Properties

Label 2-97e2-1.1-c1-0-105
Degree $2$
Conductor $9409$
Sign $1$
Analytic cond. $75.1312$
Root an. cond. $8.66782$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.73·2-s − 3.39·3-s + 1.01·4-s − 2.86·5-s + 5.89·6-s − 0.942·7-s + 1.71·8-s + 8.53·9-s + 4.96·10-s − 3.33·11-s − 3.43·12-s − 1.74·13-s + 1.63·14-s + 9.71·15-s − 4.99·16-s + 3.59·17-s − 14.8·18-s + 1.93·19-s − 2.89·20-s + 3.20·21-s + 5.78·22-s − 2.66·23-s − 5.82·24-s + 3.18·25-s + 3.03·26-s − 18.8·27-s − 0.953·28-s + ⋯
L(s)  = 1  − 1.22·2-s − 1.96·3-s + 0.505·4-s − 1.27·5-s + 2.40·6-s − 0.356·7-s + 0.606·8-s + 2.84·9-s + 1.56·10-s − 1.00·11-s − 0.992·12-s − 0.484·13-s + 0.437·14-s + 2.50·15-s − 1.24·16-s + 0.871·17-s − 3.49·18-s + 0.445·19-s − 0.647·20-s + 0.698·21-s + 1.23·22-s − 0.554·23-s − 1.18·24-s + 0.636·25-s + 0.594·26-s − 3.61·27-s − 0.180·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9409 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9409 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9409\)    =    \(97^{2}\)
Sign: $1$
Analytic conductor: \(75.1312\)
Root analytic conductor: \(8.66782\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9409,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2016254818\)
\(L(\frac12)\) \(\approx\) \(0.2016254818\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad97 \( 1 \)
good2 \( 1 + 1.73T + 2T^{2} \)
3 \( 1 + 3.39T + 3T^{2} \)
5 \( 1 + 2.86T + 5T^{2} \)
7 \( 1 + 0.942T + 7T^{2} \)
11 \( 1 + 3.33T + 11T^{2} \)
13 \( 1 + 1.74T + 13T^{2} \)
17 \( 1 - 3.59T + 17T^{2} \)
19 \( 1 - 1.93T + 19T^{2} \)
23 \( 1 + 2.66T + 23T^{2} \)
29 \( 1 + 7.36T + 29T^{2} \)
31 \( 1 - 3.74T + 31T^{2} \)
37 \( 1 - 0.721T + 37T^{2} \)
41 \( 1 - 5.04T + 41T^{2} \)
43 \( 1 - 6.72T + 43T^{2} \)
47 \( 1 - 7.87T + 47T^{2} \)
53 \( 1 - 2.72T + 53T^{2} \)
59 \( 1 - 7.83T + 59T^{2} \)
61 \( 1 - 5.40T + 61T^{2} \)
67 \( 1 - 8.28T + 67T^{2} \)
71 \( 1 - 12.6T + 71T^{2} \)
73 \( 1 + 3.27T + 73T^{2} \)
79 \( 1 - 0.714T + 79T^{2} \)
83 \( 1 - 4.45T + 83T^{2} \)
89 \( 1 - 15.6T + 89T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.71564955521326025658327874453, −7.24095884554476792210325937267, −6.52408829536772909243250742652, −5.57690240178839528697621063331, −5.14942609115994114408212832881, −4.28581863699472716220608575935, −3.72869572665651264020294697520, −2.24972910387399941351578612396, −0.964412248783771735165777400906, −0.39382894998196682103665782673, 0.39382894998196682103665782673, 0.964412248783771735165777400906, 2.24972910387399941351578612396, 3.72869572665651264020294697520, 4.28581863699472716220608575935, 5.14942609115994114408212832881, 5.57690240178839528697621063331, 6.52408829536772909243250742652, 7.24095884554476792210325937267, 7.71564955521326025658327874453

Graph of the $Z$-function along the critical line