Properties

Label 9409.2.a.b
Level $9409$
Weight $2$
Character orbit 9409.a
Self dual yes
Analytic conductor $75.131$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9409,2,Mod(1,9409)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9409, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9409.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9409 = 97^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9409.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,4,4,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(75.1312432618\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{24})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 97)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{2} + ( - \beta_{2} + 1) q^{3} + q^{4} + ( - \beta_{3} - 2 \beta_1) q^{5} + (\beta_{2} - 3) q^{6} + ( - \beta_{3} - \beta_1) q^{7} - \beta_{2} q^{8} + ( - 2 \beta_{2} + 1) q^{9} - 3 \beta_1 q^{10}+ \cdots + (2 \beta_{2} - 12) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} + 4 q^{4} - 12 q^{6} + 4 q^{9} + 4 q^{12} - 20 q^{16} - 24 q^{18} + 24 q^{22} + 12 q^{24} + 4 q^{25} + 16 q^{27} + 4 q^{31} - 24 q^{33} + 12 q^{35} + 4 q^{36} - 12 q^{43} - 24 q^{47} - 20 q^{48}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{24} + \zeta_{24}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 4\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 4\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.517638
0.517638
1.93185
−1.93185
−1.73205 2.73205 1.00000 −0.896575 −4.73205 −1.41421 1.73205 4.46410 1.55291
1.2 −1.73205 2.73205 1.00000 0.896575 −4.73205 1.41421 1.73205 4.46410 −1.55291
1.3 1.73205 −0.732051 1.00000 −3.34607 −1.26795 −1.41421 −1.73205 −2.46410 −5.79555
1.4 1.73205 −0.732051 1.00000 3.34607 −1.26795 1.41421 −1.73205 −2.46410 5.79555
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(97\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
97.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9409.2.a.b 4
97.b even 2 1 inner 9409.2.a.b 4
97.i even 24 2 97.2.g.a 4
291.r odd 24 2 873.2.be.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
97.2.g.a 4 97.i even 24 2
873.2.be.c 4 291.r odd 24 2
9409.2.a.b 4 1.a even 1 1 trivial
9409.2.a.b 4 97.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9409))\):

\( T_{2}^{2} - 3 \) Copy content Toggle raw display
\( T_{5}^{4} - 12T_{5}^{2} + 9 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - 3)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} - 2 T - 2)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} - 12T^{2} + 9 \) Copy content Toggle raw display
$7$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - 12)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} - 4T^{2} + 1 \) Copy content Toggle raw display
$17$ \( T^{4} - 36T^{2} + 81 \) Copy content Toggle raw display
$19$ \( T^{4} - 28T^{2} + 4 \) Copy content Toggle raw display
$23$ \( (T^{2} - 72)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} - 84T^{2} + 36 \) Copy content Toggle raw display
$31$ \( (T^{2} - 2 T - 26)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} - 148T^{2} + 2209 \) Copy content Toggle raw display
$41$ \( (T^{2} - 54)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 6 T - 18)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 12 T - 12)^{2} \) Copy content Toggle raw display
$53$ \( (T + 3)^{4} \) Copy content Toggle raw display
$59$ \( (T^{2} - 24)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} - 3)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} - 16T^{2} + 16 \) Copy content Toggle raw display
$71$ \( T^{4} - 228T^{2} + 6084 \) Copy content Toggle raw display
$73$ \( (T^{2} + 8 T - 92)^{2} \) Copy content Toggle raw display
$79$ \( (T - 6)^{4} \) Copy content Toggle raw display
$83$ \( T^{4} - 228T^{2} + 6084 \) Copy content Toggle raw display
$89$ \( (T^{2} + 6 T - 3)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less