Properties

Label 945.2.bq
Level $945$
Weight $2$
Character orbit 945.bq
Rep. character $\chi_{945}(719,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $88$
Newform subspaces $1$
Sturm bound $288$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 945 = 3^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 945.bq (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 315 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(288\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(945, [\chi])\).

Total New Old
Modular forms 312 104 208
Cusp forms 264 88 176
Eisenstein series 48 16 32

Trace form

\( 88 q + 76 q^{4} + 3 q^{5} - 6 q^{10} + 12 q^{11} + 12 q^{14} + 52 q^{16} - 12 q^{19} + 6 q^{20} + q^{25} + 12 q^{26} - 6 q^{29} - 12 q^{34} - 30 q^{40} - 6 q^{41} + 84 q^{44} - 18 q^{46} - 8 q^{49} - 30 q^{50}+ \cdots + 20 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(945, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
945.2.bq.a 945.bq 315.aq $88$ $7.546$ None 315.2.u.a \(0\) \(0\) \(3\) \(0\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{2}^{\mathrm{old}}(945, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(945, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(315, [\chi])\)\(^{\oplus 2}\)