Properties

Label 9409.2.a.n.1.6
Level $9409$
Weight $2$
Character 9409.1
Self dual yes
Analytic conductor $75.131$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9409,2,Mod(1,9409)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9409, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9409.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9409 = 97^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9409.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56,8,16,40,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(75.1312432618\)
Analytic rank: \(0\)
Dimension: \(56\)
Twist minimal: no (minimal twist has level 97)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Character \(\chi\) \(=\) 9409.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.15107 q^{2} -2.03471 q^{3} +2.62711 q^{4} +3.21461 q^{5} +4.37680 q^{6} -4.00609 q^{7} -1.34897 q^{8} +1.14003 q^{9} -6.91487 q^{10} +3.57147 q^{11} -5.34541 q^{12} -2.90782 q^{13} +8.61739 q^{14} -6.54079 q^{15} -2.35250 q^{16} -5.57114 q^{17} -2.45229 q^{18} +4.91272 q^{19} +8.44516 q^{20} +8.15121 q^{21} -7.68249 q^{22} -3.08831 q^{23} +2.74476 q^{24} +5.33374 q^{25} +6.25493 q^{26} +3.78449 q^{27} -10.5245 q^{28} +3.90306 q^{29} +14.0697 q^{30} -1.17331 q^{31} +7.75833 q^{32} -7.26689 q^{33} +11.9839 q^{34} -12.8780 q^{35} +2.99499 q^{36} -9.36027 q^{37} -10.5676 q^{38} +5.91656 q^{39} -4.33642 q^{40} -0.135130 q^{41} -17.5339 q^{42} +0.409118 q^{43} +9.38266 q^{44} +3.66475 q^{45} +6.64317 q^{46} +4.69945 q^{47} +4.78664 q^{48} +9.04875 q^{49} -11.4733 q^{50} +11.3356 q^{51} -7.63917 q^{52} +5.92979 q^{53} -8.14072 q^{54} +11.4809 q^{55} +5.40409 q^{56} -9.99594 q^{57} -8.39578 q^{58} -13.4284 q^{59} -17.1834 q^{60} -6.95895 q^{61} +2.52388 q^{62} -4.56706 q^{63} -11.9837 q^{64} -9.34751 q^{65} +15.6316 q^{66} -2.49921 q^{67} -14.6360 q^{68} +6.28380 q^{69} +27.7016 q^{70} -6.04691 q^{71} -1.53786 q^{72} +12.0089 q^{73} +20.1346 q^{74} -10.8526 q^{75} +12.9063 q^{76} -14.3076 q^{77} -12.7269 q^{78} -0.949556 q^{79} -7.56237 q^{80} -11.1204 q^{81} +0.290674 q^{82} -13.4341 q^{83} +21.4142 q^{84} -17.9091 q^{85} -0.880043 q^{86} -7.94159 q^{87} -4.81781 q^{88} +10.5236 q^{89} -7.88315 q^{90} +11.6490 q^{91} -8.11334 q^{92} +2.38735 q^{93} -10.1089 q^{94} +15.7925 q^{95} -15.7859 q^{96} -19.4645 q^{98} +4.07158 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 8 q^{2} + 16 q^{3} + 40 q^{4} + 16 q^{6} + 24 q^{8} + 40 q^{9} + 32 q^{11} + 48 q^{12} + 8 q^{16} + 24 q^{18} + 16 q^{22} + 8 q^{25} + 64 q^{27} + 48 q^{31} + 56 q^{32} + 80 q^{33} + 48 q^{35} + 8 q^{36}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.15107 −1.52104 −0.760519 0.649316i \(-0.775055\pi\)
−0.760519 + 0.649316i \(0.775055\pi\)
\(3\) −2.03471 −1.17474 −0.587369 0.809319i \(-0.699836\pi\)
−0.587369 + 0.809319i \(0.699836\pi\)
\(4\) 2.62711 1.31356
\(5\) 3.21461 1.43762 0.718809 0.695207i \(-0.244687\pi\)
0.718809 + 0.695207i \(0.244687\pi\)
\(6\) 4.37680 1.78682
\(7\) −4.00609 −1.51416 −0.757080 0.653323i \(-0.773375\pi\)
−0.757080 + 0.653323i \(0.773375\pi\)
\(8\) −1.34897 −0.476933
\(9\) 1.14003 0.380010
\(10\) −6.91487 −2.18667
\(11\) 3.57147 1.07684 0.538419 0.842677i \(-0.319022\pi\)
0.538419 + 0.842677i \(0.319022\pi\)
\(12\) −5.34541 −1.54309
\(13\) −2.90782 −0.806484 −0.403242 0.915093i \(-0.632117\pi\)
−0.403242 + 0.915093i \(0.632117\pi\)
\(14\) 8.61739 2.30309
\(15\) −6.54079 −1.68883
\(16\) −2.35250 −0.588124
\(17\) −5.57114 −1.35120 −0.675600 0.737268i \(-0.736115\pi\)
−0.675600 + 0.737268i \(0.736115\pi\)
\(18\) −2.45229 −0.578009
\(19\) 4.91272 1.12706 0.563528 0.826097i \(-0.309444\pi\)
0.563528 + 0.826097i \(0.309444\pi\)
\(20\) 8.44516 1.88839
\(21\) 8.15121 1.77874
\(22\) −7.68249 −1.63791
\(23\) −3.08831 −0.643956 −0.321978 0.946747i \(-0.604348\pi\)
−0.321978 + 0.946747i \(0.604348\pi\)
\(24\) 2.74476 0.560271
\(25\) 5.33374 1.06675
\(26\) 6.25493 1.22669
\(27\) 3.78449 0.728326
\(28\) −10.5245 −1.98894
\(29\) 3.90306 0.724781 0.362390 0.932026i \(-0.381961\pi\)
0.362390 + 0.932026i \(0.381961\pi\)
\(30\) 14.0697 2.56877
\(31\) −1.17331 −0.210733 −0.105367 0.994433i \(-0.533602\pi\)
−0.105367 + 0.994433i \(0.533602\pi\)
\(32\) 7.75833 1.37149
\(33\) −7.26689 −1.26500
\(34\) 11.9839 2.05523
\(35\) −12.8780 −2.17678
\(36\) 2.99499 0.499165
\(37\) −9.36027 −1.53882 −0.769409 0.638756i \(-0.779449\pi\)
−0.769409 + 0.638756i \(0.779449\pi\)
\(38\) −10.5676 −1.71429
\(39\) 5.91656 0.947407
\(40\) −4.33642 −0.685648
\(41\) −0.135130 −0.0211037 −0.0105519 0.999944i \(-0.503359\pi\)
−0.0105519 + 0.999944i \(0.503359\pi\)
\(42\) −17.5339 −2.70553
\(43\) 0.409118 0.0623899 0.0311950 0.999513i \(-0.490069\pi\)
0.0311950 + 0.999513i \(0.490069\pi\)
\(44\) 9.38266 1.41449
\(45\) 3.66475 0.546309
\(46\) 6.64317 0.979482
\(47\) 4.69945 0.685485 0.342743 0.939429i \(-0.388644\pi\)
0.342743 + 0.939429i \(0.388644\pi\)
\(48\) 4.78664 0.690892
\(49\) 9.04875 1.29268
\(50\) −11.4733 −1.62256
\(51\) 11.3356 1.58731
\(52\) −7.63917 −1.05936
\(53\) 5.92979 0.814519 0.407259 0.913313i \(-0.366484\pi\)
0.407259 + 0.913313i \(0.366484\pi\)
\(54\) −8.14072 −1.10781
\(55\) 11.4809 1.54808
\(56\) 5.40409 0.722152
\(57\) −9.99594 −1.32399
\(58\) −8.39578 −1.10242
\(59\) −13.4284 −1.74823 −0.874113 0.485723i \(-0.838556\pi\)
−0.874113 + 0.485723i \(0.838556\pi\)
\(60\) −17.1834 −2.21837
\(61\) −6.95895 −0.891002 −0.445501 0.895281i \(-0.646974\pi\)
−0.445501 + 0.895281i \(0.646974\pi\)
\(62\) 2.52388 0.320534
\(63\) −4.56706 −0.575395
\(64\) −11.9837 −1.49797
\(65\) −9.34751 −1.15942
\(66\) 15.6316 1.92412
\(67\) −2.49921 −0.305328 −0.152664 0.988278i \(-0.548785\pi\)
−0.152664 + 0.988278i \(0.548785\pi\)
\(68\) −14.6360 −1.77488
\(69\) 6.28380 0.756480
\(70\) 27.7016 3.31097
\(71\) −6.04691 −0.717636 −0.358818 0.933408i \(-0.616820\pi\)
−0.358818 + 0.933408i \(0.616820\pi\)
\(72\) −1.53786 −0.181239
\(73\) 12.0089 1.40553 0.702766 0.711421i \(-0.251948\pi\)
0.702766 + 0.711421i \(0.251948\pi\)
\(74\) 20.1346 2.34060
\(75\) −10.8526 −1.25315
\(76\) 12.9063 1.48045
\(77\) −14.3076 −1.63051
\(78\) −12.7269 −1.44104
\(79\) −0.949556 −0.106833 −0.0534167 0.998572i \(-0.517011\pi\)
−0.0534167 + 0.998572i \(0.517011\pi\)
\(80\) −7.56237 −0.845499
\(81\) −11.1204 −1.23560
\(82\) 0.290674 0.0320995
\(83\) −13.4341 −1.47459 −0.737295 0.675571i \(-0.763897\pi\)
−0.737295 + 0.675571i \(0.763897\pi\)
\(84\) 21.4142 2.33648
\(85\) −17.9091 −1.94251
\(86\) −0.880043 −0.0948974
\(87\) −7.94159 −0.851428
\(88\) −4.81781 −0.513580
\(89\) 10.5236 1.11550 0.557751 0.830008i \(-0.311664\pi\)
0.557751 + 0.830008i \(0.311664\pi\)
\(90\) −7.88315 −0.830957
\(91\) 11.6490 1.22114
\(92\) −8.11334 −0.845874
\(93\) 2.38735 0.247557
\(94\) −10.1089 −1.04265
\(95\) 15.7925 1.62028
\(96\) −15.7859 −1.61114
\(97\) 0 0
\(98\) −19.4645 −1.96621
\(99\) 4.07158 0.409209
\(100\) 14.0123 1.40123
\(101\) 10.4594 1.04075 0.520376 0.853937i \(-0.325792\pi\)
0.520376 + 0.853937i \(0.325792\pi\)
\(102\) −24.3838 −2.41435
\(103\) 6.79591 0.669621 0.334810 0.942286i \(-0.391328\pi\)
0.334810 + 0.942286i \(0.391328\pi\)
\(104\) 3.92256 0.384639
\(105\) 26.2030 2.55715
\(106\) −12.7554 −1.23891
\(107\) −1.58885 −0.153600 −0.0768002 0.997047i \(-0.524470\pi\)
−0.0768002 + 0.997047i \(0.524470\pi\)
\(108\) 9.94230 0.956698
\(109\) −7.56134 −0.724245 −0.362123 0.932130i \(-0.617948\pi\)
−0.362123 + 0.932130i \(0.617948\pi\)
\(110\) −24.6962 −2.35469
\(111\) 19.0454 1.80771
\(112\) 9.42431 0.890514
\(113\) 2.87337 0.270304 0.135152 0.990825i \(-0.456848\pi\)
0.135152 + 0.990825i \(0.456848\pi\)
\(114\) 21.5020 2.01385
\(115\) −9.92771 −0.925764
\(116\) 10.2538 0.952041
\(117\) −3.31500 −0.306472
\(118\) 28.8854 2.65912
\(119\) 22.3185 2.04593
\(120\) 8.82333 0.805456
\(121\) 1.75540 0.159582
\(122\) 14.9692 1.35525
\(123\) 0.274949 0.0247913
\(124\) −3.08243 −0.276810
\(125\) 1.07285 0.0959583
\(126\) 9.82408 0.875198
\(127\) −2.89578 −0.256959 −0.128479 0.991712i \(-0.541010\pi\)
−0.128479 + 0.991712i \(0.541010\pi\)
\(128\) 10.2612 0.906974
\(129\) −0.832435 −0.0732918
\(130\) 20.1072 1.76352
\(131\) −15.5710 −1.36045 −0.680223 0.733005i \(-0.738117\pi\)
−0.680223 + 0.733005i \(0.738117\pi\)
\(132\) −19.0910 −1.66165
\(133\) −19.6808 −1.70654
\(134\) 5.37599 0.464415
\(135\) 12.1657 1.04706
\(136\) 7.51530 0.644432
\(137\) −11.6561 −0.995844 −0.497922 0.867222i \(-0.665903\pi\)
−0.497922 + 0.867222i \(0.665903\pi\)
\(138\) −13.5169 −1.15064
\(139\) 20.2833 1.72041 0.860205 0.509949i \(-0.170336\pi\)
0.860205 + 0.509949i \(0.170336\pi\)
\(140\) −33.8321 −2.85933
\(141\) −9.56200 −0.805266
\(142\) 13.0073 1.09155
\(143\) −10.3852 −0.868453
\(144\) −2.68192 −0.223493
\(145\) 12.5468 1.04196
\(146\) −25.8320 −2.13787
\(147\) −18.4115 −1.51856
\(148\) −24.5905 −2.02133
\(149\) −8.20537 −0.672210 −0.336105 0.941824i \(-0.609110\pi\)
−0.336105 + 0.941824i \(0.609110\pi\)
\(150\) 23.3447 1.90609
\(151\) 12.8962 1.04948 0.524739 0.851263i \(-0.324163\pi\)
0.524739 + 0.851263i \(0.324163\pi\)
\(152\) −6.62711 −0.537530
\(153\) −6.35127 −0.513469
\(154\) 30.7767 2.48006
\(155\) −3.77175 −0.302954
\(156\) 15.5435 1.24447
\(157\) −0.507389 −0.0404941 −0.0202470 0.999795i \(-0.506445\pi\)
−0.0202470 + 0.999795i \(0.506445\pi\)
\(158\) 2.04256 0.162498
\(159\) −12.0654 −0.956846
\(160\) 24.9400 1.97168
\(161\) 12.3720 0.975053
\(162\) 23.9208 1.87940
\(163\) 7.22640 0.566015 0.283008 0.959118i \(-0.408668\pi\)
0.283008 + 0.959118i \(0.408668\pi\)
\(164\) −0.355001 −0.0277209
\(165\) −23.3603 −1.81859
\(166\) 28.8978 2.24291
\(167\) −2.86213 −0.221478 −0.110739 0.993850i \(-0.535322\pi\)
−0.110739 + 0.993850i \(0.535322\pi\)
\(168\) −10.9957 −0.848340
\(169\) −4.54459 −0.349584
\(170\) 38.5237 2.95463
\(171\) 5.60064 0.428292
\(172\) 1.07480 0.0819527
\(173\) 7.17432 0.545454 0.272727 0.962092i \(-0.412074\pi\)
0.272727 + 0.962092i \(0.412074\pi\)
\(174\) 17.0829 1.29505
\(175\) −21.3674 −1.61523
\(176\) −8.40187 −0.633315
\(177\) 27.3228 2.05371
\(178\) −22.6371 −1.69672
\(179\) −3.26534 −0.244063 −0.122031 0.992526i \(-0.538941\pi\)
−0.122031 + 0.992526i \(0.538941\pi\)
\(180\) 9.62773 0.717608
\(181\) 9.70242 0.721175 0.360588 0.932725i \(-0.382576\pi\)
0.360588 + 0.932725i \(0.382576\pi\)
\(182\) −25.0578 −1.85741
\(183\) 14.1594 1.04669
\(184\) 4.16603 0.307124
\(185\) −30.0896 −2.21223
\(186\) −5.13536 −0.376543
\(187\) −19.8972 −1.45503
\(188\) 12.3460 0.900424
\(189\) −15.1610 −1.10280
\(190\) −33.9708 −2.46450
\(191\) 14.5467 1.05256 0.526280 0.850311i \(-0.323586\pi\)
0.526280 + 0.850311i \(0.323586\pi\)
\(192\) 24.3834 1.75972
\(193\) 6.07319 0.437158 0.218579 0.975819i \(-0.429858\pi\)
0.218579 + 0.975819i \(0.429858\pi\)
\(194\) 0 0
\(195\) 19.0194 1.36201
\(196\) 23.7721 1.69801
\(197\) −15.0691 −1.07363 −0.536815 0.843700i \(-0.680373\pi\)
−0.536815 + 0.843700i \(0.680373\pi\)
\(198\) −8.75827 −0.622423
\(199\) 17.1465 1.21548 0.607742 0.794135i \(-0.292076\pi\)
0.607742 + 0.794135i \(0.292076\pi\)
\(200\) −7.19505 −0.508767
\(201\) 5.08517 0.358680
\(202\) −22.4990 −1.58302
\(203\) −15.6360 −1.09743
\(204\) 29.7800 2.08502
\(205\) −0.434390 −0.0303391
\(206\) −14.6185 −1.01852
\(207\) −3.52076 −0.244710
\(208\) 6.84064 0.474313
\(209\) 17.5456 1.21366
\(210\) −56.3646 −3.88952
\(211\) 23.2489 1.60052 0.800261 0.599652i \(-0.204694\pi\)
0.800261 + 0.599652i \(0.204694\pi\)
\(212\) 15.5782 1.06992
\(213\) 12.3037 0.843034
\(214\) 3.41774 0.233632
\(215\) 1.31516 0.0896929
\(216\) −5.10517 −0.347363
\(217\) 4.70040 0.319084
\(218\) 16.2650 1.10160
\(219\) −24.4345 −1.65113
\(220\) 30.1616 2.03350
\(221\) 16.1999 1.08972
\(222\) −40.9680 −2.74959
\(223\) −2.43132 −0.162813 −0.0814067 0.996681i \(-0.525941\pi\)
−0.0814067 + 0.996681i \(0.525941\pi\)
\(224\) −31.0806 −2.07666
\(225\) 6.08062 0.405375
\(226\) −6.18083 −0.411143
\(227\) −9.60748 −0.637671 −0.318835 0.947810i \(-0.603292\pi\)
−0.318835 + 0.947810i \(0.603292\pi\)
\(228\) −26.2605 −1.73914
\(229\) 27.1144 1.79177 0.895884 0.444287i \(-0.146543\pi\)
0.895884 + 0.444287i \(0.146543\pi\)
\(230\) 21.3552 1.40812
\(231\) 29.1118 1.91542
\(232\) −5.26512 −0.345672
\(233\) 11.8786 0.778193 0.389096 0.921197i \(-0.372787\pi\)
0.389096 + 0.921197i \(0.372787\pi\)
\(234\) 7.13080 0.466155
\(235\) 15.1069 0.985467
\(236\) −35.2779 −2.29639
\(237\) 1.93207 0.125501
\(238\) −48.0087 −3.11194
\(239\) 20.3682 1.31751 0.658753 0.752359i \(-0.271084\pi\)
0.658753 + 0.752359i \(0.271084\pi\)
\(240\) 15.3872 0.993239
\(241\) −4.41257 −0.284238 −0.142119 0.989850i \(-0.545392\pi\)
−0.142119 + 0.989850i \(0.545392\pi\)
\(242\) −3.77599 −0.242730
\(243\) 11.2733 0.723183
\(244\) −18.2820 −1.17038
\(245\) 29.0882 1.85838
\(246\) −0.591436 −0.0377086
\(247\) −14.2853 −0.908952
\(248\) 1.58276 0.100506
\(249\) 27.3345 1.73226
\(250\) −2.30777 −0.145956
\(251\) −0.196625 −0.0124108 −0.00620542 0.999981i \(-0.501975\pi\)
−0.00620542 + 0.999981i \(0.501975\pi\)
\(252\) −11.9982 −0.755815
\(253\) −11.0298 −0.693437
\(254\) 6.22904 0.390844
\(255\) 36.4397 2.28194
\(256\) 1.89480 0.118425
\(257\) −12.5037 −0.779962 −0.389981 0.920823i \(-0.627518\pi\)
−0.389981 + 0.920823i \(0.627518\pi\)
\(258\) 1.79063 0.111480
\(259\) 37.4981 2.33002
\(260\) −24.5570 −1.52296
\(261\) 4.44961 0.275424
\(262\) 33.4944 2.06929
\(263\) −0.655115 −0.0403962 −0.0201981 0.999796i \(-0.506430\pi\)
−0.0201981 + 0.999796i \(0.506430\pi\)
\(264\) 9.80282 0.603322
\(265\) 19.0620 1.17097
\(266\) 42.3348 2.59571
\(267\) −21.4125 −1.31042
\(268\) −6.56572 −0.401065
\(269\) −29.1149 −1.77517 −0.887585 0.460645i \(-0.847618\pi\)
−0.887585 + 0.460645i \(0.847618\pi\)
\(270\) −26.1693 −1.59261
\(271\) −26.7765 −1.62656 −0.813279 0.581874i \(-0.802320\pi\)
−0.813279 + 0.581874i \(0.802320\pi\)
\(272\) 13.1061 0.794674
\(273\) −23.7023 −1.43453
\(274\) 25.0730 1.51472
\(275\) 19.0493 1.14872
\(276\) 16.5083 0.993680
\(277\) −10.2741 −0.617311 −0.308656 0.951174i \(-0.599879\pi\)
−0.308656 + 0.951174i \(0.599879\pi\)
\(278\) −43.6309 −2.61681
\(279\) −1.33761 −0.0800807
\(280\) 17.3721 1.03818
\(281\) −23.3163 −1.39093 −0.695466 0.718559i \(-0.744802\pi\)
−0.695466 + 0.718559i \(0.744802\pi\)
\(282\) 20.5686 1.22484
\(283\) 3.18662 0.189425 0.0947124 0.995505i \(-0.469807\pi\)
0.0947124 + 0.995505i \(0.469807\pi\)
\(284\) −15.8859 −0.942656
\(285\) −32.1331 −1.90340
\(286\) 22.3393 1.32095
\(287\) 0.541341 0.0319544
\(288\) 8.84473 0.521180
\(289\) 14.0376 0.825743
\(290\) −26.9892 −1.58486
\(291\) 0 0
\(292\) 31.5487 1.84625
\(293\) −11.0409 −0.645018 −0.322509 0.946566i \(-0.604526\pi\)
−0.322509 + 0.946566i \(0.604526\pi\)
\(294\) 39.6046 2.30979
\(295\) −43.1670 −2.51328
\(296\) 12.6267 0.733913
\(297\) 13.5162 0.784290
\(298\) 17.6504 1.02246
\(299\) 8.98024 0.519340
\(300\) −28.5110 −1.64608
\(301\) −1.63896 −0.0944683
\(302\) −27.7407 −1.59630
\(303\) −21.2819 −1.22261
\(304\) −11.5572 −0.662849
\(305\) −22.3703 −1.28092
\(306\) 13.6620 0.781007
\(307\) −5.98627 −0.341655 −0.170827 0.985301i \(-0.554644\pi\)
−0.170827 + 0.985301i \(0.554644\pi\)
\(308\) −37.5878 −2.14176
\(309\) −13.8277 −0.786629
\(310\) 8.11331 0.460805
\(311\) 3.96138 0.224629 0.112315 0.993673i \(-0.464174\pi\)
0.112315 + 0.993673i \(0.464174\pi\)
\(312\) −7.98126 −0.451850
\(313\) −25.3354 −1.43204 −0.716021 0.698079i \(-0.754038\pi\)
−0.716021 + 0.698079i \(0.754038\pi\)
\(314\) 1.09143 0.0615930
\(315\) −14.6813 −0.827199
\(316\) −2.49459 −0.140332
\(317\) −12.1586 −0.682894 −0.341447 0.939901i \(-0.610917\pi\)
−0.341447 + 0.939901i \(0.610917\pi\)
\(318\) 25.9535 1.45540
\(319\) 13.9397 0.780472
\(320\) −38.5231 −2.15351
\(321\) 3.23285 0.180440
\(322\) −26.6131 −1.48309
\(323\) −27.3695 −1.52288
\(324\) −29.2146 −1.62303
\(325\) −15.5096 −0.860315
\(326\) −15.5445 −0.860931
\(327\) 15.3851 0.850798
\(328\) 0.182286 0.0100651
\(329\) −18.8264 −1.03793
\(330\) 50.2496 2.76615
\(331\) 22.0905 1.21420 0.607101 0.794625i \(-0.292333\pi\)
0.607101 + 0.794625i \(0.292333\pi\)
\(332\) −35.2930 −1.93696
\(333\) −10.6710 −0.584766
\(334\) 6.15664 0.336876
\(335\) −8.03401 −0.438945
\(336\) −19.1757 −1.04612
\(337\) −15.8190 −0.861714 −0.430857 0.902420i \(-0.641789\pi\)
−0.430857 + 0.902420i \(0.641789\pi\)
\(338\) 9.77574 0.531730
\(339\) −5.84647 −0.317537
\(340\) −47.0492 −2.55160
\(341\) −4.19046 −0.226926
\(342\) −12.0474 −0.651449
\(343\) −8.20747 −0.443161
\(344\) −0.551888 −0.0297558
\(345\) 20.2000 1.08753
\(346\) −15.4325 −0.829656
\(347\) 32.3071 1.73434 0.867169 0.498015i \(-0.165937\pi\)
0.867169 + 0.498015i \(0.165937\pi\)
\(348\) −20.8635 −1.11840
\(349\) −10.1458 −0.543092 −0.271546 0.962425i \(-0.587535\pi\)
−0.271546 + 0.962425i \(0.587535\pi\)
\(350\) 45.9629 2.45682
\(351\) −11.0046 −0.587383
\(352\) 27.7087 1.47688
\(353\) −6.67676 −0.355368 −0.177684 0.984088i \(-0.556861\pi\)
−0.177684 + 0.984088i \(0.556861\pi\)
\(354\) −58.7733 −3.12377
\(355\) −19.4385 −1.03169
\(356\) 27.6468 1.46528
\(357\) −45.4116 −2.40344
\(358\) 7.02399 0.371229
\(359\) 17.0326 0.898944 0.449472 0.893294i \(-0.351612\pi\)
0.449472 + 0.893294i \(0.351612\pi\)
\(360\) −4.94364 −0.260553
\(361\) 5.13482 0.270254
\(362\) −20.8706 −1.09693
\(363\) −3.57172 −0.187467
\(364\) 30.6032 1.60404
\(365\) 38.6039 2.02062
\(366\) −30.4579 −1.59206
\(367\) 8.08227 0.421891 0.210946 0.977498i \(-0.432346\pi\)
0.210946 + 0.977498i \(0.432346\pi\)
\(368\) 7.26523 0.378726
\(369\) −0.154052 −0.00801961
\(370\) 64.7250 3.36489
\(371\) −23.7553 −1.23331
\(372\) 6.27184 0.325180
\(373\) −5.36766 −0.277927 −0.138963 0.990298i \(-0.544377\pi\)
−0.138963 + 0.990298i \(0.544377\pi\)
\(374\) 42.8003 2.21315
\(375\) −2.18293 −0.112726
\(376\) −6.33942 −0.326931
\(377\) −11.3494 −0.584524
\(378\) 32.6125 1.67740
\(379\) −15.8362 −0.813451 −0.406726 0.913550i \(-0.633329\pi\)
−0.406726 + 0.913550i \(0.633329\pi\)
\(380\) 41.4887 2.12833
\(381\) 5.89206 0.301860
\(382\) −31.2909 −1.60098
\(383\) −9.60522 −0.490804 −0.245402 0.969421i \(-0.578920\pi\)
−0.245402 + 0.969421i \(0.578920\pi\)
\(384\) −20.8786 −1.06546
\(385\) −45.9935 −2.34405
\(386\) −13.0639 −0.664934
\(387\) 0.466406 0.0237088
\(388\) 0 0
\(389\) −2.34108 −0.118697 −0.0593486 0.998237i \(-0.518902\pi\)
−0.0593486 + 0.998237i \(0.518902\pi\)
\(390\) −40.9122 −2.07167
\(391\) 17.2054 0.870114
\(392\) −12.2065 −0.616521
\(393\) 31.6824 1.59817
\(394\) 32.4148 1.63303
\(395\) −3.05245 −0.153586
\(396\) 10.6965 0.537520
\(397\) −3.72400 −0.186902 −0.0934510 0.995624i \(-0.529790\pi\)
−0.0934510 + 0.995624i \(0.529790\pi\)
\(398\) −36.8834 −1.84880
\(399\) 40.0446 2.00474
\(400\) −12.5476 −0.627380
\(401\) 20.4389 1.02067 0.510336 0.859975i \(-0.329521\pi\)
0.510336 + 0.859975i \(0.329521\pi\)
\(402\) −10.9386 −0.545566
\(403\) 3.41178 0.169953
\(404\) 27.4781 1.36709
\(405\) −35.7479 −1.77633
\(406\) 33.6342 1.66924
\(407\) −33.4299 −1.65706
\(408\) −15.2914 −0.757039
\(409\) −25.0610 −1.23919 −0.619593 0.784923i \(-0.712702\pi\)
−0.619593 + 0.784923i \(0.712702\pi\)
\(410\) 0.934404 0.0461469
\(411\) 23.7166 1.16986
\(412\) 17.8536 0.879585
\(413\) 53.7953 2.64709
\(414\) 7.57341 0.372213
\(415\) −43.1856 −2.11990
\(416\) −22.5598 −1.10609
\(417\) −41.2706 −2.02103
\(418\) −37.7419 −1.84602
\(419\) −27.8182 −1.35901 −0.679504 0.733672i \(-0.737805\pi\)
−0.679504 + 0.733672i \(0.737805\pi\)
\(420\) 68.8383 3.35896
\(421\) 7.25610 0.353641 0.176820 0.984243i \(-0.443419\pi\)
0.176820 + 0.984243i \(0.443419\pi\)
\(422\) −50.0101 −2.43445
\(423\) 5.35751 0.260491
\(424\) −7.99910 −0.388471
\(425\) −29.7150 −1.44139
\(426\) −26.4661 −1.28229
\(427\) 27.8782 1.34912
\(428\) −4.17410 −0.201763
\(429\) 21.1308 1.02020
\(430\) −2.82900 −0.136426
\(431\) 11.7593 0.566423 0.283212 0.959057i \(-0.408600\pi\)
0.283212 + 0.959057i \(0.408600\pi\)
\(432\) −8.90301 −0.428346
\(433\) −21.5649 −1.03634 −0.518171 0.855277i \(-0.673387\pi\)
−0.518171 + 0.855277i \(0.673387\pi\)
\(434\) −10.1109 −0.485339
\(435\) −25.5291 −1.22403
\(436\) −19.8645 −0.951338
\(437\) −15.1720 −0.725774
\(438\) 52.5604 2.51144
\(439\) 25.1054 1.19821 0.599107 0.800669i \(-0.295522\pi\)
0.599107 + 0.800669i \(0.295522\pi\)
\(440\) −15.4874 −0.738332
\(441\) 10.3158 0.491230
\(442\) −34.8471 −1.65751
\(443\) 29.8209 1.41683 0.708417 0.705794i \(-0.249410\pi\)
0.708417 + 0.705794i \(0.249410\pi\)
\(444\) 50.0344 2.37453
\(445\) 33.8294 1.60367
\(446\) 5.22995 0.247645
\(447\) 16.6955 0.789671
\(448\) 48.0079 2.26816
\(449\) 15.3931 0.726445 0.363222 0.931702i \(-0.381677\pi\)
0.363222 + 0.931702i \(0.381677\pi\)
\(450\) −13.0799 −0.616590
\(451\) −0.482612 −0.0227253
\(452\) 7.54868 0.355060
\(453\) −26.2400 −1.23286
\(454\) 20.6664 0.969922
\(455\) 37.4470 1.75554
\(456\) 13.4842 0.631457
\(457\) −41.5865 −1.94533 −0.972666 0.232208i \(-0.925405\pi\)
−0.972666 + 0.232208i \(0.925405\pi\)
\(458\) −58.3250 −2.72535
\(459\) −21.0840 −0.984115
\(460\) −26.0812 −1.21604
\(461\) 11.4548 0.533505 0.266753 0.963765i \(-0.414049\pi\)
0.266753 + 0.963765i \(0.414049\pi\)
\(462\) −62.6216 −2.91342
\(463\) 14.3559 0.667174 0.333587 0.942719i \(-0.391741\pi\)
0.333587 + 0.942719i \(0.391741\pi\)
\(464\) −9.18195 −0.426261
\(465\) 7.67440 0.355892
\(466\) −25.5517 −1.18366
\(467\) 21.8383 1.01056 0.505278 0.862957i \(-0.331390\pi\)
0.505278 + 0.862957i \(0.331390\pi\)
\(468\) −8.70888 −0.402568
\(469\) 10.0121 0.462315
\(470\) −32.4961 −1.49893
\(471\) 1.03239 0.0475699
\(472\) 18.1145 0.833786
\(473\) 1.46115 0.0671839
\(474\) −4.15602 −0.190892
\(475\) 26.2032 1.20228
\(476\) 58.6332 2.68745
\(477\) 6.76013 0.309525
\(478\) −43.8134 −2.00398
\(479\) 3.87460 0.177035 0.0885176 0.996075i \(-0.471787\pi\)
0.0885176 + 0.996075i \(0.471787\pi\)
\(480\) −50.7457 −2.31621
\(481\) 27.2180 1.24103
\(482\) 9.49176 0.432338
\(483\) −25.1734 −1.14543
\(484\) 4.61163 0.209620
\(485\) 0 0
\(486\) −24.2497 −1.09999
\(487\) −9.88112 −0.447757 −0.223878 0.974617i \(-0.571872\pi\)
−0.223878 + 0.974617i \(0.571872\pi\)
\(488\) 9.38741 0.424948
\(489\) −14.7036 −0.664920
\(490\) −62.5709 −2.82667
\(491\) −6.94620 −0.313478 −0.156739 0.987640i \(-0.550098\pi\)
−0.156739 + 0.987640i \(0.550098\pi\)
\(492\) 0.722323 0.0325648
\(493\) −21.7445 −0.979324
\(494\) 30.7287 1.38255
\(495\) 13.0886 0.588287
\(496\) 2.76022 0.123937
\(497\) 24.2244 1.08661
\(498\) −58.7986 −2.63483
\(499\) −19.2605 −0.862220 −0.431110 0.902299i \(-0.641878\pi\)
−0.431110 + 0.902299i \(0.641878\pi\)
\(500\) 2.81849 0.126047
\(501\) 5.82359 0.260179
\(502\) 0.422954 0.0188774
\(503\) −5.78591 −0.257981 −0.128990 0.991646i \(-0.541174\pi\)
−0.128990 + 0.991646i \(0.541174\pi\)
\(504\) 6.16082 0.274425
\(505\) 33.6230 1.49621
\(506\) 23.7259 1.05474
\(507\) 9.24691 0.410669
\(508\) −7.60755 −0.337530
\(509\) −3.11498 −0.138069 −0.0690345 0.997614i \(-0.521992\pi\)
−0.0690345 + 0.997614i \(0.521992\pi\)
\(510\) −78.3845 −3.47092
\(511\) −48.1086 −2.12820
\(512\) −24.5984 −1.08710
\(513\) 18.5922 0.820864
\(514\) 26.8965 1.18635
\(515\) 21.8462 0.962659
\(516\) −2.18690 −0.0962730
\(517\) 16.7839 0.738157
\(518\) −80.6611 −3.54404
\(519\) −14.5976 −0.640765
\(520\) 12.6095 0.552964
\(521\) −26.5454 −1.16297 −0.581487 0.813556i \(-0.697529\pi\)
−0.581487 + 0.813556i \(0.697529\pi\)
\(522\) −9.57143 −0.418930
\(523\) 26.3606 1.15267 0.576335 0.817214i \(-0.304482\pi\)
0.576335 + 0.817214i \(0.304482\pi\)
\(524\) −40.9068 −1.78702
\(525\) 43.4765 1.89747
\(526\) 1.40920 0.0614441
\(527\) 6.53670 0.284743
\(528\) 17.0953 0.743979
\(529\) −13.4624 −0.585320
\(530\) −41.0037 −1.78109
\(531\) −15.3087 −0.664343
\(532\) −51.7037 −2.24164
\(533\) 0.392933 0.0170198
\(534\) 46.0598 1.99320
\(535\) −5.10755 −0.220819
\(536\) 3.37137 0.145621
\(537\) 6.64401 0.286710
\(538\) 62.6284 2.70010
\(539\) 32.3173 1.39201
\(540\) 31.9607 1.37537
\(541\) −23.4530 −1.00832 −0.504162 0.863609i \(-0.668199\pi\)
−0.504162 + 0.863609i \(0.668199\pi\)
\(542\) 57.5983 2.47406
\(543\) −19.7416 −0.847192
\(544\) −43.2228 −1.85316
\(545\) −24.3068 −1.04119
\(546\) 50.9853 2.18197
\(547\) 27.6167 1.18080 0.590402 0.807110i \(-0.298969\pi\)
0.590402 + 0.807110i \(0.298969\pi\)
\(548\) −30.6218 −1.30810
\(549\) −7.93341 −0.338590
\(550\) −40.9764 −1.74724
\(551\) 19.1747 0.816868
\(552\) −8.47665 −0.360790
\(553\) 3.80400 0.161763
\(554\) 22.1004 0.938954
\(555\) 61.2236 2.59880
\(556\) 53.2866 2.25986
\(557\) −21.2847 −0.901860 −0.450930 0.892559i \(-0.648908\pi\)
−0.450930 + 0.892559i \(0.648908\pi\)
\(558\) 2.87730 0.121806
\(559\) −1.18964 −0.0503164
\(560\) 30.2955 1.28022
\(561\) 40.4849 1.70927
\(562\) 50.1550 2.11566
\(563\) 43.2082 1.82101 0.910504 0.413501i \(-0.135694\pi\)
0.910504 + 0.413501i \(0.135694\pi\)
\(564\) −25.1205 −1.05776
\(565\) 9.23678 0.388594
\(566\) −6.85465 −0.288122
\(567\) 44.5494 1.87090
\(568\) 8.15710 0.342264
\(569\) 22.5398 0.944916 0.472458 0.881353i \(-0.343367\pi\)
0.472458 + 0.881353i \(0.343367\pi\)
\(570\) 69.1206 2.89514
\(571\) 14.1563 0.592421 0.296211 0.955123i \(-0.404277\pi\)
0.296211 + 0.955123i \(0.404277\pi\)
\(572\) −27.2831 −1.14076
\(573\) −29.5982 −1.23648
\(574\) −1.16446 −0.0486038
\(575\) −16.4722 −0.686939
\(576\) −13.6618 −0.569242
\(577\) 15.4920 0.644942 0.322471 0.946579i \(-0.395487\pi\)
0.322471 + 0.946579i \(0.395487\pi\)
\(578\) −30.1960 −1.25599
\(579\) −12.3572 −0.513546
\(580\) 32.9620 1.36867
\(581\) 53.8184 2.23276
\(582\) 0 0
\(583\) 21.1781 0.877105
\(584\) −16.1996 −0.670344
\(585\) −10.6564 −0.440590
\(586\) 23.7499 0.981097
\(587\) −29.7163 −1.22652 −0.613261 0.789881i \(-0.710143\pi\)
−0.613261 + 0.789881i \(0.710143\pi\)
\(588\) −48.3692 −1.99471
\(589\) −5.76416 −0.237508
\(590\) 92.8554 3.82280
\(591\) 30.6612 1.26123
\(592\) 22.0200 0.905017
\(593\) −7.40153 −0.303944 −0.151972 0.988385i \(-0.548562\pi\)
−0.151972 + 0.988385i \(0.548562\pi\)
\(594\) −29.0743 −1.19293
\(595\) 71.7453 2.94127
\(596\) −21.5565 −0.882987
\(597\) −34.8881 −1.42787
\(598\) −19.3171 −0.789937
\(599\) −28.6118 −1.16905 −0.584523 0.811377i \(-0.698718\pi\)
−0.584523 + 0.811377i \(0.698718\pi\)
\(600\) 14.6398 0.597668
\(601\) 33.6887 1.37419 0.687095 0.726568i \(-0.258886\pi\)
0.687095 + 0.726568i \(0.258886\pi\)
\(602\) 3.52553 0.143690
\(603\) −2.84918 −0.116027
\(604\) 33.8798 1.37855
\(605\) 5.64293 0.229418
\(606\) 45.7789 1.85964
\(607\) 31.1618 1.26482 0.632408 0.774635i \(-0.282067\pi\)
0.632408 + 0.774635i \(0.282067\pi\)
\(608\) 38.1145 1.54575
\(609\) 31.8147 1.28920
\(610\) 48.1202 1.94833
\(611\) −13.6652 −0.552833
\(612\) −16.6855 −0.674472
\(613\) −31.2640 −1.26274 −0.631371 0.775481i \(-0.717507\pi\)
−0.631371 + 0.775481i \(0.717507\pi\)
\(614\) 12.8769 0.519670
\(615\) 0.883855 0.0356405
\(616\) 19.3006 0.777642
\(617\) 28.7359 1.15686 0.578431 0.815731i \(-0.303665\pi\)
0.578431 + 0.815731i \(0.303665\pi\)
\(618\) 29.7443 1.19649
\(619\) 30.6917 1.23360 0.616802 0.787118i \(-0.288428\pi\)
0.616802 + 0.787118i \(0.288428\pi\)
\(620\) −9.90882 −0.397948
\(621\) −11.6877 −0.469010
\(622\) −8.52122 −0.341670
\(623\) −42.1586 −1.68905
\(624\) −13.9187 −0.557193
\(625\) −23.2199 −0.928797
\(626\) 54.4983 2.17819
\(627\) −35.7002 −1.42573
\(628\) −1.33297 −0.0531913
\(629\) 52.1474 2.07925
\(630\) 31.5806 1.25820
\(631\) 10.8372 0.431421 0.215710 0.976457i \(-0.430793\pi\)
0.215710 + 0.976457i \(0.430793\pi\)
\(632\) 1.28092 0.0509523
\(633\) −47.3047 −1.88019
\(634\) 26.1540 1.03871
\(635\) −9.30882 −0.369409
\(636\) −31.6971 −1.25687
\(637\) −26.3121 −1.04252
\(638\) −29.9853 −1.18713
\(639\) −6.89365 −0.272709
\(640\) 32.9859 1.30388
\(641\) 22.1959 0.876687 0.438344 0.898807i \(-0.355565\pi\)
0.438344 + 0.898807i \(0.355565\pi\)
\(642\) −6.95410 −0.274456
\(643\) −4.00127 −0.157795 −0.0788974 0.996883i \(-0.525140\pi\)
−0.0788974 + 0.996883i \(0.525140\pi\)
\(644\) 32.5027 1.28079
\(645\) −2.67596 −0.105366
\(646\) 58.8737 2.31636
\(647\) 19.0433 0.748671 0.374335 0.927293i \(-0.377871\pi\)
0.374335 + 0.927293i \(0.377871\pi\)
\(648\) 15.0011 0.589299
\(649\) −47.9590 −1.88256
\(650\) 33.3622 1.30857
\(651\) −9.56393 −0.374840
\(652\) 18.9846 0.743494
\(653\) 27.3882 1.07178 0.535891 0.844287i \(-0.319976\pi\)
0.535891 + 0.844287i \(0.319976\pi\)
\(654\) −33.0945 −1.29410
\(655\) −50.0548 −1.95580
\(656\) 0.317892 0.0124116
\(657\) 13.6905 0.534116
\(658\) 40.4970 1.57874
\(659\) 43.1146 1.67951 0.839753 0.542969i \(-0.182700\pi\)
0.839753 + 0.542969i \(0.182700\pi\)
\(660\) −61.3701 −2.38883
\(661\) −18.4012 −0.715724 −0.357862 0.933775i \(-0.616494\pi\)
−0.357862 + 0.933775i \(0.616494\pi\)
\(662\) −47.5182 −1.84685
\(663\) −32.9620 −1.28014
\(664\) 18.1223 0.703280
\(665\) −63.2661 −2.45336
\(666\) 22.9541 0.889452
\(667\) −12.0539 −0.466727
\(668\) −7.51913 −0.290924
\(669\) 4.94703 0.191263
\(670\) 17.2817 0.667652
\(671\) −24.8537 −0.959466
\(672\) 63.2398 2.43953
\(673\) 38.2676 1.47511 0.737553 0.675289i \(-0.235981\pi\)
0.737553 + 0.675289i \(0.235981\pi\)
\(674\) 34.0278 1.31070
\(675\) 20.1855 0.776941
\(676\) −11.9392 −0.459198
\(677\) 1.71199 0.0657973 0.0328987 0.999459i \(-0.489526\pi\)
0.0328987 + 0.999459i \(0.489526\pi\)
\(678\) 12.5762 0.482985
\(679\) 0 0
\(680\) 24.1588 0.926448
\(681\) 19.5484 0.749096
\(682\) 9.01398 0.345163
\(683\) 5.06609 0.193848 0.0969242 0.995292i \(-0.469100\pi\)
0.0969242 + 0.995292i \(0.469100\pi\)
\(684\) 14.7135 0.562586
\(685\) −37.4697 −1.43164
\(686\) 17.6549 0.674066
\(687\) −55.1698 −2.10486
\(688\) −0.962449 −0.0366930
\(689\) −17.2427 −0.656896
\(690\) −43.4516 −1.65417
\(691\) −28.9293 −1.10052 −0.550262 0.834992i \(-0.685472\pi\)
−0.550262 + 0.834992i \(0.685472\pi\)
\(692\) 18.8478 0.716485
\(693\) −16.3111 −0.619608
\(694\) −69.4950 −2.63799
\(695\) 65.2031 2.47329
\(696\) 10.7130 0.406074
\(697\) 0.752827 0.0285153
\(698\) 21.8243 0.826063
\(699\) −24.1695 −0.914173
\(700\) −56.1347 −2.12169
\(701\) 7.45330 0.281507 0.140754 0.990045i \(-0.455047\pi\)
0.140754 + 0.990045i \(0.455047\pi\)
\(702\) 23.6717 0.893433
\(703\) −45.9844 −1.73433
\(704\) −42.7996 −1.61307
\(705\) −30.7381 −1.15767
\(706\) 14.3622 0.540529
\(707\) −41.9014 −1.57587
\(708\) 71.7801 2.69766
\(709\) −42.5897 −1.59949 −0.799745 0.600339i \(-0.795032\pi\)
−0.799745 + 0.600339i \(0.795032\pi\)
\(710\) 41.8136 1.56924
\(711\) −1.08252 −0.0405977
\(712\) −14.1961 −0.532020
\(713\) 3.62355 0.135703
\(714\) 97.6836 3.65572
\(715\) −33.3844 −1.24850
\(716\) −8.57842 −0.320591
\(717\) −41.4432 −1.54773
\(718\) −36.6383 −1.36733
\(719\) 18.3830 0.685571 0.342785 0.939414i \(-0.388630\pi\)
0.342785 + 0.939414i \(0.388630\pi\)
\(720\) −8.62132 −0.321298
\(721\) −27.2250 −1.01391
\(722\) −11.0454 −0.411066
\(723\) 8.97828 0.333906
\(724\) 25.4894 0.947305
\(725\) 20.8179 0.773159
\(726\) 7.68303 0.285144
\(727\) −9.78506 −0.362908 −0.181454 0.983399i \(-0.558080\pi\)
−0.181454 + 0.983399i \(0.558080\pi\)
\(728\) −15.7141 −0.582404
\(729\) 10.4234 0.386052
\(730\) −83.0398 −3.07344
\(731\) −2.27925 −0.0843013
\(732\) 37.1984 1.37489
\(733\) −8.06558 −0.297909 −0.148954 0.988844i \(-0.547591\pi\)
−0.148954 + 0.988844i \(0.547591\pi\)
\(734\) −17.3856 −0.641713
\(735\) −59.1860 −2.18311
\(736\) −23.9601 −0.883181
\(737\) −8.92587 −0.328789
\(738\) 0.331377 0.0121981
\(739\) −6.23030 −0.229185 −0.114593 0.993413i \(-0.536556\pi\)
−0.114593 + 0.993413i \(0.536556\pi\)
\(740\) −79.0490 −2.90590
\(741\) 29.0664 1.06778
\(742\) 51.0993 1.87591
\(743\) −0.00327381 −0.000120105 0 −6.00523e−5 1.00000i \(-0.500019\pi\)
−6.00523e−5 1.00000i \(0.500019\pi\)
\(744\) −3.22046 −0.118068
\(745\) −26.3771 −0.966382
\(746\) 11.5462 0.422737
\(747\) −15.3153 −0.560358
\(748\) −52.2722 −1.91126
\(749\) 6.36509 0.232575
\(750\) 4.69563 0.171460
\(751\) 13.8671 0.506017 0.253009 0.967464i \(-0.418580\pi\)
0.253009 + 0.967464i \(0.418580\pi\)
\(752\) −11.0554 −0.403151
\(753\) 0.400074 0.0145795
\(754\) 24.4134 0.889083
\(755\) 41.4563 1.50875
\(756\) −39.8297 −1.44859
\(757\) 11.8219 0.429674 0.214837 0.976650i \(-0.431078\pi\)
0.214837 + 0.976650i \(0.431078\pi\)
\(758\) 34.0648 1.23729
\(759\) 22.4424 0.814607
\(760\) −21.3036 −0.772763
\(761\) −30.9877 −1.12330 −0.561652 0.827374i \(-0.689834\pi\)
−0.561652 + 0.827374i \(0.689834\pi\)
\(762\) −12.6743 −0.459140
\(763\) 30.2914 1.09662
\(764\) 38.2158 1.38260
\(765\) −20.4169 −0.738173
\(766\) 20.6615 0.746532
\(767\) 39.0473 1.40992
\(768\) −3.85537 −0.139119
\(769\) 1.44120 0.0519709 0.0259854 0.999662i \(-0.491728\pi\)
0.0259854 + 0.999662i \(0.491728\pi\)
\(770\) 98.9354 3.56538
\(771\) 25.4414 0.916251
\(772\) 15.9550 0.574232
\(773\) 48.0864 1.72955 0.864775 0.502160i \(-0.167461\pi\)
0.864775 + 0.502160i \(0.167461\pi\)
\(774\) −1.00327 −0.0360619
\(775\) −6.25815 −0.224799
\(776\) 0 0
\(777\) −76.2975 −2.73716
\(778\) 5.03582 0.180543
\(779\) −0.663854 −0.0237850
\(780\) 49.9663 1.78908
\(781\) −21.5963 −0.772778
\(782\) −37.0101 −1.32348
\(783\) 14.7711 0.527877
\(784\) −21.2872 −0.760256
\(785\) −1.63106 −0.0582150
\(786\) −68.1512 −2.43087
\(787\) −21.3107 −0.759646 −0.379823 0.925059i \(-0.624015\pi\)
−0.379823 + 0.925059i \(0.624015\pi\)
\(788\) −39.5883 −1.41028
\(789\) 1.33297 0.0474549
\(790\) 6.56605 0.233610
\(791\) −11.5110 −0.409283
\(792\) −5.49244 −0.195165
\(793\) 20.2354 0.718579
\(794\) 8.01059 0.284285
\(795\) −38.7855 −1.37558
\(796\) 45.0458 1.59661
\(797\) 28.7917 1.01986 0.509928 0.860217i \(-0.329672\pi\)
0.509928 + 0.860217i \(0.329672\pi\)
\(798\) −86.1389 −3.04928
\(799\) −26.1813 −0.926228
\(800\) 41.3809 1.46304
\(801\) 11.9972 0.423902
\(802\) −43.9656 −1.55248
\(803\) 42.8893 1.51353
\(804\) 13.3593 0.471147
\(805\) 39.7713 1.40175
\(806\) −7.33900 −0.258505
\(807\) 59.2403 2.08536
\(808\) −14.1095 −0.496369
\(809\) 34.6574 1.21849 0.609245 0.792982i \(-0.291472\pi\)
0.609245 + 0.792982i \(0.291472\pi\)
\(810\) 76.8962 2.70186
\(811\) −23.6610 −0.830848 −0.415424 0.909628i \(-0.636367\pi\)
−0.415424 + 0.909628i \(0.636367\pi\)
\(812\) −41.0776 −1.44154
\(813\) 54.4824 1.91078
\(814\) 71.9102 2.52045
\(815\) 23.2301 0.813715
\(816\) −26.6671 −0.933534
\(817\) 2.00988 0.0703169
\(818\) 53.9080 1.88485
\(819\) 13.2802 0.464047
\(820\) −1.14119 −0.0398521
\(821\) 52.2905 1.82495 0.912475 0.409132i \(-0.134168\pi\)
0.912475 + 0.409132i \(0.134168\pi\)
\(822\) −51.0162 −1.77940
\(823\) −39.9011 −1.39086 −0.695432 0.718592i \(-0.744787\pi\)
−0.695432 + 0.718592i \(0.744787\pi\)
\(824\) −9.16747 −0.319364
\(825\) −38.7597 −1.34944
\(826\) −115.718 −4.02633
\(827\) 10.2760 0.357331 0.178665 0.983910i \(-0.442822\pi\)
0.178665 + 0.983910i \(0.442822\pi\)
\(828\) −9.24944 −0.321440
\(829\) −42.2122 −1.46609 −0.733044 0.680181i \(-0.761901\pi\)
−0.733044 + 0.680181i \(0.761901\pi\)
\(830\) 92.8954 3.22444
\(831\) 20.9048 0.725179
\(832\) 34.8466 1.20809
\(833\) −50.4119 −1.74667
\(834\) 88.7761 3.07407
\(835\) −9.20063 −0.318401
\(836\) 46.0944 1.59421
\(837\) −4.44040 −0.153483
\(838\) 59.8390 2.06710
\(839\) 0.789828 0.0272679 0.0136339 0.999907i \(-0.495660\pi\)
0.0136339 + 0.999907i \(0.495660\pi\)
\(840\) −35.3471 −1.21959
\(841\) −13.7661 −0.474693
\(842\) −15.6084 −0.537901
\(843\) 47.4417 1.63398
\(844\) 61.0776 2.10238
\(845\) −14.6091 −0.502568
\(846\) −11.5244 −0.396217
\(847\) −7.03228 −0.241632
\(848\) −13.9498 −0.479038
\(849\) −6.48383 −0.222525
\(850\) 63.9192 2.19241
\(851\) 28.9074 0.990932
\(852\) 32.3232 1.10737
\(853\) 53.4439 1.82988 0.914942 0.403585i \(-0.132236\pi\)
0.914942 + 0.403585i \(0.132236\pi\)
\(854\) −59.9680 −2.05206
\(855\) 18.0039 0.615721
\(856\) 2.14332 0.0732570
\(857\) 1.80725 0.0617346 0.0308673 0.999523i \(-0.490173\pi\)
0.0308673 + 0.999523i \(0.490173\pi\)
\(858\) −45.4539 −1.55177
\(859\) 39.3759 1.34349 0.671744 0.740784i \(-0.265546\pi\)
0.671744 + 0.740784i \(0.265546\pi\)
\(860\) 3.45507 0.117817
\(861\) −1.10147 −0.0375380
\(862\) −25.2950 −0.861551
\(863\) 17.2598 0.587531 0.293766 0.955877i \(-0.405091\pi\)
0.293766 + 0.955877i \(0.405091\pi\)
\(864\) 29.3614 0.998894
\(865\) 23.0627 0.784154
\(866\) 46.3877 1.57632
\(867\) −28.5625 −0.970032
\(868\) 12.3485 0.419135
\(869\) −3.39131 −0.115042
\(870\) 54.9150 1.86179
\(871\) 7.26726 0.246242
\(872\) 10.2000 0.345416
\(873\) 0 0
\(874\) 32.6360 1.10393
\(875\) −4.29792 −0.145296
\(876\) −64.1923 −2.16886
\(877\) 26.6773 0.900828 0.450414 0.892820i \(-0.351276\pi\)
0.450414 + 0.892820i \(0.351276\pi\)
\(878\) −54.0035 −1.82253
\(879\) 22.4651 0.757727
\(880\) −27.0088 −0.910466
\(881\) 23.2719 0.784051 0.392025 0.919954i \(-0.371775\pi\)
0.392025 + 0.919954i \(0.371775\pi\)
\(882\) −22.1901 −0.747180
\(883\) 21.4634 0.722301 0.361150 0.932508i \(-0.382384\pi\)
0.361150 + 0.932508i \(0.382384\pi\)
\(884\) 42.5589 1.43141
\(885\) 87.8322 2.95245
\(886\) −64.1469 −2.15506
\(887\) −31.3387 −1.05225 −0.526126 0.850407i \(-0.676356\pi\)
−0.526126 + 0.850407i \(0.676356\pi\)
\(888\) −25.6917 −0.862156
\(889\) 11.6008 0.389077
\(890\) −72.7695 −2.43924
\(891\) −39.7163 −1.33054
\(892\) −6.38736 −0.213865
\(893\) 23.0871 0.772580
\(894\) −35.9133 −1.20112
\(895\) −10.4968 −0.350870
\(896\) −41.1075 −1.37330
\(897\) −18.2721 −0.610089
\(898\) −33.1117 −1.10495
\(899\) −4.57952 −0.152736
\(900\) 15.9745 0.532483
\(901\) −33.0357 −1.10058
\(902\) 1.03813 0.0345660
\(903\) 3.33481 0.110975
\(904\) −3.87609 −0.128917
\(905\) 31.1895 1.03677
\(906\) 56.4442 1.87523
\(907\) 3.21745 0.106834 0.0534168 0.998572i \(-0.482989\pi\)
0.0534168 + 0.998572i \(0.482989\pi\)
\(908\) −25.2399 −0.837617
\(909\) 11.9241 0.395496
\(910\) −80.5512 −2.67025
\(911\) 15.0217 0.497690 0.248845 0.968543i \(-0.419949\pi\)
0.248845 + 0.968543i \(0.419949\pi\)
\(912\) 23.5154 0.778674
\(913\) −47.9797 −1.58789
\(914\) 89.4555 2.95893
\(915\) 45.5171 1.50475
\(916\) 71.2326 2.35359
\(917\) 62.3789 2.05993
\(918\) 45.3531 1.49688
\(919\) 27.9727 0.922733 0.461366 0.887210i \(-0.347359\pi\)
0.461366 + 0.887210i \(0.347359\pi\)
\(920\) 13.3922 0.441527
\(921\) 12.1803 0.401355
\(922\) −24.6402 −0.811482
\(923\) 17.5833 0.578762
\(924\) 76.4801 2.51601
\(925\) −49.9252 −1.64153
\(926\) −30.8805 −1.01480
\(927\) 7.74753 0.254462
\(928\) 30.2813 0.994031
\(929\) −1.74910 −0.0573863 −0.0286931 0.999588i \(-0.509135\pi\)
−0.0286931 + 0.999588i \(0.509135\pi\)
\(930\) −16.5082 −0.541325
\(931\) 44.4540 1.45692
\(932\) 31.2064 1.02220
\(933\) −8.06025 −0.263881
\(934\) −46.9758 −1.53709
\(935\) −63.9617 −2.09177
\(936\) 4.47183 0.146166
\(937\) 50.2385 1.64122 0.820610 0.571488i \(-0.193634\pi\)
0.820610 + 0.571488i \(0.193634\pi\)
\(938\) −21.5367 −0.703198
\(939\) 51.5501 1.68227
\(940\) 39.6876 1.29447
\(941\) −7.80880 −0.254560 −0.127280 0.991867i \(-0.540625\pi\)
−0.127280 + 0.991867i \(0.540625\pi\)
\(942\) −2.22074 −0.0723557
\(943\) 0.417322 0.0135899
\(944\) 31.5902 1.02817
\(945\) −48.7368 −1.58541
\(946\) −3.14305 −0.102189
\(947\) 24.4392 0.794168 0.397084 0.917782i \(-0.370022\pi\)
0.397084 + 0.917782i \(0.370022\pi\)
\(948\) 5.07576 0.164853
\(949\) −34.9196 −1.13354
\(950\) −56.3649 −1.82872
\(951\) 24.7391 0.802222
\(952\) −30.1070 −0.975773
\(953\) −21.7005 −0.702949 −0.351475 0.936197i \(-0.614320\pi\)
−0.351475 + 0.936197i \(0.614320\pi\)
\(954\) −14.5415 −0.470799
\(955\) 46.7619 1.51318
\(956\) 53.5095 1.73062
\(957\) −28.3631 −0.916850
\(958\) −8.33456 −0.269277
\(959\) 46.6952 1.50787
\(960\) 78.3832 2.52981
\(961\) −29.6233 −0.955591
\(962\) −58.5478 −1.88766
\(963\) −1.81134 −0.0583696
\(964\) −11.5923 −0.373364
\(965\) 19.5230 0.628466
\(966\) 54.1499 1.74225
\(967\) 35.4982 1.14154 0.570772 0.821108i \(-0.306644\pi\)
0.570772 + 0.821108i \(0.306644\pi\)
\(968\) −2.36798 −0.0761098
\(969\) 55.6888 1.78898
\(970\) 0 0
\(971\) 14.4422 0.463472 0.231736 0.972779i \(-0.425559\pi\)
0.231736 + 0.972779i \(0.425559\pi\)
\(972\) 29.6163 0.949942
\(973\) −81.2568 −2.60497
\(974\) 21.2550 0.681055
\(975\) 31.5574 1.01064
\(976\) 16.3709 0.524020
\(977\) 7.75433 0.248083 0.124042 0.992277i \(-0.460414\pi\)
0.124042 + 0.992277i \(0.460414\pi\)
\(978\) 31.6285 1.01137
\(979\) 37.5848 1.20122
\(980\) 76.4181 2.44109
\(981\) −8.62015 −0.275220
\(982\) 14.9418 0.476811
\(983\) −8.01225 −0.255551 −0.127776 0.991803i \(-0.540784\pi\)
−0.127776 + 0.991803i \(0.540784\pi\)
\(984\) −0.370898 −0.0118238
\(985\) −48.4414 −1.54347
\(986\) 46.7741 1.48959
\(987\) 38.3062 1.21930
\(988\) −37.5291 −1.19396
\(989\) −1.26348 −0.0401764
\(990\) −28.1544 −0.894807
\(991\) −58.7603 −1.86658 −0.933291 0.359121i \(-0.883077\pi\)
−0.933291 + 0.359121i \(0.883077\pi\)
\(992\) −9.10296 −0.289019
\(993\) −44.9476 −1.42637
\(994\) −52.1086 −1.65278
\(995\) 55.1194 1.74740
\(996\) 71.8110 2.27542
\(997\) 58.6776 1.85834 0.929170 0.369653i \(-0.120524\pi\)
0.929170 + 0.369653i \(0.120524\pi\)
\(998\) 41.4308 1.31147
\(999\) −35.4239 −1.12076
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9409.2.a.n.1.6 56
97.42 odd 32 97.2.h.a.18.1 56
97.67 odd 32 97.2.h.a.27.1 yes 56
97.96 even 2 inner 9409.2.a.n.1.5 56
291.164 even 32 873.2.bh.b.415.7 56
291.236 even 32 873.2.bh.b.406.7 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
97.2.h.a.18.1 56 97.42 odd 32
97.2.h.a.27.1 yes 56 97.67 odd 32
873.2.bh.b.406.7 56 291.236 even 32
873.2.bh.b.415.7 56 291.164 even 32
9409.2.a.n.1.5 56 97.96 even 2 inner
9409.2.a.n.1.6 56 1.1 even 1 trivial