Properties

Label 9409.2.a.n.1.3
Level $9409$
Weight $2$
Character 9409.1
Self dual yes
Analytic conductor $75.131$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9409,2,Mod(1,9409)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9409, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9409.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9409 = 97^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9409.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56,8,16,40,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(75.1312432618\)
Analytic rank: \(0\)
Dimension: \(56\)
Twist minimal: no (minimal twist has level 97)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Character \(\chi\) \(=\) 9409.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.36394 q^{2} +0.429115 q^{3} +3.58823 q^{4} -1.05721 q^{5} -1.01440 q^{6} +1.83323 q^{7} -3.75448 q^{8} -2.81586 q^{9} +2.49919 q^{10} -2.02550 q^{11} +1.53976 q^{12} -1.26591 q^{13} -4.33365 q^{14} -0.453666 q^{15} +1.69892 q^{16} +5.49328 q^{17} +6.65653 q^{18} -2.74211 q^{19} -3.79352 q^{20} +0.786666 q^{21} +4.78816 q^{22} -7.47844 q^{23} -1.61110 q^{24} -3.88230 q^{25} +2.99254 q^{26} -2.49568 q^{27} +6.57804 q^{28} +5.15694 q^{29} +1.07244 q^{30} +1.37907 q^{31} +3.49281 q^{32} -0.869172 q^{33} -12.9858 q^{34} -1.93811 q^{35} -10.1039 q^{36} +3.18081 q^{37} +6.48219 q^{38} -0.543222 q^{39} +3.96928 q^{40} -10.4437 q^{41} -1.85963 q^{42} +1.04450 q^{43} -7.26794 q^{44} +2.97696 q^{45} +17.6786 q^{46} -9.22056 q^{47} +0.729032 q^{48} -3.63928 q^{49} +9.17754 q^{50} +2.35725 q^{51} -4.54238 q^{52} +13.7521 q^{53} +5.89963 q^{54} +2.14138 q^{55} -6.88281 q^{56} -1.17668 q^{57} -12.1907 q^{58} +5.42706 q^{59} -1.62786 q^{60} +4.56051 q^{61} -3.26005 q^{62} -5.16211 q^{63} -11.6546 q^{64} +1.33834 q^{65} +2.05467 q^{66} -15.3080 q^{67} +19.7111 q^{68} -3.20911 q^{69} +4.58159 q^{70} +2.17481 q^{71} +10.5721 q^{72} -8.19777 q^{73} -7.51925 q^{74} -1.66595 q^{75} -9.83931 q^{76} -3.71320 q^{77} +1.28415 q^{78} -3.60300 q^{79} -1.79612 q^{80} +7.37665 q^{81} +24.6884 q^{82} +14.6991 q^{83} +2.82274 q^{84} -5.80757 q^{85} -2.46914 q^{86} +2.21292 q^{87} +7.60468 q^{88} -5.69432 q^{89} -7.03737 q^{90} -2.32071 q^{91} -26.8343 q^{92} +0.591782 q^{93} +21.7969 q^{94} +2.89899 q^{95} +1.49882 q^{96} +8.60304 q^{98} +5.70352 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 8 q^{2} + 16 q^{3} + 40 q^{4} + 16 q^{6} + 24 q^{8} + 40 q^{9} + 32 q^{11} + 48 q^{12} + 8 q^{16} + 24 q^{18} + 16 q^{22} + 8 q^{25} + 64 q^{27} + 48 q^{31} + 56 q^{32} + 80 q^{33} + 48 q^{35} + 8 q^{36}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.36394 −1.67156 −0.835780 0.549064i \(-0.814984\pi\)
−0.835780 + 0.549064i \(0.814984\pi\)
\(3\) 0.429115 0.247750 0.123875 0.992298i \(-0.460468\pi\)
0.123875 + 0.992298i \(0.460468\pi\)
\(4\) 3.58823 1.79411
\(5\) −1.05721 −0.472800 −0.236400 0.971656i \(-0.575968\pi\)
−0.236400 + 0.971656i \(0.575968\pi\)
\(6\) −1.01440 −0.414129
\(7\) 1.83323 0.692895 0.346447 0.938069i \(-0.387388\pi\)
0.346447 + 0.938069i \(0.387388\pi\)
\(8\) −3.75448 −1.32741
\(9\) −2.81586 −0.938620
\(10\) 2.49919 0.790314
\(11\) −2.02550 −0.610710 −0.305355 0.952239i \(-0.598775\pi\)
−0.305355 + 0.952239i \(0.598775\pi\)
\(12\) 1.53976 0.444491
\(13\) −1.26591 −0.351101 −0.175550 0.984470i \(-0.556171\pi\)
−0.175550 + 0.984470i \(0.556171\pi\)
\(14\) −4.33365 −1.15822
\(15\) −0.453666 −0.117136
\(16\) 1.69892 0.424729
\(17\) 5.49328 1.33232 0.666158 0.745811i \(-0.267938\pi\)
0.666158 + 0.745811i \(0.267938\pi\)
\(18\) 6.65653 1.56896
\(19\) −2.74211 −0.629083 −0.314541 0.949244i \(-0.601851\pi\)
−0.314541 + 0.949244i \(0.601851\pi\)
\(20\) −3.79352 −0.848257
\(21\) 0.786666 0.171665
\(22\) 4.78816 1.02084
\(23\) −7.47844 −1.55936 −0.779681 0.626177i \(-0.784619\pi\)
−0.779681 + 0.626177i \(0.784619\pi\)
\(24\) −1.61110 −0.328865
\(25\) −3.88230 −0.776460
\(26\) 2.99254 0.586886
\(27\) −2.49568 −0.480293
\(28\) 6.57804 1.24313
\(29\) 5.15694 0.957619 0.478809 0.877919i \(-0.341068\pi\)
0.478809 + 0.877919i \(0.341068\pi\)
\(30\) 1.07244 0.195800
\(31\) 1.37907 0.247689 0.123845 0.992302i \(-0.460478\pi\)
0.123845 + 0.992302i \(0.460478\pi\)
\(32\) 3.49281 0.617448
\(33\) −0.869172 −0.151303
\(34\) −12.9858 −2.22705
\(35\) −1.93811 −0.327601
\(36\) −10.1039 −1.68399
\(37\) 3.18081 0.522922 0.261461 0.965214i \(-0.415796\pi\)
0.261461 + 0.965214i \(0.415796\pi\)
\(38\) 6.48219 1.05155
\(39\) −0.543222 −0.0869852
\(40\) 3.96928 0.627599
\(41\) −10.4437 −1.63104 −0.815518 0.578731i \(-0.803548\pi\)
−0.815518 + 0.578731i \(0.803548\pi\)
\(42\) −1.85963 −0.286948
\(43\) 1.04450 0.159285 0.0796425 0.996823i \(-0.474622\pi\)
0.0796425 + 0.996823i \(0.474622\pi\)
\(44\) −7.26794 −1.09568
\(45\) 2.97696 0.443780
\(46\) 17.6786 2.60657
\(47\) −9.22056 −1.34496 −0.672478 0.740117i \(-0.734770\pi\)
−0.672478 + 0.740117i \(0.734770\pi\)
\(48\) 0.729032 0.105227
\(49\) −3.63928 −0.519897
\(50\) 9.17754 1.29790
\(51\) 2.35725 0.330081
\(52\) −4.54238 −0.629915
\(53\) 13.7521 1.88900 0.944501 0.328507i \(-0.106546\pi\)
0.944501 + 0.328507i \(0.106546\pi\)
\(54\) 5.89963 0.802838
\(55\) 2.14138 0.288744
\(56\) −6.88281 −0.919754
\(57\) −1.17668 −0.155855
\(58\) −12.1907 −1.60072
\(59\) 5.42706 0.706543 0.353272 0.935521i \(-0.385069\pi\)
0.353272 + 0.935521i \(0.385069\pi\)
\(60\) −1.62786 −0.210156
\(61\) 4.56051 0.583914 0.291957 0.956431i \(-0.405694\pi\)
0.291957 + 0.956431i \(0.405694\pi\)
\(62\) −3.26005 −0.414027
\(63\) −5.16211 −0.650365
\(64\) −11.6546 −1.45683
\(65\) 1.33834 0.166001
\(66\) 2.05467 0.252913
\(67\) −15.3080 −1.87017 −0.935087 0.354417i \(-0.884679\pi\)
−0.935087 + 0.354417i \(0.884679\pi\)
\(68\) 19.7111 2.39033
\(69\) −3.20911 −0.386332
\(70\) 4.58159 0.547604
\(71\) 2.17481 0.258102 0.129051 0.991638i \(-0.458807\pi\)
0.129051 + 0.991638i \(0.458807\pi\)
\(72\) 10.5721 1.24593
\(73\) −8.19777 −0.959477 −0.479738 0.877412i \(-0.659268\pi\)
−0.479738 + 0.877412i \(0.659268\pi\)
\(74\) −7.51925 −0.874095
\(75\) −1.66595 −0.192368
\(76\) −9.83931 −1.12865
\(77\) −3.71320 −0.423158
\(78\) 1.28415 0.145401
\(79\) −3.60300 −0.405369 −0.202684 0.979244i \(-0.564967\pi\)
−0.202684 + 0.979244i \(0.564967\pi\)
\(80\) −1.79612 −0.200812
\(81\) 7.37665 0.819627
\(82\) 24.6884 2.72638
\(83\) 14.6991 1.61344 0.806718 0.590937i \(-0.201242\pi\)
0.806718 + 0.590937i \(0.201242\pi\)
\(84\) 2.82274 0.307986
\(85\) −5.80757 −0.629919
\(86\) −2.46914 −0.266255
\(87\) 2.21292 0.237250
\(88\) 7.60468 0.810662
\(89\) −5.69432 −0.603597 −0.301798 0.953372i \(-0.597587\pi\)
−0.301798 + 0.953372i \(0.597587\pi\)
\(90\) −7.03737 −0.741804
\(91\) −2.32071 −0.243276
\(92\) −26.8343 −2.79767
\(93\) 0.591782 0.0613649
\(94\) 21.7969 2.24818
\(95\) 2.89899 0.297430
\(96\) 1.49882 0.152973
\(97\) 0 0
\(98\) 8.60304 0.869038
\(99\) 5.70352 0.573225
\(100\) −13.9306 −1.39306
\(101\) −5.65301 −0.562496 −0.281248 0.959635i \(-0.590748\pi\)
−0.281248 + 0.959635i \(0.590748\pi\)
\(102\) −5.57241 −0.551751
\(103\) −15.7188 −1.54882 −0.774412 0.632682i \(-0.781954\pi\)
−0.774412 + 0.632682i \(0.781954\pi\)
\(104\) 4.75284 0.466054
\(105\) −0.831674 −0.0811631
\(106\) −32.5093 −3.15758
\(107\) 13.7606 1.33029 0.665145 0.746714i \(-0.268370\pi\)
0.665145 + 0.746714i \(0.268370\pi\)
\(108\) −8.95505 −0.861700
\(109\) −4.08834 −0.391592 −0.195796 0.980645i \(-0.562729\pi\)
−0.195796 + 0.980645i \(0.562729\pi\)
\(110\) −5.06210 −0.482653
\(111\) 1.36493 0.129554
\(112\) 3.11450 0.294293
\(113\) 7.54899 0.710149 0.355075 0.934838i \(-0.384455\pi\)
0.355075 + 0.934838i \(0.384455\pi\)
\(114\) 2.78161 0.260521
\(115\) 7.90630 0.737267
\(116\) 18.5043 1.71808
\(117\) 3.56463 0.329550
\(118\) −12.8293 −1.18103
\(119\) 10.0704 0.923155
\(120\) 1.70328 0.155487
\(121\) −6.89736 −0.627033
\(122\) −10.7808 −0.976047
\(123\) −4.48157 −0.404089
\(124\) 4.94843 0.444382
\(125\) 9.39048 0.839910
\(126\) 12.2029 1.08712
\(127\) 10.9204 0.969031 0.484515 0.874783i \(-0.338996\pi\)
0.484515 + 0.874783i \(0.338996\pi\)
\(128\) 20.5653 1.81773
\(129\) 0.448212 0.0394628
\(130\) −3.16376 −0.277480
\(131\) −10.1783 −0.889281 −0.444640 0.895709i \(-0.646669\pi\)
−0.444640 + 0.895709i \(0.646669\pi\)
\(132\) −3.11879 −0.271455
\(133\) −5.02691 −0.435888
\(134\) 36.1873 3.12611
\(135\) 2.63846 0.227083
\(136\) −20.6244 −1.76853
\(137\) 10.8298 0.925252 0.462626 0.886554i \(-0.346907\pi\)
0.462626 + 0.886554i \(0.346907\pi\)
\(138\) 7.58616 0.645777
\(139\) −0.712051 −0.0603954 −0.0301977 0.999544i \(-0.509614\pi\)
−0.0301977 + 0.999544i \(0.509614\pi\)
\(140\) −6.95439 −0.587753
\(141\) −3.95668 −0.333213
\(142\) −5.14112 −0.431433
\(143\) 2.56410 0.214421
\(144\) −4.78391 −0.398659
\(145\) −5.45198 −0.452762
\(146\) 19.3791 1.60382
\(147\) −1.56167 −0.128804
\(148\) 11.4135 0.938181
\(149\) −14.3096 −1.17229 −0.586143 0.810207i \(-0.699354\pi\)
−0.586143 + 0.810207i \(0.699354\pi\)
\(150\) 3.93822 0.321555
\(151\) −10.1068 −0.822479 −0.411240 0.911527i \(-0.634904\pi\)
−0.411240 + 0.911527i \(0.634904\pi\)
\(152\) 10.2952 0.835050
\(153\) −15.4683 −1.25054
\(154\) 8.77779 0.707334
\(155\) −1.45798 −0.117107
\(156\) −1.94921 −0.156061
\(157\) 0.423904 0.0338312 0.0169156 0.999857i \(-0.494615\pi\)
0.0169156 + 0.999857i \(0.494615\pi\)
\(158\) 8.51728 0.677598
\(159\) 5.90126 0.468000
\(160\) −3.69265 −0.291929
\(161\) −13.7097 −1.08047
\(162\) −17.4380 −1.37006
\(163\) 9.82774 0.769768 0.384884 0.922965i \(-0.374241\pi\)
0.384884 + 0.922965i \(0.374241\pi\)
\(164\) −37.4745 −2.92626
\(165\) 0.918900 0.0715363
\(166\) −34.7478 −2.69696
\(167\) 12.3857 0.958433 0.479217 0.877697i \(-0.340921\pi\)
0.479217 + 0.877697i \(0.340921\pi\)
\(168\) −2.95352 −0.227869
\(169\) −11.3975 −0.876728
\(170\) 13.7288 1.05295
\(171\) 7.72139 0.590470
\(172\) 3.74791 0.285775
\(173\) −18.3232 −1.39309 −0.696544 0.717514i \(-0.745280\pi\)
−0.696544 + 0.717514i \(0.745280\pi\)
\(174\) −5.23122 −0.396578
\(175\) −7.11714 −0.538005
\(176\) −3.44115 −0.259387
\(177\) 2.32884 0.175046
\(178\) 13.4610 1.00895
\(179\) 1.75590 0.131242 0.0656210 0.997845i \(-0.479097\pi\)
0.0656210 + 0.997845i \(0.479097\pi\)
\(180\) 10.6820 0.796191
\(181\) −3.22171 −0.239468 −0.119734 0.992806i \(-0.538204\pi\)
−0.119734 + 0.992806i \(0.538204\pi\)
\(182\) 5.48602 0.406651
\(183\) 1.95699 0.144665
\(184\) 28.0776 2.06991
\(185\) −3.36279 −0.247237
\(186\) −1.39894 −0.102575
\(187\) −11.1266 −0.813659
\(188\) −33.0855 −2.41301
\(189\) −4.57514 −0.332793
\(190\) −6.85305 −0.497173
\(191\) 22.7565 1.64660 0.823302 0.567604i \(-0.192130\pi\)
0.823302 + 0.567604i \(0.192130\pi\)
\(192\) −5.00119 −0.360929
\(193\) −0.260716 −0.0187668 −0.00938338 0.999956i \(-0.502987\pi\)
−0.00938338 + 0.999956i \(0.502987\pi\)
\(194\) 0 0
\(195\) 0.574302 0.0411266
\(196\) −13.0585 −0.932753
\(197\) 12.9183 0.920392 0.460196 0.887817i \(-0.347779\pi\)
0.460196 + 0.887817i \(0.347779\pi\)
\(198\) −13.4828 −0.958180
\(199\) 15.0611 1.06765 0.533827 0.845593i \(-0.320753\pi\)
0.533827 + 0.845593i \(0.320753\pi\)
\(200\) 14.5760 1.03068
\(201\) −6.56892 −0.463336
\(202\) 13.3634 0.940246
\(203\) 9.45384 0.663529
\(204\) 8.45835 0.592203
\(205\) 11.0412 0.771154
\(206\) 37.1585 2.58895
\(207\) 21.0582 1.46365
\(208\) −2.15068 −0.149123
\(209\) 5.55413 0.384187
\(210\) 1.96603 0.135669
\(211\) 11.0194 0.758605 0.379303 0.925273i \(-0.376164\pi\)
0.379303 + 0.925273i \(0.376164\pi\)
\(212\) 49.3458 3.38909
\(213\) 0.933243 0.0639448
\(214\) −32.5293 −2.22366
\(215\) −1.10426 −0.0753100
\(216\) 9.36996 0.637545
\(217\) 2.52816 0.171623
\(218\) 9.66460 0.654569
\(219\) −3.51779 −0.237710
\(220\) 7.68376 0.518039
\(221\) −6.95401 −0.467777
\(222\) −3.22663 −0.216557
\(223\) 3.24145 0.217064 0.108532 0.994093i \(-0.465385\pi\)
0.108532 + 0.994093i \(0.465385\pi\)
\(224\) 6.40312 0.427826
\(225\) 10.9320 0.728801
\(226\) −17.8454 −1.18706
\(227\) 3.06614 0.203507 0.101753 0.994810i \(-0.467555\pi\)
0.101753 + 0.994810i \(0.467555\pi\)
\(228\) −4.22220 −0.279622
\(229\) 7.66542 0.506545 0.253272 0.967395i \(-0.418493\pi\)
0.253272 + 0.967395i \(0.418493\pi\)
\(230\) −18.6900 −1.23239
\(231\) −1.59339 −0.104837
\(232\) −19.3616 −1.27115
\(233\) −20.4374 −1.33890 −0.669450 0.742857i \(-0.733470\pi\)
−0.669450 + 0.742857i \(0.733470\pi\)
\(234\) −8.42659 −0.550863
\(235\) 9.74810 0.635896
\(236\) 19.4735 1.26762
\(237\) −1.54610 −0.100430
\(238\) −23.8059 −1.54311
\(239\) −1.62314 −0.104992 −0.0524961 0.998621i \(-0.516718\pi\)
−0.0524961 + 0.998621i \(0.516718\pi\)
\(240\) −0.770742 −0.0497512
\(241\) 24.7120 1.59184 0.795918 0.605404i \(-0.206988\pi\)
0.795918 + 0.605404i \(0.206988\pi\)
\(242\) 16.3050 1.04812
\(243\) 10.6525 0.683355
\(244\) 16.3642 1.04761
\(245\) 3.84749 0.245807
\(246\) 10.5942 0.675459
\(247\) 3.47127 0.220872
\(248\) −5.17770 −0.328785
\(249\) 6.30761 0.399729
\(250\) −22.1986 −1.40396
\(251\) 8.46810 0.534501 0.267251 0.963627i \(-0.413885\pi\)
0.267251 + 0.963627i \(0.413885\pi\)
\(252\) −18.5228 −1.16683
\(253\) 15.1476 0.952318
\(254\) −25.8153 −1.61979
\(255\) −2.49212 −0.156062
\(256\) −25.3059 −1.58162
\(257\) 29.1991 1.82139 0.910695 0.413080i \(-0.135547\pi\)
0.910695 + 0.413080i \(0.135547\pi\)
\(258\) −1.05955 −0.0659645
\(259\) 5.83115 0.362330
\(260\) 4.80226 0.297824
\(261\) −14.5212 −0.898840
\(262\) 24.0609 1.48649
\(263\) 10.6463 0.656481 0.328241 0.944594i \(-0.393544\pi\)
0.328241 + 0.944594i \(0.393544\pi\)
\(264\) 3.26329 0.200841
\(265\) −14.5390 −0.893121
\(266\) 11.8833 0.728613
\(267\) −2.44352 −0.149541
\(268\) −54.9287 −3.35531
\(269\) 14.4291 0.879760 0.439880 0.898057i \(-0.355021\pi\)
0.439880 + 0.898057i \(0.355021\pi\)
\(270\) −6.23717 −0.379582
\(271\) −11.0284 −0.669929 −0.334964 0.942231i \(-0.608724\pi\)
−0.334964 + 0.942231i \(0.608724\pi\)
\(272\) 9.33263 0.565874
\(273\) −0.995851 −0.0602716
\(274\) −25.6010 −1.54661
\(275\) 7.86359 0.474192
\(276\) −11.5150 −0.693123
\(277\) −15.6035 −0.937524 −0.468762 0.883324i \(-0.655300\pi\)
−0.468762 + 0.883324i \(0.655300\pi\)
\(278\) 1.68325 0.100955
\(279\) −3.88328 −0.232486
\(280\) 7.27660 0.434860
\(281\) −14.2676 −0.851134 −0.425567 0.904927i \(-0.639925\pi\)
−0.425567 + 0.904927i \(0.639925\pi\)
\(282\) 9.35338 0.556985
\(283\) 13.4202 0.797747 0.398873 0.917006i \(-0.369401\pi\)
0.398873 + 0.917006i \(0.369401\pi\)
\(284\) 7.80370 0.463064
\(285\) 1.24400 0.0736883
\(286\) −6.06139 −0.358417
\(287\) −19.1457 −1.13014
\(288\) −9.83527 −0.579549
\(289\) 13.1761 0.775066
\(290\) 12.8882 0.756819
\(291\) 0 0
\(292\) −29.4155 −1.72141
\(293\) −26.3939 −1.54195 −0.770973 0.636868i \(-0.780230\pi\)
−0.770973 + 0.636868i \(0.780230\pi\)
\(294\) 3.69170 0.215304
\(295\) −5.73756 −0.334054
\(296\) −11.9423 −0.694130
\(297\) 5.05498 0.293320
\(298\) 33.8270 1.95955
\(299\) 9.46705 0.547493
\(300\) −5.97782 −0.345130
\(301\) 1.91481 0.110368
\(302\) 23.8919 1.37482
\(303\) −2.42580 −0.139358
\(304\) −4.65862 −0.267190
\(305\) −4.82143 −0.276074
\(306\) 36.5662 2.09035
\(307\) 30.0254 1.71364 0.856820 0.515616i \(-0.172437\pi\)
0.856820 + 0.515616i \(0.172437\pi\)
\(308\) −13.3238 −0.759194
\(309\) −6.74520 −0.383721
\(310\) 3.44657 0.195752
\(311\) −8.97430 −0.508886 −0.254443 0.967088i \(-0.581892\pi\)
−0.254443 + 0.967088i \(0.581892\pi\)
\(312\) 2.03952 0.115465
\(313\) 21.4497 1.21241 0.606203 0.795310i \(-0.292692\pi\)
0.606203 + 0.795310i \(0.292692\pi\)
\(314\) −1.00209 −0.0565509
\(315\) 5.45745 0.307493
\(316\) −12.9284 −0.727278
\(317\) −5.74021 −0.322402 −0.161201 0.986922i \(-0.551537\pi\)
−0.161201 + 0.986922i \(0.551537\pi\)
\(318\) −13.9502 −0.782291
\(319\) −10.4454 −0.584828
\(320\) 12.3214 0.688789
\(321\) 5.90490 0.329579
\(322\) 32.4089 1.80608
\(323\) −15.0632 −0.838137
\(324\) 26.4691 1.47050
\(325\) 4.91465 0.272616
\(326\) −23.2322 −1.28671
\(327\) −1.75437 −0.0970168
\(328\) 39.2107 2.16505
\(329\) −16.9034 −0.931914
\(330\) −2.17223 −0.119577
\(331\) −27.9801 −1.53793 −0.768963 0.639293i \(-0.779227\pi\)
−0.768963 + 0.639293i \(0.779227\pi\)
\(332\) 52.7437 2.89469
\(333\) −8.95671 −0.490825
\(334\) −29.2791 −1.60208
\(335\) 16.1839 0.884219
\(336\) 1.33648 0.0729110
\(337\) −1.22028 −0.0664727 −0.0332363 0.999448i \(-0.510581\pi\)
−0.0332363 + 0.999448i \(0.510581\pi\)
\(338\) 26.9430 1.46550
\(339\) 3.23939 0.175939
\(340\) −20.8389 −1.13015
\(341\) −2.79331 −0.151266
\(342\) −18.2529 −0.987006
\(343\) −19.5042 −1.05313
\(344\) −3.92156 −0.211436
\(345\) 3.39272 0.182658
\(346\) 43.3150 2.32863
\(347\) −2.06189 −0.110688 −0.0553440 0.998467i \(-0.517626\pi\)
−0.0553440 + 0.998467i \(0.517626\pi\)
\(348\) 7.94046 0.425653
\(349\) −11.9556 −0.639967 −0.319983 0.947423i \(-0.603677\pi\)
−0.319983 + 0.947423i \(0.603677\pi\)
\(350\) 16.8245 0.899308
\(351\) 3.15931 0.168631
\(352\) −7.07468 −0.377082
\(353\) 16.9597 0.902671 0.451336 0.892354i \(-0.350948\pi\)
0.451336 + 0.892354i \(0.350948\pi\)
\(354\) −5.50524 −0.292600
\(355\) −2.29923 −0.122031
\(356\) −20.4325 −1.08292
\(357\) 4.32138 0.228712
\(358\) −4.15085 −0.219379
\(359\) −18.2612 −0.963788 −0.481894 0.876229i \(-0.660051\pi\)
−0.481894 + 0.876229i \(0.660051\pi\)
\(360\) −11.1769 −0.589077
\(361\) −11.4808 −0.604255
\(362\) 7.61593 0.400284
\(363\) −2.95976 −0.155347
\(364\) −8.32722 −0.436465
\(365\) 8.66679 0.453641
\(366\) −4.62620 −0.241816
\(367\) 36.1690 1.88800 0.944002 0.329939i \(-0.107028\pi\)
0.944002 + 0.329939i \(0.107028\pi\)
\(368\) −12.7052 −0.662307
\(369\) 29.4081 1.53092
\(370\) 7.94945 0.413272
\(371\) 25.2108 1.30888
\(372\) 2.12345 0.110096
\(373\) −10.5388 −0.545677 −0.272838 0.962060i \(-0.587962\pi\)
−0.272838 + 0.962060i \(0.587962\pi\)
\(374\) 26.3027 1.36008
\(375\) 4.02960 0.208088
\(376\) 34.6184 1.78531
\(377\) −6.52823 −0.336221
\(378\) 10.8154 0.556283
\(379\) 22.7256 1.16734 0.583669 0.811992i \(-0.301617\pi\)
0.583669 + 0.811992i \(0.301617\pi\)
\(380\) 10.4022 0.533624
\(381\) 4.68612 0.240077
\(382\) −53.7951 −2.75240
\(383\) −10.9452 −0.559275 −0.279638 0.960106i \(-0.590214\pi\)
−0.279638 + 0.960106i \(0.590214\pi\)
\(384\) 8.82488 0.450343
\(385\) 3.92564 0.200069
\(386\) 0.616318 0.0313698
\(387\) −2.94117 −0.149508
\(388\) 0 0
\(389\) 12.0964 0.613310 0.306655 0.951821i \(-0.400790\pi\)
0.306655 + 0.951821i \(0.400790\pi\)
\(390\) −1.35762 −0.0687456
\(391\) −41.0812 −2.07756
\(392\) 13.6636 0.690115
\(393\) −4.36766 −0.220319
\(394\) −30.5382 −1.53849
\(395\) 3.80914 0.191658
\(396\) 20.4655 1.02843
\(397\) −8.50508 −0.426858 −0.213429 0.976959i \(-0.568463\pi\)
−0.213429 + 0.976959i \(0.568463\pi\)
\(398\) −35.6036 −1.78465
\(399\) −2.15712 −0.107991
\(400\) −6.59571 −0.329785
\(401\) −6.19223 −0.309225 −0.154613 0.987975i \(-0.549413\pi\)
−0.154613 + 0.987975i \(0.549413\pi\)
\(402\) 15.5285 0.774493
\(403\) −1.74579 −0.0869639
\(404\) −20.2843 −1.00918
\(405\) −7.79869 −0.387520
\(406\) −22.3483 −1.10913
\(407\) −6.44272 −0.319354
\(408\) −8.85025 −0.438152
\(409\) 11.7675 0.581864 0.290932 0.956744i \(-0.406035\pi\)
0.290932 + 0.956744i \(0.406035\pi\)
\(410\) −26.1009 −1.28903
\(411\) 4.64723 0.229231
\(412\) −56.4028 −2.77877
\(413\) 9.94904 0.489560
\(414\) −49.7805 −2.44658
\(415\) −15.5401 −0.762833
\(416\) −4.42159 −0.216786
\(417\) −0.305552 −0.0149629
\(418\) −13.1297 −0.642192
\(419\) −24.7721 −1.21019 −0.605097 0.796152i \(-0.706866\pi\)
−0.605097 + 0.796152i \(0.706866\pi\)
\(420\) −2.98423 −0.145616
\(421\) −19.5161 −0.951157 −0.475578 0.879673i \(-0.657761\pi\)
−0.475578 + 0.879673i \(0.657761\pi\)
\(422\) −26.0492 −1.26805
\(423\) 25.9638 1.26240
\(424\) −51.6321 −2.50748
\(425\) −21.3266 −1.03449
\(426\) −2.20613 −0.106887
\(427\) 8.36046 0.404591
\(428\) 49.3763 2.38669
\(429\) 1.10030 0.0531228
\(430\) 2.61041 0.125885
\(431\) 18.1750 0.875458 0.437729 0.899107i \(-0.355783\pi\)
0.437729 + 0.899107i \(0.355783\pi\)
\(432\) −4.23995 −0.203994
\(433\) −22.9270 −1.10180 −0.550900 0.834571i \(-0.685716\pi\)
−0.550900 + 0.834571i \(0.685716\pi\)
\(434\) −5.97642 −0.286877
\(435\) −2.33953 −0.112172
\(436\) −14.6699 −0.702560
\(437\) 20.5067 0.980968
\(438\) 8.31586 0.397347
\(439\) −17.8020 −0.849641 −0.424821 0.905278i \(-0.639663\pi\)
−0.424821 + 0.905278i \(0.639663\pi\)
\(440\) −8.03977 −0.383281
\(441\) 10.2477 0.487985
\(442\) 16.4389 0.781918
\(443\) 1.77491 0.0843286 0.0421643 0.999111i \(-0.486575\pi\)
0.0421643 + 0.999111i \(0.486575\pi\)
\(444\) 4.89769 0.232434
\(445\) 6.02011 0.285380
\(446\) −7.66261 −0.362835
\(447\) −6.14046 −0.290434
\(448\) −21.3656 −1.00943
\(449\) −9.65284 −0.455546 −0.227773 0.973714i \(-0.573144\pi\)
−0.227773 + 0.973714i \(0.573144\pi\)
\(450\) −25.8427 −1.21823
\(451\) 21.1537 0.996091
\(452\) 27.0875 1.27409
\(453\) −4.33698 −0.203769
\(454\) −7.24818 −0.340174
\(455\) 2.45348 0.115021
\(456\) 4.41782 0.206883
\(457\) 20.4646 0.957294 0.478647 0.878007i \(-0.341127\pi\)
0.478647 + 0.878007i \(0.341127\pi\)
\(458\) −18.1206 −0.846720
\(459\) −13.7094 −0.639902
\(460\) 28.3696 1.32274
\(461\) 37.3985 1.74182 0.870912 0.491439i \(-0.163529\pi\)
0.870912 + 0.491439i \(0.163529\pi\)
\(462\) 3.76668 0.175242
\(463\) 28.8345 1.34005 0.670026 0.742338i \(-0.266283\pi\)
0.670026 + 0.742338i \(0.266283\pi\)
\(464\) 8.76121 0.406729
\(465\) −0.625640 −0.0290134
\(466\) 48.3129 2.23805
\(467\) 41.8497 1.93657 0.968286 0.249844i \(-0.0803793\pi\)
0.968286 + 0.249844i \(0.0803793\pi\)
\(468\) 12.7907 0.591251
\(469\) −28.0631 −1.29583
\(470\) −23.0439 −1.06294
\(471\) 0.181904 0.00838168
\(472\) −20.3758 −0.937871
\(473\) −2.11564 −0.0972770
\(474\) 3.65490 0.167875
\(475\) 10.6457 0.488458
\(476\) 36.1350 1.65624
\(477\) −38.7241 −1.77306
\(478\) 3.83701 0.175501
\(479\) −19.1195 −0.873593 −0.436797 0.899560i \(-0.643887\pi\)
−0.436797 + 0.899560i \(0.643887\pi\)
\(480\) −1.58457 −0.0723254
\(481\) −4.02662 −0.183598
\(482\) −58.4177 −2.66085
\(483\) −5.88303 −0.267687
\(484\) −24.7493 −1.12497
\(485\) 0 0
\(486\) −25.1818 −1.14227
\(487\) −27.2384 −1.23429 −0.617144 0.786850i \(-0.711710\pi\)
−0.617144 + 0.786850i \(0.711710\pi\)
\(488\) −17.1223 −0.775092
\(489\) 4.21724 0.190710
\(490\) −9.09525 −0.410881
\(491\) 7.57555 0.341880 0.170940 0.985281i \(-0.445320\pi\)
0.170940 + 0.985281i \(0.445320\pi\)
\(492\) −16.0809 −0.724982
\(493\) 28.3285 1.27585
\(494\) −8.20588 −0.369200
\(495\) −6.02983 −0.271021
\(496\) 2.34293 0.105201
\(497\) 3.98692 0.178838
\(498\) −14.9108 −0.668170
\(499\) 29.5822 1.32428 0.662141 0.749380i \(-0.269648\pi\)
0.662141 + 0.749380i \(0.269648\pi\)
\(500\) 33.6952 1.50689
\(501\) 5.31489 0.237452
\(502\) −20.0181 −0.893451
\(503\) −16.3111 −0.727275 −0.363637 0.931541i \(-0.618465\pi\)
−0.363637 + 0.931541i \(0.618465\pi\)
\(504\) 19.3810 0.863300
\(505\) 5.97644 0.265948
\(506\) −35.8080 −1.59186
\(507\) −4.89083 −0.217209
\(508\) 39.1850 1.73855
\(509\) 41.7974 1.85264 0.926318 0.376743i \(-0.122956\pi\)
0.926318 + 0.376743i \(0.122956\pi\)
\(510\) 5.89122 0.260868
\(511\) −15.0284 −0.664817
\(512\) 18.6911 0.826037
\(513\) 6.84341 0.302144
\(514\) −69.0250 −3.04456
\(515\) 16.6182 0.732284
\(516\) 1.60829 0.0708008
\(517\) 18.6762 0.821379
\(518\) −13.7845 −0.605656
\(519\) −7.86277 −0.345137
\(520\) −5.02476 −0.220350
\(521\) −1.72704 −0.0756631 −0.0378316 0.999284i \(-0.512045\pi\)
−0.0378316 + 0.999284i \(0.512045\pi\)
\(522\) 34.3273 1.50247
\(523\) 24.7516 1.08231 0.541156 0.840922i \(-0.317987\pi\)
0.541156 + 0.840922i \(0.317987\pi\)
\(524\) −36.5220 −1.59547
\(525\) −3.05407 −0.133291
\(526\) −25.1673 −1.09735
\(527\) 7.57564 0.330000
\(528\) −1.47665 −0.0642630
\(529\) 32.9270 1.43161
\(530\) 34.3693 1.49290
\(531\) −15.2818 −0.663176
\(532\) −18.0377 −0.782033
\(533\) 13.2208 0.572658
\(534\) 5.77634 0.249967
\(535\) −14.5479 −0.628961
\(536\) 57.4737 2.48249
\(537\) 0.753483 0.0325152
\(538\) −34.1096 −1.47057
\(539\) 7.37134 0.317506
\(540\) 9.46739 0.407412
\(541\) 42.7620 1.83848 0.919242 0.393693i \(-0.128803\pi\)
0.919242 + 0.393693i \(0.128803\pi\)
\(542\) 26.0706 1.11983
\(543\) −1.38248 −0.0593281
\(544\) 19.1870 0.822635
\(545\) 4.32224 0.185145
\(546\) 2.35413 0.100748
\(547\) −34.6477 −1.48143 −0.740713 0.671821i \(-0.765512\pi\)
−0.740713 + 0.671821i \(0.765512\pi\)
\(548\) 38.8598 1.66001
\(549\) −12.8418 −0.548073
\(550\) −18.5891 −0.792641
\(551\) −14.1409 −0.602422
\(552\) 12.0485 0.512820
\(553\) −6.60511 −0.280878
\(554\) 36.8858 1.56713
\(555\) −1.44303 −0.0612530
\(556\) −2.55500 −0.108356
\(557\) 11.2288 0.475777 0.237889 0.971292i \(-0.423545\pi\)
0.237889 + 0.971292i \(0.423545\pi\)
\(558\) 9.17985 0.388614
\(559\) −1.32225 −0.0559251
\(560\) −3.29269 −0.139142
\(561\) −4.77460 −0.201584
\(562\) 33.7278 1.42272
\(563\) −24.8759 −1.04839 −0.524197 0.851597i \(-0.675635\pi\)
−0.524197 + 0.851597i \(0.675635\pi\)
\(564\) −14.1975 −0.597822
\(565\) −7.98089 −0.335759
\(566\) −31.7245 −1.33348
\(567\) 13.5231 0.567916
\(568\) −8.16526 −0.342607
\(569\) −19.5331 −0.818868 −0.409434 0.912340i \(-0.634274\pi\)
−0.409434 + 0.912340i \(0.634274\pi\)
\(570\) −2.94075 −0.123174
\(571\) 37.8845 1.58542 0.792709 0.609601i \(-0.208670\pi\)
0.792709 + 0.609601i \(0.208670\pi\)
\(572\) 9.20058 0.384695
\(573\) 9.76517 0.407946
\(574\) 45.2594 1.88909
\(575\) 29.0335 1.21078
\(576\) 32.8178 1.36741
\(577\) 4.48078 0.186537 0.0932687 0.995641i \(-0.470268\pi\)
0.0932687 + 0.995641i \(0.470268\pi\)
\(578\) −31.1476 −1.29557
\(579\) −0.111877 −0.00464946
\(580\) −19.5629 −0.812307
\(581\) 26.9468 1.11794
\(582\) 0 0
\(583\) −27.8549 −1.15363
\(584\) 30.7783 1.27362
\(585\) −3.76858 −0.155811
\(586\) 62.3936 2.57745
\(587\) −16.6439 −0.686966 −0.343483 0.939159i \(-0.611607\pi\)
−0.343483 + 0.939159i \(0.611607\pi\)
\(588\) −5.60362 −0.231090
\(589\) −3.78157 −0.155817
\(590\) 13.5633 0.558391
\(591\) 5.54345 0.228027
\(592\) 5.40393 0.222100
\(593\) 15.4466 0.634315 0.317157 0.948373i \(-0.397272\pi\)
0.317157 + 0.948373i \(0.397272\pi\)
\(594\) −11.9497 −0.490302
\(595\) −10.6466 −0.436468
\(596\) −51.3460 −2.10321
\(597\) 6.46296 0.264511
\(598\) −22.3796 −0.915168
\(599\) −14.4344 −0.589772 −0.294886 0.955532i \(-0.595282\pi\)
−0.294886 + 0.955532i \(0.595282\pi\)
\(600\) 6.25479 0.255351
\(601\) −26.1849 −1.06810 −0.534052 0.845451i \(-0.679331\pi\)
−0.534052 + 0.845451i \(0.679331\pi\)
\(602\) −4.52650 −0.184486
\(603\) 43.1053 1.75538
\(604\) −36.2655 −1.47562
\(605\) 7.29198 0.296461
\(606\) 5.73444 0.232946
\(607\) −37.5991 −1.52610 −0.763050 0.646339i \(-0.776299\pi\)
−0.763050 + 0.646339i \(0.776299\pi\)
\(608\) −9.57767 −0.388426
\(609\) 4.05679 0.164389
\(610\) 11.3976 0.461475
\(611\) 11.6724 0.472216
\(612\) −55.5038 −2.24361
\(613\) −31.9240 −1.28940 −0.644699 0.764437i \(-0.723017\pi\)
−0.644699 + 0.764437i \(0.723017\pi\)
\(614\) −70.9783 −2.86445
\(615\) 4.73797 0.191053
\(616\) 13.9411 0.561703
\(617\) −8.30489 −0.334342 −0.167171 0.985928i \(-0.553463\pi\)
−0.167171 + 0.985928i \(0.553463\pi\)
\(618\) 15.9453 0.641413
\(619\) −36.7863 −1.47857 −0.739283 0.673395i \(-0.764836\pi\)
−0.739283 + 0.673395i \(0.764836\pi\)
\(620\) −5.23155 −0.210104
\(621\) 18.6638 0.748951
\(622\) 21.2147 0.850633
\(623\) −10.4390 −0.418229
\(624\) −0.922890 −0.0369452
\(625\) 9.48376 0.379350
\(626\) −50.7058 −2.02661
\(627\) 2.38336 0.0951824
\(628\) 1.52106 0.0606971
\(629\) 17.4731 0.696697
\(630\) −12.9011 −0.513992
\(631\) −18.6322 −0.741735 −0.370868 0.928686i \(-0.620940\pi\)
−0.370868 + 0.928686i \(0.620940\pi\)
\(632\) 13.5274 0.538090
\(633\) 4.72858 0.187944
\(634\) 13.5695 0.538915
\(635\) −11.5452 −0.458158
\(636\) 21.1751 0.839645
\(637\) 4.60700 0.182536
\(638\) 24.6922 0.977575
\(639\) −6.12395 −0.242260
\(640\) −21.7419 −0.859424
\(641\) 31.5101 1.24458 0.622288 0.782789i \(-0.286203\pi\)
0.622288 + 0.782789i \(0.286203\pi\)
\(642\) −13.9588 −0.550911
\(643\) −5.25512 −0.207242 −0.103621 0.994617i \(-0.533043\pi\)
−0.103621 + 0.994617i \(0.533043\pi\)
\(644\) −49.1934 −1.93849
\(645\) −0.473855 −0.0186580
\(646\) 35.6085 1.40100
\(647\) 31.0836 1.22202 0.611012 0.791621i \(-0.290763\pi\)
0.611012 + 0.791621i \(0.290763\pi\)
\(648\) −27.6955 −1.08798
\(649\) −10.9925 −0.431493
\(650\) −11.6180 −0.455694
\(651\) 1.08487 0.0425195
\(652\) 35.2642 1.38105
\(653\) −1.99501 −0.0780709 −0.0390354 0.999238i \(-0.512429\pi\)
−0.0390354 + 0.999238i \(0.512429\pi\)
\(654\) 4.14723 0.162169
\(655\) 10.7606 0.420452
\(656\) −17.7430 −0.692749
\(657\) 23.0838 0.900584
\(658\) 39.9586 1.55775
\(659\) 20.7661 0.808931 0.404466 0.914553i \(-0.367458\pi\)
0.404466 + 0.914553i \(0.367458\pi\)
\(660\) 3.29722 0.128344
\(661\) −1.31914 −0.0513084 −0.0256542 0.999671i \(-0.508167\pi\)
−0.0256542 + 0.999671i \(0.508167\pi\)
\(662\) 66.1434 2.57074
\(663\) −2.98407 −0.115892
\(664\) −55.1874 −2.14169
\(665\) 5.31451 0.206088
\(666\) 21.1732 0.820443
\(667\) −38.5658 −1.49327
\(668\) 44.4426 1.71954
\(669\) 1.39096 0.0537775
\(670\) −38.2577 −1.47802
\(671\) −9.23730 −0.356602
\(672\) 2.74768 0.105994
\(673\) 2.95386 0.113863 0.0569314 0.998378i \(-0.481868\pi\)
0.0569314 + 0.998378i \(0.481868\pi\)
\(674\) 2.88466 0.111113
\(675\) 9.68896 0.372928
\(676\) −40.8967 −1.57295
\(677\) −36.6429 −1.40830 −0.704150 0.710051i \(-0.748672\pi\)
−0.704150 + 0.710051i \(0.748672\pi\)
\(678\) −7.65773 −0.294093
\(679\) 0 0
\(680\) 21.8044 0.836160
\(681\) 1.31573 0.0504188
\(682\) 6.60323 0.252851
\(683\) 15.2912 0.585103 0.292552 0.956250i \(-0.405496\pi\)
0.292552 + 0.956250i \(0.405496\pi\)
\(684\) 27.7061 1.05937
\(685\) −11.4494 −0.437459
\(686\) 46.1069 1.76037
\(687\) 3.28935 0.125496
\(688\) 1.77452 0.0676530
\(689\) −17.4090 −0.663231
\(690\) −8.02019 −0.305323
\(691\) −10.3168 −0.392471 −0.196236 0.980557i \(-0.562872\pi\)
−0.196236 + 0.980557i \(0.562872\pi\)
\(692\) −65.7478 −2.49936
\(693\) 10.4558 0.397185
\(694\) 4.87418 0.185022
\(695\) 0.752790 0.0285549
\(696\) −8.30836 −0.314928
\(697\) −57.3703 −2.17306
\(698\) 28.2623 1.06974
\(699\) −8.77001 −0.331712
\(700\) −25.5379 −0.965242
\(701\) 38.1415 1.44058 0.720292 0.693671i \(-0.244008\pi\)
0.720292 + 0.693671i \(0.244008\pi\)
\(702\) −7.46842 −0.281877
\(703\) −8.72212 −0.328961
\(704\) 23.6064 0.889701
\(705\) 4.18306 0.157543
\(706\) −40.0916 −1.50887
\(707\) −10.3633 −0.389751
\(708\) 8.35639 0.314052
\(709\) −1.54532 −0.0580355 −0.0290178 0.999579i \(-0.509238\pi\)
−0.0290178 + 0.999579i \(0.509238\pi\)
\(710\) 5.43526 0.203982
\(711\) 10.1455 0.380487
\(712\) 21.3792 0.801219
\(713\) −10.3133 −0.386237
\(714\) −10.2155 −0.382305
\(715\) −2.71080 −0.101378
\(716\) 6.30056 0.235463
\(717\) −0.696515 −0.0260118
\(718\) 43.1684 1.61103
\(719\) 37.7318 1.40716 0.703579 0.710617i \(-0.251584\pi\)
0.703579 + 0.710617i \(0.251584\pi\)
\(720\) 5.05762 0.188486
\(721\) −28.8162 −1.07317
\(722\) 27.1401 1.01005
\(723\) 10.6043 0.394377
\(724\) −11.5602 −0.429632
\(725\) −20.0208 −0.743553
\(726\) 6.99671 0.259672
\(727\) 14.6956 0.545031 0.272516 0.962151i \(-0.412144\pi\)
0.272516 + 0.962151i \(0.412144\pi\)
\(728\) 8.71304 0.322927
\(729\) −17.5588 −0.650326
\(730\) −20.4878 −0.758288
\(731\) 5.73774 0.212218
\(732\) 7.02211 0.259545
\(733\) −20.1071 −0.742671 −0.371336 0.928499i \(-0.621100\pi\)
−0.371336 + 0.928499i \(0.621100\pi\)
\(734\) −85.5014 −3.15591
\(735\) 1.65102 0.0608987
\(736\) −26.1208 −0.962824
\(737\) 31.0064 1.14213
\(738\) −69.5190 −2.55903
\(739\) 16.1345 0.593516 0.296758 0.954953i \(-0.404095\pi\)
0.296758 + 0.954953i \(0.404095\pi\)
\(740\) −12.0665 −0.443572
\(741\) 1.48957 0.0547209
\(742\) −59.5969 −2.18787
\(743\) −8.11443 −0.297689 −0.148845 0.988861i \(-0.547555\pi\)
−0.148845 + 0.988861i \(0.547555\pi\)
\(744\) −2.22183 −0.0814563
\(745\) 15.1283 0.554257
\(746\) 24.9131 0.912132
\(747\) −41.3906 −1.51440
\(748\) −39.9248 −1.45980
\(749\) 25.2264 0.921751
\(750\) −9.52575 −0.347831
\(751\) 20.1552 0.735474 0.367737 0.929930i \(-0.380133\pi\)
0.367737 + 0.929930i \(0.380133\pi\)
\(752\) −15.6650 −0.571243
\(753\) 3.63379 0.132423
\(754\) 15.4324 0.562013
\(755\) 10.6850 0.388868
\(756\) −16.4166 −0.597067
\(757\) −2.89755 −0.105313 −0.0526567 0.998613i \(-0.516769\pi\)
−0.0526567 + 0.998613i \(0.516769\pi\)
\(758\) −53.7221 −1.95128
\(759\) 6.50005 0.235937
\(760\) −10.8842 −0.394812
\(761\) −44.6936 −1.62014 −0.810071 0.586332i \(-0.800571\pi\)
−0.810071 + 0.586332i \(0.800571\pi\)
\(762\) −11.0777 −0.401304
\(763\) −7.49485 −0.271332
\(764\) 81.6555 2.95419
\(765\) 16.3533 0.591255
\(766\) 25.8739 0.934862
\(767\) −6.87018 −0.248068
\(768\) −10.8591 −0.391846
\(769\) −18.0949 −0.652520 −0.326260 0.945280i \(-0.605788\pi\)
−0.326260 + 0.945280i \(0.605788\pi\)
\(770\) −9.27999 −0.334428
\(771\) 12.5298 0.451249
\(772\) −0.935508 −0.0336697
\(773\) 6.53353 0.234995 0.117497 0.993073i \(-0.462513\pi\)
0.117497 + 0.993073i \(0.462513\pi\)
\(774\) 6.95276 0.249912
\(775\) −5.35398 −0.192321
\(776\) 0 0
\(777\) 2.50223 0.0897672
\(778\) −28.5951 −1.02518
\(779\) 28.6378 1.02606
\(780\) 2.06073 0.0737858
\(781\) −4.40506 −0.157626
\(782\) 97.1135 3.47277
\(783\) −12.8700 −0.459938
\(784\) −6.18283 −0.220815
\(785\) −0.448157 −0.0159954
\(786\) 10.3249 0.368277
\(787\) 43.5362 1.55190 0.775948 0.630797i \(-0.217272\pi\)
0.775948 + 0.630797i \(0.217272\pi\)
\(788\) 46.3539 1.65129
\(789\) 4.56851 0.162643
\(790\) −9.00458 −0.320369
\(791\) 13.8390 0.492059
\(792\) −21.4137 −0.760903
\(793\) −5.77321 −0.205013
\(794\) 20.1055 0.713519
\(795\) −6.23889 −0.221271
\(796\) 54.0427 1.91549
\(797\) 4.76111 0.168647 0.0843236 0.996438i \(-0.473127\pi\)
0.0843236 + 0.996438i \(0.473127\pi\)
\(798\) 5.09932 0.180514
\(799\) −50.6511 −1.79191
\(800\) −13.5601 −0.479423
\(801\) 16.0344 0.566548
\(802\) 14.6381 0.516889
\(803\) 16.6046 0.585962
\(804\) −23.5708 −0.831276
\(805\) 14.4941 0.510848
\(806\) 4.12694 0.145365
\(807\) 6.19176 0.217960
\(808\) 21.2241 0.746662
\(809\) 43.6289 1.53391 0.766955 0.641700i \(-0.221771\pi\)
0.766955 + 0.641700i \(0.221771\pi\)
\(810\) 18.4357 0.647763
\(811\) 46.2477 1.62398 0.811988 0.583674i \(-0.198386\pi\)
0.811988 + 0.583674i \(0.198386\pi\)
\(812\) 33.9225 1.19045
\(813\) −4.73246 −0.165975
\(814\) 15.2302 0.533819
\(815\) −10.3900 −0.363946
\(816\) 4.00477 0.140195
\(817\) −2.86414 −0.100203
\(818\) −27.8176 −0.972621
\(819\) 6.53478 0.228344
\(820\) 39.6185 1.38354
\(821\) −28.3808 −0.990497 −0.495249 0.868751i \(-0.664923\pi\)
−0.495249 + 0.868751i \(0.664923\pi\)
\(822\) −10.9858 −0.383173
\(823\) 15.5024 0.540380 0.270190 0.962807i \(-0.412914\pi\)
0.270190 + 0.962807i \(0.412914\pi\)
\(824\) 59.0161 2.05592
\(825\) 3.37439 0.117481
\(826\) −23.5190 −0.818329
\(827\) −17.1235 −0.595442 −0.297721 0.954653i \(-0.596226\pi\)
−0.297721 + 0.954653i \(0.596226\pi\)
\(828\) 75.5617 2.62595
\(829\) 18.7826 0.652346 0.326173 0.945310i \(-0.394241\pi\)
0.326173 + 0.945310i \(0.394241\pi\)
\(830\) 36.7359 1.27512
\(831\) −6.69571 −0.232271
\(832\) 14.7538 0.511494
\(833\) −19.9916 −0.692667
\(834\) 0.722308 0.0250115
\(835\) −13.0943 −0.453147
\(836\) 19.9295 0.689276
\(837\) −3.44172 −0.118963
\(838\) 58.5597 2.02291
\(839\) 3.01979 0.104255 0.0521274 0.998640i \(-0.483400\pi\)
0.0521274 + 0.998640i \(0.483400\pi\)
\(840\) 3.12250 0.107737
\(841\) −2.40601 −0.0829659
\(842\) 46.1350 1.58992
\(843\) −6.12245 −0.210868
\(844\) 39.5400 1.36102
\(845\) 12.0495 0.414517
\(846\) −61.3770 −2.11018
\(847\) −12.6444 −0.434468
\(848\) 23.3638 0.802315
\(849\) 5.75880 0.197642
\(850\) 50.4148 1.72921
\(851\) −23.7875 −0.815424
\(852\) 3.34869 0.114724
\(853\) 19.4106 0.664607 0.332304 0.943172i \(-0.392174\pi\)
0.332304 + 0.943172i \(0.392174\pi\)
\(854\) −19.7636 −0.676298
\(855\) −8.16316 −0.279174
\(856\) −51.6640 −1.76584
\(857\) 30.6788 1.04797 0.523984 0.851728i \(-0.324445\pi\)
0.523984 + 0.851728i \(0.324445\pi\)
\(858\) −2.60104 −0.0887979
\(859\) −21.5358 −0.734791 −0.367396 0.930065i \(-0.619750\pi\)
−0.367396 + 0.930065i \(0.619750\pi\)
\(860\) −3.96234 −0.135115
\(861\) −8.21573 −0.279991
\(862\) −42.9646 −1.46338
\(863\) −52.9673 −1.80303 −0.901514 0.432749i \(-0.857544\pi\)
−0.901514 + 0.432749i \(0.857544\pi\)
\(864\) −8.71692 −0.296556
\(865\) 19.3715 0.658652
\(866\) 54.1981 1.84173
\(867\) 5.65408 0.192023
\(868\) 9.07160 0.307910
\(869\) 7.29786 0.247563
\(870\) 5.53051 0.187502
\(871\) 19.3786 0.656620
\(872\) 15.3496 0.519802
\(873\) 0 0
\(874\) −48.4766 −1.63975
\(875\) 17.2149 0.581970
\(876\) −12.6226 −0.426479
\(877\) −43.2098 −1.45909 −0.729545 0.683932i \(-0.760268\pi\)
−0.729545 + 0.683932i \(0.760268\pi\)
\(878\) 42.0828 1.42023
\(879\) −11.3260 −0.382017
\(880\) 3.63803 0.122638
\(881\) −19.0913 −0.643202 −0.321601 0.946875i \(-0.604221\pi\)
−0.321601 + 0.946875i \(0.604221\pi\)
\(882\) −24.2250 −0.815697
\(883\) 27.7369 0.933423 0.466711 0.884410i \(-0.345439\pi\)
0.466711 + 0.884410i \(0.345439\pi\)
\(884\) −24.9526 −0.839246
\(885\) −2.46208 −0.0827618
\(886\) −4.19579 −0.140960
\(887\) 21.9226 0.736087 0.368044 0.929809i \(-0.380028\pi\)
0.368044 + 0.929809i \(0.380028\pi\)
\(888\) −5.12461 −0.171971
\(889\) 20.0196 0.671437
\(890\) −14.2312 −0.477031
\(891\) −14.9414 −0.500555
\(892\) 11.6311 0.389437
\(893\) 25.2838 0.846089
\(894\) 14.5157 0.485478
\(895\) −1.85636 −0.0620513
\(896\) 37.7009 1.25950
\(897\) 4.06246 0.135641
\(898\) 22.8188 0.761472
\(899\) 7.11180 0.237192
\(900\) 39.2265 1.30755
\(901\) 75.5444 2.51675
\(902\) −50.0062 −1.66503
\(903\) 0.821674 0.0273436
\(904\) −28.3425 −0.942658
\(905\) 3.40603 0.113220
\(906\) 10.2524 0.340612
\(907\) −5.65826 −0.187879 −0.0939397 0.995578i \(-0.529946\pi\)
−0.0939397 + 0.995578i \(0.529946\pi\)
\(908\) 11.0020 0.365115
\(909\) 15.9181 0.527970
\(910\) −5.79989 −0.192264
\(911\) 12.4649 0.412980 0.206490 0.978449i \(-0.433796\pi\)
0.206490 + 0.978449i \(0.433796\pi\)
\(912\) −1.99908 −0.0661963
\(913\) −29.7730 −0.985342
\(914\) −48.3772 −1.60018
\(915\) −2.06895 −0.0683974
\(916\) 27.5052 0.908799
\(917\) −18.6591 −0.616178
\(918\) 32.4083 1.06963
\(919\) 29.6872 0.979291 0.489645 0.871922i \(-0.337126\pi\)
0.489645 + 0.871922i \(0.337126\pi\)
\(920\) −29.6840 −0.978654
\(921\) 12.8844 0.424554
\(922\) −88.4080 −2.91156
\(923\) −2.75311 −0.0906199
\(924\) −5.71744 −0.188090
\(925\) −12.3489 −0.406028
\(926\) −68.1631 −2.23998
\(927\) 44.2621 1.45376
\(928\) 18.0122 0.591280
\(929\) 15.1270 0.496301 0.248151 0.968721i \(-0.420177\pi\)
0.248151 + 0.968721i \(0.420177\pi\)
\(930\) 1.47898 0.0484976
\(931\) 9.97929 0.327058
\(932\) −73.3341 −2.40214
\(933\) −3.85101 −0.126076
\(934\) −98.9303 −3.23710
\(935\) 11.7632 0.384698
\(936\) −13.3833 −0.437448
\(937\) 17.1692 0.560894 0.280447 0.959870i \(-0.409517\pi\)
0.280447 + 0.959870i \(0.409517\pi\)
\(938\) 66.3396 2.16607
\(939\) 9.20438 0.300374
\(940\) 34.9784 1.14087
\(941\) −1.71456 −0.0558932 −0.0279466 0.999609i \(-0.508897\pi\)
−0.0279466 + 0.999609i \(0.508897\pi\)
\(942\) −0.430010 −0.0140105
\(943\) 78.1028 2.54338
\(944\) 9.22013 0.300090
\(945\) 4.83690 0.157344
\(946\) 5.00124 0.162604
\(947\) −4.23908 −0.137752 −0.0688759 0.997625i \(-0.521941\pi\)
−0.0688759 + 0.997625i \(0.521941\pi\)
\(948\) −5.54776 −0.180183
\(949\) 10.3777 0.336873
\(950\) −25.1658 −0.816486
\(951\) −2.46321 −0.0798751
\(952\) −37.8092 −1.22540
\(953\) 27.3612 0.886316 0.443158 0.896443i \(-0.353858\pi\)
0.443158 + 0.896443i \(0.353858\pi\)
\(954\) 91.5416 2.96377
\(955\) −24.0585 −0.778514
\(956\) −5.82420 −0.188368
\(957\) −4.48226 −0.144891
\(958\) 45.1975 1.46026
\(959\) 19.8535 0.641102
\(960\) 5.28732 0.170647
\(961\) −29.0982 −0.938650
\(962\) 9.51871 0.306896
\(963\) −38.7480 −1.24864
\(964\) 88.6721 2.85594
\(965\) 0.275632 0.00887292
\(966\) 13.9072 0.447456
\(967\) 3.50058 0.112571 0.0562855 0.998415i \(-0.482074\pi\)
0.0562855 + 0.998415i \(0.482074\pi\)
\(968\) 25.8960 0.832329
\(969\) −6.46384 −0.207648
\(970\) 0 0
\(971\) 36.9161 1.18469 0.592347 0.805683i \(-0.298201\pi\)
0.592347 + 0.805683i \(0.298201\pi\)
\(972\) 38.2234 1.22602
\(973\) −1.30535 −0.0418477
\(974\) 64.3899 2.06319
\(975\) 2.10895 0.0675405
\(976\) 7.74793 0.248005
\(977\) 29.2312 0.935190 0.467595 0.883943i \(-0.345121\pi\)
0.467595 + 0.883943i \(0.345121\pi\)
\(978\) −9.96931 −0.318783
\(979\) 11.5338 0.368623
\(980\) 13.8057 0.441006
\(981\) 11.5122 0.367556
\(982\) −17.9082 −0.571473
\(983\) 49.1228 1.56678 0.783388 0.621533i \(-0.213490\pi\)
0.783388 + 0.621533i \(0.213490\pi\)
\(984\) 16.8259 0.536391
\(985\) −13.6574 −0.435162
\(986\) −66.9669 −2.13266
\(987\) −7.25350 −0.230882
\(988\) 12.4557 0.396269
\(989\) −7.81124 −0.248383
\(990\) 14.2542 0.453027
\(991\) −25.5908 −0.812917 −0.406459 0.913669i \(-0.633236\pi\)
−0.406459 + 0.913669i \(0.633236\pi\)
\(992\) 4.81685 0.152935
\(993\) −12.0067 −0.381021
\(994\) −9.42484 −0.298938
\(995\) −15.9228 −0.504787
\(996\) 22.6331 0.717158
\(997\) 33.0937 1.04809 0.524043 0.851692i \(-0.324423\pi\)
0.524043 + 0.851692i \(0.324423\pi\)
\(998\) −69.9306 −2.21362
\(999\) −7.93826 −0.251156
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9409.2.a.n.1.3 56
97.51 odd 32 97.2.h.a.79.7 yes 56
97.78 odd 32 97.2.h.a.70.7 56
97.96 even 2 inner 9409.2.a.n.1.4 56
291.245 even 32 873.2.bh.b.370.1 56
291.272 even 32 873.2.bh.b.361.1 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
97.2.h.a.70.7 56 97.78 odd 32
97.2.h.a.79.7 yes 56 97.51 odd 32
873.2.bh.b.361.1 56 291.272 even 32
873.2.bh.b.370.1 56 291.245 even 32
9409.2.a.n.1.3 56 1.1 even 1 trivial
9409.2.a.n.1.4 56 97.96 even 2 inner