Properties

Label 9409.2.a.q.1.37
Level $9409$
Weight $2$
Character 9409.1
Self dual yes
Analytic conductor $75.131$
Analytic rank $0$
Dimension $168$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9409,2,Mod(1,9409)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9409, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9409.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9409 = 97^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9409.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [168,0,0,168,42] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(75.1312432618\)
Analytic rank: \(0\)
Dimension: \(168\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.37
Character \(\chi\) \(=\) 9409.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73548 q^{2} -3.39646 q^{3} +1.01188 q^{4} -2.86049 q^{5} +5.89447 q^{6} -0.942308 q^{7} +1.71486 q^{8} +8.53591 q^{9} +4.96432 q^{10} -3.33425 q^{11} -3.43680 q^{12} -1.74775 q^{13} +1.63535 q^{14} +9.71553 q^{15} -4.99986 q^{16} +3.59451 q^{17} -14.8139 q^{18} +1.93989 q^{19} -2.89447 q^{20} +3.20051 q^{21} +5.78651 q^{22} -2.66109 q^{23} -5.82445 q^{24} +3.18242 q^{25} +3.03318 q^{26} -18.8025 q^{27} -0.953502 q^{28} -7.36263 q^{29} -16.8611 q^{30} +3.74428 q^{31} +5.24742 q^{32} +11.3246 q^{33} -6.23819 q^{34} +2.69546 q^{35} +8.63731 q^{36} +0.721516 q^{37} -3.36664 q^{38} +5.93616 q^{39} -4.90534 q^{40} +5.04402 q^{41} -5.55440 q^{42} +6.72602 q^{43} -3.37386 q^{44} -24.4169 q^{45} +4.61826 q^{46} +7.87110 q^{47} +16.9818 q^{48} -6.11206 q^{49} -5.52301 q^{50} -12.2086 q^{51} -1.76851 q^{52} +2.72580 q^{53} +32.6312 q^{54} +9.53759 q^{55} -1.61593 q^{56} -6.58876 q^{57} +12.7777 q^{58} +7.83008 q^{59} +9.83095 q^{60} +5.40424 q^{61} -6.49812 q^{62} -8.04345 q^{63} +0.892947 q^{64} +4.99943 q^{65} -19.6536 q^{66} +8.28669 q^{67} +3.63721 q^{68} +9.03827 q^{69} -4.67792 q^{70} +12.6912 q^{71} +14.6379 q^{72} -3.27219 q^{73} -1.25217 q^{74} -10.8089 q^{75} +1.96294 q^{76} +3.14189 q^{77} -10.3021 q^{78} +0.714972 q^{79} +14.3021 q^{80} +38.2540 q^{81} -8.75378 q^{82} +4.45725 q^{83} +3.23853 q^{84} -10.2821 q^{85} -11.6729 q^{86} +25.0069 q^{87} -5.71777 q^{88} +15.6316 q^{89} +42.3750 q^{90} +1.64692 q^{91} -2.69270 q^{92} -12.7173 q^{93} -13.6601 q^{94} -5.54905 q^{95} -17.8226 q^{96} +10.6073 q^{98} -28.4608 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 168 q + 168 q^{4} + 42 q^{5} + 42 q^{7} + 168 q^{9} + 42 q^{10} + 42 q^{13} + 70 q^{14} + 84 q^{15} + 140 q^{16} + 49 q^{17} - 49 q^{18} + 84 q^{19} + 98 q^{20} + 84 q^{21} - 35 q^{22} + 126 q^{23} + 168 q^{25}+ \cdots - 84 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.73548 −1.22717 −0.613584 0.789630i \(-0.710273\pi\)
−0.613584 + 0.789630i \(0.710273\pi\)
\(3\) −3.39646 −1.96094 −0.980472 0.196658i \(-0.936991\pi\)
−0.980472 + 0.196658i \(0.936991\pi\)
\(4\) 1.01188 0.505940
\(5\) −2.86049 −1.27925 −0.639626 0.768687i \(-0.720911\pi\)
−0.639626 + 0.768687i \(0.720911\pi\)
\(6\) 5.89447 2.40641
\(7\) −0.942308 −0.356159 −0.178079 0.984016i \(-0.556988\pi\)
−0.178079 + 0.984016i \(0.556988\pi\)
\(8\) 1.71486 0.606295
\(9\) 8.53591 2.84530
\(10\) 4.96432 1.56986
\(11\) −3.33425 −1.00531 −0.502657 0.864486i \(-0.667644\pi\)
−0.502657 + 0.864486i \(0.667644\pi\)
\(12\) −3.43680 −0.992120
\(13\) −1.74775 −0.484739 −0.242369 0.970184i \(-0.577925\pi\)
−0.242369 + 0.970184i \(0.577925\pi\)
\(14\) 1.63535 0.437067
\(15\) 9.71553 2.50854
\(16\) −4.99986 −1.24996
\(17\) 3.59451 0.871798 0.435899 0.899996i \(-0.356431\pi\)
0.435899 + 0.899996i \(0.356431\pi\)
\(18\) −14.8139 −3.49166
\(19\) 1.93989 0.445042 0.222521 0.974928i \(-0.428571\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(20\) −2.89447 −0.647224
\(21\) 3.20051 0.698408
\(22\) 5.78651 1.23369
\(23\) −2.66109 −0.554875 −0.277438 0.960744i \(-0.589485\pi\)
−0.277438 + 0.960744i \(0.589485\pi\)
\(24\) −5.82445 −1.18891
\(25\) 3.18242 0.636483
\(26\) 3.03318 0.594856
\(27\) −18.8025 −3.61854
\(28\) −0.953502 −0.180195
\(29\) −7.36263 −1.36721 −0.683603 0.729854i \(-0.739588\pi\)
−0.683603 + 0.729854i \(0.739588\pi\)
\(30\) −16.8611 −3.07840
\(31\) 3.74428 0.672493 0.336246 0.941774i \(-0.390842\pi\)
0.336246 + 0.941774i \(0.390842\pi\)
\(32\) 5.24742 0.927621
\(33\) 11.3246 1.97136
\(34\) −6.23819 −1.06984
\(35\) 2.69546 0.455617
\(36\) 8.63731 1.43955
\(37\) 0.721516 0.118616 0.0593082 0.998240i \(-0.481111\pi\)
0.0593082 + 0.998240i \(0.481111\pi\)
\(38\) −3.36664 −0.546141
\(39\) 5.93616 0.950546
\(40\) −4.90534 −0.775603
\(41\) 5.04402 0.787744 0.393872 0.919165i \(-0.371135\pi\)
0.393872 + 0.919165i \(0.371135\pi\)
\(42\) −5.55440 −0.857063
\(43\) 6.72602 1.02571 0.512855 0.858476i \(-0.328588\pi\)
0.512855 + 0.858476i \(0.328588\pi\)
\(44\) −3.37386 −0.508628
\(45\) −24.4169 −3.63986
\(46\) 4.61826 0.680925
\(47\) 7.87110 1.14812 0.574059 0.818814i \(-0.305368\pi\)
0.574059 + 0.818814i \(0.305368\pi\)
\(48\) 16.9818 2.45111
\(49\) −6.11206 −0.873151
\(50\) −5.52301 −0.781071
\(51\) −12.2086 −1.70955
\(52\) −1.76851 −0.245249
\(53\) 2.72580 0.374417 0.187208 0.982320i \(-0.440056\pi\)
0.187208 + 0.982320i \(0.440056\pi\)
\(54\) 32.6312 4.44055
\(55\) 9.53759 1.28605
\(56\) −1.61593 −0.215937
\(57\) −6.58876 −0.872703
\(58\) 12.7777 1.67779
\(59\) 7.83008 1.01939 0.509695 0.860355i \(-0.329758\pi\)
0.509695 + 0.860355i \(0.329758\pi\)
\(60\) 9.83095 1.26917
\(61\) 5.40424 0.691943 0.345971 0.938245i \(-0.387549\pi\)
0.345971 + 0.938245i \(0.387549\pi\)
\(62\) −6.49812 −0.825261
\(63\) −8.04345 −1.01338
\(64\) 0.892947 0.111618
\(65\) 4.99943 0.620103
\(66\) −19.6536 −2.41919
\(67\) 8.28669 1.01238 0.506190 0.862422i \(-0.331053\pi\)
0.506190 + 0.862422i \(0.331053\pi\)
\(68\) 3.63721 0.441077
\(69\) 9.03827 1.08808
\(70\) −4.67792 −0.559118
\(71\) 12.6912 1.50616 0.753082 0.657927i \(-0.228566\pi\)
0.753082 + 0.657927i \(0.228566\pi\)
\(72\) 14.6379 1.72509
\(73\) −3.27219 −0.382981 −0.191491 0.981494i \(-0.561332\pi\)
−0.191491 + 0.981494i \(0.561332\pi\)
\(74\) −1.25217 −0.145562
\(75\) −10.8089 −1.24811
\(76\) 1.96294 0.225164
\(77\) 3.14189 0.358052
\(78\) −10.3021 −1.16648
\(79\) 0.714972 0.0804406 0.0402203 0.999191i \(-0.487194\pi\)
0.0402203 + 0.999191i \(0.487194\pi\)
\(80\) 14.3021 1.59902
\(81\) 38.2540 4.25045
\(82\) −8.75378 −0.966693
\(83\) 4.45725 0.489247 0.244623 0.969618i \(-0.421336\pi\)
0.244623 + 0.969618i \(0.421336\pi\)
\(84\) 3.23853 0.353352
\(85\) −10.2821 −1.11525
\(86\) −11.6729 −1.25872
\(87\) 25.0069 2.68102
\(88\) −5.71777 −0.609517
\(89\) 15.6316 1.65694 0.828471 0.560032i \(-0.189211\pi\)
0.828471 + 0.560032i \(0.189211\pi\)
\(90\) 42.3750 4.46671
\(91\) 1.64692 0.172644
\(92\) −2.69270 −0.280733
\(93\) −12.7173 −1.31872
\(94\) −13.6601 −1.40893
\(95\) −5.54905 −0.569320
\(96\) −17.8226 −1.81901
\(97\) 0 0
\(98\) 10.6073 1.07150
\(99\) −28.4608 −2.86042
\(100\) 3.22022 0.322022
\(101\) −2.01374 −0.200374 −0.100187 0.994969i \(-0.531944\pi\)
−0.100187 + 0.994969i \(0.531944\pi\)
\(102\) 21.1878 2.09790
\(103\) −15.9245 −1.56909 −0.784546 0.620071i \(-0.787104\pi\)
−0.784546 + 0.620071i \(0.787104\pi\)
\(104\) −2.99715 −0.293895
\(105\) −9.15502 −0.893439
\(106\) −4.73055 −0.459472
\(107\) 7.74763 0.748992 0.374496 0.927229i \(-0.377816\pi\)
0.374496 + 0.927229i \(0.377816\pi\)
\(108\) −19.0258 −1.83076
\(109\) −0.292450 −0.0280116 −0.0140058 0.999902i \(-0.504458\pi\)
−0.0140058 + 0.999902i \(0.504458\pi\)
\(110\) −16.5523 −1.57820
\(111\) −2.45060 −0.232600
\(112\) 4.71141 0.445186
\(113\) −6.81974 −0.641547 −0.320773 0.947156i \(-0.603943\pi\)
−0.320773 + 0.947156i \(0.603943\pi\)
\(114\) 11.4346 1.07095
\(115\) 7.61202 0.709825
\(116\) −7.45010 −0.691724
\(117\) −14.9186 −1.37923
\(118\) −13.5889 −1.25096
\(119\) −3.38714 −0.310498
\(120\) 16.6608 1.52091
\(121\) 0.117218 0.0106562
\(122\) −9.37894 −0.849129
\(123\) −17.1318 −1.54472
\(124\) 3.78876 0.340241
\(125\) 5.19919 0.465029
\(126\) 13.9592 1.24359
\(127\) −2.03854 −0.180891 −0.0904454 0.995901i \(-0.528829\pi\)
−0.0904454 + 0.995901i \(0.528829\pi\)
\(128\) −12.0445 −1.06460
\(129\) −22.8446 −2.01136
\(130\) −8.67639 −0.760970
\(131\) −15.7227 −1.37370 −0.686848 0.726801i \(-0.741006\pi\)
−0.686848 + 0.726801i \(0.741006\pi\)
\(132\) 11.4592 0.997392
\(133\) −1.82798 −0.158506
\(134\) −14.3814 −1.24236
\(135\) 53.7843 4.62902
\(136\) 6.16409 0.528566
\(137\) 17.1501 1.46523 0.732614 0.680644i \(-0.238300\pi\)
0.732614 + 0.680644i \(0.238300\pi\)
\(138\) −15.6857 −1.33526
\(139\) −8.30958 −0.704809 −0.352405 0.935848i \(-0.614636\pi\)
−0.352405 + 0.935848i \(0.614636\pi\)
\(140\) 2.72748 0.230515
\(141\) −26.7338 −2.25139
\(142\) −22.0252 −1.84832
\(143\) 5.82744 0.487315
\(144\) −42.6783 −3.55653
\(145\) 21.0608 1.74900
\(146\) 5.67881 0.469982
\(147\) 20.7593 1.71220
\(148\) 0.730087 0.0600128
\(149\) 5.76701 0.472451 0.236226 0.971698i \(-0.424090\pi\)
0.236226 + 0.971698i \(0.424090\pi\)
\(150\) 18.7587 1.53164
\(151\) −2.77811 −0.226079 −0.113040 0.993590i \(-0.536059\pi\)
−0.113040 + 0.993590i \(0.536059\pi\)
\(152\) 3.32665 0.269827
\(153\) 30.6824 2.48053
\(154\) −5.45268 −0.439389
\(155\) −10.7105 −0.860287
\(156\) 6.00668 0.480919
\(157\) −15.4848 −1.23582 −0.617911 0.786248i \(-0.712021\pi\)
−0.617911 + 0.786248i \(0.712021\pi\)
\(158\) −1.24082 −0.0987141
\(159\) −9.25804 −0.734211
\(160\) −15.0102 −1.18666
\(161\) 2.50756 0.197624
\(162\) −66.3889 −5.21601
\(163\) 3.65715 0.286450 0.143225 0.989690i \(-0.454253\pi\)
0.143225 + 0.989690i \(0.454253\pi\)
\(164\) 5.10394 0.398551
\(165\) −32.3940 −2.52187
\(166\) −7.73545 −0.600388
\(167\) −6.74844 −0.522210 −0.261105 0.965310i \(-0.584087\pi\)
−0.261105 + 0.965310i \(0.584087\pi\)
\(168\) 5.48842 0.423441
\(169\) −9.94537 −0.765028
\(170\) 17.8443 1.36860
\(171\) 16.5588 1.26628
\(172\) 6.80592 0.518947
\(173\) −2.01940 −0.153532 −0.0767659 0.997049i \(-0.524459\pi\)
−0.0767659 + 0.997049i \(0.524459\pi\)
\(174\) −43.3988 −3.29006
\(175\) −2.99882 −0.226689
\(176\) 16.6708 1.25661
\(177\) −26.5945 −1.99897
\(178\) −27.1282 −2.03334
\(179\) 9.53477 0.712662 0.356331 0.934360i \(-0.384027\pi\)
0.356331 + 0.934360i \(0.384027\pi\)
\(180\) −24.7070 −1.84155
\(181\) 5.34716 0.397451 0.198726 0.980055i \(-0.436320\pi\)
0.198726 + 0.980055i \(0.436320\pi\)
\(182\) −2.85819 −0.211863
\(183\) −18.3553 −1.35686
\(184\) −4.56339 −0.336418
\(185\) −2.06389 −0.151740
\(186\) 22.0706 1.61829
\(187\) −11.9850 −0.876430
\(188\) 7.96460 0.580878
\(189\) 17.7177 1.28877
\(190\) 9.63025 0.698652
\(191\) 23.3916 1.69256 0.846279 0.532739i \(-0.178837\pi\)
0.846279 + 0.532739i \(0.178837\pi\)
\(192\) −3.03285 −0.218877
\(193\) 3.96645 0.285512 0.142756 0.989758i \(-0.454404\pi\)
0.142756 + 0.989758i \(0.454404\pi\)
\(194\) 0 0
\(195\) −16.9803 −1.21599
\(196\) −6.18466 −0.441762
\(197\) 12.5988 0.897630 0.448815 0.893625i \(-0.351846\pi\)
0.448815 + 0.893625i \(0.351846\pi\)
\(198\) 49.3931 3.51022
\(199\) 4.91759 0.348599 0.174299 0.984693i \(-0.444234\pi\)
0.174299 + 0.984693i \(0.444234\pi\)
\(200\) 5.45740 0.385896
\(201\) −28.1454 −1.98522
\(202\) 3.49480 0.245893
\(203\) 6.93787 0.486943
\(204\) −12.3536 −0.864927
\(205\) −14.4284 −1.00772
\(206\) 27.6367 1.92554
\(207\) −22.7148 −1.57879
\(208\) 8.73851 0.605907
\(209\) −6.46809 −0.447407
\(210\) 15.8883 1.09640
\(211\) 23.0844 1.58920 0.794598 0.607136i \(-0.207682\pi\)
0.794598 + 0.607136i \(0.207682\pi\)
\(212\) 2.75818 0.189432
\(213\) −43.1050 −2.95350
\(214\) −13.4458 −0.919138
\(215\) −19.2397 −1.31214
\(216\) −32.2436 −2.19390
\(217\) −3.52827 −0.239514
\(218\) 0.507540 0.0343749
\(219\) 11.1139 0.751005
\(220\) 9.65089 0.650663
\(221\) −6.28232 −0.422594
\(222\) 4.25295 0.285439
\(223\) 0.545584 0.0365350 0.0182675 0.999833i \(-0.494185\pi\)
0.0182675 + 0.999833i \(0.494185\pi\)
\(224\) −4.94468 −0.330381
\(225\) 27.1648 1.81099
\(226\) 11.8355 0.787285
\(227\) −27.2803 −1.81066 −0.905328 0.424712i \(-0.860375\pi\)
−0.905328 + 0.424712i \(0.860375\pi\)
\(228\) −6.66703 −0.441535
\(229\) −18.4163 −1.21698 −0.608492 0.793560i \(-0.708225\pi\)
−0.608492 + 0.793560i \(0.708225\pi\)
\(230\) −13.2105 −0.871074
\(231\) −10.6713 −0.702119
\(232\) −12.6259 −0.828930
\(233\) −12.7989 −0.838486 −0.419243 0.907874i \(-0.637705\pi\)
−0.419243 + 0.907874i \(0.637705\pi\)
\(234\) 25.8910 1.69254
\(235\) −22.5152 −1.46873
\(236\) 7.92310 0.515750
\(237\) −2.42837 −0.157740
\(238\) 5.87830 0.381034
\(239\) 24.9198 1.61193 0.805963 0.591966i \(-0.201648\pi\)
0.805963 + 0.591966i \(0.201648\pi\)
\(240\) −48.5763 −3.13559
\(241\) 24.2385 1.56134 0.780668 0.624946i \(-0.214879\pi\)
0.780668 + 0.624946i \(0.214879\pi\)
\(242\) −0.203430 −0.0130770
\(243\) −73.5206 −4.71635
\(244\) 5.46844 0.350081
\(245\) 17.4835 1.11698
\(246\) 29.7318 1.89563
\(247\) −3.39045 −0.215729
\(248\) 6.42092 0.407729
\(249\) −15.1388 −0.959386
\(250\) −9.02307 −0.570669
\(251\) 5.19850 0.328127 0.164063 0.986450i \(-0.447540\pi\)
0.164063 + 0.986450i \(0.447540\pi\)
\(252\) −8.13900 −0.512709
\(253\) 8.87273 0.557824
\(254\) 3.53783 0.221983
\(255\) 34.9226 2.18694
\(256\) 19.1171 1.19482
\(257\) −16.4146 −1.02392 −0.511958 0.859011i \(-0.671080\pi\)
−0.511958 + 0.859011i \(0.671080\pi\)
\(258\) 39.6463 2.46827
\(259\) −0.679890 −0.0422463
\(260\) 5.05882 0.313735
\(261\) −62.8468 −3.89012
\(262\) 27.2863 1.68575
\(263\) −15.2376 −0.939589 −0.469795 0.882776i \(-0.655672\pi\)
−0.469795 + 0.882776i \(0.655672\pi\)
\(264\) 19.4202 1.19523
\(265\) −7.79712 −0.478973
\(266\) 3.17241 0.194513
\(267\) −53.0919 −3.24917
\(268\) 8.38513 0.512204
\(269\) −18.9641 −1.15626 −0.578131 0.815944i \(-0.696218\pi\)
−0.578131 + 0.815944i \(0.696218\pi\)
\(270\) −93.3414 −5.68058
\(271\) 20.3997 1.23919 0.619597 0.784920i \(-0.287296\pi\)
0.619597 + 0.784920i \(0.287296\pi\)
\(272\) −17.9721 −1.08972
\(273\) −5.59369 −0.338545
\(274\) −29.7635 −1.79808
\(275\) −10.6110 −0.639865
\(276\) 9.14564 0.550503
\(277\) −25.5622 −1.53588 −0.767941 0.640521i \(-0.778719\pi\)
−0.767941 + 0.640521i \(0.778719\pi\)
\(278\) 14.4211 0.864919
\(279\) 31.9609 1.91345
\(280\) 4.62235 0.276238
\(281\) −28.6097 −1.70671 −0.853355 0.521331i \(-0.825436\pi\)
−0.853355 + 0.521331i \(0.825436\pi\)
\(282\) 46.3959 2.76284
\(283\) −8.12628 −0.483057 −0.241529 0.970394i \(-0.577649\pi\)
−0.241529 + 0.970394i \(0.577649\pi\)
\(284\) 12.8419 0.762028
\(285\) 18.8471 1.11641
\(286\) −10.1134 −0.598017
\(287\) −4.75302 −0.280562
\(288\) 44.7915 2.63936
\(289\) −4.07947 −0.239969
\(290\) −36.5505 −2.14632
\(291\) 0 0
\(292\) −3.31106 −0.193765
\(293\) −5.71365 −0.333795 −0.166897 0.985974i \(-0.553375\pi\)
−0.166897 + 0.985974i \(0.553375\pi\)
\(294\) −36.0273 −2.10116
\(295\) −22.3979 −1.30406
\(296\) 1.23730 0.0719165
\(297\) 62.6921 3.63777
\(298\) −10.0085 −0.579777
\(299\) 4.65092 0.268970
\(300\) −10.9373 −0.631467
\(301\) −6.33799 −0.365315
\(302\) 4.82134 0.277437
\(303\) 6.83957 0.392923
\(304\) −9.69919 −0.556287
\(305\) −15.4588 −0.885168
\(306\) −53.2487 −3.04402
\(307\) 8.65650 0.494053 0.247026 0.969009i \(-0.420547\pi\)
0.247026 + 0.969009i \(0.420547\pi\)
\(308\) 3.17921 0.181152
\(309\) 54.0870 3.07690
\(310\) 18.5878 1.05572
\(311\) 34.1650 1.93732 0.968661 0.248388i \(-0.0799007\pi\)
0.968661 + 0.248388i \(0.0799007\pi\)
\(312\) 10.1797 0.576311
\(313\) −4.80055 −0.271343 −0.135672 0.990754i \(-0.543319\pi\)
−0.135672 + 0.990754i \(0.543319\pi\)
\(314\) 26.8735 1.51656
\(315\) 23.0082 1.29637
\(316\) 0.723465 0.0406981
\(317\) −14.5022 −0.814524 −0.407262 0.913311i \(-0.633516\pi\)
−0.407262 + 0.913311i \(0.633516\pi\)
\(318\) 16.0671 0.900999
\(319\) 24.5489 1.37447
\(320\) −2.55427 −0.142788
\(321\) −26.3145 −1.46873
\(322\) −4.35182 −0.242517
\(323\) 6.97297 0.387987
\(324\) 38.7084 2.15047
\(325\) −5.56207 −0.308528
\(326\) −6.34690 −0.351522
\(327\) 0.993292 0.0549292
\(328\) 8.64979 0.477605
\(329\) −7.41700 −0.408912
\(330\) 56.2191 3.09476
\(331\) −16.7465 −0.920469 −0.460234 0.887798i \(-0.652235\pi\)
−0.460234 + 0.887798i \(0.652235\pi\)
\(332\) 4.51020 0.247529
\(333\) 6.15879 0.337500
\(334\) 11.7118 0.640839
\(335\) −23.7040 −1.29509
\(336\) −16.0021 −0.872985
\(337\) −19.6797 −1.07202 −0.536010 0.844211i \(-0.680069\pi\)
−0.536010 + 0.844211i \(0.680069\pi\)
\(338\) 17.2600 0.938818
\(339\) 23.1629 1.25804
\(340\) −10.4042 −0.564248
\(341\) −12.4844 −0.676067
\(342\) −28.7373 −1.55394
\(343\) 12.3556 0.667139
\(344\) 11.5342 0.621882
\(345\) −25.8539 −1.39193
\(346\) 3.50462 0.188409
\(347\) −25.3801 −1.36247 −0.681237 0.732063i \(-0.738558\pi\)
−0.681237 + 0.732063i \(0.738558\pi\)
\(348\) 25.3039 1.35643
\(349\) 32.6491 1.74767 0.873834 0.486224i \(-0.161626\pi\)
0.873834 + 0.486224i \(0.161626\pi\)
\(350\) 5.20437 0.278186
\(351\) 32.8620 1.75405
\(352\) −17.4962 −0.932551
\(353\) 3.48296 0.185379 0.0926896 0.995695i \(-0.470454\pi\)
0.0926896 + 0.995695i \(0.470454\pi\)
\(354\) 46.1542 2.45307
\(355\) −36.3030 −1.92676
\(356\) 15.8173 0.838313
\(357\) 11.5043 0.608870
\(358\) −16.5474 −0.874556
\(359\) 25.6900 1.35587 0.677933 0.735123i \(-0.262876\pi\)
0.677933 + 0.735123i \(0.262876\pi\)
\(360\) −41.8716 −2.20683
\(361\) −15.2368 −0.801938
\(362\) −9.27987 −0.487739
\(363\) −0.398127 −0.0208963
\(364\) 1.66648 0.0873475
\(365\) 9.36008 0.489929
\(366\) 31.8552 1.66510
\(367\) −7.79766 −0.407035 −0.203517 0.979071i \(-0.565237\pi\)
−0.203517 + 0.979071i \(0.565237\pi\)
\(368\) 13.3051 0.693574
\(369\) 43.0553 2.24137
\(370\) 3.58183 0.186211
\(371\) −2.56854 −0.133352
\(372\) −12.8684 −0.667193
\(373\) 0.469987 0.0243350 0.0121675 0.999926i \(-0.496127\pi\)
0.0121675 + 0.999926i \(0.496127\pi\)
\(374\) 20.7997 1.07553
\(375\) −17.6588 −0.911897
\(376\) 13.4978 0.696098
\(377\) 12.8681 0.662738
\(378\) −30.7487 −1.58154
\(379\) 13.8394 0.710883 0.355441 0.934699i \(-0.384331\pi\)
0.355441 + 0.934699i \(0.384331\pi\)
\(380\) −5.61497 −0.288042
\(381\) 6.92380 0.354717
\(382\) −40.5956 −2.07705
\(383\) 2.52866 0.129209 0.0646043 0.997911i \(-0.479421\pi\)
0.0646043 + 0.997911i \(0.479421\pi\)
\(384\) 40.9087 2.08761
\(385\) −8.98735 −0.458038
\(386\) −6.88369 −0.350371
\(387\) 57.4127 2.91845
\(388\) 0 0
\(389\) −25.5869 −1.29731 −0.648653 0.761084i \(-0.724667\pi\)
−0.648653 + 0.761084i \(0.724667\pi\)
\(390\) 29.4690 1.49222
\(391\) −9.56532 −0.483739
\(392\) −10.4813 −0.529387
\(393\) 53.4013 2.69374
\(394\) −21.8650 −1.10154
\(395\) −2.04517 −0.102904
\(396\) −28.7989 −1.44720
\(397\) 11.9865 0.601583 0.300792 0.953690i \(-0.402749\pi\)
0.300792 + 0.953690i \(0.402749\pi\)
\(398\) −8.53437 −0.427789
\(399\) 6.20864 0.310821
\(400\) −15.9116 −0.795581
\(401\) 0.0336991 0.00168286 0.000841428 1.00000i \(-0.499732\pi\)
0.000841428 1.00000i \(0.499732\pi\)
\(402\) 48.8457 2.43620
\(403\) −6.54407 −0.325984
\(404\) −2.03766 −0.101377
\(405\) −109.425 −5.43739
\(406\) −12.0405 −0.597560
\(407\) −2.40571 −0.119247
\(408\) −20.9361 −1.03649
\(409\) −15.9489 −0.788624 −0.394312 0.918977i \(-0.629017\pi\)
−0.394312 + 0.918977i \(0.629017\pi\)
\(410\) 25.0401 1.23664
\(411\) −58.2494 −2.87323
\(412\) −16.1137 −0.793866
\(413\) −7.37835 −0.363065
\(414\) 39.4210 1.93744
\(415\) −12.7499 −0.625869
\(416\) −9.17118 −0.449654
\(417\) 28.2231 1.38209
\(418\) 11.2252 0.549043
\(419\) −17.1414 −0.837410 −0.418705 0.908122i \(-0.637516\pi\)
−0.418705 + 0.908122i \(0.637516\pi\)
\(420\) −9.26378 −0.452026
\(421\) 11.9712 0.583443 0.291721 0.956503i \(-0.405772\pi\)
0.291721 + 0.956503i \(0.405772\pi\)
\(422\) −40.0625 −1.95021
\(423\) 67.1870 3.26674
\(424\) 4.67436 0.227007
\(425\) 11.4392 0.554885
\(426\) 74.8077 3.62444
\(427\) −5.09246 −0.246442
\(428\) 7.83967 0.378945
\(429\) −19.7926 −0.955597
\(430\) 33.3901 1.61021
\(431\) −30.9215 −1.48943 −0.744717 0.667380i \(-0.767416\pi\)
−0.744717 + 0.667380i \(0.767416\pi\)
\(432\) 94.0097 4.52304
\(433\) −8.24602 −0.396279 −0.198139 0.980174i \(-0.563490\pi\)
−0.198139 + 0.980174i \(0.563490\pi\)
\(434\) 6.12322 0.293924
\(435\) −71.5319 −3.42969
\(436\) −0.295924 −0.0141722
\(437\) −5.16223 −0.246943
\(438\) −19.2878 −0.921609
\(439\) 10.1541 0.484628 0.242314 0.970198i \(-0.422094\pi\)
0.242314 + 0.970198i \(0.422094\pi\)
\(440\) 16.3556 0.779725
\(441\) −52.1719 −2.48438
\(442\) 10.9028 0.518594
\(443\) 7.57735 0.360011 0.180005 0.983666i \(-0.442388\pi\)
0.180005 + 0.983666i \(0.442388\pi\)
\(444\) −2.47971 −0.117682
\(445\) −44.7140 −2.11964
\(446\) −0.946848 −0.0448345
\(447\) −19.5874 −0.926451
\(448\) −0.841431 −0.0397539
\(449\) 6.34626 0.299498 0.149749 0.988724i \(-0.452153\pi\)
0.149749 + 0.988724i \(0.452153\pi\)
\(450\) −47.1439 −2.22238
\(451\) −16.8180 −0.791930
\(452\) −6.90075 −0.324584
\(453\) 9.43572 0.443329
\(454\) 47.3443 2.22198
\(455\) −4.71100 −0.220855
\(456\) −11.2988 −0.529115
\(457\) 3.14530 0.147131 0.0735654 0.997290i \(-0.476562\pi\)
0.0735654 + 0.997290i \(0.476562\pi\)
\(458\) 31.9610 1.49344
\(459\) −67.5857 −3.15463
\(460\) 7.70245 0.359128
\(461\) 20.5233 0.955863 0.477932 0.878397i \(-0.341387\pi\)
0.477932 + 0.878397i \(0.341387\pi\)
\(462\) 18.5198 0.861618
\(463\) 8.19203 0.380716 0.190358 0.981715i \(-0.439035\pi\)
0.190358 + 0.981715i \(0.439035\pi\)
\(464\) 36.8121 1.70896
\(465\) 36.3777 1.68698
\(466\) 22.2123 1.02896
\(467\) −4.62621 −0.214075 −0.107038 0.994255i \(-0.534137\pi\)
−0.107038 + 0.994255i \(0.534137\pi\)
\(468\) −15.0959 −0.697807
\(469\) −7.80862 −0.360568
\(470\) 39.0746 1.80238
\(471\) 52.5935 2.42338
\(472\) 13.4275 0.618050
\(473\) −22.4262 −1.03116
\(474\) 4.21438 0.193573
\(475\) 6.17355 0.283262
\(476\) −3.42738 −0.157094
\(477\) 23.2671 1.06533
\(478\) −43.2477 −1.97810
\(479\) −13.0994 −0.598527 −0.299264 0.954170i \(-0.596741\pi\)
−0.299264 + 0.954170i \(0.596741\pi\)
\(480\) 50.9815 2.32697
\(481\) −1.26103 −0.0574980
\(482\) −42.0653 −1.91602
\(483\) −8.51683 −0.387529
\(484\) 0.118611 0.00539141
\(485\) 0 0
\(486\) 127.593 5.78775
\(487\) −29.5431 −1.33872 −0.669362 0.742937i \(-0.733432\pi\)
−0.669362 + 0.742937i \(0.733432\pi\)
\(488\) 9.26753 0.419521
\(489\) −12.4213 −0.561713
\(490\) −30.3422 −1.37072
\(491\) 24.2470 1.09425 0.547125 0.837051i \(-0.315722\pi\)
0.547125 + 0.837051i \(0.315722\pi\)
\(492\) −17.3353 −0.781536
\(493\) −26.4651 −1.19193
\(494\) 5.88405 0.264736
\(495\) 81.4120 3.65920
\(496\) −18.7209 −0.840593
\(497\) −11.9590 −0.536434
\(498\) 26.2731 1.17733
\(499\) 6.00068 0.268627 0.134314 0.990939i \(-0.457117\pi\)
0.134314 + 0.990939i \(0.457117\pi\)
\(500\) 5.26095 0.235277
\(501\) 22.9208 1.02402
\(502\) −9.02188 −0.402666
\(503\) 37.7592 1.68360 0.841799 0.539792i \(-0.181497\pi\)
0.841799 + 0.539792i \(0.181497\pi\)
\(504\) −13.7934 −0.614407
\(505\) 5.76028 0.256329
\(506\) −15.3984 −0.684543
\(507\) 33.7790 1.50018
\(508\) −2.06275 −0.0915198
\(509\) 5.07395 0.224899 0.112449 0.993657i \(-0.464130\pi\)
0.112449 + 0.993657i \(0.464130\pi\)
\(510\) −60.6074 −2.68374
\(511\) 3.08341 0.136402
\(512\) −9.08823 −0.401647
\(513\) −36.4748 −1.61040
\(514\) 28.4872 1.25652
\(515\) 45.5520 2.00726
\(516\) −23.1160 −1.01763
\(517\) −26.2442 −1.15422
\(518\) 1.17993 0.0518433
\(519\) 6.85879 0.301067
\(520\) 8.57332 0.375965
\(521\) 21.2407 0.930573 0.465287 0.885160i \(-0.345951\pi\)
0.465287 + 0.885160i \(0.345951\pi\)
\(522\) 109.069 4.77383
\(523\) −12.1208 −0.530005 −0.265003 0.964248i \(-0.585373\pi\)
−0.265003 + 0.964248i \(0.585373\pi\)
\(524\) −15.9094 −0.695007
\(525\) 10.1853 0.444525
\(526\) 26.4445 1.15303
\(527\) 13.4589 0.586278
\(528\) −56.6215 −2.46414
\(529\) −15.9186 −0.692113
\(530\) 13.5317 0.587780
\(531\) 66.8368 2.90047
\(532\) −1.84969 −0.0801943
\(533\) −8.81569 −0.381850
\(534\) 92.1397 3.98728
\(535\) −22.1620 −0.958148
\(536\) 14.2105 0.613801
\(537\) −32.3844 −1.39749
\(538\) 32.9118 1.41893
\(539\) 20.3791 0.877791
\(540\) 54.4232 2.34200
\(541\) −17.4681 −0.751013 −0.375507 0.926820i \(-0.622531\pi\)
−0.375507 + 0.926820i \(0.622531\pi\)
\(542\) −35.4032 −1.52070
\(543\) −18.1614 −0.779380
\(544\) 18.8619 0.808698
\(545\) 0.836550 0.0358339
\(546\) 9.70772 0.415452
\(547\) −14.0282 −0.599802 −0.299901 0.953970i \(-0.596954\pi\)
−0.299901 + 0.953970i \(0.596954\pi\)
\(548\) 17.3538 0.741317
\(549\) 46.1301 1.96879
\(550\) 18.4151 0.785222
\(551\) −14.2827 −0.608465
\(552\) 15.4994 0.659697
\(553\) −0.673723 −0.0286496
\(554\) 44.3625 1.88478
\(555\) 7.00991 0.297554
\(556\) −8.40829 −0.356591
\(557\) −35.4605 −1.50251 −0.751255 0.660012i \(-0.770551\pi\)
−0.751255 + 0.660012i \(0.770551\pi\)
\(558\) −55.4673 −2.34812
\(559\) −11.7554 −0.497201
\(560\) −13.4769 −0.569505
\(561\) 40.7065 1.71863
\(562\) 49.6514 2.09442
\(563\) −37.1657 −1.56635 −0.783173 0.621804i \(-0.786400\pi\)
−0.783173 + 0.621804i \(0.786400\pi\)
\(564\) −27.0514 −1.13907
\(565\) 19.5078 0.820700
\(566\) 14.1030 0.592792
\(567\) −36.0471 −1.51383
\(568\) 21.7636 0.913179
\(569\) 35.6166 1.49312 0.746562 0.665316i \(-0.231703\pi\)
0.746562 + 0.665316i \(0.231703\pi\)
\(570\) −32.7087 −1.37002
\(571\) −4.08957 −0.171143 −0.0855717 0.996332i \(-0.527272\pi\)
−0.0855717 + 0.996332i \(0.527272\pi\)
\(572\) 5.89666 0.246552
\(573\) −79.4486 −3.31901
\(574\) 8.24876 0.344296
\(575\) −8.46869 −0.353169
\(576\) 7.62211 0.317588
\(577\) −45.1541 −1.87979 −0.939896 0.341461i \(-0.889078\pi\)
−0.939896 + 0.341461i \(0.889078\pi\)
\(578\) 7.07983 0.294482
\(579\) −13.4719 −0.559872
\(580\) 21.3109 0.884889
\(581\) −4.20010 −0.174250
\(582\) 0 0
\(583\) −9.08848 −0.376406
\(584\) −5.61135 −0.232199
\(585\) 42.6747 1.76438
\(586\) 9.91590 0.409622
\(587\) −13.3063 −0.549209 −0.274605 0.961557i \(-0.588547\pi\)
−0.274605 + 0.961557i \(0.588547\pi\)
\(588\) 21.0059 0.866270
\(589\) 7.26351 0.299288
\(590\) 38.8710 1.60029
\(591\) −42.7914 −1.76020
\(592\) −3.60748 −0.148266
\(593\) 16.0790 0.660284 0.330142 0.943931i \(-0.392903\pi\)
0.330142 + 0.943931i \(0.392903\pi\)
\(594\) −108.801 −4.46415
\(595\) 9.68888 0.397206
\(596\) 5.83551 0.239032
\(597\) −16.7024 −0.683583
\(598\) −8.07156 −0.330071
\(599\) −4.19878 −0.171558 −0.0857788 0.996314i \(-0.527338\pi\)
−0.0857788 + 0.996314i \(0.527338\pi\)
\(600\) −18.5358 −0.756721
\(601\) 46.3079 1.88894 0.944468 0.328602i \(-0.106578\pi\)
0.944468 + 0.328602i \(0.106578\pi\)
\(602\) 10.9994 0.448303
\(603\) 70.7344 2.88053
\(604\) −2.81111 −0.114382
\(605\) −0.335302 −0.0136320
\(606\) −11.8699 −0.482182
\(607\) 30.0832 1.22104 0.610519 0.792001i \(-0.290961\pi\)
0.610519 + 0.792001i \(0.290961\pi\)
\(608\) 10.1794 0.412830
\(609\) −23.5642 −0.954868
\(610\) 26.8284 1.08625
\(611\) −13.7567 −0.556537
\(612\) 31.0469 1.25500
\(613\) −16.5116 −0.666897 −0.333448 0.942768i \(-0.608212\pi\)
−0.333448 + 0.942768i \(0.608212\pi\)
\(614\) −15.0232 −0.606285
\(615\) 49.0054 1.97609
\(616\) 5.38790 0.217085
\(617\) −19.2819 −0.776260 −0.388130 0.921605i \(-0.626879\pi\)
−0.388130 + 0.921605i \(0.626879\pi\)
\(618\) −93.8667 −3.77587
\(619\) 35.4780 1.42598 0.712990 0.701174i \(-0.247340\pi\)
0.712990 + 0.701174i \(0.247340\pi\)
\(620\) −10.8377 −0.435253
\(621\) 50.0350 2.00784
\(622\) −59.2926 −2.37742
\(623\) −14.7297 −0.590135
\(624\) −29.6800 −1.18815
\(625\) −30.7843 −1.23137
\(626\) 8.33124 0.332983
\(627\) 21.9686 0.877340
\(628\) −15.6688 −0.625251
\(629\) 2.59350 0.103410
\(630\) −39.9303 −1.59086
\(631\) 17.4790 0.695829 0.347914 0.937526i \(-0.386890\pi\)
0.347914 + 0.937526i \(0.386890\pi\)
\(632\) 1.22608 0.0487707
\(633\) −78.4052 −3.11633
\(634\) 25.1682 0.999557
\(635\) 5.83122 0.231405
\(636\) −9.36802 −0.371466
\(637\) 10.6824 0.423250
\(638\) −42.6040 −1.68671
\(639\) 108.331 4.28549
\(640\) 34.4533 1.36188
\(641\) 22.3284 0.881920 0.440960 0.897527i \(-0.354638\pi\)
0.440960 + 0.897527i \(0.354638\pi\)
\(642\) 45.6682 1.80238
\(643\) −23.5306 −0.927955 −0.463978 0.885847i \(-0.653578\pi\)
−0.463978 + 0.885847i \(0.653578\pi\)
\(644\) 2.53735 0.0999857
\(645\) 65.3469 2.57303
\(646\) −12.1014 −0.476124
\(647\) 8.99761 0.353732 0.176866 0.984235i \(-0.443404\pi\)
0.176866 + 0.984235i \(0.443404\pi\)
\(648\) 65.6003 2.57702
\(649\) −26.1074 −1.02481
\(650\) 9.65284 0.378616
\(651\) 11.9836 0.469674
\(652\) 3.70060 0.144927
\(653\) 16.8628 0.659893 0.329947 0.944000i \(-0.392969\pi\)
0.329947 + 0.944000i \(0.392969\pi\)
\(654\) −1.72384 −0.0674073
\(655\) 44.9745 1.75730
\(656\) −25.2194 −0.984652
\(657\) −27.9311 −1.08970
\(658\) 12.8720 0.501804
\(659\) −21.2538 −0.827932 −0.413966 0.910292i \(-0.635857\pi\)
−0.413966 + 0.910292i \(0.635857\pi\)
\(660\) −32.7788 −1.27591
\(661\) −29.5558 −1.14959 −0.574794 0.818298i \(-0.694918\pi\)
−0.574794 + 0.818298i \(0.694918\pi\)
\(662\) 29.0631 1.12957
\(663\) 21.3376 0.828684
\(664\) 7.64356 0.296628
\(665\) 5.22891 0.202769
\(666\) −10.6884 −0.414169
\(667\) 19.5926 0.758629
\(668\) −6.82860 −0.264207
\(669\) −1.85305 −0.0716431
\(670\) 41.1378 1.58929
\(671\) −18.0191 −0.695620
\(672\) 16.7944 0.647858
\(673\) 4.42959 0.170748 0.0853741 0.996349i \(-0.472791\pi\)
0.0853741 + 0.996349i \(0.472791\pi\)
\(674\) 34.1536 1.31555
\(675\) −59.8373 −2.30314
\(676\) −10.0635 −0.387058
\(677\) 38.3577 1.47421 0.737103 0.675780i \(-0.236193\pi\)
0.737103 + 0.675780i \(0.236193\pi\)
\(678\) −40.1987 −1.54382
\(679\) 0 0
\(680\) −17.6323 −0.676169
\(681\) 92.6563 3.55060
\(682\) 21.6663 0.829647
\(683\) 18.8900 0.722804 0.361402 0.932410i \(-0.382298\pi\)
0.361402 + 0.932410i \(0.382298\pi\)
\(684\) 16.7555 0.640661
\(685\) −49.0576 −1.87439
\(686\) −21.4428 −0.818692
\(687\) 62.5501 2.38644
\(688\) −33.6292 −1.28210
\(689\) −4.76401 −0.181494
\(690\) 44.8688 1.70813
\(691\) 8.39288 0.319280 0.159640 0.987175i \(-0.448967\pi\)
0.159640 + 0.987175i \(0.448967\pi\)
\(692\) −2.04339 −0.0776779
\(693\) 26.8189 1.01877
\(694\) 44.0465 1.67198
\(695\) 23.7695 0.901628
\(696\) 42.8833 1.62549
\(697\) 18.1308 0.686753
\(698\) −56.6618 −2.14468
\(699\) 43.4710 1.64423
\(700\) −3.03444 −0.114691
\(701\) 10.3167 0.389656 0.194828 0.980837i \(-0.437585\pi\)
0.194828 + 0.980837i \(0.437585\pi\)
\(702\) −57.0313 −2.15251
\(703\) 1.39966 0.0527893
\(704\) −2.97731 −0.112211
\(705\) 76.4719 2.88010
\(706\) −6.04459 −0.227491
\(707\) 1.89756 0.0713651
\(708\) −26.9104 −1.01136
\(709\) −46.8155 −1.75819 −0.879097 0.476644i \(-0.841853\pi\)
−0.879097 + 0.476644i \(0.841853\pi\)
\(710\) 63.0030 2.36446
\(711\) 6.10293 0.228878
\(712\) 26.8059 1.00460
\(713\) −9.96387 −0.373150
\(714\) −19.9654 −0.747186
\(715\) −16.6693 −0.623398
\(716\) 9.64804 0.360564
\(717\) −84.6389 −3.16090
\(718\) −44.5844 −1.66388
\(719\) 0.967369 0.0360768 0.0180384 0.999837i \(-0.494258\pi\)
0.0180384 + 0.999837i \(0.494258\pi\)
\(720\) 122.081 4.54969
\(721\) 15.0058 0.558846
\(722\) 26.4431 0.984112
\(723\) −82.3248 −3.06169
\(724\) 5.41068 0.201086
\(725\) −23.4310 −0.870204
\(726\) 0.690941 0.0256432
\(727\) 46.9288 1.74049 0.870247 0.492615i \(-0.163959\pi\)
0.870247 + 0.492615i \(0.163959\pi\)
\(728\) 2.82424 0.104673
\(729\) 134.948 4.99806
\(730\) −16.2442 −0.601225
\(731\) 24.1768 0.894211
\(732\) −18.5733 −0.686490
\(733\) 44.2879 1.63581 0.817906 0.575351i \(-0.195135\pi\)
0.817906 + 0.575351i \(0.195135\pi\)
\(734\) 13.5327 0.499500
\(735\) −59.3819 −2.19033
\(736\) −13.9638 −0.514714
\(737\) −27.6299 −1.01776
\(738\) −74.7215 −2.75054
\(739\) −10.2807 −0.378180 −0.189090 0.981960i \(-0.560554\pi\)
−0.189090 + 0.981960i \(0.560554\pi\)
\(740\) −2.08841 −0.0767714
\(741\) 11.5155 0.423033
\(742\) 4.45764 0.163645
\(743\) 10.1513 0.372414 0.186207 0.982510i \(-0.440380\pi\)
0.186207 + 0.982510i \(0.440380\pi\)
\(744\) −21.8084 −0.799534
\(745\) −16.4965 −0.604384
\(746\) −0.815652 −0.0298631
\(747\) 38.0467 1.39206
\(748\) −12.1274 −0.443421
\(749\) −7.30065 −0.266760
\(750\) 30.6464 1.11905
\(751\) −14.9074 −0.543977 −0.271989 0.962300i \(-0.587681\pi\)
−0.271989 + 0.962300i \(0.587681\pi\)
\(752\) −39.3544 −1.43511
\(753\) −17.6565 −0.643438
\(754\) −22.3322 −0.813291
\(755\) 7.94675 0.289212
\(756\) 17.9282 0.652042
\(757\) 18.0524 0.656125 0.328062 0.944656i \(-0.393604\pi\)
0.328062 + 0.944656i \(0.393604\pi\)
\(758\) −24.0180 −0.872372
\(759\) −30.1358 −1.09386
\(760\) −9.51585 −0.345176
\(761\) 42.1081 1.52642 0.763208 0.646153i \(-0.223623\pi\)
0.763208 + 0.646153i \(0.223623\pi\)
\(762\) −12.0161 −0.435297
\(763\) 0.275578 0.00997658
\(764\) 23.6695 0.856333
\(765\) −87.7669 −3.17322
\(766\) −4.38844 −0.158561
\(767\) −13.6850 −0.494138
\(768\) −64.9304 −2.34297
\(769\) 11.5808 0.417615 0.208807 0.977957i \(-0.433042\pi\)
0.208807 + 0.977957i \(0.433042\pi\)
\(770\) 15.5973 0.562089
\(771\) 55.7515 2.00784
\(772\) 4.01357 0.144452
\(773\) 35.3702 1.27218 0.636089 0.771616i \(-0.280551\pi\)
0.636089 + 0.771616i \(0.280551\pi\)
\(774\) −99.6384 −3.58143
\(775\) 11.9159 0.428030
\(776\) 0 0
\(777\) 2.30922 0.0828427
\(778\) 44.4054 1.59201
\(779\) 9.78486 0.350579
\(780\) −17.1821 −0.615216
\(781\) −42.3155 −1.51417
\(782\) 16.6004 0.593629
\(783\) 138.436 4.94729
\(784\) 30.5594 1.09141
\(785\) 44.2942 1.58093
\(786\) −92.6767 −3.30567
\(787\) 8.09748 0.288644 0.144322 0.989531i \(-0.453900\pi\)
0.144322 + 0.989531i \(0.453900\pi\)
\(788\) 12.7485 0.454147
\(789\) 51.7537 1.84248
\(790\) 3.54935 0.126280
\(791\) 6.42629 0.228493
\(792\) −48.8064 −1.73426
\(793\) −9.44527 −0.335412
\(794\) −20.8022 −0.738243
\(795\) 26.4826 0.939240
\(796\) 4.97601 0.176370
\(797\) 22.7696 0.806540 0.403270 0.915081i \(-0.367874\pi\)
0.403270 + 0.915081i \(0.367874\pi\)
\(798\) −10.7750 −0.381429
\(799\) 28.2928 1.00093
\(800\) 16.6995 0.590415
\(801\) 133.430 4.71450
\(802\) −0.0584841 −0.00206514
\(803\) 10.9103 0.385016
\(804\) −28.4797 −1.00440
\(805\) −7.17287 −0.252810
\(806\) 11.3571 0.400036
\(807\) 64.4108 2.26737
\(808\) −3.45328 −0.121486
\(809\) −49.8706 −1.75336 −0.876678 0.481077i \(-0.840246\pi\)
−0.876678 + 0.481077i \(0.840246\pi\)
\(810\) 189.905 6.67258
\(811\) −34.5496 −1.21320 −0.606600 0.795007i \(-0.707467\pi\)
−0.606600 + 0.795007i \(0.707467\pi\)
\(812\) 7.02029 0.246364
\(813\) −69.2867 −2.42999
\(814\) 4.17506 0.146336
\(815\) −10.4613 −0.366442
\(816\) 61.0413 2.13687
\(817\) 13.0478 0.456484
\(818\) 27.6790 0.967773
\(819\) 14.0580 0.491225
\(820\) −14.5998 −0.509846
\(821\) −8.47879 −0.295912 −0.147956 0.988994i \(-0.547269\pi\)
−0.147956 + 0.988994i \(0.547269\pi\)
\(822\) 101.090 3.52594
\(823\) 11.3704 0.396348 0.198174 0.980167i \(-0.436499\pi\)
0.198174 + 0.980167i \(0.436499\pi\)
\(824\) −27.3084 −0.951332
\(825\) 36.0397 1.25474
\(826\) 12.8049 0.445541
\(827\) 4.30863 0.149826 0.0749129 0.997190i \(-0.476132\pi\)
0.0749129 + 0.997190i \(0.476132\pi\)
\(828\) −22.9846 −0.798772
\(829\) −40.5319 −1.40773 −0.703866 0.710333i \(-0.748544\pi\)
−0.703866 + 0.710333i \(0.748544\pi\)
\(830\) 22.1272 0.768046
\(831\) 86.8208 3.01178
\(832\) −1.56065 −0.0541057
\(833\) −21.9699 −0.761211
\(834\) −48.9805 −1.69606
\(835\) 19.3038 0.668037
\(836\) −6.54492 −0.226361
\(837\) −70.4017 −2.43344
\(838\) 29.7484 1.02764
\(839\) 13.7517 0.474760 0.237380 0.971417i \(-0.423711\pi\)
0.237380 + 0.971417i \(0.423711\pi\)
\(840\) −15.6996 −0.541687
\(841\) 25.2084 0.869255
\(842\) −20.7758 −0.715982
\(843\) 97.1715 3.34676
\(844\) 23.3586 0.804038
\(845\) 28.4486 0.978663
\(846\) −116.601 −4.00884
\(847\) −0.110456 −0.00379531
\(848\) −13.6286 −0.468008
\(849\) 27.6006 0.947249
\(850\) −19.8525 −0.680936
\(851\) −1.92002 −0.0658173
\(852\) −43.6170 −1.49429
\(853\) 1.18274 0.0404962 0.0202481 0.999795i \(-0.493554\pi\)
0.0202481 + 0.999795i \(0.493554\pi\)
\(854\) 8.83785 0.302425
\(855\) −47.3662 −1.61989
\(856\) 13.2861 0.454110
\(857\) −44.4945 −1.51990 −0.759951 0.649980i \(-0.774777\pi\)
−0.759951 + 0.649980i \(0.774777\pi\)
\(858\) 34.3497 1.17268
\(859\) −26.7028 −0.911086 −0.455543 0.890214i \(-0.650555\pi\)
−0.455543 + 0.890214i \(0.650555\pi\)
\(860\) −19.4683 −0.663863
\(861\) 16.1434 0.550166
\(862\) 53.6635 1.82779
\(863\) 49.8431 1.69668 0.848339 0.529453i \(-0.177603\pi\)
0.848339 + 0.529453i \(0.177603\pi\)
\(864\) −98.6644 −3.35663
\(865\) 5.77647 0.196406
\(866\) 14.3108 0.486300
\(867\) 13.8557 0.470566
\(868\) −3.57018 −0.121180
\(869\) −2.38389 −0.0808681
\(870\) 124.142 4.20881
\(871\) −14.4831 −0.490740
\(872\) −0.501510 −0.0169833
\(873\) 0 0
\(874\) 8.95892 0.303040
\(875\) −4.89923 −0.165624
\(876\) 11.2459 0.379963
\(877\) 53.6507 1.81166 0.905828 0.423646i \(-0.139250\pi\)
0.905828 + 0.423646i \(0.139250\pi\)
\(878\) −17.6222 −0.594719
\(879\) 19.4061 0.654553
\(880\) −47.6866 −1.60752
\(881\) −3.83856 −0.129324 −0.0646622 0.997907i \(-0.520597\pi\)
−0.0646622 + 0.997907i \(0.520597\pi\)
\(882\) 90.5432 3.04875
\(883\) 6.63424 0.223260 0.111630 0.993750i \(-0.464393\pi\)
0.111630 + 0.993750i \(0.464393\pi\)
\(884\) −6.35695 −0.213807
\(885\) 76.0734 2.55718
\(886\) −13.1503 −0.441794
\(887\) 56.2809 1.88973 0.944864 0.327463i \(-0.106194\pi\)
0.944864 + 0.327463i \(0.106194\pi\)
\(888\) −4.20243 −0.141024
\(889\) 1.92093 0.0644259
\(890\) 77.6000 2.60116
\(891\) −127.548 −4.27303
\(892\) 0.552065 0.0184845
\(893\) 15.2691 0.510961
\(894\) 33.9934 1.13691
\(895\) −27.2741 −0.911674
\(896\) 11.3496 0.379165
\(897\) −15.7966 −0.527434
\(898\) −11.0138 −0.367535
\(899\) −27.5678 −0.919437
\(900\) 27.4875 0.916250
\(901\) 9.79791 0.326416
\(902\) 29.1873 0.971830
\(903\) 21.5267 0.716363
\(904\) −11.6949 −0.388967
\(905\) −15.2955 −0.508440
\(906\) −16.3755 −0.544038
\(907\) −11.3747 −0.377691 −0.188845 0.982007i \(-0.560474\pi\)
−0.188845 + 0.982007i \(0.560474\pi\)
\(908\) −27.6044 −0.916083
\(909\) −17.1891 −0.570126
\(910\) 8.17583 0.271026
\(911\) −30.2350 −1.00173 −0.500865 0.865526i \(-0.666985\pi\)
−0.500865 + 0.865526i \(0.666985\pi\)
\(912\) 32.9429 1.09085
\(913\) −14.8616 −0.491847
\(914\) −5.45859 −0.180554
\(915\) 52.5051 1.73577
\(916\) −18.6351 −0.615720
\(917\) 14.8156 0.489254
\(918\) 117.293 3.87126
\(919\) −52.0463 −1.71685 −0.858424 0.512941i \(-0.828556\pi\)
−0.858424 + 0.512941i \(0.828556\pi\)
\(920\) 13.0536 0.430363
\(921\) −29.4014 −0.968810
\(922\) −35.6176 −1.17300
\(923\) −22.1810 −0.730096
\(924\) −10.7981 −0.355230
\(925\) 2.29616 0.0754974
\(926\) −14.2171 −0.467202
\(927\) −135.930 −4.46454
\(928\) −38.6348 −1.26825
\(929\) 16.1368 0.529430 0.264715 0.964327i \(-0.414722\pi\)
0.264715 + 0.964327i \(0.414722\pi\)
\(930\) −63.1327 −2.07020
\(931\) −11.8567 −0.388589
\(932\) −12.9510 −0.424224
\(933\) −116.040 −3.79898
\(934\) 8.02868 0.262706
\(935\) 34.2830 1.12117
\(936\) −25.5834 −0.836219
\(937\) −53.2295 −1.73893 −0.869466 0.493992i \(-0.835537\pi\)
−0.869466 + 0.493992i \(0.835537\pi\)
\(938\) 13.5517 0.442478
\(939\) 16.3049 0.532089
\(940\) −22.7827 −0.743089
\(941\) −0.731285 −0.0238392 −0.0119196 0.999929i \(-0.503794\pi\)
−0.0119196 + 0.999929i \(0.503794\pi\)
\(942\) −91.2747 −2.97389
\(943\) −13.4226 −0.437099
\(944\) −39.1493 −1.27420
\(945\) −50.6814 −1.64867
\(946\) 38.9202 1.26541
\(947\) 20.0528 0.651628 0.325814 0.945434i \(-0.394362\pi\)
0.325814 + 0.945434i \(0.394362\pi\)
\(948\) −2.45722 −0.0798067
\(949\) 5.71898 0.185646
\(950\) −10.7140 −0.347610
\(951\) 49.2560 1.59724
\(952\) −5.80847 −0.188254
\(953\) 27.8089 0.900817 0.450409 0.892823i \(-0.351278\pi\)
0.450409 + 0.892823i \(0.351278\pi\)
\(954\) −40.3796 −1.30734
\(955\) −66.9116 −2.16521
\(956\) 25.2158 0.815537
\(957\) −83.3791 −2.69526
\(958\) 22.7337 0.734493
\(959\) −16.1606 −0.521854
\(960\) 8.67545 0.279999
\(961\) −16.9803 −0.547753
\(962\) 2.18849 0.0705597
\(963\) 66.1330 2.13111
\(964\) 24.5264 0.789942
\(965\) −11.3460 −0.365241
\(966\) 14.7808 0.475563
\(967\) −25.0008 −0.803973 −0.401986 0.915646i \(-0.631680\pi\)
−0.401986 + 0.915646i \(0.631680\pi\)
\(968\) 0.201013 0.00646081
\(969\) −23.6834 −0.760820
\(970\) 0 0
\(971\) −3.44575 −0.110579 −0.0552897 0.998470i \(-0.517608\pi\)
−0.0552897 + 0.998470i \(0.517608\pi\)
\(972\) −74.3940 −2.38619
\(973\) 7.83018 0.251024
\(974\) 51.2713 1.64284
\(975\) 18.8913 0.605007
\(976\) −27.0205 −0.864904
\(977\) −37.3759 −1.19576 −0.597880 0.801585i \(-0.703990\pi\)
−0.597880 + 0.801585i \(0.703990\pi\)
\(978\) 21.5570 0.689316
\(979\) −52.1195 −1.66575
\(980\) 17.6912 0.565124
\(981\) −2.49632 −0.0797015
\(982\) −42.0800 −1.34283
\(983\) 22.3176 0.711822 0.355911 0.934520i \(-0.384171\pi\)
0.355911 + 0.934520i \(0.384171\pi\)
\(984\) −29.3786 −0.936556
\(985\) −36.0389 −1.14829
\(986\) 45.9295 1.46269
\(987\) 25.1915 0.801854
\(988\) −3.43073 −0.109146
\(989\) −17.8985 −0.569141
\(990\) −141.289 −4.49045
\(991\) −37.6583 −1.19626 −0.598128 0.801401i \(-0.704089\pi\)
−0.598128 + 0.801401i \(0.704089\pi\)
\(992\) 19.6478 0.623819
\(993\) 56.8786 1.80499
\(994\) 20.7545 0.658294
\(995\) −14.0667 −0.445946
\(996\) −15.3187 −0.485391
\(997\) −9.14953 −0.289769 −0.144884 0.989449i \(-0.546281\pi\)
−0.144884 + 0.989449i \(0.546281\pi\)
\(998\) −10.4140 −0.329650
\(999\) −13.5663 −0.429218
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9409.2.a.q.1.37 yes 168
97.96 even 2 9409.2.a.p.1.37 168
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9409.2.a.p.1.37 168 97.96 even 2
9409.2.a.q.1.37 yes 168 1.1 even 1 trivial