 0 0
\(730\) −51.2194 + 0.667659i −1.89572 + 0.0247112i
\(731\) −10.5654 + 18.2998i −0.390776 + 0.676843i
\(732\) 0 0
\(733\) −2.57990 4.46851i −0.0952907 0.165048i 0.814439 0.580249i \(-0.197045\pi\)
−0.909730 + 0.415201i \(0.863711\pi\)
\(734\) 39.7076 68.7756i 1.46564 2.53855i
\(735\) 0 0
\(736\) −1.09216 1.89167i −0.0402575 0.0697280i
\(737\) 1.69757 2.94028i 0.0625309 0.108307i
\(738\) 0 0
\(739\) −7.92896 13.7334i −0.291671 0.505190i 0.682534 0.730854i \(-0.260878\pi\)
−0.974205 + 0.225664i \(0.927545\pi\)
\(740\) 68.8169 40.9366i 2.52976 1.50486i
\(741\) 0 0
\(742\) 21.2519 + 22.8843i 0.780181 + 0.840110i
\(743\) 14.5897 25.2701i 0.535243 0.927069i −0.463908 0.885883i \(-0.653553\pi\)
0.999152 0.0411854i \(-0.0131134\pi\)
\(744\) 0 0
\(745\) 0.100370 + 7.69991i 0.00367729 + 0.282103i
\(746\) −56.1756 + 32.4330i −2.05674 + 1.18746i
\(747\) 0 0
\(748\) 31.0044 1.13363
\(749\) −0.686605 + 2.22932i −0.0250880 + 0.0814577i
\(750\) 0 0
\(751\) 13.9911 + 24.2333i 0.510543 + 0.884287i 0.999925 + 0.0122173i \(0.00388898\pi\)
−0.489382 + 0.872069i \(0.662778\pi\)
\(752\) 32.7492i 1.19424i
\(753\) 0 0
\(754\) 21.3540i 0.777668i
\(755\) −19.4608 32.7147i −0.708250 1.19061i
\(756\) 0 0
\(757\) 12.4434i 0.452263i −0.974097 0.226132i \(-0.927392\pi\)
0.974097 0.226132i \(-0.0726079\pi\)
\(758\) −12.6734 −0.460320
\(759\) 0 0
\(760\) −61.5095 + 36.5897i −2.23118 + 1.32725i
\(761\) 10.5154 + 18.2131i 0.381181 + 0.660225i 0.991231 0.132138i \(-0.0421841\pi\)
−0.610050 + 0.792363i \(0.708851\pi\)
\(762\) 0 0
\(763\) 7.81457 + 8.41484i 0.282907 + 0.304638i
\(764\) 8.71063i 0.315140i
\(765\) 0 0
\(766\) 50.5708 29.1971i 1.82720 1.05493i
\(767\) 0.422625 0.732009i 0.0152601 0.0264313i
\(768\) 0 0
\(769\) −11.8574 6.84585i −0.427588 0.246868i 0.270731 0.962655i \(-0.412735\pi\)
−0.698318 + 0.715787i \(0.746068\pi\)
\(770\) −15.4450 + 14.7228i −0.556600 + 0.530574i
\(771\) 0 0
\(772\) 73.0967i 2.63081i
\(773\) −0.308779 + 0.178273i −0.0111060 + 0.00641205i −0.505543 0.862802i \(-0.668708\pi\)
0.494437 + 0.869214i \(0.335374\pi\)
\(774\) 0 0
\(775\) 45.3824 27.8034i 1.63018 0.998729i
\(776\) −28.6376 49.6017i −1.02803 1.78060i
\(777\) 0 0
\(778\) −36.8838 21.2948i −1.32235 0.763457i
\(779\) 3.82628 2.20911i 0.137091 0.0791494i
\(780\) 0 0
\(781\) 8.35268 14.4673i 0.298882 0.517680i
\(782\) 5.16912 + 2.98439i 0.184847 + 0.106722i
\(783\) 0 0
\(784\) 41.7671 20.1583i 1.49168 0.719939i
\(785\) 5.11562 9.13342i 0.182584 0.325986i
\(786\) 0 0
\(787\) 10.5853 0.377324 0.188662 0.982042i \(-0.439585\pi\)
0.188662 + 0.982042i \(0.439585\pi\)
\(788\) −108.443 −3.86311
\(789\) 0 0
\(790\) 1.25107 2.23365i 0.0445110 0.0794698i
\(791\) 7.17176 23.2859i 0.254998 0.827950i
\(792\) 0 0
\(793\) 6.44910 + 3.72339i 0.229014 + 0.132222i
\(794\) −33.1646 + 57.4428i −1.17697 + 2.03857i
\(795\) 0 0
\(796\) 2.76635 1.59715i 0.0980507 0.0566096i
\(797\) 32.2113 + 18.5972i 1.14098 + 0.658747i 0.946674 0.322193i \(-0.104420\pi\)
0.194309 + 0.980940i \(0.437753\pi\)
\(798\) 0 0
\(799\) 12.1979 + 21.1273i 0.431530 + 0.747432i
\(800\) −11.9438 19.4953i −0.422276 0.689264i
\(801\) 0 0
\(802\) −79.5735 + 45.9418i −2.80984 + 1.62226i
\(803\) 12.8907i 0.454902i
\(804\) 0 0
\(805\) −2.74651 + 0.665903i −0.0968017 + 0.0234700i
\(806\) −97.4351 56.2542i −3.43201 1.98147i
\(807\) 0 0
\(808\) −56.2809 + 97.4814i −1.97996 + 3.42938i
\(809\) 27.2837 15.7522i 0.959243 0.553819i 0.0633032 0.997994i \(-0.479836\pi\)
0.895940 + 0.444175i \(0.146503\pi\)
\(810\) 0 0
\(811\) 1.59210i 0.0559062i 0.999609 + 0.0279531i \(0.00889891\pi\)
−0.999609 + 0.0279531i \(0.991101\pi\)
\(812\) 17.2713 16.0393i 0.606104 0.562868i
\(813\) 0 0
\(814\) −14.6450 25.3658i −0.513306 0.889072i
\(815\) −30.9697 + 18.4227i −1.08482 + 0.645320i
\(816\) 0 0
\(817\) −22.4637 −0.785905
\(818\) 6.14130i 0.214726i
\(819\) 0 0
\(820\) 4.24496 + 7.13604i 0.148241 + 0.249201i
\(821\) 25.4155i 0.887006i −0.896273 0.443503i \(-0.853736\pi\)
0.896273 0.443503i \(-0.146264\pi\)
\(822\) 0 0
\(823\) 19.7366i 0.687973i 0.938975 + 0.343986i \(0.111777\pi\)
−0.938975 + 0.343986i \(0.888223\pi\)
\(824\) −57.0082 98.7411i −1.98597 3.43981i
\(825\) 0 0
\(826\) −1.32200 + 0.302337i −0.0459983 + 0.0105196i
\(827\) 11.0429 0.383998 0.191999 0.981395i \(-0.438503\pi\)
0.191999 + 0.981395i \(0.438503\pi\)
\(828\) 0 0
\(829\) −18.4118 + 10.6300i −0.639467 + 0.369196i −0.784409 0.620244i \(-0.787034\pi\)
0.144942 + 0.989440i \(0.453700\pi\)
\(830\) −0.907614 69.6276i −0.0315037 2.41681i
\(831\) 0 0
\(832\) 3.49452 6.05269i 0.121151 0.209839i
\(833\) −19.4368 + 28.5613i −0.673445 + 0.989592i
\(834\) 0 0
\(835\) 21.8318 12.9869i 0.755522 0.449432i
\(836\) 16.4800 + 28.5443i 0.569974 + 0.987225i
\(837\) 0 0
\(838\) −19.0272 + 32.9560i −0.657283 + 1.13845i
\(839\) 17.8301 + 30.8827i 0.615564 + 1.06619i 0.990285 + 0.139051i \(0.0444051\pi\)
−0.374721 + 0.927137i \(0.622262\pi\)
\(840\) 0 0
\(841\) −12.4592 + 21.5799i −0.429627 + 0.744136i
\(842\) 28.2003 + 48.8443i 0.971845 + 1.68328i
\(843\) 0 0
\(844\) 25.7503 44.6009i 0.886363 1.53523i
\(845\) −9.90481 + 0.129112i −0.340736 + 0.00444158i
\(846\) 0 0
\(847\) −16.1503 17.3909i −0.554932 0.597559i
\(848\) 15.4450 + 26.7516i 0.530385 + 0.918654i
\(849\) 0 0
\(850\) 54.9007 + 29.8165i 1.88308 + 1.02270i
\(851\) 3.87927i 0.132980i
\(852\) 0 0
\(853\) 12.0777 + 20.9192i 0.413534 + 0.716261i 0.995273 0.0971139i \(-0.0309611\pi\)
−0.581740 + 0.813375i \(0.697628\pi\)
\(854\) −2.66363 11.6470i −0.0911476 0.398553i
\(855\) 0 0
\(856\) −2.68925 + 4.65792i −0.0919167 + 0.159204i
\(857\) −46.6132 26.9122i −1.59228 0.919302i −0.992915 0.118824i \(-0.962088\pi\)
−0.599362 0.800478i \(-0.704579\pi\)
\(858\) 0 0
\(859\) −14.8971 + 8.60083i −0.508282 + 0.293457i −0.732127 0.681168i \(-0.761472\pi\)
0.223845 + 0.974625i \(0.428139\pi\)
\(860\) −0.550253 42.2126i −0.0187635 1.43944i
\(861\) 0 0
\(862\) −42.7428 + 24.6775i −1.45582 + 0.840521i
\(863\) −14.6092 + 25.3039i −0.497304 + 0.861356i −0.999995 0.00310991i \(-0.999010\pi\)
0.502691 + 0.864466i \(0.332343\pi\)
\(864\) 0 0
\(865\) −26.4514 14.8154i −0.899375 0.503740i
\(866\) 42.8913 1.45751
\(867\) 0 0
\(868\) 27.6859 + 121.060i 0.939720 + 4.10903i
\(869\) −0.557957 0.322137i −0.0189274 0.0109277i
\(870\) 0 0
\(871\) −8.61653 4.97476i −0.291960 0.168563i
\(872\) 13.2393 + 22.9311i 0.448339 + 0.776545i
\(873\) 0 0
\(874\) 6.34529i 0.214633i
\(875\) −28.5561 + 7.71693i −0.965371 + 0.260880i
\(876\) 0 0
\(877\) −28.2956 + 16.3364i −0.955473 + 0.551643i −0.894777 0.446514i \(-0.852665\pi\)
−0.0606963 + 0.998156i \(0.519332\pi\)
\(878\) 4.19699i 0.141641i
\(879\) 0 0
\(880\) −18.1388 + 10.7901i −0.611460 + 0.363734i
\(881\) 51.6741 1.74094 0.870472 0.492217i \(-0.163814\pi\)
0.870472 + 0.492217i \(0.163814\pi\)
\(882\) 0 0
\(883\) 18.8576i 0.634610i 0.948324 + 0.317305i \(0.102778\pi\)
−0.948324 + 0.317305i \(0.897222\pi\)
\(884\) 90.8587i 3.05591i
\(885\) 0 0
\(886\) 91.3693 3.06961
\(887\) 33.3082 19.2305i 1.11838 0.645697i 0.177393 0.984140i \(-0.443234\pi\)
0.940987 + 0.338443i \(0.109900\pi\)
\(888\) 0 0
\(889\) −5.20744 22.7701i −0.174652 0.763685i
\(890\) −7.70246 12.9483i −0.258187 0.434028i
\(891\) 0 0
\(892\) 58.3605 + 101.083i 1.95406 + 3.38452i
\(893\) −12.9673 + 22.4600i −0.433934 + 0.751596i
\(894\) 0 0
\(895\) −0.0261607 2.00692i −0.000874456 0.0670839i
\(896\) −34.5182 + 7.89418i −1.15317 + 0.263726i
\(897\) 0 0
\(898\) 66.8523i 2.23089i
\(899\) 10.7525 + 18.6238i 0.358615 + 0.621139i
\(900\) 0 0
\(901\) −19.9280 11.5054i −0.663897 0.383301i
\(902\) 2.63034 1.51863i 0.0875807 0.0505647i
\(903\) 0 0
\(904\) 28.0899 48.6532i 0.934257 1.61818i
\(905\) 26.2950 + 14.7278i 0.874076 + 0.489570i
\(906\) 0 0
\(907\) 5.68017 + 3.27945i 0.188607 + 0.108892i 0.591330 0.806430i \(-0.298603\pi\)
−0.402723 + 0.915322i \(0.631936\pi\)
\(908\) 29.6053 + 17.0926i 0.982486 + 0.567239i
\(909\) 0 0
\(910\) 43.1454 + 45.2618i 1.43026 + 1.50042i
\(911\) −40.3423 + 23.2916i −1.33660 + 0.771686i −0.986302 0.164952i \(-0.947253\pi\)
−0.350298 + 0.936638i \(0.613920\pi\)
\(912\) 0 0
\(913\) −17.5236 −0.579946
\(914\) 80.4828i 2.66213i
\(915\) 0 0
\(916\) −70.7544 + 40.8501i −2.33779 + 1.34972i
\(917\) 3.98017 + 4.28590i 0.131437 + 0.141533i
\(918\) 0 0
\(919\) −25.8448 + 44.7644i −0.852540 + 1.47664i 0.0263686 + 0.999652i \(0.491606\pi\)
−0.878909 + 0.476990i \(0.841728\pi\)
\(920\) −6.51565 + 0.0849332i −0.214814 + 0.00280016i
\(921\) 0 0
\(922\) 14.6710 + 25.4109i 0.483163 + 0.836863i
\(923\) −42.3965 24.4776i −1.39550 0.805691i
\(924\) 0 0
\(925\) −1.05839 40.5902i −0.0347996 1.33460i
\(926\) −65.7340 37.9515i −2.16015 1.24716i
\(927\) 0 0
\(928\) 8.00041 4.61904i 0.262626 0.151627i
\(929\) −45.2591 −1.48490 −0.742452 0.669899i \(-0.766337\pi\)
−0.742452 + 0.669899i \(0.766337\pi\)
\(930\) 0 0
\(931\) −36.6265 2.71307i −1.20038 0.0889172i
\(932\) −20.9704 + 36.3218i −0.686909 + 1.18976i
\(933\) 0 0
\(934\) −5.49669 3.17352i −0.179857 0.103841i
\(935\) 7.68290 13.7170i 0.251258 0.448595i
\(936\) 0 0
\(937\) 16.0761 0.525184 0.262592 0.964907i \(-0.415423\pi\)
0.262592 + 0.964907i \(0.415423\pi\)
\(938\) 3.55883 + 15.5614i 0.116200 + 0.508097i
\(939\) 0 0
\(940\) −42.5233 23.8173i −1.38696 0.776835i
\(941\) 23.6483 0.770912 0.385456 0.922726i \(-0.374044\pi\)
0.385456 + 0.922726i \(0.374044\pi\)
\(942\) 0 0
\(943\) 0.402265 0.0130995
\(944\) −1.34136 −0.0436574
\(945\) 0 0
\(946\) −15.4424 −0.502077
\(947\) −28.5396 −0.927413 −0.463707 0.885989i \(-0.653481\pi\)
−0.463707 + 0.885989i \(0.653481\pi\)
\(948\) 0 0
\(949\) 37.7763 1.22627
\(950\) 1.73120 + 66.3931i 0.0561675 + 2.15408i
\(951\) 0 0
\(952\) −58.3699 + 54.2062i −1.89178 + 1.75683i
\(953\) −60.3601 −1.95525 −0.977627 0.210346i \(-0.932541\pi\)
−0.977627 + 0.210346i \(0.932541\pi\)
\(954\) 0 0
\(955\) 3.85377 + 2.15850i 0.124705 + 0.0698473i
\(956\) 77.8321 + 44.9364i 2.51727 + 1.45335i
\(957\) 0 0
\(958\) 45.0082 77.9565i 1.45415 2.51866i
\(959\) −3.76587 + 12.2273i −0.121606 + 0.394841i
\(960\) 0 0
\(961\) −82.3036 −2.65495
\(962\) −74.3349 + 42.9173i −2.39665 + 1.38371i
\(963\) 0 0
\(964\) −34.5245 19.9328i −1.11196 0.641991i
\(965\) −32.3396 18.1134i −1.04105 0.583091i
\(966\) 0 0
\(967\) 20.6715 + 11.9347i 0.664752 + 0.383795i 0.794085 0.607807i \(-0.207950\pi\)
−0.129333 + 0.991601i \(0.541284\pi\)
\(968\) −27.3616 47.3916i −0.879434 1.52322i
\(969\) 0 0
\(970\) −53.1460 + 0.692772i −1.70642 + 0.0222436i
\(971\) 21.2234 36.7601i 0.681092 1.17969i −0.293555 0.955942i \(-0.594839\pi\)
0.974648 0.223745i \(-0.0718282\pi\)
\(972\) 0 0
\(973\) 3.15914 + 0.972975i 0.101277 + 0.0311922i
\(974\) 39.1049 22.5772i 1.25300 0.723422i
\(975\) 0 0
\(976\) 11.8176i 0.378271i
\(977\) −7.00412 −0.224082 −0.112041 0.993704i \(-0.535739\pi\)
−0.112041 + 0.993704i \(0.535739\pi\)
\(978\) 0 0
\(979\) −3.28349 + 1.89572i −0.104941 + 0.0605875i
\(980\) 4.20108 68.8931i 0.134199 2.20071i
\(981\) 0 0
\(982\) 15.5269 + 8.96444i 0.495482 + 0.286067i
\(983\) −24.7050 14.2634i −0.787967 0.454933i 0.0512794 0.998684i \(-0.483670\pi\)
−0.839246 + 0.543751i \(0.817003\pi\)
\(984\) 0 0
\(985\) −26.8721 + 47.9774i −0.856217 + 1.52869i
\(986\) −12.6218 + 21.8616i −0.401961 + 0.696216i
\(987\) 0 0
\(988\) 83.6493 48.2950i 2.66124 1.53647i
\(989\) −1.77124 1.02263i −0.0563221 0.0325176i
\(990\) 0 0
\(991\) 28.9247 + 50.0991i 0.918824 + 1.59145i 0.801204 + 0.598391i \(0.204193\pi\)
0.117620 + 0.993059i \(0.462474\pi\)
\(992\) 48.6729i 1.54536i
\(993\) 0 0
\(994\) 17.5108 + 76.5677i 0.555407 + 2.42858i
\(995\) −0.0211128 1.61967i −0.000669321 0.0513469i
\(996\) 0 0
\(997\) −1.10662 + 1.91671i −0.0350469 + 0.0607030i −0.883017 0.469341i \(-0.844491\pi\)
0.847970 + 0.530044i \(0.177825\pi\)
\(998\) −29.0773 50.3634i −0.920427 1.59423i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 945.2.bq.a.719.42 88
3.2 odd 2 315.2.bq.a.194.3 yes 88
5.4 even 2 inner 945.2.bq.a.719.3 88
7.3 odd 6 945.2.u.a.584.3 88
9.2 odd 6 945.2.u.a.89.42 88
9.7 even 3 315.2.u.a.299.3 yes 88
15.14 odd 2 315.2.bq.a.194.42 yes 88
21.17 even 6 315.2.u.a.59.42 yes 88
35.24 odd 6 945.2.u.a.584.42 88
45.29 odd 6 945.2.u.a.89.3 88
45.34 even 6 315.2.u.a.299.42 yes 88
63.38 even 6 inner 945.2.bq.a.899.3 88
63.52 odd 6 315.2.bq.a.164.42 yes 88
105.59 even 6 315.2.u.a.59.3 88
315.164 even 6 inner 945.2.bq.a.899.42 88
315.304 odd 6 315.2.bq.a.164.3 yes 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
315.2.u.a.59.3 88 105.59 even 6
315.2.u.a.59.42 yes 88 21.17 even 6
315.2.u.a.299.3 yes 88 9.7 even 3
315.2.u.a.299.42 yes 88 45.34 even 6
315.2.bq.a.164.3 yes 88 315.304 odd 6
315.2.bq.a.164.42 yes 88 63.52 odd 6
315.2.bq.a.194.3 yes 88 3.2 odd 2
315.2.bq.a.194.42 yes 88 15.14 odd 2
945.2.u.a.89.3 88 45.29 odd 6
945.2.u.a.89.42 88 9.2 odd 6
945.2.u.a.584.3 88 7.3 odd 6
945.2.u.a.584.42 88 35.24 odd 6
945.2.bq.a.719.3 88 5.4 even 2 inner
945.2.bq.a.719.42 88 1.1 even 1 trivial
945.2.bq.a.899.3 88 63.38 even 6 inner
945.2.bq.a.899.42 88 315.164 even 6 inner