gp: [N,k,chi] = [9409,2,Mod(1,9409)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(9409, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("9409.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [56,8,16,40,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
\( p \)
Sign
\(97\)
\( -1 \)
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9409))\):
\( T_{2}^{28} - 4 T_{2}^{27} - 30 T_{2}^{26} + 132 T_{2}^{25} + 379 T_{2}^{24} - 1904 T_{2}^{23} + \cdots + 31 \)
T2^28 - 4*T2^27 - 30*T2^26 + 132*T2^25 + 379*T2^24 - 1904*T2^23 - 2580*T2^22 + 15800*T2^21 + 9744*T2^20 - 83536*T2^19 - 15692*T2^18 + 294312*T2^17 - 26330*T2^16 - 701552*T2^15 + 200060*T2^14 + 1123336*T2^13 - 491251*T2^12 - 1169852*T2^11 + 669746*T2^10 + 735684*T2^9 - 531105*T2^8 - 232896*T2^7 + 227864*T2^6 + 15232*T2^5 - 42799*T2^4 + 5596*T2^3 + 2158*T2^2 - 540*T2 + 31
\( T_{5}^{56} - 144 T_{5}^{54} + 9664 T_{5}^{52} - 401616 T_{5}^{50} + 11582992 T_{5}^{48} - 246262520 T_{5}^{46} + \cdots + 32258 \)
T5^56 - 144*T5^54 + 9664*T5^52 - 401616*T5^50 + 11582992*T5^48 - 246262520*T5^46 + 4002021128*T5^44 - 50875656608*T5^42 + 513617270665*T5^40 - 4157752262192*T5^38 + 27141658803388*T5^36 - 143248936484696*T5^34 + 611222789511508*T5^32 - 2103241343504000*T5^30 + 5808187570259984*T5^28 - 12775842954212792*T5^26 + 22146937281629778*T5^24 - 29817225337081968*T5^22 + 30563036101874044*T5^20 - 23207561810344672*T5^18 + 12568408099836130*T5^16 - 4602567687060456*T5^14 + 1057826627650180*T5^12 - 138018093044968*T5^10 + 8870673824189*T5^8 - 248776713720*T5^6 + 3037077980*T5^4 - 16404640*T5^2 + 32258