Properties

Label 873.2.bo.b.442.4
Level $873$
Weight $2$
Character 873.442
Analytic conductor $6.971$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [873,2,Mod(73,873)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(873, base_ring=CyclotomicField(24)) chi = DirichletCharacter(H, H._module([0, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("873.73"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 873 = 3^{2} \cdot 97 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 873.bo (of order \(24\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.97094009646\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(7\) over \(\Q(\zeta_{24})\)
Twist minimal: no (minimal twist has level 97)
Sato-Tate group: $\mathrm{SU}(2)[C_{24}]$

Embedding invariants

Embedding label 442.4
Character \(\chi\) \(=\) 873.442
Dual form 873.2.bo.b.397.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.168402 + 0.628486i) q^{2} +(1.36542 - 0.788323i) q^{4} +(-0.240478 + 1.82661i) q^{5} +(2.03717 - 1.56318i) q^{7} +(1.64556 + 1.64556i) q^{8} +(-1.18850 + 0.156468i) q^{10} +(-1.20639 + 4.50229i) q^{11} +(-0.895889 + 6.80495i) q^{13} +(1.32550 + 1.01709i) q^{14} +(0.819554 - 1.41951i) q^{16} +(-3.71898 - 2.85368i) q^{17} +(-4.18366 + 1.73293i) q^{19} +(1.11161 + 2.68366i) q^{20} -3.03279 q^{22} +(3.49421 - 4.55375i) q^{23} +(1.55095 + 0.415576i) q^{25} +(-4.42769 + 0.582916i) q^{26} +(1.54930 - 3.74033i) q^{28} +(2.46586 + 0.324637i) q^{29} +(5.75920 - 1.54317i) q^{31} +(5.52590 + 1.48066i) q^{32} +(1.16721 - 2.81789i) q^{34} +(2.36542 + 4.09703i) q^{35} +(3.26313 + 4.25260i) q^{37} +(-1.79366 - 2.33754i) q^{38} +(-3.40151 + 2.61007i) q^{40} +(-0.301931 - 0.0397499i) q^{41} +(-4.03522 - 2.32974i) q^{43} +(1.90204 + 7.09853i) q^{44} +(3.45040 + 1.42920i) q^{46} -1.31590i q^{47} +(-0.105189 + 0.392572i) q^{49} +1.04473i q^{50} +(4.14124 + 9.99784i) q^{52} +(0.993641 + 3.70832i) q^{53} +(-7.93383 - 3.28630i) q^{55} +(5.92457 + 0.779984i) q^{56} +(0.211227 + 1.60443i) q^{58} +(-6.37251 - 8.30482i) q^{59} +(3.08241 - 5.33890i) q^{61} +(1.93972 + 3.35970i) q^{62} +0.444079i q^{64} +(-12.2146 - 3.27288i) q^{65} +(-2.60485 + 1.07896i) q^{67} +(-7.32758 - 0.964694i) q^{68} +(-2.17658 + 2.17658i) q^{70} +(1.48326 - 0.195275i) q^{71} +(-0.448016 - 0.258662i) q^{73} +(-2.12318 + 2.76698i) q^{74} +(-4.34633 + 5.66425i) q^{76} +(4.58026 + 11.0577i) q^{77} +(3.64268 + 3.64268i) q^{79} +(2.39581 + 1.83837i) q^{80} +(-0.0258635 - 0.196453i) q^{82} +(2.76947 + 2.12509i) q^{83} +(6.10689 - 6.10689i) q^{85} +(0.784665 - 2.92841i) q^{86} +(-9.39395 + 5.42360i) q^{88} +(-3.39457 - 3.39457i) q^{89} +(8.81226 + 15.2633i) q^{91} +(1.18123 - 8.97233i) q^{92} +(0.827025 - 0.221601i) q^{94} +(-2.15931 - 8.05865i) q^{95} +(-9.83979 - 0.422473i) q^{97} -0.264440 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 8 q^{2} - 12 q^{4} + 16 q^{5} - 16 q^{7} + 16 q^{8} - 24 q^{10} + 24 q^{13} + 32 q^{14} + 12 q^{16} + 4 q^{17} + 20 q^{19} - 4 q^{20} + 20 q^{23} + 52 q^{25} + 20 q^{26} + 32 q^{28} + 8 q^{29} + 12 q^{31}+ \cdots - 96 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/873\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(389\)
\(\chi(n)\) \(e\left(\frac{13}{24}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.168402 + 0.628486i 0.119078 + 0.444406i 0.999560 0.0296745i \(-0.00944707\pi\)
−0.880481 + 0.474081i \(0.842780\pi\)
\(3\) 0 0
\(4\) 1.36542 0.788323i 0.682708 0.394162i
\(5\) −0.240478 + 1.82661i −0.107545 + 0.816886i 0.849631 + 0.527378i \(0.176825\pi\)
−0.957176 + 0.289507i \(0.906508\pi\)
\(6\) 0 0
\(7\) 2.03717 1.56318i 0.769978 0.590825i −0.147291 0.989093i \(-0.547055\pi\)
0.917269 + 0.398268i \(0.130389\pi\)
\(8\) 1.64556 + 1.64556i 0.581792 + 0.581792i
\(9\) 0 0
\(10\) −1.18850 + 0.156468i −0.375835 + 0.0494797i
\(11\) −1.20639 + 4.50229i −0.363739 + 1.35749i 0.505383 + 0.862895i \(0.331351\pi\)
−0.869122 + 0.494598i \(0.835315\pi\)
\(12\) 0 0
\(13\) −0.895889 + 6.80495i −0.248475 + 1.88735i 0.179795 + 0.983704i \(0.442457\pi\)
−0.428270 + 0.903651i \(0.640877\pi\)
\(14\) 1.32550 + 1.01709i 0.354254 + 0.271829i
\(15\) 0 0
\(16\) 0.819554 1.41951i 0.204888 0.354877i
\(17\) −3.71898 2.85368i −0.901986 0.692118i 0.0498396 0.998757i \(-0.484129\pi\)
−0.951826 + 0.306639i \(0.900796\pi\)
\(18\) 0 0
\(19\) −4.18366 + 1.73293i −0.959798 + 0.397561i −0.806905 0.590682i \(-0.798859\pi\)
−0.152893 + 0.988243i \(0.548859\pi\)
\(20\) 1.11161 + 2.68366i 0.248563 + 0.600084i
\(21\) 0 0
\(22\) −3.03279 −0.646592
\(23\) 3.49421 4.55375i 0.728594 0.949522i −0.271322 0.962489i \(-0.587461\pi\)
0.999916 + 0.0129666i \(0.00412752\pi\)
\(24\) 0 0
\(25\) 1.55095 + 0.415576i 0.310190 + 0.0831151i
\(26\) −4.42769 + 0.582916i −0.868341 + 0.114319i
\(27\) 0 0
\(28\) 1.54930 3.74033i 0.292790 0.706857i
\(29\) 2.46586 + 0.324637i 0.457899 + 0.0602836i 0.355948 0.934506i \(-0.384158\pi\)
0.101951 + 0.994789i \(0.467491\pi\)
\(30\) 0 0
\(31\) 5.75920 1.54317i 1.03438 0.277162i 0.298599 0.954379i \(-0.403481\pi\)
0.735784 + 0.677217i \(0.236814\pi\)
\(32\) 5.52590 + 1.48066i 0.976850 + 0.261746i
\(33\) 0 0
\(34\) 1.16721 2.81789i 0.200175 0.483265i
\(35\) 2.36542 + 4.09703i 0.399829 + 0.692524i
\(36\) 0 0
\(37\) 3.26313 + 4.25260i 0.536456 + 0.699123i 0.980419 0.196922i \(-0.0630947\pi\)
−0.443964 + 0.896045i \(0.646428\pi\)
\(38\) −1.79366 2.33754i −0.290970 0.379199i
\(39\) 0 0
\(40\) −3.40151 + 2.61007i −0.537826 + 0.412688i
\(41\) −0.301931 0.0397499i −0.0471537 0.00620790i 0.106912 0.994268i \(-0.465904\pi\)
−0.154066 + 0.988061i \(0.549237\pi\)
\(42\) 0 0
\(43\) −4.03522 2.32974i −0.615365 0.355281i 0.159697 0.987166i \(-0.448948\pi\)
−0.775062 + 0.631885i \(0.782282\pi\)
\(44\) 1.90204 + 7.09853i 0.286744 + 1.07014i
\(45\) 0 0
\(46\) 3.45040 + 1.42920i 0.508733 + 0.210724i
\(47\) 1.31590i 0.191944i −0.995384 0.0959719i \(-0.969404\pi\)
0.995384 0.0959719i \(-0.0305959\pi\)
\(48\) 0 0
\(49\) −0.105189 + 0.392572i −0.0150270 + 0.0560816i
\(50\) 1.04473i 0.147748i
\(51\) 0 0
\(52\) 4.14124 + 9.99784i 0.574287 + 1.38645i
\(53\) 0.993641 + 3.70832i 0.136487 + 0.509377i 0.999987 + 0.00502836i \(0.00160058\pi\)
−0.863500 + 0.504348i \(0.831733\pi\)
\(54\) 0 0
\(55\) −7.93383 3.28630i −1.06980 0.443125i
\(56\) 5.92457 + 0.779984i 0.791704 + 0.104230i
\(57\) 0 0
\(58\) 0.211227 + 1.60443i 0.0277355 + 0.210672i
\(59\) −6.37251 8.30482i −0.829631 1.08120i −0.995473 0.0950434i \(-0.969701\pi\)
0.165842 0.986152i \(-0.446966\pi\)
\(60\) 0 0
\(61\) 3.08241 5.33890i 0.394663 0.683576i −0.598395 0.801201i \(-0.704195\pi\)
0.993058 + 0.117625i \(0.0375281\pi\)
\(62\) 1.93972 + 3.35970i 0.246345 + 0.426682i
\(63\) 0 0
\(64\) 0.444079i 0.0555098i
\(65\) −12.2146 3.27288i −1.51503 0.405951i
\(66\) 0 0
\(67\) −2.60485 + 1.07896i −0.318233 + 0.131816i −0.536082 0.844166i \(-0.680096\pi\)
0.217849 + 0.975983i \(0.430096\pi\)
\(68\) −7.32758 0.964694i −0.888600 0.116986i
\(69\) 0 0
\(70\) −2.17658 + 2.17658i −0.260151 + 0.260151i
\(71\) 1.48326 0.195275i 0.176030 0.0231748i −0.0419957 0.999118i \(-0.513372\pi\)
0.218026 + 0.975943i \(0.430038\pi\)
\(72\) 0 0
\(73\) −0.448016 0.258662i −0.0524364 0.0302741i 0.473553 0.880766i \(-0.342971\pi\)
−0.525989 + 0.850491i \(0.676305\pi\)
\(74\) −2.12318 + 2.76698i −0.246814 + 0.321655i
\(75\) 0 0
\(76\) −4.34633 + 5.66425i −0.498558 + 0.649734i
\(77\) 4.58026 + 11.0577i 0.521969 + 1.26015i
\(78\) 0 0
\(79\) 3.64268 + 3.64268i 0.409834 + 0.409834i 0.881681 0.471847i \(-0.156412\pi\)
−0.471847 + 0.881681i \(0.656412\pi\)
\(80\) 2.39581 + 1.83837i 0.267859 + 0.205536i
\(81\) 0 0
\(82\) −0.0258635 0.196453i −0.00285615 0.0216946i
\(83\) 2.76947 + 2.12509i 0.303989 + 0.233259i 0.749479 0.662028i \(-0.230304\pi\)
−0.445490 + 0.895287i \(0.646971\pi\)
\(84\) 0 0
\(85\) 6.10689 6.10689i 0.662386 0.662386i
\(86\) 0.784665 2.92841i 0.0846126 0.315779i
\(87\) 0 0
\(88\) −9.39395 + 5.42360i −1.00140 + 0.578158i
\(89\) −3.39457 3.39457i −0.359824 0.359824i 0.503924 0.863748i \(-0.331889\pi\)
−0.863748 + 0.503924i \(0.831889\pi\)
\(90\) 0 0
\(91\) 8.81226 + 15.2633i 0.923776 + 1.60003i
\(92\) 1.18123 8.97233i 0.123152 0.935430i
\(93\) 0 0
\(94\) 0.827025 0.221601i 0.0853011 0.0228564i
\(95\) −2.15931 8.05865i −0.221541 0.826800i
\(96\) 0 0
\(97\) −9.83979 0.422473i −0.999080 0.0428956i
\(98\) −0.264440 −0.0267124
\(99\) 0 0
\(100\) 2.44530 0.655216i 0.244530 0.0655216i
\(101\) 12.5712 7.25799i 1.25088 0.722197i 0.279597 0.960117i \(-0.409799\pi\)
0.971285 + 0.237921i \(0.0764658\pi\)
\(102\) 0 0
\(103\) −8.58601 14.8714i −0.846004 1.46532i −0.884746 0.466073i \(-0.845668\pi\)
0.0387417 0.999249i \(-0.487665\pi\)
\(104\) −12.6722 + 9.72370i −1.24261 + 0.953487i
\(105\) 0 0
\(106\) −2.16329 + 1.24898i −0.210118 + 0.121311i
\(107\) 17.5296 2.30781i 1.69465 0.223104i 0.779550 0.626340i \(-0.215448\pi\)
0.915096 + 0.403236i \(0.132115\pi\)
\(108\) 0 0
\(109\) 5.41614 5.41614i 0.518773 0.518773i −0.398427 0.917200i \(-0.630444\pi\)
0.917200 + 0.398427i \(0.130444\pi\)
\(110\) 0.729318 5.53972i 0.0695378 0.528192i
\(111\) 0 0
\(112\) −0.549371 4.17289i −0.0519107 0.394301i
\(113\) −1.49995 + 2.59798i −0.141103 + 0.244398i −0.927912 0.372799i \(-0.878398\pi\)
0.786809 + 0.617196i \(0.211732\pi\)
\(114\) 0 0
\(115\) 7.47765 + 7.47765i 0.697294 + 0.697294i
\(116\) 3.62285 1.50063i 0.336373 0.139330i
\(117\) 0 0
\(118\) 4.14632 5.40358i 0.381699 0.497440i
\(119\) −12.0370 −1.10343
\(120\) 0 0
\(121\) −9.28901 5.36301i −0.844456 0.487547i
\(122\) 3.87451 + 1.03817i 0.350781 + 0.0939916i
\(123\) 0 0
\(124\) 6.64719 6.64719i 0.596935 0.596935i
\(125\) −4.65729 + 11.2437i −0.416561 + 1.00567i
\(126\) 0 0
\(127\) 15.5890 6.45717i 1.38330 0.572981i 0.437937 0.899006i \(-0.355709\pi\)
0.945361 + 0.326025i \(0.105709\pi\)
\(128\) 10.7727 2.88654i 0.952181 0.255136i
\(129\) 0 0
\(130\) 8.22784i 0.721629i
\(131\) 0.114794 0.277138i 0.0100296 0.0242136i −0.918785 0.394757i \(-0.870829\pi\)
0.928815 + 0.370544i \(0.120829\pi\)
\(132\) 0 0
\(133\) −5.81396 + 10.0701i −0.504134 + 0.873186i
\(134\) −1.11678 1.45541i −0.0964747 0.125728i
\(135\) 0 0
\(136\) −1.42391 10.8157i −0.122099 0.927437i
\(137\) −9.38782 + 7.20353i −0.802056 + 0.615439i −0.926289 0.376814i \(-0.877020\pi\)
0.124233 + 0.992253i \(0.460353\pi\)
\(138\) 0 0
\(139\) −14.0413 5.81610i −1.19097 0.493315i −0.302898 0.953023i \(-0.597954\pi\)
−0.888070 + 0.459707i \(0.847954\pi\)
\(140\) 6.45956 + 3.72943i 0.545933 + 0.315194i
\(141\) 0 0
\(142\) 0.372511 + 0.899322i 0.0312605 + 0.0754694i
\(143\) −29.5571 12.2430i −2.47169 1.02381i
\(144\) 0 0
\(145\) −1.18597 + 4.42611i −0.0984896 + 0.367568i
\(146\) 0.0871187 0.325131i 0.00720999 0.0269081i
\(147\) 0 0
\(148\) 7.80795 + 3.23416i 0.641810 + 0.265846i
\(149\) 0.736512 + 1.77810i 0.0603374 + 0.145667i 0.951173 0.308659i \(-0.0998801\pi\)
−0.890835 + 0.454326i \(0.849880\pi\)
\(150\) 0 0
\(151\) 2.45204 + 1.41569i 0.199544 + 0.115207i 0.596443 0.802655i \(-0.296580\pi\)
−0.396899 + 0.917862i \(0.629914\pi\)
\(152\) −9.73608 4.03282i −0.789700 0.327105i
\(153\) 0 0
\(154\) −6.17830 + 4.74078i −0.497862 + 0.382023i
\(155\) 1.43382 + 10.8909i 0.115167 + 0.874780i
\(156\) 0 0
\(157\) −9.94847 12.9651i −0.793974 1.03473i −0.998439 0.0558532i \(-0.982212\pi\)
0.204465 0.978874i \(-0.434455\pi\)
\(158\) −1.67594 + 2.90281i −0.133331 + 0.230935i
\(159\) 0 0
\(160\) −4.03345 + 9.73760i −0.318872 + 0.769825i
\(161\) 14.7388i 1.16158i
\(162\) 0 0
\(163\) 4.60874 1.23491i 0.360985 0.0967256i −0.0737680 0.997275i \(-0.523502\pi\)
0.434753 + 0.900550i \(0.356836\pi\)
\(164\) −0.443597 + 0.183744i −0.0346391 + 0.0143480i
\(165\) 0 0
\(166\) −0.869203 + 2.09844i −0.0674632 + 0.162871i
\(167\) 16.9333 16.9333i 1.31034 1.31034i 0.389169 0.921166i \(-0.372762\pi\)
0.921166 0.389169i \(-0.127238\pi\)
\(168\) 0 0
\(169\) −32.9478 8.82832i −2.53444 0.679102i
\(170\) 4.86651 + 2.80968i 0.373244 + 0.215493i
\(171\) 0 0
\(172\) −7.34634 −0.560153
\(173\) 6.15406 8.02013i 0.467885 0.609759i −0.498490 0.866895i \(-0.666112\pi\)
0.966375 + 0.257136i \(0.0827788\pi\)
\(174\) 0 0
\(175\) 3.80916 1.57781i 0.287946 0.119271i
\(176\) 5.40235 + 5.40235i 0.407217 + 0.407217i
\(177\) 0 0
\(178\) 1.56179 2.70509i 0.117061 0.202755i
\(179\) 1.14996 + 8.73480i 0.0859519 + 0.652870i 0.979140 + 0.203187i \(0.0651298\pi\)
−0.893188 + 0.449683i \(0.851537\pi\)
\(180\) 0 0
\(181\) −2.88152 + 21.8873i −0.214181 + 1.62687i 0.459731 + 0.888058i \(0.347946\pi\)
−0.673913 + 0.738811i \(0.735388\pi\)
\(182\) −8.10875 + 8.10875i −0.601060 + 0.601060i
\(183\) 0 0
\(184\) 13.2434 1.74352i 0.976314 0.128534i
\(185\) −8.55255 + 4.93782i −0.628796 + 0.363036i
\(186\) 0 0
\(187\) 17.3346 13.3013i 1.26763 0.972690i
\(188\) −1.03736 1.79675i −0.0756569 0.131042i
\(189\) 0 0
\(190\) 4.70112 2.71419i 0.341055 0.196908i
\(191\) −12.0706 + 3.23430i −0.873397 + 0.234026i −0.667556 0.744559i \(-0.732660\pi\)
−0.205841 + 0.978585i \(0.565993\pi\)
\(192\) 0 0
\(193\) 19.1903 1.38135 0.690676 0.723165i \(-0.257313\pi\)
0.690676 + 0.723165i \(0.257313\pi\)
\(194\) −1.39152 6.25531i −0.0999057 0.449105i
\(195\) 0 0
\(196\) 0.165846 + 0.618947i 0.0118462 + 0.0442105i
\(197\) −8.10401 + 2.17146i −0.577387 + 0.154710i −0.535682 0.844420i \(-0.679946\pi\)
−0.0417047 + 0.999130i \(0.513279\pi\)
\(198\) 0 0
\(199\) −0.349427 + 2.65417i −0.0247703 + 0.188149i −0.999357 0.0358629i \(-0.988582\pi\)
0.974586 + 0.224012i \(0.0719154\pi\)
\(200\) 1.86832 + 3.23603i 0.132110 + 0.228822i
\(201\) 0 0
\(202\) 6.67856 + 6.67856i 0.469902 + 0.469902i
\(203\) 5.53085 3.19324i 0.388189 0.224121i
\(204\) 0 0
\(205\) 0.145215 0.541951i 0.0101423 0.0378515i
\(206\) 7.90056 7.90056i 0.550458 0.550458i
\(207\) 0 0
\(208\) 8.92546 + 6.84875i 0.618869 + 0.474875i
\(209\) −2.75505 20.9267i −0.190571 1.44753i
\(210\) 0 0
\(211\) −12.9112 9.90709i −0.888842 0.682032i 0.0598592 0.998207i \(-0.480935\pi\)
−0.948701 + 0.316174i \(0.897601\pi\)
\(212\) 4.28009 + 4.28009i 0.293958 + 0.293958i
\(213\) 0 0
\(214\) 4.40244 + 10.6284i 0.300945 + 0.726545i
\(215\) 5.22590 6.81053i 0.356404 0.464474i
\(216\) 0 0
\(217\) 9.32022 12.1463i 0.632698 0.824548i
\(218\) 4.31606 + 2.49188i 0.292320 + 0.168771i
\(219\) 0 0
\(220\) −13.4237 + 1.76726i −0.905022 + 0.119148i
\(221\) 22.7509 22.7509i 1.53039 1.53039i
\(222\) 0 0
\(223\) −2.65411 0.349421i −0.177733 0.0233989i 0.0411345 0.999154i \(-0.486903\pi\)
−0.218867 + 0.975755i \(0.570236\pi\)
\(224\) 13.5717 5.62159i 0.906799 0.375608i
\(225\) 0 0
\(226\) −1.88539 0.505189i −0.125414 0.0336046i
\(227\) 19.1448i 1.27069i −0.772230 0.635343i \(-0.780859\pi\)
0.772230 0.635343i \(-0.219141\pi\)
\(228\) 0 0
\(229\) −0.644987 1.11715i −0.0426220 0.0738234i 0.843927 0.536457i \(-0.180238\pi\)
−0.886549 + 0.462634i \(0.846904\pi\)
\(230\) −3.44034 + 5.95885i −0.226849 + 0.392915i
\(231\) 0 0
\(232\) 3.52351 + 4.59192i 0.231330 + 0.301474i
\(233\) −1.99205 15.1311i −0.130504 0.991274i −0.923918 0.382591i \(-0.875032\pi\)
0.793414 0.608682i \(-0.208302\pi\)
\(234\) 0 0
\(235\) 2.40364 + 0.316445i 0.156796 + 0.0206426i
\(236\) −15.2480 6.31594i −0.992561 0.411132i
\(237\) 0 0
\(238\) −2.02706 7.56508i −0.131395 0.490372i
\(239\) −0.963943 2.32717i −0.0623523 0.150532i 0.889632 0.456677i \(-0.150961\pi\)
−0.951985 + 0.306146i \(0.900961\pi\)
\(240\) 0 0
\(241\) 17.9879i 1.15870i −0.815078 0.579351i \(-0.803306\pi\)
0.815078 0.579351i \(-0.196694\pi\)
\(242\) 1.80629 6.74115i 0.116113 0.433338i
\(243\) 0 0
\(244\) 9.71975i 0.622244i
\(245\) −0.691780 0.286545i −0.0441962 0.0183067i
\(246\) 0 0
\(247\) −8.04441 30.0221i −0.511853 1.91026i
\(248\) 12.0165 + 6.93771i 0.763046 + 0.440545i
\(249\) 0 0
\(250\) −7.85080 1.03358i −0.496528 0.0653692i
\(251\) −7.33293 + 5.62676i −0.462851 + 0.355158i −0.813711 0.581270i \(-0.802556\pi\)
0.350860 + 0.936428i \(0.385889\pi\)
\(252\) 0 0
\(253\) 16.2869 + 21.2256i 1.02395 + 1.33444i
\(254\) 6.68345 + 8.71005i 0.419357 + 0.546517i
\(255\) 0 0
\(256\) 4.07237 + 7.05355i 0.254523 + 0.440847i
\(257\) 8.51227 20.5504i 0.530981 1.28190i −0.399894 0.916562i \(-0.630953\pi\)
0.930874 0.365340i \(-0.119047\pi\)
\(258\) 0 0
\(259\) 13.2951 + 3.56241i 0.826118 + 0.221358i
\(260\) −19.2581 + 5.16018i −1.19433 + 0.320021i
\(261\) 0 0
\(262\) 0.193509 + 0.0254759i 0.0119550 + 0.00157391i
\(263\) −0.511663 + 1.23526i −0.0315505 + 0.0761696i −0.938869 0.344273i \(-0.888125\pi\)
0.907319 + 0.420443i \(0.138125\pi\)
\(264\) 0 0
\(265\) −7.01261 + 0.923227i −0.430781 + 0.0567134i
\(266\) −7.30798 1.95817i −0.448081 0.120063i
\(267\) 0 0
\(268\) −2.70613 + 3.52670i −0.165303 + 0.215427i
\(269\) −22.6137 −1.37878 −0.689392 0.724389i \(-0.742122\pi\)
−0.689392 + 0.724389i \(0.742122\pi\)
\(270\) 0 0
\(271\) 7.47394 + 18.0437i 0.454010 + 1.09608i 0.970784 + 0.239955i \(0.0771327\pi\)
−0.516774 + 0.856122i \(0.672867\pi\)
\(272\) −7.09873 + 2.94039i −0.430424 + 0.178287i
\(273\) 0 0
\(274\) −6.10825 4.68702i −0.369013 0.283153i
\(275\) −3.74209 + 6.48149i −0.225656 + 0.390848i
\(276\) 0 0
\(277\) −0.0548802 0.0421110i −0.00329743 0.00253021i 0.607111 0.794617i \(-0.292328\pi\)
−0.610409 + 0.792087i \(0.708995\pi\)
\(278\) 1.29075 9.80421i 0.0774140 0.588017i
\(279\) 0 0
\(280\) −2.84946 + 10.6343i −0.170288 + 0.635522i
\(281\) −4.73339 + 0.623163i −0.282370 + 0.0371748i −0.270381 0.962753i \(-0.587150\pi\)
−0.0119892 + 0.999928i \(0.503816\pi\)
\(282\) 0 0
\(283\) −0.779296 0.779296i −0.0463244 0.0463244i 0.683565 0.729890i \(-0.260429\pi\)
−0.729890 + 0.683565i \(0.760429\pi\)
\(284\) 1.87132 1.43592i 0.111043 0.0852061i
\(285\) 0 0
\(286\) 2.71704 20.6380i 0.160662 1.22035i
\(287\) −0.677220 + 0.390993i −0.0399751 + 0.0230796i
\(288\) 0 0
\(289\) 1.28745 + 4.80483i 0.0757323 + 0.282637i
\(290\) −2.98146 −0.175078
\(291\) 0 0
\(292\) −0.815638 −0.0477316
\(293\) 3.12986 + 11.6808i 0.182849 + 0.682400i 0.995081 + 0.0990660i \(0.0315855\pi\)
−0.812232 + 0.583334i \(0.801748\pi\)
\(294\) 0 0
\(295\) 16.7021 9.64298i 0.972436 0.561436i
\(296\) −1.62822 + 12.3675i −0.0946383 + 0.718849i
\(297\) 0 0
\(298\) −0.993479 + 0.762323i −0.0575507 + 0.0441602i
\(299\) 27.8576 + 27.8576i 1.61105 + 1.61105i
\(300\) 0 0
\(301\) −11.8622 + 1.56169i −0.683727 + 0.0900143i
\(302\) −0.476810 + 1.77948i −0.0274373 + 0.102397i
\(303\) 0 0
\(304\) −0.968827 + 7.35897i −0.0555660 + 0.422066i
\(305\) 9.01084 + 6.91426i 0.515959 + 0.395909i
\(306\) 0 0
\(307\) −5.87053 + 10.1681i −0.335049 + 0.580321i −0.983494 0.180940i \(-0.942086\pi\)
0.648445 + 0.761261i \(0.275419\pi\)
\(308\) 14.9710 + 11.4877i 0.853054 + 0.654571i
\(309\) 0 0
\(310\) −6.60333 + 2.73519i −0.375044 + 0.155348i
\(311\) −3.95511 9.54848i −0.224274 0.541444i 0.771188 0.636607i \(-0.219663\pi\)
−0.995462 + 0.0951630i \(0.969663\pi\)
\(312\) 0 0
\(313\) 1.91530 0.108259 0.0541296 0.998534i \(-0.482762\pi\)
0.0541296 + 0.998534i \(0.482762\pi\)
\(314\) 6.47303 8.43582i 0.365294 0.476061i
\(315\) 0 0
\(316\) 7.84539 + 2.10217i 0.441338 + 0.118256i
\(317\) −15.2769 + 2.01125i −0.858038 + 0.112963i −0.546692 0.837334i \(-0.684113\pi\)
−0.311346 + 0.950297i \(0.600780\pi\)
\(318\) 0 0
\(319\) −4.43639 + 10.7104i −0.248390 + 0.599667i
\(320\) −0.811159 0.106791i −0.0453452 0.00596981i
\(321\) 0 0
\(322\) 9.26314 2.48205i 0.516215 0.138319i
\(323\) 20.5042 + 5.49408i 1.14088 + 0.305699i
\(324\) 0 0
\(325\) −4.21745 + 10.1818i −0.233942 + 0.564786i
\(326\) 1.55225 + 2.68857i 0.0859709 + 0.148906i
\(327\) 0 0
\(328\) −0.431433 0.562255i −0.0238219 0.0310453i
\(329\) −2.05698 2.68071i −0.113405 0.147793i
\(330\) 0 0
\(331\) −0.448077 + 0.343821i −0.0246285 + 0.0188981i −0.621002 0.783809i \(-0.713274\pi\)
0.596374 + 0.802707i \(0.296608\pi\)
\(332\) 5.45673 + 0.718393i 0.299477 + 0.0394269i
\(333\) 0 0
\(334\) 13.4939 + 7.79072i 0.738354 + 0.426289i
\(335\) −1.34444 5.01751i −0.0734545 0.274136i
\(336\) 0 0
\(337\) −26.5326 10.9902i −1.44532 0.598673i −0.484242 0.874934i \(-0.660905\pi\)
−0.961083 + 0.276261i \(0.910905\pi\)
\(338\) 22.1939i 1.20719i
\(339\) 0 0
\(340\) 3.52424 13.1527i 0.191129 0.713303i
\(341\) 27.7913i 1.50498i
\(342\) 0 0
\(343\) 7.27794 + 17.5705i 0.392972 + 0.948718i
\(344\) −2.80647 10.4739i −0.151315 0.564714i
\(345\) 0 0
\(346\) 6.07690 + 2.51713i 0.326696 + 0.135322i
\(347\) −17.9913 2.36860i −0.965823 0.127153i −0.368915 0.929463i \(-0.620271\pi\)
−0.596908 + 0.802310i \(0.703604\pi\)
\(348\) 0 0
\(349\) −0.484723 3.68184i −0.0259466 0.197084i 0.973562 0.228422i \(-0.0733566\pi\)
−0.999509 + 0.0313377i \(0.990023\pi\)
\(350\) 1.63310 + 2.12830i 0.0872929 + 0.113762i
\(351\) 0 0
\(352\) −13.3327 + 23.0930i −0.710637 + 1.23086i
\(353\) 12.2720 + 21.2558i 0.653174 + 1.13133i 0.982348 + 0.187061i \(0.0598963\pi\)
−0.329174 + 0.944269i \(0.606770\pi\)
\(354\) 0 0
\(355\) 2.75630i 0.146289i
\(356\) −7.31102 1.95898i −0.387483 0.103826i
\(357\) 0 0
\(358\) −5.29604 + 2.19369i −0.279905 + 0.115940i
\(359\) 10.1476 + 1.33596i 0.535571 + 0.0705093i 0.393461 0.919342i \(-0.371278\pi\)
0.142111 + 0.989851i \(0.454611\pi\)
\(360\) 0 0
\(361\) 1.06494 1.06494i 0.0560497 0.0560497i
\(362\) −14.2411 + 1.87488i −0.748496 + 0.0985413i
\(363\) 0 0
\(364\) 24.0648 + 13.8938i 1.26134 + 0.728234i
\(365\) 0.580214 0.756149i 0.0303698 0.0395787i
\(366\) 0 0
\(367\) 6.24939 8.14436i 0.326216 0.425132i −0.601238 0.799070i \(-0.705326\pi\)
0.927454 + 0.373937i \(0.121992\pi\)
\(368\) −3.60039 8.69211i −0.187683 0.453107i
\(369\) 0 0
\(370\) −4.54362 4.54362i −0.236211 0.236211i
\(371\) 7.82097 + 6.00124i 0.406044 + 0.311569i
\(372\) 0 0
\(373\) −3.26247 24.7809i −0.168924 1.28311i −0.840354 0.542038i \(-0.817653\pi\)
0.671430 0.741068i \(-0.265680\pi\)
\(374\) 11.2789 + 8.65459i 0.583217 + 0.447518i
\(375\) 0 0
\(376\) 2.16539 2.16539i 0.111671 0.111671i
\(377\) −4.41828 + 16.4892i −0.227553 + 0.849239i
\(378\) 0 0
\(379\) −13.0490 + 7.53384i −0.670281 + 0.386987i −0.796183 0.605056i \(-0.793151\pi\)
0.125902 + 0.992043i \(0.459818\pi\)
\(380\) −9.30118 9.30118i −0.477140 0.477140i
\(381\) 0 0
\(382\) −4.06543 7.04153i −0.208005 0.360276i
\(383\) −0.651043 + 4.94516i −0.0332667 + 0.252686i −0.999995 0.00311909i \(-0.999007\pi\)
0.966728 + 0.255805i \(0.0823405\pi\)
\(384\) 0 0
\(385\) −21.2996 + 5.70722i −1.08553 + 0.290867i
\(386\) 3.23170 + 12.0609i 0.164489 + 0.613881i
\(387\) 0 0
\(388\) −13.7685 + 7.18009i −0.698987 + 0.364514i
\(389\) −22.6518 −1.14849 −0.574247 0.818682i \(-0.694705\pi\)
−0.574247 + 0.818682i \(0.694705\pi\)
\(390\) 0 0
\(391\) −25.9899 + 6.96396i −1.31436 + 0.352183i
\(392\) −0.819093 + 0.472904i −0.0413704 + 0.0238852i
\(393\) 0 0
\(394\) −2.72947 4.72758i −0.137509 0.238172i
\(395\) −7.52975 + 5.77778i −0.378863 + 0.290712i
\(396\) 0 0
\(397\) 15.0132 8.66790i 0.753493 0.435030i −0.0734614 0.997298i \(-0.523405\pi\)
0.826955 + 0.562268i \(0.190071\pi\)
\(398\) −1.72695 + 0.227357i −0.0865641 + 0.0113964i
\(399\) 0 0
\(400\) 1.86100 1.86100i 0.0930499 0.0930499i
\(401\) −4.31384 + 32.7669i −0.215423 + 1.63630i 0.452283 + 0.891874i \(0.350610\pi\)
−0.667706 + 0.744425i \(0.732724\pi\)
\(402\) 0 0
\(403\) 5.34162 + 40.5736i 0.266085 + 2.02112i
\(404\) 11.4433 19.8203i 0.569325 0.986099i
\(405\) 0 0
\(406\) 2.93831 + 2.93831i 0.145826 + 0.145826i
\(407\) −23.0830 + 9.56131i −1.14418 + 0.473936i
\(408\) 0 0
\(409\) −16.8319 + 21.9358i −0.832285 + 1.08466i 0.162900 + 0.986643i \(0.447915\pi\)
−0.995185 + 0.0980128i \(0.968751\pi\)
\(410\) 0.365063 0.0180292
\(411\) 0 0
\(412\) −23.4469 13.5371i −1.15515 0.666925i
\(413\) −25.9638 6.95698i −1.27759 0.342330i
\(414\) 0 0
\(415\) −4.54771 + 4.54771i −0.223238 + 0.223238i
\(416\) −15.0264 + 36.2770i −0.736731 + 1.77862i
\(417\) 0 0
\(418\) 12.6881 5.25560i 0.620597 0.257060i
\(419\) 7.14295 1.91395i 0.348956 0.0935025i −0.0800835 0.996788i \(-0.525519\pi\)
0.429040 + 0.903286i \(0.358852\pi\)
\(420\) 0 0
\(421\) 23.0464i 1.12321i −0.827405 0.561606i \(-0.810184\pi\)
0.827405 0.561606i \(-0.189816\pi\)
\(422\) 4.05219 9.78286i 0.197258 0.476222i
\(423\) 0 0
\(424\) −4.46715 + 7.73734i −0.216944 + 0.375758i
\(425\) −4.58204 5.97143i −0.222261 0.289657i
\(426\) 0 0
\(427\) −2.06623 15.6946i −0.0999920 0.759515i
\(428\) 22.1158 16.9701i 1.06901 0.820280i
\(429\) 0 0
\(430\) 5.16037 + 2.13750i 0.248855 + 0.103079i
\(431\) 20.3986 + 11.7772i 0.982568 + 0.567286i 0.903044 0.429547i \(-0.141327\pi\)
0.0795233 + 0.996833i \(0.474660\pi\)
\(432\) 0 0
\(433\) −8.83092 21.3197i −0.424387 1.02456i −0.981038 0.193814i \(-0.937914\pi\)
0.556651 0.830746i \(-0.312086\pi\)
\(434\) 9.20335 + 3.81215i 0.441775 + 0.182989i
\(435\) 0 0
\(436\) 3.12562 11.6650i 0.149690 0.558650i
\(437\) −6.72728 + 25.1066i −0.321810 + 1.20101i
\(438\) 0 0
\(439\) 4.39620 + 1.82097i 0.209819 + 0.0869099i 0.485118 0.874449i \(-0.338777\pi\)
−0.275299 + 0.961359i \(0.588777\pi\)
\(440\) −7.64777 18.4634i −0.364593 0.880206i
\(441\) 0 0
\(442\) 18.1300 + 10.4673i 0.862354 + 0.497880i
\(443\) 12.9120 + 5.34832i 0.613467 + 0.254106i 0.667710 0.744422i \(-0.267275\pi\)
−0.0542434 + 0.998528i \(0.517275\pi\)
\(444\) 0 0
\(445\) 7.01688 5.38424i 0.332632 0.255238i
\(446\) −0.227353 1.72692i −0.0107655 0.0817718i
\(447\) 0 0
\(448\) 0.694173 + 0.904664i 0.0327966 + 0.0427413i
\(449\) 14.1926 24.5822i 0.669788 1.16011i −0.308175 0.951330i \(-0.599718\pi\)
0.977963 0.208778i \(-0.0669485\pi\)
\(450\) 0 0
\(451\) 0.543211 1.31143i 0.0255788 0.0617527i
\(452\) 4.72977i 0.222470i
\(453\) 0 0
\(454\) 12.0322 3.22403i 0.564701 0.151311i
\(455\) −29.9992 + 12.4261i −1.40639 + 0.582544i
\(456\) 0 0
\(457\) 0.796948 1.92400i 0.0372797 0.0900010i −0.904143 0.427230i \(-0.859490\pi\)
0.941423 + 0.337229i \(0.109490\pi\)
\(458\) 0.593496 0.593496i 0.0277322 0.0277322i
\(459\) 0 0
\(460\) 16.1049 + 4.31530i 0.750895 + 0.201202i
\(461\) −13.8667 8.00593i −0.645836 0.372874i 0.141023 0.990006i \(-0.454961\pi\)
−0.786859 + 0.617133i \(0.788294\pi\)
\(462\) 0 0
\(463\) 33.6885 1.56564 0.782818 0.622250i \(-0.213781\pi\)
0.782818 + 0.622250i \(0.213781\pi\)
\(464\) 2.48173 3.23426i 0.115211 0.150147i
\(465\) 0 0
\(466\) 9.17423 3.80009i 0.424988 0.176036i
\(467\) 24.6282 + 24.6282i 1.13966 + 1.13966i 0.988511 + 0.151148i \(0.0482969\pi\)
0.151148 + 0.988511i \(0.451703\pi\)
\(468\) 0 0
\(469\) −3.61991 + 6.26987i −0.167152 + 0.289516i
\(470\) 0.205897 + 1.56394i 0.00949732 + 0.0721393i
\(471\) 0 0
\(472\) 3.17972 24.1524i 0.146358 1.11170i
\(473\) 15.3572 15.3572i 0.706124 0.706124i
\(474\) 0 0
\(475\) −7.20881 + 0.949057i −0.330763 + 0.0435457i
\(476\) −16.4355 + 9.48905i −0.753321 + 0.434930i
\(477\) 0 0
\(478\) 1.30026 0.997724i 0.0594725 0.0456348i
\(479\) 7.23977 + 12.5396i 0.330794 + 0.572951i 0.982668 0.185376i \(-0.0593503\pi\)
−0.651874 + 0.758327i \(0.726017\pi\)
\(480\) 0 0
\(481\) −31.8621 + 18.3956i −1.45279 + 0.838768i
\(482\) 11.3051 3.02920i 0.514935 0.137976i
\(483\) 0 0
\(484\) −16.9112 −0.768689
\(485\) 3.13795 17.8719i 0.142487 0.811520i
\(486\) 0 0
\(487\) −0.0678582 0.253250i −0.00307495 0.0114759i 0.964371 0.264552i \(-0.0852242\pi\)
−0.967446 + 0.253077i \(0.918558\pi\)
\(488\) 13.8577 3.71317i 0.627310 0.168087i
\(489\) 0 0
\(490\) 0.0635919 0.483029i 0.00287279 0.0218210i
\(491\) −7.36871 12.7630i −0.332545 0.575986i 0.650465 0.759536i \(-0.274574\pi\)
−0.983010 + 0.183551i \(0.941241\pi\)
\(492\) 0 0
\(493\) −8.24410 8.24410i −0.371295 0.371295i
\(494\) 17.5138 10.1116i 0.787982 0.454942i
\(495\) 0 0
\(496\) 2.52943 9.43995i 0.113575 0.423866i
\(497\) 2.71640 2.71640i 0.121847 0.121847i
\(498\) 0 0
\(499\) 8.99405 + 6.90137i 0.402629 + 0.308948i 0.790151 0.612913i \(-0.210002\pi\)
−0.387522 + 0.921860i \(0.626669\pi\)
\(500\) 2.50453 + 19.0238i 0.112006 + 0.850769i
\(501\) 0 0
\(502\) −4.77122 3.66109i −0.212950 0.163402i
\(503\) 18.6554 + 18.6554i 0.831803 + 0.831803i 0.987763 0.155960i \(-0.0498471\pi\)
−0.155960 + 0.987763i \(0.549847\pi\)
\(504\) 0 0
\(505\) 10.2344 + 24.7081i 0.455426 + 1.09950i
\(506\) −10.5972 + 13.8105i −0.471103 + 0.613953i
\(507\) 0 0
\(508\) 16.1951 21.1059i 0.718542 0.936422i
\(509\) −1.17624 0.679104i −0.0521361 0.0301008i 0.473705 0.880683i \(-0.342916\pi\)
−0.525841 + 0.850583i \(0.676249\pi\)
\(510\) 0 0
\(511\) −1.31702 + 0.173389i −0.0582616 + 0.00767028i
\(512\) 12.0251 12.0251i 0.531438 0.531438i
\(513\) 0 0
\(514\) 14.3491 + 1.88910i 0.632913 + 0.0833246i
\(515\) 29.2290 12.1071i 1.28798 0.533501i
\(516\) 0 0
\(517\) 5.92457 + 1.58748i 0.260562 + 0.0698175i
\(518\) 8.95570i 0.393491i
\(519\) 0 0
\(520\) −14.7140 25.4855i −0.645253 1.11761i
\(521\) −17.9897 + 31.1591i −0.788143 + 1.36510i 0.138960 + 0.990298i \(0.455624\pi\)
−0.927103 + 0.374806i \(0.877709\pi\)
\(522\) 0 0
\(523\) 5.97412 + 7.78562i 0.261230 + 0.340442i 0.905492 0.424363i \(-0.139502\pi\)
−0.644262 + 0.764805i \(0.722835\pi\)
\(524\) −0.0617322 0.468903i −0.00269679 0.0204841i
\(525\) 0 0
\(526\) −0.862511 0.113552i −0.0376073 0.00495109i
\(527\) −25.8221 10.6959i −1.12483 0.465919i
\(528\) 0 0
\(529\) −2.57425 9.60724i −0.111924 0.417706i
\(530\) −1.76117 4.25185i −0.0765005 0.184689i
\(531\) 0 0
\(532\) 18.3331i 0.794841i
\(533\) 0.540993 2.01901i 0.0234330 0.0874532i
\(534\) 0 0
\(535\) 32.5747i 1.40833i
\(536\) −6.06192 2.51093i −0.261835 0.108456i
\(537\) 0 0
\(538\) −3.80820 14.2124i −0.164183 0.612740i
\(539\) −1.64057 0.947186i −0.0706645 0.0407982i
\(540\) 0 0
\(541\) 29.6842 + 3.90800i 1.27622 + 0.168018i 0.738010 0.674790i \(-0.235766\pi\)
0.538214 + 0.842808i \(0.319099\pi\)
\(542\) −10.0816 + 7.73587i −0.433041 + 0.332284i
\(543\) 0 0
\(544\) −16.3254 21.2757i −0.699946 0.912187i
\(545\) 8.59073 + 11.1957i 0.367986 + 0.479569i
\(546\) 0 0
\(547\) 18.7032 + 32.3948i 0.799689 + 1.38510i 0.919819 + 0.392344i \(0.128336\pi\)
−0.120130 + 0.992758i \(0.538331\pi\)
\(548\) −7.13957 + 17.2365i −0.304987 + 0.736305i
\(549\) 0 0
\(550\) −4.70370 1.26035i −0.200566 0.0537416i
\(551\) −10.8789 + 2.91499i −0.463457 + 0.124183i
\(552\) 0 0
\(553\) 13.1149 + 1.72661i 0.557703 + 0.0734230i
\(554\) 0.0172242 0.0415830i 0.000731788 0.00176669i
\(555\) 0 0
\(556\) −23.7572 + 3.12770i −1.00753 + 0.132644i
\(557\) 20.1093 + 5.38827i 0.852058 + 0.228308i 0.658314 0.752744i \(-0.271270\pi\)
0.193745 + 0.981052i \(0.437937\pi\)
\(558\) 0 0
\(559\) 19.4689 25.3723i 0.823445 1.07313i
\(560\) 7.75435 0.327681
\(561\) 0 0
\(562\) −1.18876 2.86993i −0.0501449 0.121060i
\(563\) 24.7691 10.2597i 1.04389 0.432395i 0.206185 0.978513i \(-0.433895\pi\)
0.837708 + 0.546119i \(0.183895\pi\)
\(564\) 0 0
\(565\) −4.38480 3.36458i −0.184470 0.141549i
\(566\) 0.358541 0.621012i 0.0150706 0.0261031i
\(567\) 0 0
\(568\) 2.76212 + 2.11945i 0.115896 + 0.0889301i
\(569\) 1.60428 12.1857i 0.0672551 0.510853i −0.924350 0.381547i \(-0.875392\pi\)
0.991605 0.129306i \(-0.0412751\pi\)
\(570\) 0 0
\(571\) −8.88361 + 33.1541i −0.371768 + 1.38746i 0.486243 + 0.873824i \(0.338367\pi\)
−0.858011 + 0.513632i \(0.828300\pi\)
\(572\) −50.0092 + 6.58383i −2.09099 + 0.275284i
\(573\) 0 0
\(574\) −0.359779 0.359779i −0.0150169 0.0150169i
\(575\) 7.31177 5.61052i 0.304922 0.233975i
\(576\) 0 0
\(577\) −0.560672 + 4.25872i −0.0233411 + 0.177293i −0.999144 0.0413569i \(-0.986832\pi\)
0.975803 + 0.218650i \(0.0701653\pi\)
\(578\) −2.80296 + 1.61829i −0.116588 + 0.0673119i
\(579\) 0 0
\(580\) 1.86986 + 6.97840i 0.0776416 + 0.289762i
\(581\) 8.96377 0.371880
\(582\) 0 0
\(583\) −17.8947 −0.741121
\(584\) −0.311593 1.16288i −0.0128938 0.0481203i
\(585\) 0 0
\(586\) −6.81414 + 3.93415i −0.281490 + 0.162518i
\(587\) 5.19854 39.4869i 0.214567 1.62980i −0.457432 0.889245i \(-0.651231\pi\)
0.671998 0.740553i \(-0.265436\pi\)
\(588\) 0 0
\(589\) −21.4203 + 16.4364i −0.882609 + 0.677250i
\(590\) 8.87315 + 8.87315i 0.365302 + 0.365302i
\(591\) 0 0
\(592\) 8.71091 1.14681i 0.358016 0.0471337i
\(593\) −1.52959 + 5.70852i −0.0628129 + 0.234421i −0.990194 0.139696i \(-0.955387\pi\)
0.927382 + 0.374117i \(0.122054\pi\)
\(594\) 0 0
\(595\) 2.89463 21.9869i 0.118668 0.901376i
\(596\) 2.40736 + 1.84723i 0.0986094 + 0.0756656i
\(597\) 0 0
\(598\) −12.8168 + 22.1994i −0.524119 + 0.907801i
\(599\) 3.83227 + 2.94060i 0.156582 + 0.120150i 0.684081 0.729406i \(-0.260203\pi\)
−0.527499 + 0.849556i \(0.676870\pi\)
\(600\) 0 0
\(601\) 37.2453 15.4275i 1.51927 0.629300i 0.541821 0.840494i \(-0.317735\pi\)
0.977444 + 0.211193i \(0.0677350\pi\)
\(602\) −2.97912 7.19224i −0.121420 0.293134i
\(603\) 0 0
\(604\) 4.46408 0.181641
\(605\) 12.0299 15.6777i 0.489087 0.637390i
\(606\) 0 0
\(607\) −15.0955 4.04483i −0.612707 0.164174i −0.0608969 0.998144i \(-0.519396\pi\)
−0.551810 + 0.833970i \(0.686063\pi\)
\(608\) −25.6844 + 3.38141i −1.04164 + 0.137134i
\(609\) 0 0
\(610\) −2.82807 + 6.82756i −0.114505 + 0.276440i
\(611\) 8.95465 + 1.17890i 0.362266 + 0.0476932i
\(612\) 0 0
\(613\) 28.0034 7.50348i 1.13104 0.303063i 0.355700 0.934600i \(-0.384243\pi\)
0.775345 + 0.631538i \(0.217576\pi\)
\(614\) −7.37909 1.97722i −0.297796 0.0797941i
\(615\) 0 0
\(616\) −10.6590 + 25.7332i −0.429465 + 1.03682i
\(617\) −4.16949 7.22176i −0.167857 0.290737i 0.769809 0.638274i \(-0.220351\pi\)
−0.937666 + 0.347537i \(0.887018\pi\)
\(618\) 0 0
\(619\) 21.3309 + 27.7990i 0.857362 + 1.11734i 0.991975 + 0.126437i \(0.0403542\pi\)
−0.134613 + 0.990898i \(0.542979\pi\)
\(620\) 10.5433 + 13.7403i 0.423430 + 0.551825i
\(621\) 0 0
\(622\) 5.33503 4.09371i 0.213915 0.164143i
\(623\) −12.2216 1.60901i −0.489649 0.0644636i
\(624\) 0 0
\(625\) −12.4652 7.19678i −0.498607 0.287871i
\(626\) 0.322541 + 1.20374i 0.0128913 + 0.0481111i
\(627\) 0 0
\(628\) −23.8045 9.86014i −0.949902 0.393462i
\(629\) 25.1273i 1.00189i
\(630\) 0 0
\(631\) −8.52777 + 31.8261i −0.339485 + 1.26698i 0.559439 + 0.828872i \(0.311017\pi\)
−0.898924 + 0.438104i \(0.855650\pi\)
\(632\) 11.9885i 0.476876i
\(633\) 0 0
\(634\) −3.83671 9.26263i −0.152375 0.367866i
\(635\) 8.04593 + 30.0278i 0.319293 + 1.19162i
\(636\) 0 0
\(637\) −2.57719 1.06751i −0.102112 0.0422962i
\(638\) −7.47843 0.984554i −0.296074 0.0389789i
\(639\) 0 0
\(640\) 2.68198 + 20.3717i 0.106015 + 0.805261i
\(641\) 28.2696 + 36.8416i 1.11658 + 1.45516i 0.874580 + 0.484882i \(0.161137\pi\)
0.242002 + 0.970276i \(0.422196\pi\)
\(642\) 0 0
\(643\) 7.09809 12.2942i 0.279921 0.484838i −0.691444 0.722430i \(-0.743025\pi\)
0.971365 + 0.237593i \(0.0763583\pi\)
\(644\) −11.6190 20.1246i −0.457851 0.793022i
\(645\) 0 0
\(646\) 13.8118i 0.543418i
\(647\) 23.4778 + 6.29085i 0.923007 + 0.247319i 0.688870 0.724885i \(-0.258107\pi\)
0.234137 + 0.972204i \(0.424774\pi\)
\(648\) 0 0
\(649\) 45.0785 18.6721i 1.76948 0.732945i
\(650\) −7.10936 0.935965i −0.278852 0.0367116i
\(651\) 0 0
\(652\) 5.31935 5.31935i 0.208322 0.208322i
\(653\) −45.7350 + 6.02112i −1.78975 + 0.235625i −0.951064 0.308993i \(-0.900008\pi\)
−0.838684 + 0.544618i \(0.816675\pi\)
\(654\) 0 0
\(655\) 0.478617 + 0.276330i 0.0187011 + 0.0107971i
\(656\) −0.303874 + 0.396016i −0.0118643 + 0.0154618i
\(657\) 0 0
\(658\) 1.33839 1.74422i 0.0521759 0.0679969i
\(659\) 0.236669 + 0.571370i 0.00921933 + 0.0222574i 0.928422 0.371527i \(-0.121166\pi\)
−0.919203 + 0.393784i \(0.871166\pi\)
\(660\) 0 0
\(661\) 13.1515 + 13.1515i 0.511533 + 0.511533i 0.914996 0.403463i \(-0.132194\pi\)
−0.403463 + 0.914996i \(0.632194\pi\)
\(662\) −0.291544 0.223710i −0.0113312 0.00869472i
\(663\) 0 0
\(664\) 1.06036 + 8.05427i 0.0411501 + 0.312566i
\(665\) −16.9960 13.0415i −0.659076 0.505726i
\(666\) 0 0
\(667\) 10.0946 10.0946i 0.390863 0.390863i
\(668\) 9.77206 36.4698i 0.378093 1.41106i
\(669\) 0 0
\(670\) 2.92703 1.68992i 0.113081 0.0652873i
\(671\) 20.3187 + 20.3187i 0.784395 + 0.784395i
\(672\) 0 0
\(673\) −7.78897 13.4909i −0.300243 0.520036i 0.675948 0.736949i \(-0.263734\pi\)
−0.976191 + 0.216914i \(0.930401\pi\)
\(674\) 2.43901 18.5262i 0.0939473 0.713601i
\(675\) 0 0
\(676\) −51.9470 + 13.9191i −1.99796 + 0.535352i
\(677\) −5.33904 19.9256i −0.205196 0.765801i −0.989390 0.145286i \(-0.953590\pi\)
0.784194 0.620516i \(-0.213077\pi\)
\(678\) 0 0
\(679\) −20.7057 + 14.5207i −0.794613 + 0.557252i
\(680\) 20.0985 0.770741
\(681\) 0 0
\(682\) −17.4664 + 4.68011i −0.668824 + 0.179211i
\(683\) −13.7545 + 7.94114i −0.526300 + 0.303859i −0.739508 0.673147i \(-0.764942\pi\)
0.213209 + 0.977007i \(0.431609\pi\)
\(684\) 0 0
\(685\) −10.9005 18.8802i −0.416486 0.721375i
\(686\) −9.81719 + 7.53299i −0.374822 + 0.287611i
\(687\) 0 0
\(688\) −6.61416 + 3.81869i −0.252162 + 0.145586i
\(689\) −26.1251 + 3.43944i −0.995288 + 0.131032i
\(690\) 0 0
\(691\) −7.94975 + 7.94975i −0.302423 + 0.302423i −0.841961 0.539538i \(-0.818599\pi\)
0.539538 + 0.841961i \(0.318599\pi\)
\(692\) 2.08040 15.8022i 0.0790850 0.600710i
\(693\) 0 0
\(694\) −1.54114 11.7061i −0.0585010 0.444359i
\(695\) 14.0004 24.2494i 0.531065 0.919832i
\(696\) 0 0
\(697\) 1.00944 + 1.00944i 0.0382354 + 0.0382354i
\(698\) 2.23235 0.924671i 0.0844958 0.0349993i
\(699\) 0 0
\(700\) 3.95727 5.15722i 0.149571 0.194924i
\(701\) −47.2986 −1.78645 −0.893223 0.449615i \(-0.851561\pi\)
−0.893223 + 0.449615i \(0.851561\pi\)
\(702\) 0 0
\(703\) −21.0213 12.1366i −0.792833 0.457742i
\(704\) −1.99937 0.535730i −0.0753542 0.0201911i
\(705\) 0 0
\(706\) −11.2923 + 11.2923i −0.424992 + 0.424992i
\(707\) 14.2642 34.4368i 0.536459 1.29513i
\(708\) 0 0
\(709\) −3.15362 + 1.30627i −0.118437 + 0.0490581i −0.441115 0.897451i \(-0.645417\pi\)
0.322678 + 0.946509i \(0.395417\pi\)
\(710\) −1.73229 + 0.464166i −0.0650118 + 0.0174199i
\(711\) 0 0
\(712\) 11.1719i 0.418685i
\(713\) 13.0967 31.6181i 0.490474 1.18411i
\(714\) 0 0
\(715\) 29.4710 51.0452i 1.10215 1.90898i
\(716\) 8.45602 + 11.0201i 0.316016 + 0.411840i
\(717\) 0 0
\(718\) 0.869251 + 6.60261i 0.0324401 + 0.246407i
\(719\) −27.3220 + 20.9649i −1.01894 + 0.781860i −0.976122 0.217223i \(-0.930300\pi\)
−0.0428178 + 0.999083i \(0.513633\pi\)
\(720\) 0 0
\(721\) −40.7378 16.8741i −1.51715 0.628426i
\(722\) 0.848641 + 0.489963i 0.0315831 + 0.0182345i
\(723\) 0 0
\(724\) 13.3198 + 32.1568i 0.495026 + 1.19510i
\(725\) 3.68952 + 1.52825i 0.137025 + 0.0567577i
\(726\) 0 0
\(727\) −1.47167 + 5.49235i −0.0545813 + 0.203700i −0.987832 0.155526i \(-0.950293\pi\)
0.933250 + 0.359226i \(0.116959\pi\)
\(728\) −10.6155 + 39.6176i −0.393437 + 1.46833i
\(729\) 0 0
\(730\) 0.572938 + 0.237319i 0.0212054 + 0.00878356i
\(731\) 8.35861 + 20.1795i 0.309154 + 0.746365i
\(732\) 0 0
\(733\) −0.385461 0.222546i −0.0142373 0.00821993i 0.492864 0.870106i \(-0.335950\pi\)
−0.507102 + 0.861886i \(0.669283\pi\)
\(734\) 6.17103 + 2.55612i 0.227777 + 0.0943482i
\(735\) 0 0
\(736\) 26.0512 19.9898i 0.960261 0.736834i
\(737\) −1.71536 13.0294i −0.0631861 0.479946i
\(738\) 0 0
\(739\) −4.65209 6.06272i −0.171130 0.223021i 0.699913 0.714228i \(-0.253222\pi\)
−0.871042 + 0.491208i \(0.836556\pi\)
\(740\) −7.78519 + 13.4844i −0.286189 + 0.495695i
\(741\) 0 0
\(742\) −2.45462 + 5.92599i −0.0901121 + 0.217550i
\(743\) 2.37475i 0.0871210i −0.999051 0.0435605i \(-0.986130\pi\)
0.999051 0.0435605i \(-0.0138701\pi\)
\(744\) 0 0
\(745\) −3.42501 + 0.917729i −0.125483 + 0.0336230i
\(746\) 15.0250 6.22357i 0.550105 0.227861i
\(747\) 0 0
\(748\) 13.1832 31.8271i 0.482027 1.16372i
\(749\) 32.1032 32.1032i 1.17302 1.17302i
\(750\) 0 0
\(751\) 31.6822 + 8.48922i 1.15610 + 0.309776i 0.785407 0.618980i \(-0.212454\pi\)
0.370693 + 0.928756i \(0.379120\pi\)
\(752\) −1.86793 1.07845i −0.0681165 0.0393271i
\(753\) 0 0
\(754\) −11.1073 −0.404504
\(755\) −3.17557 + 4.13849i −0.115571 + 0.150615i
\(756\) 0 0
\(757\) −18.9849 + 7.86381i −0.690018 + 0.285815i −0.700008 0.714135i \(-0.746820\pi\)
0.00998959 + 0.999950i \(0.496820\pi\)
\(758\) −6.93238 6.93238i −0.251796 0.251796i
\(759\) 0 0
\(760\) 9.70770 16.8142i 0.352135 0.609916i
\(761\) 3.24654 + 24.6599i 0.117687 + 0.893922i 0.943823 + 0.330451i \(0.107201\pi\)
−0.826136 + 0.563471i \(0.809466\pi\)
\(762\) 0 0
\(763\) 2.56722 19.5000i 0.0929397 0.705947i
\(764\) −13.9317 + 13.9317i −0.504031 + 0.504031i
\(765\) 0 0
\(766\) −3.21760 + 0.423605i −0.116257 + 0.0153055i
\(767\) 62.2230 35.9245i 2.24674 1.29716i
\(768\) 0 0
\(769\) −2.92895 + 2.24746i −0.105621 + 0.0810456i −0.660222 0.751071i \(-0.729538\pi\)
0.554601 + 0.832117i \(0.312871\pi\)
\(770\) −7.17381 12.4254i −0.258526 0.447781i
\(771\) 0 0
\(772\) 26.2028 15.1282i 0.943059 0.544476i
\(773\) −28.0857 + 7.52555i −1.01017 + 0.270675i −0.725702 0.688009i \(-0.758485\pi\)
−0.284472 + 0.958684i \(0.591818\pi\)
\(774\) 0 0
\(775\) 9.57353 0.343891
\(776\) −15.4967 16.8871i −0.556300 0.606213i
\(777\) 0 0
\(778\) −3.81462 14.2364i −0.136761 0.510398i
\(779\) 1.33206 0.356924i 0.0477260 0.0127881i
\(780\) 0 0
\(781\) −0.910198 + 6.91364i −0.0325695 + 0.247390i
\(782\) −8.75350 15.1615i −0.313024 0.542174i
\(783\) 0 0
\(784\) 0.471050 + 0.471050i 0.0168232 + 0.0168232i
\(785\) 26.0746 15.0542i 0.930642 0.537306i
\(786\) 0 0
\(787\) 13.5084 50.4142i 0.481524 1.79707i −0.113703 0.993515i \(-0.536271\pi\)
0.595227 0.803558i \(-0.297062\pi\)
\(788\) −9.35353 + 9.35353i −0.333206 + 0.333206i
\(789\) 0 0
\(790\) −4.89928 3.75935i −0.174309 0.133752i
\(791\) 1.00546 + 7.63721i 0.0357500 + 0.271548i
\(792\) 0 0
\(793\) 33.5695 + 25.7587i 1.19209 + 0.914720i
\(794\) 7.97592 + 7.97592i 0.283055 + 0.283055i
\(795\) 0 0
\(796\) 1.61523 + 3.89950i 0.0572502 + 0.138214i
\(797\) −15.6896 + 20.4471i −0.555754 + 0.724273i −0.983757 0.179505i \(-0.942551\pi\)
0.428003 + 0.903777i \(0.359217\pi\)
\(798\) 0 0
\(799\) −3.75516 + 4.89382i −0.132848 + 0.173131i
\(800\) 7.95506 + 4.59286i 0.281254 + 0.162382i
\(801\) 0 0
\(802\) −21.3200 + 2.80683i −0.752834 + 0.0991125i
\(803\) 1.70506 1.70506i 0.0601701 0.0601701i
\(804\) 0 0
\(805\) 26.9221 + 3.54436i 0.948880 + 0.124922i
\(806\) −24.6004 + 10.1898i −0.866512 + 0.358921i
\(807\) 0 0
\(808\) 32.6300 + 8.74319i 1.14792 + 0.307584i
\(809\) 9.38194i 0.329852i 0.986306 + 0.164926i \(0.0527385\pi\)
−0.986306 + 0.164926i \(0.947262\pi\)
\(810\) 0 0
\(811\) −3.98845 6.90820i −0.140053 0.242580i 0.787463 0.616362i \(-0.211394\pi\)
−0.927517 + 0.373782i \(0.878061\pi\)
\(812\) 5.03460 8.72019i 0.176680 0.306019i
\(813\) 0 0
\(814\) −9.89638 12.8972i −0.346868 0.452047i
\(815\) 1.14740 + 8.71535i 0.0401916 + 0.305286i
\(816\) 0 0
\(817\) 20.9193 + 2.75407i 0.731872 + 0.0963528i
\(818\) −16.6209 6.88459i −0.581135 0.240714i
\(819\) 0 0
\(820\) −0.228953 0.854465i −0.00799540 0.0298392i
\(821\) −18.6782 45.0931i −0.651873 1.57376i −0.810057 0.586351i \(-0.800564\pi\)
0.158184 0.987410i \(-0.449436\pi\)
\(822\) 0 0
\(823\) 26.2841i 0.916205i −0.888899 0.458102i \(-0.848529\pi\)
0.888899 0.458102i \(-0.151471\pi\)
\(824\) 10.3430 38.6005i 0.360314 1.34471i
\(825\) 0 0
\(826\) 17.4894i 0.608535i
\(827\) −11.1060 4.60025i −0.386193 0.159966i 0.181135 0.983458i \(-0.442023\pi\)
−0.567328 + 0.823492i \(0.692023\pi\)
\(828\) 0 0
\(829\) 8.02358 + 29.9444i 0.278670 + 1.04001i 0.953342 + 0.301894i \(0.0976187\pi\)
−0.674671 + 0.738118i \(0.735715\pi\)
\(830\) −3.62401 2.09233i −0.125791 0.0726257i
\(831\) 0 0
\(832\) −3.02193 0.397845i −0.104767 0.0137928i
\(833\) 1.51147 1.15979i 0.0523693 0.0401844i
\(834\) 0 0
\(835\) 26.8584 + 35.0026i 0.929474 + 1.21131i
\(836\) −20.2588 26.4017i −0.700664 0.913123i
\(837\) 0 0
\(838\) 2.40578 + 4.16693i 0.0831062 + 0.143944i
\(839\) −17.8123 + 43.0027i −0.614948 + 1.48462i 0.242555 + 0.970138i \(0.422015\pi\)
−0.857503 + 0.514479i \(0.827985\pi\)
\(840\) 0 0
\(841\) −22.0368 5.90473i −0.759888 0.203611i
\(842\) 14.4843 3.88106i 0.499162 0.133750i
\(843\) 0 0
\(844\) −25.4391 3.34912i −0.875650 0.115282i
\(845\) 24.0491 58.0597i 0.827315 1.99732i
\(846\) 0 0
\(847\) −27.3066 + 3.59499i −0.938267 + 0.123525i
\(848\) 6.07833 + 1.62868i 0.208731 + 0.0559292i
\(849\) 0 0
\(850\) 2.98133 3.88535i 0.102259 0.133266i
\(851\) 30.7673 1.05469
\(852\) 0 0
\(853\) 3.70404 + 8.94233i 0.126824 + 0.306180i 0.974519 0.224303i \(-0.0720106\pi\)
−0.847696 + 0.530483i \(0.822011\pi\)
\(854\) 9.51587 3.94160i 0.325626 0.134879i
\(855\) 0 0
\(856\) 32.6435 + 25.0482i 1.11573 + 0.856131i
\(857\) 11.8805 20.5776i 0.405830 0.702918i −0.588588 0.808433i \(-0.700316\pi\)
0.994418 + 0.105515i \(0.0336492\pi\)
\(858\) 0 0
\(859\) −35.9075 27.5528i −1.22515 0.940089i −0.225729 0.974190i \(-0.572477\pi\)
−0.999418 + 0.0341011i \(0.989143\pi\)
\(860\) 1.76663 13.4189i 0.0602417 0.457581i
\(861\) 0 0
\(862\) −3.96660 + 14.8035i −0.135103 + 0.504211i
\(863\) −5.29619 + 0.697257i −0.180284 + 0.0237349i −0.220128 0.975471i \(-0.570647\pi\)
0.0398434 + 0.999206i \(0.487314\pi\)
\(864\) 0 0
\(865\) 13.1698 + 13.1698i 0.447785 + 0.447785i
\(866\) 11.9120 9.14040i 0.404786 0.310603i
\(867\) 0 0
\(868\) 3.15073 23.9322i 0.106943 0.812311i
\(869\) −20.7949 + 12.0060i −0.705419 + 0.407274i
\(870\) 0 0
\(871\) −5.00864 18.6925i −0.169711 0.633372i
\(872\) 17.8251 0.603635
\(873\) 0 0
\(874\) −16.9120 −0.572057
\(875\) 8.08818 + 30.1855i 0.273430 + 1.02046i
\(876\) 0 0
\(877\) −29.3124 + 16.9235i −0.989809 + 0.571467i −0.905217 0.424949i \(-0.860292\pi\)
−0.0845918 + 0.996416i \(0.526959\pi\)
\(878\) −0.404121 + 3.06960i −0.0136384 + 0.103594i
\(879\) 0 0
\(880\) −11.1671 + 8.56885i −0.376444 + 0.288856i
\(881\) −1.46742 1.46742i −0.0494388 0.0494388i 0.681955 0.731394i \(-0.261130\pi\)
−0.731394 + 0.681955i \(0.761130\pi\)
\(882\) 0 0
\(883\) −8.83185 + 1.16274i −0.297215 + 0.0391292i −0.277659 0.960680i \(-0.589559\pi\)
−0.0195561 + 0.999809i \(0.506225\pi\)
\(884\) 13.1294 48.9996i 0.441590 1.64803i
\(885\) 0 0
\(886\) −1.18693 + 9.01566i −0.0398758 + 0.302887i
\(887\) −4.75673 3.64996i −0.159715 0.122554i 0.525812 0.850601i \(-0.323762\pi\)
−0.685527 + 0.728047i \(0.740428\pi\)
\(888\) 0 0
\(889\) 21.6637 37.5227i 0.726578 1.25847i
\(890\) 4.56558 + 3.50329i 0.153039 + 0.117431i
\(891\) 0 0
\(892\) −3.89942 + 1.61519i −0.130562 + 0.0540807i
\(893\) 2.28036 + 5.50528i 0.0763094 + 0.184227i
\(894\) 0 0
\(895\) −16.2316 −0.542564
\(896\) 17.4337 22.7200i 0.582418 0.759021i
\(897\) 0 0
\(898\) 17.8396 + 4.78012i 0.595317 + 0.159515i
\(899\) 14.7024 1.93560i 0.490351 0.0645560i
\(900\) 0 0
\(901\) 6.88701 16.6267i 0.229440 0.553916i
\(902\) 0.915691 + 0.120553i 0.0304892 + 0.00401398i
\(903\) 0 0
\(904\) −6.74337 + 1.80688i −0.224281 + 0.0600960i
\(905\) −39.2866 10.5268i −1.30593 0.349923i
\(906\) 0 0
\(907\) 10.2346 24.7084i 0.339833 0.820430i −0.657898 0.753107i \(-0.728554\pi\)
0.997731 0.0673230i \(-0.0214458\pi\)
\(908\) −15.0923 26.1406i −0.500856 0.867507i
\(909\) 0 0
\(910\) −12.8616 16.7615i −0.426357 0.555639i
\(911\) −3.56682 4.64837i −0.118174 0.154007i 0.730520 0.682891i \(-0.239278\pi\)
−0.848694 + 0.528883i \(0.822611\pi\)
\(912\) 0 0
\(913\) −12.9088 + 9.90529i −0.427220 + 0.327817i
\(914\) 1.34342 + 0.176864i 0.0444362 + 0.00585014i
\(915\) 0 0
\(916\) −1.76135 1.01692i −0.0581967 0.0335999i
\(917\) −0.199359 0.744020i −0.00658343 0.0245697i
\(918\) 0 0
\(919\) −27.5470 11.4104i −0.908693 0.376393i −0.121137 0.992636i \(-0.538654\pi\)
−0.787556 + 0.616243i \(0.788654\pi\)
\(920\) 24.6098i 0.811360i
\(921\) 0 0
\(922\) 2.69643 10.0632i 0.0888023 0.331415i
\(923\) 10.2684i 0.337990i
\(924\) 0 0
\(925\) 3.29368 + 7.95164i 0.108295 + 0.261448i
\(926\) 5.67322 + 21.1727i 0.186433 + 0.695779i
\(927\) 0 0
\(928\) 13.1454 + 5.44501i 0.431520 + 0.178741i
\(929\) 9.73141 + 1.28116i 0.319277 + 0.0420336i 0.288462 0.957491i \(-0.406856\pi\)
0.0308155 + 0.999525i \(0.490190\pi\)
\(930\) 0 0
\(931\) −0.240223 1.82467i −0.00787298 0.0598012i
\(932\) −14.6482 19.0899i −0.479818 0.625311i
\(933\) 0 0
\(934\) −11.3310 + 19.6259i −0.370763 + 0.642180i
\(935\) 20.1278 + 34.8623i 0.658248 + 1.14012i
\(936\) 0 0
\(937\) 8.35265i 0.272869i −0.990649 0.136435i \(-0.956436\pi\)
0.990649 0.136435i \(-0.0435644\pi\)
\(938\) −4.55012 1.21920i −0.148567 0.0398084i
\(939\) 0 0
\(940\) 3.53143 1.46277i 0.115183 0.0477102i
\(941\) 21.1006 + 2.77794i 0.687859 + 0.0905583i 0.466350 0.884600i \(-0.345569\pi\)
0.221508 + 0.975158i \(0.428902\pi\)
\(942\) 0 0
\(943\) −1.23602 + 1.23602i −0.0402504 + 0.0402504i
\(944\) −17.0114 + 2.23959i −0.553673 + 0.0728925i
\(945\) 0 0
\(946\) 12.2380 + 7.06559i 0.397890 + 0.229722i
\(947\) −11.9169 + 15.5304i −0.387247 + 0.504670i −0.945778 0.324814i \(-0.894698\pi\)
0.558531 + 0.829484i \(0.311365\pi\)
\(948\) 0 0
\(949\) 2.16156 2.81700i 0.0701672 0.0914437i
\(950\) −1.81045 4.37081i −0.0587387 0.141808i
\(951\) 0 0
\(952\) −19.8076 19.8076i −0.641967 0.641967i
\(953\) 2.45474 + 1.88359i 0.0795167 + 0.0610153i 0.647755 0.761849i \(-0.275708\pi\)
−0.568238 + 0.822864i \(0.692375\pi\)
\(954\) 0 0
\(955\) −3.00511 22.8261i −0.0972430 0.738634i
\(956\) −3.15074 2.41765i −0.101902 0.0781924i
\(957\) 0 0
\(958\) −6.66180 + 6.66180i −0.215233 + 0.215233i
\(959\) −7.86421 + 29.3496i −0.253949 + 0.947749i
\(960\) 0 0
\(961\) 3.94022 2.27489i 0.127104 0.0733835i
\(962\) −16.9270 16.9270i −0.545749 0.545749i
\(963\) 0 0
\(964\) −14.1803 24.5610i −0.456716 0.791055i
\(965\) −4.61485 + 35.0533i −0.148557 + 1.12841i
\(966\) 0 0
\(967\) 32.8964 8.81457i 1.05788 0.283457i 0.312374 0.949959i \(-0.398876\pi\)
0.745503 + 0.666502i \(0.232209\pi\)
\(968\) −6.46045 24.1107i −0.207647 0.774948i
\(969\) 0 0
\(970\) 11.7607 1.03751i 0.377612 0.0333124i
\(971\) 2.42672 0.0778773 0.0389386 0.999242i \(-0.487602\pi\)
0.0389386 + 0.999242i \(0.487602\pi\)
\(972\) 0 0
\(973\) −37.6961 + 10.1007i −1.20848 + 0.323812i
\(974\) 0.147737 0.0852958i 0.00473379 0.00273306i
\(975\) 0 0
\(976\) −5.05241 8.75103i −0.161724 0.280114i
\(977\) 4.04485 3.10372i 0.129406 0.0992969i −0.542030 0.840359i \(-0.682344\pi\)
0.671437 + 0.741062i \(0.265678\pi\)
\(978\) 0 0
\(979\) 19.3785 11.1882i 0.619340 0.357576i
\(980\) −1.17046 + 0.154094i −0.0373889 + 0.00492234i
\(981\) 0 0
\(982\) 6.78045 6.78045i 0.216373 0.216373i
\(983\) −7.06322 + 53.6505i −0.225282 + 1.71118i 0.388284 + 0.921540i \(0.373068\pi\)
−0.613565 + 0.789644i \(0.710265\pi\)
\(984\) 0 0
\(985\) −2.01758 15.3251i −0.0642856 0.488297i
\(986\) 3.79297 6.56962i 0.120793 0.209219i
\(987\) 0 0
\(988\) −34.6511 34.6511i −1.10240 1.10240i
\(989\) −24.7089 + 10.2348i −0.785699 + 0.325447i
\(990\) 0 0
\(991\) −10.6820 + 13.9210i −0.339324 + 0.442215i −0.931581 0.363534i \(-0.881570\pi\)
0.592257 + 0.805749i \(0.298237\pi\)
\(992\) 34.1097 1.08298
\(993\) 0 0
\(994\) 2.16467 + 1.24977i 0.0686591 + 0.0396403i
\(995\) −4.76410 1.27654i −0.151032 0.0404689i
\(996\) 0 0
\(997\) 5.15026 5.15026i 0.163110 0.163110i −0.620833 0.783943i \(-0.713205\pi\)
0.783943 + 0.620833i \(0.213205\pi\)
\(998\) −2.82280 + 6.81484i −0.0893541 + 0.215720i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 873.2.bo.b.442.4 56
3.2 odd 2 97.2.i.a.54.4 yes 56
97.9 even 24 inner 873.2.bo.b.397.4 56
291.191 odd 48 9409.2.a.m.1.24 56
291.197 odd 48 9409.2.a.m.1.23 56
291.203 odd 24 97.2.i.a.9.4 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
97.2.i.a.9.4 56 291.203 odd 24
97.2.i.a.54.4 yes 56 3.2 odd 2
873.2.bo.b.397.4 56 97.9 even 24 inner
873.2.bo.b.442.4 56 1.1 even 1 trivial
9409.2.a.m.1.23 56 291.197 odd 48
9409.2.a.m.1.24 56 291.191 odd 48