Properties

Label 9409.2.a.m.1.23
Level $9409$
Weight $2$
Character 9409.1
Self dual yes
Analytic conductor $75.131$
Analytic rank $1$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9409,2,Mod(1,9409)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9409, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9409.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9409 = 97^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9409.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56,0,-8,48,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(75.1312432618\)
Analytic rank: \(1\)
Dimension: \(56\)
Twist minimal: no (minimal twist has level 97)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.23
Character \(\chi\) \(=\) 9409.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.650656 q^{2} -2.04155 q^{3} -1.57665 q^{4} -1.84237 q^{5} +1.32835 q^{6} -2.56780 q^{7} +2.32717 q^{8} +1.16793 q^{9} +1.19875 q^{10} -4.66112 q^{11} +3.21880 q^{12} -6.86367 q^{13} +1.67075 q^{14} +3.76130 q^{15} +1.63911 q^{16} +4.68768 q^{17} -0.759920 q^{18} -4.52836 q^{19} +2.90477 q^{20} +5.24229 q^{21} +3.03279 q^{22} -5.73987 q^{23} -4.75103 q^{24} -1.60566 q^{25} +4.46589 q^{26} +3.74027 q^{27} +4.04851 q^{28} +2.48714 q^{29} -2.44731 q^{30} -5.96236 q^{31} -5.72083 q^{32} +9.51591 q^{33} -3.05007 q^{34} +4.73084 q^{35} -1.84141 q^{36} -5.36028 q^{37} +2.94641 q^{38} +14.0125 q^{39} -4.28751 q^{40} +0.304536 q^{41} -3.41093 q^{42} -4.65947 q^{43} +7.34894 q^{44} -2.15176 q^{45} +3.73468 q^{46} -1.31590 q^{47} -3.34632 q^{48} -0.406420 q^{49} +1.04473 q^{50} -9.57013 q^{51} +10.8216 q^{52} +3.83913 q^{53} -2.43363 q^{54} +8.58752 q^{55} -5.97569 q^{56} +9.24488 q^{57} -1.61827 q^{58} +10.4680 q^{59} -5.93024 q^{60} -6.16483 q^{61} +3.87945 q^{62} -2.99900 q^{63} +0.444079 q^{64} +12.6455 q^{65} -6.19158 q^{66} +2.81947 q^{67} -7.39081 q^{68} +11.7182 q^{69} -3.07815 q^{70} -1.49606 q^{71} +2.71796 q^{72} +0.517325 q^{73} +3.48770 q^{74} +3.27804 q^{75} +7.13963 q^{76} +11.9688 q^{77} -9.11734 q^{78} +5.15153 q^{79} -3.01985 q^{80} -11.1397 q^{81} -0.198148 q^{82} +3.49084 q^{83} -8.26523 q^{84} -8.63645 q^{85} +3.03171 q^{86} -5.07762 q^{87} -10.8472 q^{88} -4.80065 q^{89} +1.40006 q^{90} +17.6245 q^{91} +9.04975 q^{92} +12.1725 q^{93} +0.856199 q^{94} +8.34293 q^{95} +11.6794 q^{96} +0.264440 q^{98} -5.44385 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 8 q^{3} + 48 q^{4} - 24 q^{6} + 24 q^{9} - 48 q^{11} - 56 q^{12} + 24 q^{16} + 16 q^{18} - 40 q^{24} + 8 q^{25} - 32 q^{27} - 56 q^{31} - 8 q^{33} - 56 q^{35} + 40 q^{36} - 32 q^{43} - 144 q^{44}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.650656 −0.460083 −0.230042 0.973181i \(-0.573886\pi\)
−0.230042 + 0.973181i \(0.573886\pi\)
\(3\) −2.04155 −1.17869 −0.589345 0.807882i \(-0.700614\pi\)
−0.589345 + 0.807882i \(0.700614\pi\)
\(4\) −1.57665 −0.788323
\(5\) −1.84237 −0.823934 −0.411967 0.911199i \(-0.635158\pi\)
−0.411967 + 0.911199i \(0.635158\pi\)
\(6\) 1.32835 0.542296
\(7\) −2.56780 −0.970536 −0.485268 0.874365i \(-0.661278\pi\)
−0.485268 + 0.874365i \(0.661278\pi\)
\(8\) 2.32717 0.822778
\(9\) 1.16793 0.389309
\(10\) 1.19875 0.379079
\(11\) −4.66112 −1.40538 −0.702690 0.711496i \(-0.748018\pi\)
−0.702690 + 0.711496i \(0.748018\pi\)
\(12\) 3.21880 0.929188
\(13\) −6.86367 −1.90364 −0.951820 0.306656i \(-0.900790\pi\)
−0.951820 + 0.306656i \(0.900790\pi\)
\(14\) 1.67075 0.446527
\(15\) 3.76130 0.971163
\(16\) 1.63911 0.409777
\(17\) 4.68768 1.13693 0.568464 0.822708i \(-0.307538\pi\)
0.568464 + 0.822708i \(0.307538\pi\)
\(18\) −0.759920 −0.179115
\(19\) −4.52836 −1.03888 −0.519439 0.854508i \(-0.673859\pi\)
−0.519439 + 0.854508i \(0.673859\pi\)
\(20\) 2.90477 0.649527
\(21\) 5.24229 1.14396
\(22\) 3.03279 0.646592
\(23\) −5.73987 −1.19685 −0.598423 0.801180i \(-0.704206\pi\)
−0.598423 + 0.801180i \(0.704206\pi\)
\(24\) −4.75103 −0.969800
\(25\) −1.60566 −0.321132
\(26\) 4.46589 0.875834
\(27\) 3.74027 0.719815
\(28\) 4.04851 0.765096
\(29\) 2.48714 0.461850 0.230925 0.972972i \(-0.425825\pi\)
0.230925 + 0.972972i \(0.425825\pi\)
\(30\) −2.44731 −0.446816
\(31\) −5.96236 −1.07087 −0.535436 0.844576i \(-0.679853\pi\)
−0.535436 + 0.844576i \(0.679853\pi\)
\(32\) −5.72083 −1.01131
\(33\) 9.51591 1.65651
\(34\) −3.05007 −0.523082
\(35\) 4.73084 0.799658
\(36\) −1.84141 −0.306902
\(37\) −5.36028 −0.881225 −0.440612 0.897697i \(-0.645239\pi\)
−0.440612 + 0.897697i \(0.645239\pi\)
\(38\) 2.94641 0.477970
\(39\) 14.0125 2.24380
\(40\) −4.28751 −0.677915
\(41\) 0.304536 0.0475605 0.0237803 0.999717i \(-0.492430\pi\)
0.0237803 + 0.999717i \(0.492430\pi\)
\(42\) −3.41093 −0.526317
\(43\) −4.65947 −0.710563 −0.355281 0.934759i \(-0.615615\pi\)
−0.355281 + 0.934759i \(0.615615\pi\)
\(44\) 7.34894 1.10789
\(45\) −2.15176 −0.320765
\(46\) 3.73468 0.550649
\(47\) −1.31590 −0.191944 −0.0959719 0.995384i \(-0.530596\pi\)
−0.0959719 + 0.995384i \(0.530596\pi\)
\(48\) −3.34632 −0.483000
\(49\) −0.406420 −0.0580600
\(50\) 1.04473 0.147748
\(51\) −9.57013 −1.34009
\(52\) 10.8216 1.50068
\(53\) 3.83913 0.527346 0.263673 0.964612i \(-0.415066\pi\)
0.263673 + 0.964612i \(0.415066\pi\)
\(54\) −2.43363 −0.331175
\(55\) 8.58752 1.15794
\(56\) −5.97569 −0.798535
\(57\) 9.24488 1.22451
\(58\) −1.61827 −0.212490
\(59\) 10.4680 1.36282 0.681409 0.731903i \(-0.261368\pi\)
0.681409 + 0.731903i \(0.261368\pi\)
\(60\) −5.93024 −0.765590
\(61\) −6.16483 −0.789325 −0.394663 0.918826i \(-0.629139\pi\)
−0.394663 + 0.918826i \(0.629139\pi\)
\(62\) 3.87945 0.492690
\(63\) −2.99900 −0.377839
\(64\) 0.444079 0.0555098
\(65\) 12.6455 1.56848
\(66\) −6.19158 −0.762131
\(67\) 2.81947 0.344453 0.172226 0.985057i \(-0.444904\pi\)
0.172226 + 0.985057i \(0.444904\pi\)
\(68\) −7.39081 −0.896267
\(69\) 11.7182 1.41071
\(70\) −3.07815 −0.367909
\(71\) −1.49606 −0.177549 −0.0887747 0.996052i \(-0.528295\pi\)
−0.0887747 + 0.996052i \(0.528295\pi\)
\(72\) 2.71796 0.320315
\(73\) 0.517325 0.0605483 0.0302741 0.999542i \(-0.490362\pi\)
0.0302741 + 0.999542i \(0.490362\pi\)
\(74\) 3.48770 0.405437
\(75\) 3.27804 0.378515
\(76\) 7.13963 0.818971
\(77\) 11.9688 1.36397
\(78\) −9.11734 −1.03234
\(79\) 5.15153 0.579593 0.289796 0.957088i \(-0.406412\pi\)
0.289796 + 0.957088i \(0.406412\pi\)
\(80\) −3.01985 −0.337629
\(81\) −11.1397 −1.23775
\(82\) −0.198148 −0.0218818
\(83\) 3.49084 0.383169 0.191585 0.981476i \(-0.438637\pi\)
0.191585 + 0.981476i \(0.438637\pi\)
\(84\) −8.26523 −0.901811
\(85\) −8.63645 −0.936755
\(86\) 3.03171 0.326918
\(87\) −5.07762 −0.544378
\(88\) −10.8472 −1.15632
\(89\) −4.80065 −0.508868 −0.254434 0.967090i \(-0.581889\pi\)
−0.254434 + 0.967090i \(0.581889\pi\)
\(90\) 1.40006 0.147579
\(91\) 17.6245 1.84755
\(92\) 9.04975 0.943502
\(93\) 12.1725 1.26223
\(94\) 0.856199 0.0883102
\(95\) 8.34293 0.855967
\(96\) 11.6794 1.19202
\(97\) 0 0
\(98\) 0.264440 0.0267124
\(99\) −5.44385 −0.547128
\(100\) 2.53156 0.253156
\(101\) 14.5160 1.44439 0.722197 0.691688i \(-0.243133\pi\)
0.722197 + 0.691688i \(0.243133\pi\)
\(102\) 6.22686 0.616551
\(103\) −17.1720 −1.69201 −0.846004 0.533176i \(-0.820998\pi\)
−0.846004 + 0.533176i \(0.820998\pi\)
\(104\) −15.9729 −1.56627
\(105\) −9.65825 −0.942549
\(106\) −2.49796 −0.242623
\(107\) 17.6808 1.70927 0.854635 0.519230i \(-0.173781\pi\)
0.854635 + 0.519230i \(0.173781\pi\)
\(108\) −5.89708 −0.567447
\(109\) −7.65959 −0.733655 −0.366828 0.930289i \(-0.619556\pi\)
−0.366828 + 0.930289i \(0.619556\pi\)
\(110\) −5.58752 −0.532749
\(111\) 10.9433 1.03869
\(112\) −4.20889 −0.397703
\(113\) 2.99989 0.282206 0.141103 0.989995i \(-0.454935\pi\)
0.141103 + 0.989995i \(0.454935\pi\)
\(114\) −6.01524 −0.563379
\(115\) 10.5750 0.986123
\(116\) −3.92134 −0.364087
\(117\) −8.01628 −0.741105
\(118\) −6.81107 −0.627010
\(119\) −12.0370 −1.10343
\(120\) 8.75317 0.799051
\(121\) 10.7260 0.975093
\(122\) 4.01118 0.363155
\(123\) −0.621726 −0.0560591
\(124\) 9.40054 0.844193
\(125\) 12.1701 1.08853
\(126\) 1.95132 0.173837
\(127\) −16.8734 −1.49727 −0.748636 0.662982i \(-0.769291\pi\)
−0.748636 + 0.662982i \(0.769291\pi\)
\(128\) 11.1527 0.985770
\(129\) 9.51254 0.837533
\(130\) −8.22784 −0.721629
\(131\) 0.299972 0.0262086 0.0131043 0.999914i \(-0.495829\pi\)
0.0131043 + 0.999914i \(0.495829\pi\)
\(132\) −15.0032 −1.30586
\(133\) 11.6279 1.00827
\(134\) −1.83450 −0.158477
\(135\) −6.89097 −0.593080
\(136\) 10.9090 0.935440
\(137\) 11.8331 1.01097 0.505485 0.862836i \(-0.331314\pi\)
0.505485 + 0.862836i \(0.331314\pi\)
\(138\) −7.62455 −0.649044
\(139\) 15.1982 1.28910 0.644548 0.764564i \(-0.277046\pi\)
0.644548 + 0.764564i \(0.277046\pi\)
\(140\) −7.45886 −0.630389
\(141\) 2.68648 0.226242
\(142\) 0.973419 0.0816875
\(143\) 31.9924 2.67534
\(144\) 1.91436 0.159530
\(145\) −4.58224 −0.380534
\(146\) −0.336601 −0.0278573
\(147\) 0.829727 0.0684347
\(148\) 8.45127 0.694690
\(149\) −1.92460 −0.157669 −0.0788347 0.996888i \(-0.525120\pi\)
−0.0788347 + 0.996888i \(0.525120\pi\)
\(150\) −2.13288 −0.174149
\(151\) 2.83138 0.230414 0.115207 0.993342i \(-0.463247\pi\)
0.115207 + 0.993342i \(0.463247\pi\)
\(152\) −10.5383 −0.854765
\(153\) 5.47487 0.442617
\(154\) −7.78758 −0.627541
\(155\) 10.9849 0.882328
\(156\) −22.0928 −1.76884
\(157\) 16.3421 1.30424 0.652122 0.758114i \(-0.273879\pi\)
0.652122 + 0.758114i \(0.273879\pi\)
\(158\) −3.35188 −0.266661
\(159\) −7.83779 −0.621577
\(160\) 10.5399 0.833253
\(161\) 14.7388 1.16158
\(162\) 7.24813 0.569467
\(163\) −4.77132 −0.373719 −0.186859 0.982387i \(-0.559831\pi\)
−0.186859 + 0.982387i \(0.559831\pi\)
\(164\) −0.480146 −0.0374931
\(165\) −17.5319 −1.36485
\(166\) −2.27134 −0.176290
\(167\) −23.9473 −1.85309 −0.926547 0.376179i \(-0.877238\pi\)
−0.926547 + 0.376179i \(0.877238\pi\)
\(168\) 12.1997 0.941226
\(169\) 34.1100 2.62385
\(170\) 5.61936 0.430985
\(171\) −5.28880 −0.404445
\(172\) 7.34634 0.560153
\(173\) 10.1092 0.768585 0.384292 0.923211i \(-0.374445\pi\)
0.384292 + 0.923211i \(0.374445\pi\)
\(174\) 3.30379 0.250459
\(175\) 4.12301 0.311670
\(176\) −7.64007 −0.575892
\(177\) −21.3709 −1.60634
\(178\) 3.12357 0.234122
\(179\) −8.81018 −0.658503 −0.329252 0.944242i \(-0.606796\pi\)
−0.329252 + 0.944242i \(0.606796\pi\)
\(180\) 3.39256 0.252867
\(181\) −22.0762 −1.64091 −0.820454 0.571713i \(-0.806279\pi\)
−0.820454 + 0.571713i \(0.806279\pi\)
\(182\) −11.4675 −0.850028
\(183\) 12.5858 0.930370
\(184\) −13.3576 −0.984739
\(185\) 9.87564 0.726071
\(186\) −7.92009 −0.580729
\(187\) −21.8498 −1.59782
\(188\) 2.07471 0.151314
\(189\) −9.60425 −0.698606
\(190\) −5.42838 −0.393816
\(191\) 12.4964 0.904207 0.452104 0.891965i \(-0.350674\pi\)
0.452104 + 0.891965i \(0.350674\pi\)
\(192\) −0.906609 −0.0654289
\(193\) 19.1903 1.38135 0.690676 0.723165i \(-0.257313\pi\)
0.690676 + 0.723165i \(0.257313\pi\)
\(194\) 0 0
\(195\) −25.8163 −1.84875
\(196\) 0.640781 0.0457700
\(197\) 8.38989 0.597755 0.298878 0.954291i \(-0.403388\pi\)
0.298878 + 0.954291i \(0.403388\pi\)
\(198\) 3.54208 0.251724
\(199\) 2.67707 0.189772 0.0948862 0.995488i \(-0.469751\pi\)
0.0948862 + 0.995488i \(0.469751\pi\)
\(200\) −3.73664 −0.264220
\(201\) −5.75609 −0.406003
\(202\) −9.44491 −0.664542
\(203\) −6.38647 −0.448242
\(204\) 15.0887 1.05642
\(205\) −0.561069 −0.0391868
\(206\) 11.1731 0.778465
\(207\) −6.70376 −0.465943
\(208\) −11.2503 −0.780068
\(209\) 21.1072 1.46002
\(210\) 6.28420 0.433651
\(211\) −16.2742 −1.12036 −0.560180 0.828371i \(-0.689268\pi\)
−0.560180 + 0.828371i \(0.689268\pi\)
\(212\) −6.05296 −0.415719
\(213\) 3.05428 0.209276
\(214\) −11.5041 −0.786406
\(215\) 8.58448 0.585457
\(216\) 8.70423 0.592248
\(217\) 15.3101 1.03932
\(218\) 4.98376 0.337543
\(219\) −1.05614 −0.0713677
\(220\) −13.5395 −0.912832
\(221\) −32.1747 −2.16430
\(222\) −7.12031 −0.477884
\(223\) 2.67702 0.179266 0.0896331 0.995975i \(-0.471431\pi\)
0.0896331 + 0.995975i \(0.471431\pi\)
\(224\) 14.6899 0.981512
\(225\) −1.87530 −0.125020
\(226\) −1.95190 −0.129838
\(227\) 19.1448 1.27069 0.635343 0.772230i \(-0.280859\pi\)
0.635343 + 0.772230i \(0.280859\pi\)
\(228\) −14.5759 −0.965313
\(229\) 1.28997 0.0852439 0.0426220 0.999091i \(-0.486429\pi\)
0.0426220 + 0.999091i \(0.486429\pi\)
\(230\) −6.88068 −0.453699
\(231\) −24.4349 −1.60770
\(232\) 5.78799 0.380000
\(233\) −15.2617 −0.999827 −0.499914 0.866075i \(-0.666635\pi\)
−0.499914 + 0.866075i \(0.666635\pi\)
\(234\) 5.21584 0.340970
\(235\) 2.42438 0.158149
\(236\) −16.5043 −1.07434
\(237\) −10.5171 −0.683160
\(238\) 7.83195 0.507670
\(239\) 2.51891 0.162934 0.0814672 0.996676i \(-0.474039\pi\)
0.0814672 + 0.996676i \(0.474039\pi\)
\(240\) 6.16517 0.397960
\(241\) 17.9879 1.15870 0.579351 0.815078i \(-0.303306\pi\)
0.579351 + 0.815078i \(0.303306\pi\)
\(242\) −6.97896 −0.448624
\(243\) 11.5215 0.739106
\(244\) 9.71975 0.622244
\(245\) 0.748777 0.0478376
\(246\) 0.404530 0.0257919
\(247\) 31.0812 1.97765
\(248\) −13.8754 −0.881090
\(249\) −7.12673 −0.451638
\(250\) −7.91855 −0.500813
\(251\) 9.24296 0.583411 0.291705 0.956508i \(-0.405777\pi\)
0.291705 + 0.956508i \(0.405777\pi\)
\(252\) 4.72837 0.297859
\(253\) 26.7542 1.68202
\(254\) 10.9788 0.688870
\(255\) 17.6318 1.10414
\(256\) −8.14474 −0.509046
\(257\) 22.2436 1.38752 0.693760 0.720206i \(-0.255953\pi\)
0.693760 + 0.720206i \(0.255953\pi\)
\(258\) −6.18940 −0.385335
\(259\) 13.7641 0.855260
\(260\) −19.9374 −1.23647
\(261\) 2.90480 0.179803
\(262\) −0.195178 −0.0120582
\(263\) 1.33704 0.0824454 0.0412227 0.999150i \(-0.486875\pi\)
0.0412227 + 0.999150i \(0.486875\pi\)
\(264\) 22.1451 1.36294
\(265\) −7.07312 −0.434498
\(266\) −7.56577 −0.463887
\(267\) 9.80077 0.599797
\(268\) −4.44530 −0.271540
\(269\) −22.6137 −1.37878 −0.689392 0.724389i \(-0.742122\pi\)
−0.689392 + 0.724389i \(0.742122\pi\)
\(270\) 4.48365 0.272866
\(271\) −19.5304 −1.18638 −0.593192 0.805061i \(-0.702133\pi\)
−0.593192 + 0.805061i \(0.702133\pi\)
\(272\) 7.68361 0.465887
\(273\) −35.9813 −2.17769
\(274\) −7.69928 −0.465130
\(275\) 7.48417 0.451313
\(276\) −18.4755 −1.11210
\(277\) 0.0691749 0.00415632 0.00207816 0.999998i \(-0.499339\pi\)
0.00207816 + 0.999998i \(0.499339\pi\)
\(278\) −9.88881 −0.593091
\(279\) −6.96361 −0.416901
\(280\) 11.0095 0.657941
\(281\) −4.77423 −0.284807 −0.142403 0.989809i \(-0.545483\pi\)
−0.142403 + 0.989809i \(0.545483\pi\)
\(282\) −1.74797 −0.104090
\(283\) 1.10209 0.0655125 0.0327563 0.999463i \(-0.489571\pi\)
0.0327563 + 0.999463i \(0.489571\pi\)
\(284\) 2.35875 0.139966
\(285\) −17.0325 −1.00892
\(286\) −20.8161 −1.23088
\(287\) −0.781987 −0.0461592
\(288\) −6.68152 −0.393712
\(289\) 4.97432 0.292607
\(290\) 2.98146 0.175078
\(291\) 0 0
\(292\) −0.815638 −0.0477316
\(293\) −12.0929 −0.706472 −0.353236 0.935534i \(-0.614919\pi\)
−0.353236 + 0.935534i \(0.614919\pi\)
\(294\) −0.539867 −0.0314857
\(295\) −19.2860 −1.12287
\(296\) −12.4743 −0.725052
\(297\) −17.4338 −1.01161
\(298\) 1.25225 0.0725410
\(299\) 39.3966 2.27837
\(300\) −5.16831 −0.298392
\(301\) 11.9646 0.689627
\(302\) −1.84225 −0.106010
\(303\) −29.6351 −1.70249
\(304\) −7.42247 −0.425708
\(305\) 11.3579 0.650352
\(306\) −3.56226 −0.203641
\(307\) −11.7411 −0.670098 −0.335049 0.942201i \(-0.608753\pi\)
−0.335049 + 0.942201i \(0.608753\pi\)
\(308\) −18.8706 −1.07525
\(309\) 35.0575 1.99435
\(310\) −7.14739 −0.405945
\(311\) −10.3352 −0.586055 −0.293028 0.956104i \(-0.594663\pi\)
−0.293028 + 0.956104i \(0.594663\pi\)
\(312\) 32.6095 1.84615
\(313\) −1.91530 −0.108259 −0.0541296 0.998534i \(-0.517238\pi\)
−0.0541296 + 0.998534i \(0.517238\pi\)
\(314\) −10.6331 −0.600061
\(315\) 5.52528 0.311314
\(316\) −8.12215 −0.456906
\(317\) 15.4087 0.865442 0.432721 0.901528i \(-0.357554\pi\)
0.432721 + 0.901528i \(0.357554\pi\)
\(318\) 5.09970 0.285977
\(319\) −11.5929 −0.649075
\(320\) −0.818159 −0.0457365
\(321\) −36.0963 −2.01470
\(322\) −9.58991 −0.534425
\(323\) −21.2275 −1.18113
\(324\) 17.5634 0.975745
\(325\) 11.0207 0.611320
\(326\) 3.10449 0.171942
\(327\) 15.6374 0.864752
\(328\) 0.708706 0.0391318
\(329\) 3.37897 0.186288
\(330\) 11.4072 0.627946
\(331\) −0.564788 −0.0310436 −0.0155218 0.999880i \(-0.504941\pi\)
−0.0155218 + 0.999880i \(0.504941\pi\)
\(332\) −5.50382 −0.302061
\(333\) −6.26042 −0.343069
\(334\) 15.5814 0.852578
\(335\) −5.19451 −0.283807
\(336\) 8.59267 0.468769
\(337\) −28.7187 −1.56441 −0.782204 0.623022i \(-0.785905\pi\)
−0.782204 + 0.623022i \(0.785905\pi\)
\(338\) −22.1939 −1.20719
\(339\) −6.12443 −0.332633
\(340\) 13.6166 0.738466
\(341\) 27.7913 1.50498
\(342\) 3.44119 0.186078
\(343\) 19.0182 1.02689
\(344\) −10.8434 −0.584635
\(345\) −21.5894 −1.16233
\(346\) −6.57759 −0.353613
\(347\) 18.1465 0.974157 0.487078 0.873358i \(-0.338063\pi\)
0.487078 + 0.873358i \(0.338063\pi\)
\(348\) 8.00562 0.429146
\(349\) 3.71361 0.198785 0.0993925 0.995048i \(-0.468310\pi\)
0.0993925 + 0.995048i \(0.468310\pi\)
\(350\) −2.68266 −0.143394
\(351\) −25.6720 −1.37027
\(352\) 26.6655 1.42127
\(353\) 24.5441 1.30635 0.653174 0.757208i \(-0.273437\pi\)
0.653174 + 0.757208i \(0.273437\pi\)
\(354\) 13.9051 0.739050
\(355\) 2.75630 0.146289
\(356\) 7.56893 0.401152
\(357\) 24.5742 1.30060
\(358\) 5.73240 0.302967
\(359\) 10.2352 0.540193 0.270096 0.962833i \(-0.412944\pi\)
0.270096 + 0.962833i \(0.412944\pi\)
\(360\) −5.00750 −0.263919
\(361\) 1.50606 0.0792662
\(362\) 14.3640 0.754954
\(363\) −21.8977 −1.14933
\(364\) −27.7876 −1.45647
\(365\) −0.953106 −0.0498878
\(366\) −8.18903 −0.428048
\(367\) −10.2657 −0.535868 −0.267934 0.963437i \(-0.586341\pi\)
−0.267934 + 0.963437i \(0.586341\pi\)
\(368\) −9.40827 −0.490440
\(369\) 0.355676 0.0185158
\(370\) −6.42564 −0.334053
\(371\) −9.85812 −0.511808
\(372\) −19.1917 −0.995042
\(373\) −24.9947 −1.29418 −0.647089 0.762415i \(-0.724014\pi\)
−0.647089 + 0.762415i \(0.724014\pi\)
\(374\) 14.2167 0.735129
\(375\) −24.8459 −1.28303
\(376\) −3.06232 −0.157927
\(377\) −17.0709 −0.879197
\(378\) 6.24906 0.321417
\(379\) −15.0677 −0.773974 −0.386987 0.922085i \(-0.626484\pi\)
−0.386987 + 0.922085i \(0.626484\pi\)
\(380\) −13.1539 −0.674779
\(381\) 34.4479 1.76482
\(382\) −8.13085 −0.416011
\(383\) −4.98783 −0.254866 −0.127433 0.991847i \(-0.540674\pi\)
−0.127433 + 0.991847i \(0.540674\pi\)
\(384\) −22.7688 −1.16192
\(385\) −22.0510 −1.12382
\(386\) −12.4863 −0.635537
\(387\) −5.44193 −0.276629
\(388\) 0 0
\(389\) 22.6518 1.14849 0.574247 0.818682i \(-0.305295\pi\)
0.574247 + 0.818682i \(0.305295\pi\)
\(390\) 16.7976 0.850577
\(391\) −26.9067 −1.36073
\(392\) −0.945807 −0.0477705
\(393\) −0.612407 −0.0308918
\(394\) −5.45894 −0.275017
\(395\) −9.49105 −0.477546
\(396\) 8.58303 0.431313
\(397\) 17.3358 0.870059 0.435030 0.900416i \(-0.356738\pi\)
0.435030 + 0.900416i \(0.356738\pi\)
\(398\) −1.74185 −0.0873111
\(399\) −23.7390 −1.18843
\(400\) −2.63185 −0.131592
\(401\) 33.0496 1.65042 0.825210 0.564827i \(-0.191057\pi\)
0.825210 + 0.564827i \(0.191057\pi\)
\(402\) 3.74523 0.186795
\(403\) 40.9237 2.03856
\(404\) −22.8866 −1.13865
\(405\) 20.5235 1.01982
\(406\) 4.15540 0.206229
\(407\) 24.9849 1.23846
\(408\) −22.2713 −1.10259
\(409\) 27.6495 1.36718 0.683589 0.729867i \(-0.260418\pi\)
0.683589 + 0.729867i \(0.260418\pi\)
\(410\) 0.365063 0.0180292
\(411\) −24.1579 −1.19162
\(412\) 27.0742 1.33385
\(413\) −26.8797 −1.32266
\(414\) 4.36184 0.214373
\(415\) −6.43143 −0.315707
\(416\) 39.2659 1.92517
\(417\) −31.0279 −1.51944
\(418\) −13.7335 −0.671730
\(419\) 7.39493 0.361266 0.180633 0.983551i \(-0.442185\pi\)
0.180633 + 0.983551i \(0.442185\pi\)
\(420\) 15.2276 0.743033
\(421\) −23.0464 −1.12321 −0.561606 0.827405i \(-0.689816\pi\)
−0.561606 + 0.827405i \(0.689816\pi\)
\(422\) 10.5889 0.515459
\(423\) −1.53688 −0.0747255
\(424\) 8.93431 0.433888
\(425\) −7.52682 −0.365104
\(426\) −1.98728 −0.0962842
\(427\) 15.8300 0.766069
\(428\) −27.8764 −1.34746
\(429\) −65.3141 −3.15339
\(430\) −5.58555 −0.269359
\(431\) −23.5543 −1.13457 −0.567286 0.823521i \(-0.692006\pi\)
−0.567286 + 0.823521i \(0.692006\pi\)
\(432\) 6.13070 0.294963
\(433\) −23.0763 −1.10898 −0.554488 0.832192i \(-0.687086\pi\)
−0.554488 + 0.832192i \(0.687086\pi\)
\(434\) −9.96164 −0.478174
\(435\) 9.35488 0.448532
\(436\) 12.0765 0.578357
\(437\) 25.9922 1.24338
\(438\) 0.687187 0.0328351
\(439\) 4.75841 0.227107 0.113553 0.993532i \(-0.463777\pi\)
0.113553 + 0.993532i \(0.463777\pi\)
\(440\) 19.9846 0.952728
\(441\) −0.474669 −0.0226033
\(442\) 20.9347 0.995760
\(443\) 13.9758 0.664011 0.332006 0.943277i \(-0.392275\pi\)
0.332006 + 0.943277i \(0.392275\pi\)
\(444\) −17.2537 −0.818824
\(445\) 8.84459 0.419274
\(446\) −1.74182 −0.0824774
\(447\) 3.92917 0.185843
\(448\) −1.14030 −0.0538743
\(449\) 28.3851 1.33958 0.669788 0.742552i \(-0.266385\pi\)
0.669788 + 0.742552i \(0.266385\pi\)
\(450\) 1.22017 0.0575195
\(451\) −1.41948 −0.0668406
\(452\) −4.72977 −0.222470
\(453\) −5.78040 −0.271587
\(454\) −12.4567 −0.584621
\(455\) −32.4709 −1.52226
\(456\) 21.5144 1.00750
\(457\) 2.08253 0.0974164 0.0487082 0.998813i \(-0.484490\pi\)
0.0487082 + 0.998813i \(0.484490\pi\)
\(458\) −0.839330 −0.0392193
\(459\) 17.5332 0.818378
\(460\) −16.6730 −0.777384
\(461\) −16.0119 −0.745747 −0.372874 0.927882i \(-0.621627\pi\)
−0.372874 + 0.927882i \(0.621627\pi\)
\(462\) 15.8987 0.739676
\(463\) −33.6885 −1.56564 −0.782818 0.622250i \(-0.786219\pi\)
−0.782818 + 0.622250i \(0.786219\pi\)
\(464\) 4.07669 0.189256
\(465\) −22.4262 −1.03999
\(466\) 9.93012 0.460004
\(467\) −34.8296 −1.61172 −0.805860 0.592105i \(-0.798297\pi\)
−0.805860 + 0.592105i \(0.798297\pi\)
\(468\) 12.6388 0.584230
\(469\) −7.23982 −0.334304
\(470\) −1.57744 −0.0727618
\(471\) −33.3633 −1.53730
\(472\) 24.3608 1.12130
\(473\) 21.7183 0.998611
\(474\) 6.84303 0.314311
\(475\) 7.27101 0.333617
\(476\) 18.9781 0.869860
\(477\) 4.48383 0.205301
\(478\) −1.63894 −0.0749634
\(479\) −14.4795 −0.661587 −0.330794 0.943703i \(-0.607316\pi\)
−0.330794 + 0.943703i \(0.607316\pi\)
\(480\) −21.5177 −0.982146
\(481\) 36.7912 1.67754
\(482\) −11.7039 −0.533100
\(483\) −30.0901 −1.36915
\(484\) −16.9112 −0.768689
\(485\) 0 0
\(486\) −7.49655 −0.340050
\(487\) −0.262184 −0.0118807 −0.00594035 0.999982i \(-0.501891\pi\)
−0.00594035 + 0.999982i \(0.501891\pi\)
\(488\) −14.3466 −0.649439
\(489\) 9.74090 0.440499
\(490\) −0.487197 −0.0220093
\(491\) 14.7374 0.665091 0.332545 0.943087i \(-0.392093\pi\)
0.332545 + 0.943087i \(0.392093\pi\)
\(492\) 0.980242 0.0441927
\(493\) 11.6589 0.525091
\(494\) −20.2232 −0.909884
\(495\) 10.0296 0.450797
\(496\) −9.77295 −0.438819
\(497\) 3.84157 0.172318
\(498\) 4.63705 0.207791
\(499\) −11.3367 −0.507503 −0.253751 0.967270i \(-0.581664\pi\)
−0.253751 + 0.967270i \(0.581664\pi\)
\(500\) −19.1879 −0.858111
\(501\) 48.8895 2.18422
\(502\) −6.01399 −0.268418
\(503\) −26.3827 −1.17635 −0.588174 0.808734i \(-0.700153\pi\)
−0.588174 + 0.808734i \(0.700153\pi\)
\(504\) −6.97918 −0.310877
\(505\) −26.7438 −1.19009
\(506\) −17.4078 −0.773871
\(507\) −69.6373 −3.09270
\(508\) 26.6034 1.18033
\(509\) −1.35821 −0.0602015 −0.0301008 0.999547i \(-0.509583\pi\)
−0.0301008 + 0.999547i \(0.509583\pi\)
\(510\) −11.4722 −0.507998
\(511\) −1.32839 −0.0587643
\(512\) −17.0060 −0.751566
\(513\) −16.9373 −0.747799
\(514\) −14.4730 −0.638375
\(515\) 31.6373 1.39410
\(516\) −14.9979 −0.660247
\(517\) 6.13357 0.269754
\(518\) −8.95570 −0.393491
\(519\) −20.6384 −0.905923
\(520\) 29.4281 1.29051
\(521\) −35.9794 −1.57629 −0.788143 0.615492i \(-0.788957\pi\)
−0.788143 + 0.615492i \(0.788957\pi\)
\(522\) −1.89003 −0.0827242
\(523\) 9.81356 0.429117 0.214559 0.976711i \(-0.431169\pi\)
0.214559 + 0.976711i \(0.431169\pi\)
\(524\) −0.472949 −0.0206609
\(525\) −8.41733 −0.367363
\(526\) −0.869953 −0.0379318
\(527\) −27.9496 −1.21751
\(528\) 15.5976 0.678798
\(529\) 9.94614 0.432441
\(530\) 4.60217 0.199905
\(531\) 12.2259 0.530558
\(532\) −18.3331 −0.794841
\(533\) −2.09024 −0.0905382
\(534\) −6.37693 −0.275957
\(535\) −32.5747 −1.40833
\(536\) 6.56137 0.283408
\(537\) 17.9864 0.776171
\(538\) 14.7138 0.634355
\(539\) 1.89437 0.0815964
\(540\) 10.8646 0.467539
\(541\) 29.9403 1.28724 0.643618 0.765347i \(-0.277433\pi\)
0.643618 + 0.765347i \(0.277433\pi\)
\(542\) 12.7075 0.545836
\(543\) 45.0696 1.93412
\(544\) −26.8174 −1.14979
\(545\) 14.1118 0.604484
\(546\) 23.4115 1.00192
\(547\) −37.4063 −1.59938 −0.799689 0.600414i \(-0.795002\pi\)
−0.799689 + 0.600414i \(0.795002\pi\)
\(548\) −18.6566 −0.796971
\(549\) −7.20008 −0.307292
\(550\) −4.86962 −0.207641
\(551\) −11.2627 −0.479806
\(552\) 27.2703 1.16070
\(553\) −13.2281 −0.562516
\(554\) −0.0450091 −0.00191225
\(555\) −20.1616 −0.855813
\(556\) −23.9622 −1.01622
\(557\) 20.8187 0.882116 0.441058 0.897479i \(-0.354603\pi\)
0.441058 + 0.897479i \(0.354603\pi\)
\(558\) 4.53092 0.191809
\(559\) 31.9811 1.35266
\(560\) 7.75435 0.327681
\(561\) 44.6075 1.88333
\(562\) 3.10638 0.131035
\(563\) −26.8099 −1.12990 −0.564951 0.825125i \(-0.691105\pi\)
−0.564951 + 0.825125i \(0.691105\pi\)
\(564\) −4.23563 −0.178352
\(565\) −5.52692 −0.232519
\(566\) −0.717083 −0.0301412
\(567\) 28.6046 1.20128
\(568\) −3.48158 −0.146084
\(569\) −12.2909 −0.515261 −0.257630 0.966244i \(-0.582942\pi\)
−0.257630 + 0.966244i \(0.582942\pi\)
\(570\) 11.0823 0.464187
\(571\) 34.3236 1.43640 0.718200 0.695837i \(-0.244966\pi\)
0.718200 + 0.695837i \(0.244966\pi\)
\(572\) −50.4407 −2.10903
\(573\) −25.5120 −1.06578
\(574\) 0.508805 0.0212371
\(575\) 9.21629 0.384346
\(576\) 0.518652 0.0216105
\(577\) 4.29547 0.178823 0.0894114 0.995995i \(-0.471501\pi\)
0.0894114 + 0.995995i \(0.471501\pi\)
\(578\) −3.23657 −0.134624
\(579\) −39.1781 −1.62818
\(580\) 7.22457 0.299984
\(581\) −8.96377 −0.371880
\(582\) 0 0
\(583\) −17.8947 −0.741121
\(584\) 1.20390 0.0498178
\(585\) 14.7690 0.610622
\(586\) 7.86830 0.325036
\(587\) 39.8276 1.64386 0.821930 0.569588i \(-0.192897\pi\)
0.821930 + 0.569588i \(0.192897\pi\)
\(588\) −1.30819 −0.0539487
\(589\) 26.9997 1.11250
\(590\) 12.5485 0.516615
\(591\) −17.1284 −0.704568
\(592\) −8.78607 −0.361105
\(593\) −5.90990 −0.242690 −0.121345 0.992610i \(-0.538721\pi\)
−0.121345 + 0.992610i \(0.538721\pi\)
\(594\) 11.3434 0.465427
\(595\) 22.1767 0.909154
\(596\) 3.03441 0.124294
\(597\) −5.46537 −0.223683
\(598\) −25.6337 −1.04824
\(599\) −4.83047 −0.197368 −0.0986838 0.995119i \(-0.531463\pi\)
−0.0986838 + 0.995119i \(0.531463\pi\)
\(600\) 7.62854 0.311434
\(601\) 40.3140 1.64444 0.822221 0.569169i \(-0.192735\pi\)
0.822221 + 0.569169i \(0.192735\pi\)
\(602\) −7.78482 −0.317286
\(603\) 3.29294 0.134099
\(604\) −4.46408 −0.181641
\(605\) −19.7613 −0.803413
\(606\) 19.2823 0.783288
\(607\) 15.6280 0.634321 0.317161 0.948372i \(-0.397271\pi\)
0.317161 + 0.948372i \(0.397271\pi\)
\(608\) 25.9060 1.05063
\(609\) 13.0383 0.528339
\(610\) −7.39010 −0.299216
\(611\) 9.03191 0.365392
\(612\) −8.63194 −0.348925
\(613\) −28.9912 −1.17094 −0.585472 0.810693i \(-0.699091\pi\)
−0.585472 + 0.810693i \(0.699091\pi\)
\(614\) 7.63939 0.308301
\(615\) 1.14545 0.0461890
\(616\) 27.8534 1.12225
\(617\) −8.33897 −0.335714 −0.167857 0.985811i \(-0.553685\pi\)
−0.167857 + 0.985811i \(0.553685\pi\)
\(618\) −22.8104 −0.917569
\(619\) −35.0398 −1.40837 −0.704185 0.710016i \(-0.748688\pi\)
−0.704185 + 0.710016i \(0.748688\pi\)
\(620\) −17.3193 −0.695560
\(621\) −21.4687 −0.861508
\(622\) 6.72466 0.269634
\(623\) 12.3271 0.493874
\(624\) 22.9681 0.919458
\(625\) −14.3936 −0.575742
\(626\) 1.24620 0.0498083
\(627\) −43.0915 −1.72091
\(628\) −25.7658 −1.02817
\(629\) −25.1273 −1.00189
\(630\) −3.59506 −0.143231
\(631\) −32.9488 −1.31167 −0.655835 0.754904i \(-0.727683\pi\)
−0.655835 + 0.754904i \(0.727683\pi\)
\(632\) 11.9885 0.476876
\(633\) 33.2246 1.32056
\(634\) −10.0258 −0.398175
\(635\) 31.0871 1.23365
\(636\) 12.3574 0.490003
\(637\) 2.78953 0.110525
\(638\) 7.54296 0.298629
\(639\) −1.74729 −0.0691216
\(640\) −20.5475 −0.812210
\(641\) −46.4379 −1.83419 −0.917093 0.398673i \(-0.869471\pi\)
−0.917093 + 0.398673i \(0.869471\pi\)
\(642\) 23.4863 0.926929
\(643\) −14.1962 −0.559842 −0.279921 0.960023i \(-0.590308\pi\)
−0.279921 + 0.960023i \(0.590308\pi\)
\(644\) −23.2379 −0.915702
\(645\) −17.5257 −0.690072
\(646\) 13.8118 0.543418
\(647\) −24.3060 −0.955567 −0.477784 0.878478i \(-0.658560\pi\)
−0.477784 + 0.878478i \(0.658560\pi\)
\(648\) −25.9240 −1.01839
\(649\) −48.7926 −1.91528
\(650\) −7.17071 −0.281258
\(651\) −31.2564 −1.22504
\(652\) 7.52269 0.294611
\(653\) 46.1296 1.80519 0.902596 0.430489i \(-0.141659\pi\)
0.902596 + 0.430489i \(0.141659\pi\)
\(654\) −10.1746 −0.397858
\(655\) −0.552660 −0.0215942
\(656\) 0.499167 0.0194892
\(657\) 0.604198 0.0235720
\(658\) −2.19855 −0.0857082
\(659\) 0.618447 0.0240913 0.0120456 0.999927i \(-0.496166\pi\)
0.0120456 + 0.999927i \(0.496166\pi\)
\(660\) 27.6415 1.07595
\(661\) 18.5990 0.723416 0.361708 0.932291i \(-0.382194\pi\)
0.361708 + 0.932291i \(0.382194\pi\)
\(662\) 0.367483 0.0142826
\(663\) 65.6863 2.55104
\(664\) 8.12377 0.315263
\(665\) −21.4230 −0.830747
\(666\) 4.07338 0.157840
\(667\) −14.2759 −0.552764
\(668\) 37.7564 1.46084
\(669\) −5.46526 −0.211299
\(670\) 3.37984 0.130575
\(671\) 28.7350 1.10930
\(672\) −29.9902 −1.15690
\(673\) −15.5779 −0.600485 −0.300243 0.953863i \(-0.597068\pi\)
−0.300243 + 0.953863i \(0.597068\pi\)
\(674\) 18.6860 0.719758
\(675\) −6.00560 −0.231156
\(676\) −53.7795 −2.06844
\(677\) 20.6285 0.792816 0.396408 0.918074i \(-0.370257\pi\)
0.396408 + 0.918074i \(0.370257\pi\)
\(678\) 3.98490 0.153039
\(679\) 0 0
\(680\) −20.0985 −0.770741
\(681\) −39.0851 −1.49774
\(682\) −18.0826 −0.692417
\(683\) −15.8823 −0.607718 −0.303859 0.952717i \(-0.598275\pi\)
−0.303859 + 0.952717i \(0.598275\pi\)
\(684\) 8.33857 0.318833
\(685\) −21.8010 −0.832972
\(686\) −12.3743 −0.472453
\(687\) −2.63355 −0.100476
\(688\) −7.63737 −0.291172
\(689\) −26.3506 −1.00388
\(690\) 14.0473 0.534770
\(691\) 11.2426 0.427690 0.213845 0.976868i \(-0.431401\pi\)
0.213845 + 0.976868i \(0.431401\pi\)
\(692\) −15.9386 −0.605893
\(693\) 13.9787 0.531007
\(694\) −11.8072 −0.448193
\(695\) −28.0008 −1.06213
\(696\) −11.8165 −0.447902
\(697\) 1.42757 0.0540730
\(698\) −2.41628 −0.0914576
\(699\) 31.1575 1.17849
\(700\) −6.50053 −0.245697
\(701\) −47.2986 −1.78645 −0.893223 0.449615i \(-0.851561\pi\)
−0.893223 + 0.449615i \(0.851561\pi\)
\(702\) 16.7036 0.630438
\(703\) 24.2733 0.915484
\(704\) −2.06990 −0.0780124
\(705\) −4.94950 −0.186409
\(706\) −15.9697 −0.601029
\(707\) −37.2741 −1.40184
\(708\) 33.6944 1.26631
\(709\) 3.41346 0.128195 0.0640975 0.997944i \(-0.479583\pi\)
0.0640975 + 0.997944i \(0.479583\pi\)
\(710\) −1.79340 −0.0673051
\(711\) 6.01662 0.225641
\(712\) −11.1719 −0.418685
\(713\) 34.2232 1.28167
\(714\) −15.9893 −0.598385
\(715\) −58.9419 −2.20430
\(716\) 13.8905 0.519114
\(717\) −5.14247 −0.192049
\(718\) −6.65959 −0.248534
\(719\) 34.4387 1.28435 0.642173 0.766560i \(-0.278033\pi\)
0.642173 + 0.766560i \(0.278033\pi\)
\(720\) −3.52696 −0.131442
\(721\) 44.0942 1.64216
\(722\) −0.979926 −0.0364691
\(723\) −36.7232 −1.36575
\(724\) 34.8063 1.29357
\(725\) −3.99350 −0.148315
\(726\) 14.2479 0.528789
\(727\) −5.68610 −0.210886 −0.105443 0.994425i \(-0.533626\pi\)
−0.105443 + 0.994425i \(0.533626\pi\)
\(728\) 41.0152 1.52012
\(729\) 9.89743 0.366571
\(730\) 0.620144 0.0229526
\(731\) −21.8421 −0.807859
\(732\) −19.8434 −0.733432
\(733\) −0.445092 −0.0164399 −0.00821993 0.999966i \(-0.502617\pi\)
−0.00821993 + 0.999966i \(0.502617\pi\)
\(734\) 6.67947 0.246544
\(735\) −1.52867 −0.0563857
\(736\) 32.8368 1.21038
\(737\) −13.1419 −0.484087
\(738\) −0.231423 −0.00851880
\(739\) 7.64189 0.281111 0.140556 0.990073i \(-0.455111\pi\)
0.140556 + 0.990073i \(0.455111\pi\)
\(740\) −15.5704 −0.572379
\(741\) −63.4538 −2.33103
\(742\) 6.41424 0.235474
\(743\) 2.37475 0.0871210 0.0435605 0.999051i \(-0.486130\pi\)
0.0435605 + 0.999051i \(0.486130\pi\)
\(744\) 28.3274 1.03853
\(745\) 3.54583 0.129909
\(746\) 16.2630 0.595430
\(747\) 4.07705 0.149171
\(748\) 34.4494 1.25960
\(749\) −45.4007 −1.65891
\(750\) 16.1661 0.590303
\(751\) −32.7998 −1.19688 −0.598441 0.801167i \(-0.704213\pi\)
−0.598441 + 0.801167i \(0.704213\pi\)
\(752\) −2.15690 −0.0786541
\(753\) −18.8700 −0.687660
\(754\) 11.1073 0.404504
\(755\) −5.21645 −0.189846
\(756\) 15.1425 0.550727
\(757\) −20.5491 −0.746870 −0.373435 0.927656i \(-0.621820\pi\)
−0.373435 + 0.927656i \(0.621820\pi\)
\(758\) 9.80387 0.356093
\(759\) −54.6201 −1.98258
\(760\) 19.4154 0.704271
\(761\) −24.8727 −0.901635 −0.450818 0.892616i \(-0.648868\pi\)
−0.450818 + 0.892616i \(0.648868\pi\)
\(762\) −22.4137 −0.811963
\(763\) 19.6683 0.712039
\(764\) −19.7024 −0.712808
\(765\) −10.0868 −0.364687
\(766\) 3.24536 0.117260
\(767\) −71.8489 −2.59431
\(768\) 16.6279 0.600008
\(769\) 3.69186 0.133132 0.0665660 0.997782i \(-0.478796\pi\)
0.0665660 + 0.997782i \(0.478796\pi\)
\(770\) 14.3476 0.517052
\(771\) −45.4115 −1.63546
\(772\) −30.2564 −1.08895
\(773\) 29.0765 1.04581 0.522904 0.852391i \(-0.324848\pi\)
0.522904 + 0.852391i \(0.324848\pi\)
\(774\) 3.54082 0.127272
\(775\) 9.57353 0.343891
\(776\) 0 0
\(777\) −28.1001 −1.00809
\(778\) −14.7386 −0.528403
\(779\) −1.37905 −0.0494096
\(780\) 40.7032 1.45741
\(781\) 6.97330 0.249524
\(782\) 17.5070 0.626049
\(783\) 9.30257 0.332447
\(784\) −0.666166 −0.0237916
\(785\) −30.1083 −1.07461
\(786\) 0.398466 0.0142128
\(787\) −52.1926 −1.86047 −0.930233 0.366969i \(-0.880396\pi\)
−0.930233 + 0.366969i \(0.880396\pi\)
\(788\) −13.2279 −0.471224
\(789\) −2.72963 −0.0971775
\(790\) 6.17541 0.219711
\(791\) −7.70311 −0.273891
\(792\) −12.6688 −0.450165
\(793\) 42.3134 1.50259
\(794\) −11.2797 −0.400300
\(795\) 14.4401 0.512139
\(796\) −4.22079 −0.149602
\(797\) −25.7730 −0.912926 −0.456463 0.889742i \(-0.650884\pi\)
−0.456463 + 0.889742i \(0.650884\pi\)
\(798\) 15.4459 0.546779
\(799\) −6.16852 −0.218227
\(800\) 9.18571 0.324764
\(801\) −5.60681 −0.198107
\(802\) −21.5039 −0.759330
\(803\) −2.41131 −0.0850934
\(804\) 9.07531 0.320062
\(805\) −27.1544 −0.957068
\(806\) −26.6273 −0.937906
\(807\) 46.1671 1.62516
\(808\) 33.7811 1.18842
\(809\) −9.38194 −0.329852 −0.164926 0.986306i \(-0.552738\pi\)
−0.164926 + 0.986306i \(0.552738\pi\)
\(810\) −13.3538 −0.469204
\(811\) 7.97690 0.280107 0.140053 0.990144i \(-0.455273\pi\)
0.140053 + 0.990144i \(0.455273\pi\)
\(812\) 10.0692 0.353360
\(813\) 39.8722 1.39838
\(814\) −16.2566 −0.569793
\(815\) 8.79056 0.307920
\(816\) −15.6865 −0.549136
\(817\) 21.0998 0.738187
\(818\) −17.9903 −0.629016
\(819\) 20.5842 0.719269
\(820\) 0.884608 0.0308918
\(821\) 48.8084 1.70343 0.851713 0.524008i \(-0.175564\pi\)
0.851713 + 0.524008i \(0.175564\pi\)
\(822\) 15.7185 0.548244
\(823\) 26.2841 0.916205 0.458102 0.888899i \(-0.348529\pi\)
0.458102 + 0.888899i \(0.348529\pi\)
\(824\) −39.9621 −1.39215
\(825\) −15.2793 −0.531958
\(826\) 17.4894 0.608535
\(827\) 12.0210 0.418012 0.209006 0.977914i \(-0.432977\pi\)
0.209006 + 0.977914i \(0.432977\pi\)
\(828\) 10.5695 0.367314
\(829\) −31.0007 −1.07670 −0.538350 0.842721i \(-0.680952\pi\)
−0.538350 + 0.842721i \(0.680952\pi\)
\(830\) 4.18465 0.145251
\(831\) −0.141224 −0.00489901
\(832\) −3.04801 −0.105671
\(833\) −1.90517 −0.0660101
\(834\) 20.1885 0.699071
\(835\) 44.1198 1.52683
\(836\) −33.2786 −1.15097
\(837\) −22.3008 −0.770830
\(838\) −4.81156 −0.166212
\(839\) −46.5457 −1.60694 −0.803469 0.595347i \(-0.797015\pi\)
−0.803469 + 0.595347i \(0.797015\pi\)
\(840\) −22.4764 −0.775508
\(841\) −22.8141 −0.786694
\(842\) 14.9953 0.516771
\(843\) 9.74684 0.335699
\(844\) 25.6586 0.883206
\(845\) −62.8434 −2.16188
\(846\) 0.999979 0.0343800
\(847\) −27.5423 −0.946363
\(848\) 6.29275 0.216094
\(849\) −2.24998 −0.0772190
\(850\) 4.89737 0.167978
\(851\) 30.7673 1.05469
\(852\) −4.81551 −0.164977
\(853\) −9.67911 −0.331406 −0.165703 0.986176i \(-0.552989\pi\)
−0.165703 + 0.986176i \(0.552989\pi\)
\(854\) −10.2999 −0.352455
\(855\) 9.74395 0.333236
\(856\) 41.1462 1.40635
\(857\) −23.7610 −0.811660 −0.405830 0.913949i \(-0.633017\pi\)
−0.405830 + 0.913949i \(0.633017\pi\)
\(858\) 42.4970 1.45082
\(859\) 45.2604 1.54426 0.772132 0.635462i \(-0.219190\pi\)
0.772132 + 0.635462i \(0.219190\pi\)
\(860\) −13.5347 −0.461529
\(861\) 1.59647 0.0544074
\(862\) 15.3258 0.521997
\(863\) −5.34189 −0.181840 −0.0909200 0.995858i \(-0.528981\pi\)
−0.0909200 + 0.995858i \(0.528981\pi\)
\(864\) −21.3974 −0.727955
\(865\) −18.6248 −0.633264
\(866\) 15.0147 0.510222
\(867\) −10.1553 −0.344893
\(868\) −24.1387 −0.819320
\(869\) −24.0119 −0.814548
\(870\) −6.08681 −0.206362
\(871\) −19.3519 −0.655714
\(872\) −17.8251 −0.603635
\(873\) 0 0
\(874\) −16.9120 −0.572057
\(875\) −31.2503 −1.05645
\(876\) 1.66517 0.0562608
\(877\) 33.8470 1.14293 0.571467 0.820625i \(-0.306375\pi\)
0.571467 + 0.820625i \(0.306375\pi\)
\(878\) −3.09609 −0.104488
\(879\) 24.6882 0.832712
\(880\) 14.0759 0.474497
\(881\) −2.07525 −0.0699170 −0.0349585 0.999389i \(-0.511130\pi\)
−0.0349585 + 0.999389i \(0.511130\pi\)
\(882\) 0.308847 0.0103994
\(883\) 8.90806 0.299780 0.149890 0.988703i \(-0.452108\pi\)
0.149890 + 0.988703i \(0.452108\pi\)
\(884\) 50.7281 1.70617
\(885\) 39.3733 1.32352
\(886\) −9.09346 −0.305501
\(887\) −5.99572 −0.201317 −0.100658 0.994921i \(-0.532095\pi\)
−0.100658 + 0.994921i \(0.532095\pi\)
\(888\) 25.4668 0.854611
\(889\) 43.3274 1.45316
\(890\) −5.75479 −0.192901
\(891\) 51.9236 1.73951
\(892\) −4.22071 −0.141320
\(893\) 5.95887 0.199406
\(894\) −2.55654 −0.0855034
\(895\) 16.2316 0.542564
\(896\) −28.6379 −0.956725
\(897\) −80.4302 −2.68549
\(898\) −18.4690 −0.616317
\(899\) −14.8292 −0.494583
\(900\) 2.95668 0.0985560
\(901\) 17.9966 0.599554
\(902\) 0.923593 0.0307523
\(903\) −24.4263 −0.812856
\(904\) 6.98125 0.232193
\(905\) 40.6725 1.35200
\(906\) 3.76105 0.124953
\(907\) −26.7442 −0.888027 −0.444014 0.896020i \(-0.646446\pi\)
−0.444014 + 0.896020i \(0.646446\pi\)
\(908\) −30.1846 −1.00171
\(909\) 16.9536 0.562316
\(910\) 21.1274 0.700367
\(911\) 5.85914 0.194122 0.0970611 0.995278i \(-0.469056\pi\)
0.0970611 + 0.995278i \(0.469056\pi\)
\(912\) 15.1533 0.501777
\(913\) −16.2712 −0.538499
\(914\) −1.35501 −0.0448197
\(915\) −23.1878 −0.766564
\(916\) −2.03383 −0.0671998
\(917\) −0.770266 −0.0254364
\(918\) −11.4081 −0.376522
\(919\) −29.8167 −0.983563 −0.491781 0.870719i \(-0.663654\pi\)
−0.491781 + 0.870719i \(0.663654\pi\)
\(920\) 24.6098 0.811360
\(921\) 23.9700 0.789837
\(922\) 10.4182 0.343106
\(923\) 10.2684 0.337990
\(924\) 38.5252 1.26739
\(925\) 8.60679 0.282990
\(926\) 21.9196 0.720323
\(927\) −20.0557 −0.658715
\(928\) −14.2285 −0.467074
\(929\) −9.81538 −0.322032 −0.161016 0.986952i \(-0.551477\pi\)
−0.161016 + 0.986952i \(0.551477\pi\)
\(930\) 14.5918 0.478483
\(931\) 1.84042 0.0603172
\(932\) 24.0623 0.788187
\(933\) 21.0998 0.690777
\(934\) 22.6621 0.741526
\(935\) 40.2555 1.31650
\(936\) −18.6552 −0.609765
\(937\) −8.35265 −0.272869 −0.136435 0.990649i \(-0.543564\pi\)
−0.136435 + 0.990649i \(0.543564\pi\)
\(938\) 4.71063 0.153808
\(939\) 3.91019 0.127604
\(940\) −3.82239 −0.124673
\(941\) 21.2826 0.693794 0.346897 0.937903i \(-0.387235\pi\)
0.346897 + 0.937903i \(0.387235\pi\)
\(942\) 21.7080 0.707286
\(943\) −1.74800 −0.0569227
\(944\) 17.1582 0.558451
\(945\) 17.6946 0.575606
\(946\) −14.1312 −0.459444
\(947\) 19.5756 0.636123 0.318061 0.948070i \(-0.396968\pi\)
0.318061 + 0.948070i \(0.396968\pi\)
\(948\) 16.5818 0.538551
\(949\) −3.55075 −0.115262
\(950\) −4.73093 −0.153492
\(951\) −31.4577 −1.02009
\(952\) −28.0121 −0.907878
\(953\) −3.09413 −0.100229 −0.0501143 0.998743i \(-0.515959\pi\)
−0.0501143 + 0.998743i \(0.515959\pi\)
\(954\) −2.91743 −0.0944554
\(955\) −23.0230 −0.745007
\(956\) −3.97142 −0.128445
\(957\) 23.6674 0.765058
\(958\) 9.42120 0.304385
\(959\) −30.3850 −0.981182
\(960\) 1.67031 0.0539091
\(961\) 4.54978 0.146767
\(962\) −23.9384 −0.771806
\(963\) 20.6499 0.665434
\(964\) −28.3605 −0.913432
\(965\) −35.3558 −1.13814
\(966\) 19.5783 0.629921
\(967\) 34.0569 1.09520 0.547598 0.836742i \(-0.315543\pi\)
0.547598 + 0.836742i \(0.315543\pi\)
\(968\) 24.9613 0.802285
\(969\) 43.3370 1.39219
\(970\) 0 0
\(971\) −2.42672 −0.0778773 −0.0389386 0.999242i \(-0.512398\pi\)
−0.0389386 + 0.999242i \(0.512398\pi\)
\(972\) −18.1654 −0.582654
\(973\) −39.0259 −1.25111
\(974\) 0.170592 0.00546611
\(975\) −22.4994 −0.720557
\(976\) −10.1048 −0.323447
\(977\) 5.09843 0.163113 0.0815565 0.996669i \(-0.474011\pi\)
0.0815565 + 0.996669i \(0.474011\pi\)
\(978\) −6.33797 −0.202666
\(979\) 22.3764 0.715153
\(980\) −1.18056 −0.0377115
\(981\) −8.94584 −0.285619
\(982\) −9.58900 −0.305997
\(983\) 54.1134 1.72595 0.862975 0.505247i \(-0.168599\pi\)
0.862975 + 0.505247i \(0.168599\pi\)
\(984\) −1.44686 −0.0461242
\(985\) −15.4573 −0.492511
\(986\) −7.58594 −0.241586
\(987\) −6.89833 −0.219576
\(988\) −49.0041 −1.55903
\(989\) 26.7448 0.850434
\(990\) −6.52583 −0.207404
\(991\) 17.5470 0.557400 0.278700 0.960378i \(-0.410096\pi\)
0.278700 + 0.960378i \(0.410096\pi\)
\(992\) 34.1097 1.08298
\(993\) 1.15304 0.0365907
\(994\) −2.49954 −0.0792807
\(995\) −4.93216 −0.156360
\(996\) 11.2363 0.356037
\(997\) 7.28357 0.230673 0.115337 0.993326i \(-0.463205\pi\)
0.115337 + 0.993326i \(0.463205\pi\)
\(998\) 7.37633 0.233493
\(999\) −20.0489 −0.634318
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9409.2.a.m.1.23 56
97.3 even 48 97.2.i.a.9.4 56
97.65 even 48 97.2.i.a.54.4 yes 56
97.96 even 2 inner 9409.2.a.m.1.24 56
291.65 odd 48 873.2.bo.b.442.4 56
291.197 odd 48 873.2.bo.b.397.4 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
97.2.i.a.9.4 56 97.3 even 48
97.2.i.a.54.4 yes 56 97.65 even 48
873.2.bo.b.397.4 56 291.197 odd 48
873.2.bo.b.442.4 56 291.65 odd 48
9409.2.a.m.1.23 56 1.1 even 1 trivial
9409.2.a.m.1.24 56 97.96 even 2 inner